
ar
X

iv
:1

91
1.

04
83

4v
1 

 [
m

at
h.

A
P]

  1
2 

N
ov

 2
01

9

THE LIGHT RAY TRANSFORM IN STATIONARY AND

STATIC LORENTZIAN GEOMETRIES

ALI FEIZMOHAMMADI, JOONAS ILMAVIRTA, AND LAURI OKSANEN

Abstract. Given a Lorentzian manifold, the light ray transform of a func-
tion is its integrals along null geodesics. This paper is concerned with the
injectivity of the light ray transform on functions and tensors, up to the nat-
ural gauge for the problem. First, we study the injectivity of the light ray
transform of a scalar function on a globally hyperbolic stationary Lorentzian
manifold and prove injectivity holds if either a convex foliation condition is
satisfied on a Cauchy surface on the manifold or the manifold is real ana-
lytic and null geodesics do not have cut points. Next, we consider the light
ray transform on tensor fields of arbitrary rank in the more restrictive class
of static Lorentzian manifolds and show that if the geodesic ray transform
on tensors defined on the spatial part of the manifold is injective up to
the natural gauge, then the light ray transform on tensors is also injective
up to its natural gauge. Finally, we provide applications of our results to
some inverse problems about recovery of coefficients for hyperbolic partial
differential equations from boundary data.

1. Introduction

Let (N , ḡ) be a smooth globally hyperbolic Lorentzian manifold of dimen-
sion 1 + n with signature (−,+, . . . ,+). For a review of the notion of global
hyperbolicity we refer the reader to [19, Chapter 14]. For the purposes of this
paper, it suffices to recall that such manifolds have a Cauchy hypersurface,
that is a hypersurface which is intersected by any causal curve exactly once.
We are interested in studying the injectivity of the so called light ray transform
on functions and tensors over such Lorentzian manifolds.

To formulate the problem precisely we introduce some notations. For each
m = 0, 1, . . ., let Sm = Sm(N ) denote the vector bundle of symmetric tensors
of rank m on N . In local coordinates each α ∈ C∞

c (N ;Sm) can be written as

α(y, w) = αj1...jm(y)w
j1 . . . wjm, ∀ (y, w) ∈ TN ,

where we are using the Einstein summation convention. Next, let β be a
maximal (that is inextensible) null geodesic in (N , ḡ), namely a geodesic whose
tangent vector at each point is light-like:

∇ḡ

β̇(s)
β̇(s) = 0, and ḡ(β̇(s), β̇(s)) = 0.(1)

Observe that equation (1) defines the parametrization of β uniquely up to a
group of affine re-parametrizations. Given any choice of such parametrization,
we define the light ray transform of α ∈ C∞

c (N ;Sm) along β as follows:

Lβα =

∫

R

α(β(s), β̇(s)) ds.(2)

1
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Note that, by global hyperbolicity the null geodesic β(s) will lie outside of
any compact set K ⊂ N , for |s| large enough (see [19, Lemma 13, p. 408]),
and therefore the integral in (2) is well-defined for compactly supported α.
Note also that the domain of integration in (2) is also justified even when β is
not complete since α is compactly supported. Finally, observe that an affine
reparametrization of β results in the integral (2) to be scaled. Together with
the linearity of the map L, this implies that the choice of the parametrization
is of no significance provided that we are concerned with injectivity of the light
ray transform on N .

1.1. The case of stationary geometries. The first result in our paper is
concerned with the injectivity of the light ray transform on scalar functions
under the additional assumption that (N , ḡ) is stationary, in the sense that
there exists a smooth complete time-like Killing vector field. Let N ⊂ N
denote a fixed Cauchy hypersurface in N , write g = ḡ|N and observe that
(N, g) is a Riemannian manifold. It is well-known (for example [13, Lemma
3.3]) that the manifold (N , ḡ) admits a canonical isometric embedding Φ :
R×N → N with

Φ∗ḡ = −(κ− |η|2g) dt
2 + dt⊗ η + η ⊗ dt+ g,(3)

where κ is a smooth positive function on N and η is a smooth co-vector field on
N . For the convenience of the reader we show this in Section 2.1. In the more
restrictive case where additionally the one-form η in (3) vanishes identically
in N , we call the manifold N to be static.

In the setting of stationary geometries introduced above, we prove injec-
tivity of the light ray transform on scalar functions under either one of the
two hypotheses that we will formulate next. To simplify the statement of
these hypotheses, we only consider injectivity of the light ray transform among
functions that are compactly supported in a submanifold M ⊂ N , given by
M = Φ(R×M), where M ⊂ N is a compact submanifold of dimension n and
with a smooth boundary ∂M . Consequently, we are studying the injectivity
of the light ray transform on the Lorentzian manifold M.

To state the first hypothesis, we recall some concepts from Lorentzian ge-
ometry, namely, the notion of time-separation and null cut locus. The time-
seperation function, τ(p, q), between two points p and q is defined as the
supremum of the semi-Riemannian length of all future pointing causal (non-
spacelike) curves connecting p to q and zero if there is no such path. Next, let
p ∈ M and β : I → M denote a future pointing null geodesic with β(0) = p
and set

s0 = sup{s ∈ I | τ(p, β(s)) = 0}.

If s0 ∈ I int, we call β(s0) the future null cut-point of p along β (see [2, Section
5]). The null cut locus C+

N(p) is then defined as the set of all of all future null
cut points of p.

Hypothesis 1. The Lorentzian manifold (N , ḡ), the Cauchy hypersurface N
and the Killing vector field are real analytic. Moreover, C+

N(p) = ∅ for all
p ∈ M.
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Before stating the second hypothesis, we need to make more definitions. We
introduce the conformally scaled metric

Φ∗ḡc = −dt2 + dt⊗ ηc + ηc ⊗ dt+ gc,(4)

where ηc = cη, gc = cg and c = 1
κ−|η|2g

. Next, we define G to be the set of

smooth curves b on M that satisfy the following ordinary differential equation:

∇gc

ḃ
ḃ = G(b, ḃ),(5)

subject to the initial data (b(0), ḃ(0)) ∈ TM . The function G(z, v) is defined
for each (z, v) ∈ TM as follows:

G(z, v) = −(
κ− |η|2g

κ
) ((∇gc

v ηc) v) η
♯
c − (ηcv +

√
(ηcv)2 + |v|2gc)F (z, v).(6)

Here η♯c is the vector dual to ηc with respect to gc and the terms (∇gc
v ηc) v and

ηcv denote the natural pairing between the one forms ∇gc
v ηc and ηc with the

vector v respectively. All the terms in (6) are evaluated at the point z ∈ M .
Finally, the term F (z, v) is the vector field defined through

F (z, v) = dηc(·, v)
♯ −

(
κ− |η|2g

κ

)
dηc(η

♯
c, v) η

♯
c.

The second hypothesis relies on a notion of foliation by a family of strictly
convex hypersurfaces with respect to curves in G , and can be stated as follows.

Hypothesis 2. The dimension n of M satisfies n ≥ 3, and there is a function
ρ : M → [0, l], so that the following conditions hold:

(i) dρ 6= 0 when ρ > 0, ρ−1(l) = ∂M and ρ−1(0) has empty interior.

(ii) For any b ∈ G , if d
dt
ρ(b(t)) = 0, then d2

dt2
ρ(b(t)) > 0.

In Section 3, we provide an example of such manifolds. The main theorem
can now be stated as follows.

Theorem 1. Let (N , ḡ) be a stationary globally hyperbolic Lorentzian mani-
fold of dimension 1 + n. Let Φ be an embedding satisfying (3) and let M =
Φ(R×M) where M is a compact n dimensional submanifold of N with smooth
boundary such that Hypothesis 1 or Hypothesis 2 holds. Then the light ray
transform in (M, ḡ) is injective on scalar functions. In other words, given
any f ∈ C∞

c (M), there holds:

Lβ f = 0 for all maximal β in M =⇒ f ≡ 0.

Although Hypotheses 1–2 and Theorem 1 are stated on spatially compact
submanifolds M of N , we can immediately obtain the following global corol-
lary.

Corollary 1. Let (N , ḡ) denote a globally hyperbolic stationary Lorentzian
manifold of dimension 1 + n with n ≥ 3, such that there exists a non-compact
Cauchy hypersurface N . Let Φ be an embedding satisfying (3) and suppose that
there exists a function ρ : N → [0,∞), such that Hypothesis 2 holds on each
Ml = {ρ ≤ l} with respect to the function ρ|Ml

. Then the light ray transform
on (N , ḡ) is injective on scalar functions.
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Indeed, note that due to the non-compactness assumption on N , given any
scalar function f on N with compact support, there exists a large enough l
such that supp f ⊂ Φ(R×M) with M = {ρ ≤ l}. The corollary follows since
M satisfies Hypothesis 2 with ρ|M .

Theorem 1 has applications to the recovery of zeroth order time-dependent
coefficients for the wave equation from boundary data. More specifically, con-
sider the following initial boundary value problem on (M, ḡ):





�ḡu+ q u = 0, on M,
u = h, on ∂M,
u = 0, on Φ((−∞, 0)×M).

(7)

where �ḡ denotes the wave operator on (M, ḡ) given in local coordinates by
the expression

�ḡu = −
n∑

i,j=0

| det ḡ |−
1
2
∂

∂xi

(
| det ḡ |

1
2 ḡij

∂

∂xj
u

)

and q is a smooth a priori unknown function with compact support in the set
Φ((0,∞) × M). We consider the problem of recovering q from the Dirichlet
to Neumann operator Λq that is defined for all h compactly supported in ∂M
through

Λq : h 7→ ∂ν̄u|∂M.

It can be shown that the question of unique recovery of q from Λq reduces to
the question of injectivity of the light ray transform on (M, ḡ) (see for example
[30]). As an immediate corollary of Theorem 1, we deduce that Λq determines
q uniquely, if Hypothesis 1 or Hypothesis 2 holds.

1.2. The case of static geometries. Given a static globally hyperbolic
Lorentzian manifold there exists an embedding Φ : R × N → N such that
(3) holds with η ≡ 0. Analogously to the previous section, we define M =
Φ(R×M) where M ⊂ N is a compact manifold of dimension n with smooth
boundary and study the injectivity of the light ray transform on tensors of
arbitrary rank m over M.

Before presenting the main result, we need to recall the definition of the
geodesic ray transform on tensors in (M, gc). To this end, suppose that γ is a
unit speed geodesic in (M, gc). We define the bundle

∂inSM = {(x, v) ∈ TM | x ∈ ∂M, v ∈ TxM, |v|gc = 1, gc(v, ν) < 0},

where ν denotes the unit outward pointing normal vector to ∂M at the point
x. For each (x, v) ∈ ∂inSM , we consider the unique geodesic γ with initial
data (x, v) and define

τ+(x, v) = inf{r > 0 | γ(r; x, v) ∈ ∂M, γ̇(r; x, v) /∈ Tγ(r;x,v)∂M}.

We assume that the manifold (M, gc) is non-trapping, that is, for all unit speed
geodesics γ(·; x, v) with (x, v) ∈ ∂inSM , there holds τ+(x, v) < ∞. Finally, let
Sm = Sm(M) denote the bundle of symmetric tensors of rank m on M (not to
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be confused with Sm, the corresponding bundle on N ) and define the geodesic
ray transform of ω ∈ C∞

c (M ;Sm) along γ in M as follows:

Iω(x, v) :=

∫ τ+(x,v)

0

ω(γ(τ ; x, v), γ̇(τ ; x, v)) dτ.(8)

Here, analogously to the Lorentzian case, we have in local coordinates

ω(y, w) = ωj1...jm(y)w
j1 . . . wjm, ∀ (y, w) ∈ TM.

We require the following hypothesis to hold:

Hypothesis 3. The geodesic ray transform on (M, gc) is solenoidally injective.
In other words, for any ω ∈ C∞

c (M ;Sm), there holds:

Iω(x, v) = 0 ∀ (x, v) ∈ ∂inSM =⇒ ∃ θ such that ω = dsθ, θ|∂M = 0,

where ds denotes the symmetrized covariant derivative on (M, gc).

The study of the solenoidal injectivity of the geodesic ray transform on
tensors of arbitrary rank has a rich literature. For example, Hypothesis 3
with a fixed m = 0, 1 is known to be true when (M, gc) is a simple manifold
[17, 18, 1] or has strictly convex boundary and admits a foliation by strictly
convex hypersurfaces [31]. Under the latter condition it was later proved that
Hypothesis 3 holds for all m = 0, 1, 2 [28], and subsequently that it holds
for all m = 0, 1, 2, . . . [7]. For more related results we refer the reader to
[4, 20, 21, 22, 27] and the review article [12]. We can now state our main
theorem for the injectivity of the light ray transform on tensors.

Theorem 2. Let (N , ḡ) be a static globally hyperbolic Lorentzian manifold of
dimension 1 + n. Let Φ be an embedding satisfying (3) with η = 0 and let
M = Φ(R×M) where M is a compact n dimensional submanifold of N with
smooth boundary such that Hypothesis 3 holds. Let α ∈ C∞

c (M;Sm). The
following injectivity result holds for the light ray transform on (M, ḡ):

Lβ α = 0 for all maximal β in M =⇒ ∃T, U s.t α ≡ d̄sT + U ḡ,

where d̄s denotes the symmetrized covariant derivative1, T ∈ C∞
c (M;Sm−1),

U ∈ C∞
c (M;Sm−2) and U ḡ denotes the symmetrized tensor product of the

tensors U and ḡ.

Let us emphasize that the gauge appearing in the statement of Theorem 2
is the natural one since the light ray transform of any tensor of the form
d̄sT +U ḡ with T, U compactly supported in M, vanishes. We refer the reader
to Lemma 1 for the details. Observe also that, akin to Corollary 1, the result
of Theorem 2 can be formulated for compactly supported tensor fields on a
suitable non-compact Lorentzian manifold. Finally we mention that Theo-
rem 2 extends analogous results obtained in [8, Proposition 1.4], where only
the cases m = 0, 1 were considered.

1See the expression (11) in Section 2.2 for the definition.
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1.3. Previous literature. The study of injectivity of the light ray transform
on tensors of arbitrary rank is motivated in part due to its connection with
coefficient determination problems for the wave equation on Lorentzian mani-
folds from boundary data, as shown for example in [1, 3, 8, 14, 25, 30, 32] for
the cases m = 0, 1. In the setting of Minkowski spacetime, invertibility of the
light ray transform on scalar functions was proved by Stefanov in [25]. This
was later extended to derive a local inversion result [23]. In [33], the light ray
transform on two tensors was also considered in Minkowski space-time that
arises in the study of cosmic strings. There it was showed that the light ray
transform recovers space-like singularities and some light like singularities of
the two tensor.

Beyond the Minkowski space time the literature is sparse even in the scalar
case m = 0. Stefanov proved the injectivity of the light ray transform for this
case under the geometrical assumptions that the Lorentzian manifold is real
analytic and that a convexity type assumption holds [26]. In [8], injectivity
of the light ray transform was proved for the cases m = 0, 1 when (M, ḡ) is
static and the transversal manifold has an injective geodesic ray transform [8].
This result has been generalized to the case of non-smooth scalar functions [9]
and continuous one-forms. Finally, we refer the reader to [15] for the study of
the light ray transform on general Lorentzian manifolds. There, it is proven
that the space like singularities of a scalar function can be recovered from this
map.

As discussed in Section 1.1, an immediate corollary of Theorem 1 is the
unique recovery of a zeroth order coefficient from the Dirichlet to Neumann
map for the wave equation in stationary geometries, provided that Hypoth-
esis 1 or Hypothesis 2 holds. As far as we know and specifically in the case
of Hypothesis 2, this is the first instance of a coefficient recovery result for
linear hyperbolic partial differential equations in geometries that are not real
analytic and do not admit a product structure ḡ = −dt2 + g(x). In fact the
same phenomenon appears in the context of the anisotropic Calderón problem
(see for example [5]), where the analogous product structure is assumed in the
Riemannian context for all known results. Theorem 2 provides the generaliza-
tion of [8] to the more general case of tensors of arbitrary rank m ≥ 2 in static
geometries. We mention that in the case m = 2, this theorem has applications
in transmission ultrasound imaging of moving tissues and organs [15, Section
5]. It is also related to analysis of the cosmic microwave background radiation
[15].

The analysis in this paper is based on reducing the question of injectivity
of the light ray transform in the Lorentzian manifold (M, ḡ) to the question
of injectivity of a ray transform on the spatial part of the manifold (M, gc).
In the stationary case, the corresponding ray transform is a generalization of
the geodesic ray transform, consisting of integrals over a family of curves that
solve equations of the type (5). Injectivity of such a ray transform has in
fact been studied for a broader family of vector fields G than the specific one
given by expression (6). We refer the reader to [10], and also the appendix
section of [31] written by Hanming Zhou (see also [34]). In the static case, the
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corresponding ray transform is the geodesic ray transform on M . As discussed
in Section 1.2, solenoidal injectivity on tensors of arbitrary rank is known to
hold under the assumption of a convex boundary and a global foliation of M
by convex hypersurfaces [7].

1.4. Outline of the paper. In Section 2, we begin with the derivation of (3).
We then discuss the natural gauge for the injectivity of the light ray transform
and the conformal invariance of this gauge. Section 3 is concerned with the
proof of Theorem 1. Finally, Section 4 contains the proof of Theorem 2. The
latter two sections are independent of each other.

2. Preliminaries

2.1. Geometry of stationary Lorentzian manifolds. The aim of this sub-
section is to construct the canonical embedding Φ : R×N → N corresponding
to a Cauchy surface N in N , such that the metric Φ∗ḡ takes the form (3). Let
us denote by E the complete Killing vector field on N , and for each x ∈ N ,
define Φ(·, x) as the integral curve

d

dt
Φ(t, x) = E(Φ(t, x)), ∀ t ∈ R and Φ(0, x) = x.(9)

Existence of a solution Φ(t, x) for all t ∈ R is guaranteed by the completeness
of the vector field E . We will show that Φ is a diffeomorphism. By global
hyperbolicity, any integral curve Φ(·, x) can not self intersect. As two distinct
integral curves can not intersect either, we deduce that Φ is injective. To see
surjectivity, let y ∈ N and consider the integral curve

d

dt
Ψ(t) = E(Ψ(t)) ∀ t ∈ R and Ψ(0) = y.

Using the definition of a Cauchy hypersurface and the fact that E is time-like,
it follows that Ψ(s) ∈ N for some s ∈ R. Hence y = Φ(−s,Ψ(s)) and Φ is
surjective. Finally, since E is smooth, it follows that Φ is a diffeomorphism.

Next, we study Φ∗ḡ. Let (t, x) denote a local coordinate system near a point
p ∈ R×N and let ḡij represent the components of the metric in this coordinate
system, with i, j = 0, 1, . . . , n. Since E is a Killing vector field, it follows that
the components (Φ∗ḡ)ij(t, x) are all independent of t. Therefore, we can write:

Φ∗ḡ(t, x) = (Φ∗ḡ)00(x) dt
2 + 2 (Φ∗ḡ)0α(x) dx

α

︸ ︷︷ ︸
η

dt+ g(x)

where g = ḡ|N and the index α runs from 1 to n. Note that (N, g) is a
Riemannian manifold since N is a space-like hypersurface, in the sense that
all of its tangent vectors are space-like. Since ∂t = Φ∗E , it is easy to see that
η = ∂♭

t = Φ∗E ♭|N , where E ♭ is the dual covector associated with E . Finally, we
define

κ = |η|2g − (Φ∗ḡ)00

and observe that κ = |η|2g − ḡ(E , E) > 0.
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2.2. Conformal invariance of the gauge. We begin with a lemma that
shows the gauge in Theorem 2 is the natural one for the injectivity of the light
ray transform on tensors.

Lemma 1. Let (N , ḡ) denote a globally hyperbolic Lorentzian manifold. Sup-
pose that T ∈ C∞

c (N ;Sm−1) and U ∈ C∞
c (N ;Sm−2). Then:

Lβ(d̄
sT + U ḡ) = 0 for all maximal null geodesics β ⊂ N .

In other words, given T, U as above, Lβ is invariant under the transformation

α → α + d̄sT + U ḡ.(10)

Proof. Since ḡ(β̇(s), β̇(s)) = 0 along any null geodeisc, it follows trivially that
Lβ(U ḡ) = 0. Now, let us recall the definition of the symmetrized covariant
derivative

(11) [d̄sT ]i1,...,im =
1

m!

∑

π∈S(m)

(∂iπ(1)
Tiπ(2),...,iπ(m)

− Γ̄l
iπ(2),iπ(1)

Tl,iπ(3),...,iπ(m)

− . . .− Γ̄l
iπ(m),iπ(1)

Tiπ(2),...,l)

where Γ̄i
jk denotes the Christoffel symbols, S(m) denotes the group of per-

mutations of the set {1, . . . , m} and we are using the Einstein’s summation
convention with respect to the index l. From this identity, together with the
geodesic equation

β̈i(s) + Γ̄i
jk(β(s))β̇

j(s)β̇k(s) = 0

it follows that

∂sT (β(s), β̇(s)) = [d̄sT ]i1...im β̇
i1(s) . . . β̇im(s)

and subsequently we have Lβ(d̄
sT ) = 0 since T is compactly supported. �

Next, we aim to study the light ray transform on tensors under conformal
rescalings of the metric and show that the natural gauge for the problem is
conformally invariant. We consider a globally hyperbolic Lorentzian manifold
(N , ḡ) and use the notation Lḡ

βα to emphasize the dependence of the light ray
transform on the metric. Let c > 0 and define g̃ = cḡ. Using [16, Section
6, Lemma 6.1], we observe that given a maximal null geodesic β : R → N
satisfying (1) with respect to ḡ and any non-zero s0 ∈ R, the same curve β

parametrized as β̃(s) = β(σ(s)) satisfies (1) with respect to g̃, where

σ(s) =

∫ s

s0

c(β(τ))−1 dτ,

with s ∈ R. This shows that given a α ∈ C∞
c (N ;Sm), there holds:

Lg̃

β̃
α̃ =

∫

R

α̃(β̃(s), ˙̃β(s)) ds =

∫

R

(c−m+1α̃)(β(s), β̇(s)) ds.(12)

Using the above identity, it is clear that the injectivity of the light ray
transform on scalar functions is conformally invariant. For tensors of rank
m ≥ 1 we have the following lemma that shows the natural gauge for the
problem as seen in Theorem 2 is conformally invariant as well.
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Lemma 2. Let (N , ḡ) be a Lorentzian manifold and consider g̃ = cḡ for some
smooth positive function c. Suppose T ∈ C∞(N ;Sm−1) for some m = 1, . . ..
There exists U ∈ C∞(N ;Sm−2), such that:

c−m+1d̃sT = d̄s(c−m+1T ) + U ḡ.

In the case m = 1, the tensor U is identically zero.

Proof. We use the notations Γ̃k
ij (resp., d̃s) and Γ̄k

ij (resp., d̄s) to denote the
Christoffel symbols (resp., symmetrized covariant derivative) on N with re-
spect to the metrics g̃ and ḡ respectively. By definition,

(13) [d̃sT̃ ]i1,...,im =
1

m!

∑

π∈S(m)

(∂iπ(1)
T̃iπ(2),...,iπ(m)

− Γ̃l
iπ(2),iπ(1)

T̃l,iπ(3),...,iπ(m)

− . . .− Γ̃l
iπ(m),iπ(1)

T̃iπ(2),...,l)

Next, we define φ = −1
2
log c and recall the following identity that relates the

Christoffel symbols Γ̄i
jk and Γ̃i

jk (see [16, Lemma 6.3]):

Γ̄i
jk = Γ̃i

jk + δij∂kφ+ δik∂jφ− big̃jk,

where b = ∇g̃φ. Using the above identity together with the expression (13)

we observe that the symmetrized derivative on tensors T̃ ∈ C∞
c (N ;Sm−1)

transforms as

[d̄sT̃ ]i1,...,im = [d̃sT̃ ]i1,...,im −
1

m!


 ∑

π∈S(m)

Sπ




︸ ︷︷ ︸
I

−Ug̃(14)

where

Sπ =
(
(∂iπ(1)

φ) T̃iπ(2),...,iπ(m)
+ (∂iπ(2)

φ) T̃iπ(1),iπ(3),...,iπ(m)

)
+ . . .

+
(
(∂iπ(1)

φ) T̃iπ(2),...,iπ(m)
+ (∂iπ(m)

φ) T̃iπ(2),...,iπ(m−1),iπ(1)

)
.

We can simplify I further, by considering the number of times that a fixed
term of the form (∂iπ̃(1)

φ) T̃iπ̃(2),...,iπ̃(m)
appears in I with π̃ ∈ S(m). Indeed,

observe that:
∑

π∈S(m)

(∂iπ(1)
φ) T̃iπ(2),...,iπ(m)

=
∑

π∈S(m)

(∂iπ(2)
φ) T̃iπ(1),iπ(3),...,iπ(m)

= . . . =
∑

π∈S(m)

(∂iπ(m)
φ) T̃iπ(2),...,iπ(1)

.

Consequently, equation (14) reduces to

[d̄sT̃ ]i1,...,im = [d̃sT̃ ]i1,...,im −
2(m− 1)

m!


 ∑

π∈S(m)

(∂iπ(1)
φ)T̃iπ(2),...,iπ(m)


− Ug̃.

(15)
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Next, we consider the tensor T in the statement of the lemma and define
T̃ = c1−mT . We use the defining expression for the symmetrized derivative
(13) and the definition of φ to obtain

[c−m+1d̃sT ]i1,...,im = [c−m+1d̃s(cm−1T̃ )]i1,...,im

= [d̃sT̃ ]i1,...,im −
2(m− 1)

m!


 ∑

π∈S(m)

(∂iπ(1)
φ)T̃iπ(2),...,iπ(m)


 .

The claim follows from this identity and equation (15). �

Combining Lemma 2 together with equation (12) and Theorems 1−2 we
have the following immediate corollary.

Corollary 2. Given a globally hyperbolic Lorentzian manifold (N , ḡ), injectiv-
ity of the light ray transform modulo the gauge (10) is conformally invariant.
In particular, the injectivity results stated in Theorem 1 and Theorem 2 hold
in the more general setting that N is conformally stationary or conformally
static respectively.

3. Injectivity of L in stationary geometries

Suppose that (M, ḡ) is as in Theorem 1. We are interested in the question
of injectivity of the light ray transform. Owing to the conformal invariance of
the light ray transform on scalar functions (see Section 2.2), we will work with
the conformally rescaled metrics ḡc and gc as discussed in Section 1.1. For the
remainder of this section, we abuse the notation slightly and write L to denote
the light ray transform on (M, ḡc) and also identify functions and tensors in
M with their copies in Φ−1(M) without explicitly writing the pull-back.

Lemma 3. Let β : I → M be a maximal null geodesic on (M, ḡc) and write
β(s) = (a(s), b(s)) where a and b are paths on R and M respectively. Let
T ∈ R. Then βT : I → R defined through βT (s) = (a(s) + T, b(s)) is a
maximal null geodesic on M.

Proof. This follows immediately from the fact that the components of ḡc(t, x)
are independent of the time-coordinate t. �

Let f ∈ C∞
c (M) and suppose that β : I → M is a maximal null geo-

desic. Define βT : I → M as translations of β(s) along the time coordinate t
analogously as above. Then;

(16)

∫

R

e−ιτTLβT
f dT =

∫

R

∫

I

e−ιτTf(a(s) + T, b(s)) dT ds

=

∫

I

eιτa(s)
∫

R

e−ιτrf(r, b(s)) dr ds =

∫

I

eιτa(s)f̂(τ, b(s)) ds.

with f̂ denoting the Fourier transform2 in t. We define the integral transform

I f(b) =

∫

I

f(b(s)) ds,(17)

2We use the notation ι for the imaginary unit to avoid confusion with the indices.
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where b = π◦β, with π : M → M the natural projection and β a null geodesic
on M.

Let us analyze I further. Referring to β(s) = (a(s), b(s)) in Lemma 3, we
use the shorthand notations

ȧ =
da

ds
, ḃ =

db

ds
, |ḃ|gc = |ḃ|.

As β̇ is lightlike, there holds

−ȧ2 + 2ȧηcḃ+ |ḃ|2 = 0.

Therefore

ȧ = ηcḃ±

√
(ηcḃ)2 + |ḃ|2.(18)

Let Γ̄i
jk denote the Christoffel symbols on (M, ḡc) and observe that Γ̄i

00 = 0
for i = 1, . . . , n. Using this and the definition of a null geodesic, we see that b
satisfies the equation

d2bi

ds2
+ Γ̄i

jk(b(s))ḃ
j ḃk + 2Γ̄i

0kȧḃ
k = 0,(19)

for i = 1, . . . , n. We can choose, without loss of generality, the positive sign in
equation (18). Indeed, suppose that (a+(s), b+(s)) solves (18)–(19) with the
the positive sign in (18) for s ∈ I. Then, (a−(s), b−(s)) := (a+(−s), b+(−s))
with s ∈ −I solves the same two equations with the negative sign in (18).
Hence, the choice of sign corresponds to affine re-parametrizations of a fixed
null geodesic. For this reason, we will just consider the positive sign in (18).

Now, equation (19) can be recast in the form

∇gc

ḃ
ḃ = G(b, ḃ),(20)

where

Gi(b, ḃ) := (Γi
jk − Γ̄i

jk)ḃ
j ḃk − 2Γ̄i

0k(ηcḃ+

√
(ηcḃ)2 + |ḃ|2)ḃk,(21)

where Γi
jk denotes the Christoffel symbols on (M, gc). We will now simplify

the latter expression and show that the curves b ∈ G are coordinate invariant
in M. To see this, we first observe that

ḡ−1
c =

(
κ− |η|2g

κ

)[
−1 η♯c
(η♯c)

T κ
κ−|η|2g

g−1
c − η♯c ⊗ η♯c

]

where η♯c denotes the canonical vector that is dual to the one-form ηc and
T de-

notes the transposition operation. Now, using the definition of the Christoffel
symbols together with the fact that the coefficients of the metric are time-
independent, we write

Γi
jk − Γ̄i

jk = −
1

2
(ḡc)

i0 ((ḡc)0,j;k + (ḡc)0,k;j)
︸ ︷︷ ︸

I

+

1

2
((gc)

im − (ḡc)
im) ((gc)mj;k + (gc)jm;k − (gc)jk;m)

︸ ︷︷ ︸
II
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where the term II involves a summation over the index m = 1, . . . , n. The
term I reduces as follows

I = −
1

2
(
κ− |η|2g

κ
)(η♯c)

i ((ηc)j;k + (ηc)k;j)

Similarly, the term II reduces as follows

II =
1

2
((gc)

im − (ḡc)
im) ((gc)mj;k + (gc)jm;k − (gc)jk;m)

=
1

2
(
κ− |η|2g

κ
)(η♯c)

i(η♯c)
m ((gc)mj;k + (gc)jm;k − (gc)jk;m)

=
1

2
(
κ− |η|2g

κ
)(η♯c)

i(ηc)l(gc)
ml ((gc)mj;k + (gc)jm;k − (gc)jk;m)

= (
κ− |η|2g

κ
)(η♯c)

i(ηc)lΓ
l
jk.

Combining the expressions for I and II we deduce that

(Γi
jk − Γ̄i

jk)ḃ
j ḃk = −(

κ− |η|2g
κ

)
(
(∇gc

ḃ
ηc) ḃ

)
(η♯c)

i.

We now consider the last term in the expression for G. Using the definition
of the Christoffel symbols again and the expression of the inverse matrix ḡ−1

c

above, this reduces as follows

2Γ̄i
0k ḃ

k = ḡimc ((gc)m0;k − (gc)0k;m)ḃ
k = ḡimc ((ηc)m;k − (ηc)k;m)ḃ

k

=

(
gimc −

κ− |η|2g
κ

(η♯c)
i(η♯c)

m

)
((ηc)m;k − (ηc)k;m) ḃ

k.

Recalling that (dηc)mk = (ηc)m;k−(ηc)k;m, we conclude that G can be rewritten
as given by equation (6), thus establishing that it is an invariantly defined
vector field on M . Let us emphasize that the parametrization of the curve
b(s) in M with s ∈ I is not a unit-speed parametrization and is directly
induced by the initial choice of an affine parametrization for the null geodesic
β in M.

Theorem 3. If I is injective then L is also injective.

Proof. Suppose that Lβf = 0 where β : I → M denotes any maximal null
geodesic in M with maximal interval I. Differentiating equation (16) k times
with respect to τ and evaluating at τ = 0, we obtain:

0 =
k∑

j=0

∫

I

(ιa(s))k−j ∂j
τ f̂(0, b(s)) ds ∀ b ∈ G

Setting k = 0, we have

(I f̂(0, ·))(b) = 0 ∀ b ∈ G .

By injectivity of I , it holds that f̂(0, ·) = 0. In a similar manner, by using
induction on k together with the injectivity of I , we deduce that

∂k
τ f̂(0, ·) = 0, ∀ k ∈ N.
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As f(t, ·) is compactly supported in t, f̂(τ, ·) is analytic in τ , and thus f
vanishes everywhere. �

3.1. Proof of Theorem 1. It is clear that Theorem 1 follows, once we prove
injectivity of the ray transform I along all maximal curves b ∈ G . We prove
this under the assumption that Hypothesis 1 or Hypothesis 2 holds. In fact,
the transform I has been studied for more general vector fields G(z, v) than
the one given by expression (6) and invertibility is known to hold under some
assumptions. When Hypothesis 2 holds on (M, ḡ), injectivity of I follows
from [31, Theorem 4.2] in the appendix by Hanming Zhou and the remarks
immediately following that theorem.

To prove Theorem 1 under Hypothesis 1, we will use [10, Theorem 1]. There,
injectivity of the map I is proved under the assumption that the manifold
(M, gc) and the curves in G are real analytic and that there are no conjugate
points along any such curve. Hence, to conclude the proof, we need to show
that if Hypothesis 1 holds in M, the aforementioned assumptions are satisfied
on curves in G .

To this end, let us first recall the definition of conjugate points along curves
b ∈ G (following [10]) and conjugate points along null geodesics β in M.
Given any (s, ξ) ∈ TM , we define the exponential map ẽxpx(s, ξ) = b(s)

where b ∈ G with b(0) = x and ḃ(0) = ξ. Subsequently, we say that the
point b(s0) is conjugate to x if (Ds,ξẽxpx)(s0, ξ0) has rank less than n, where

ξ0 = ḃ(0). The conjugate points on M are defined analogously, in terms of the
exponential map, exp : TM → TM of the Lorentzian manifold (M, ḡc) along
null geodesics (see for example [19, Definition 10.9]).

Lemma 4. If C+
N(p) = ∅ for all p ∈ M, then there are no conjugate points

along any curve b ∈ G .

Proof. Suppose for contrary that there exists a curve b ∈ G with a pair of
conjugate points b(0) and b(s0). The above definition of conjugate points
implies in particular that there exists a one-parameter family of curves br in
G with r in a small neighborhood of origin, such that

br(0) = b(0), ḃr(0) = ḃ(0) + rv

for some fixed v ∈ Tb(0)M and

dist(br(s0), b(s0)) ≤ Cr2(22)

for some uniform constant C > 0, where dist(·, ·) is the Riemannian distance
function on (M, gc) (note that b0 ≡ b). We define the functions ar(s) as the
solutions to the following differential equation:

dar
ds

= ηcḃr ±

√
(ηcḃr)2 + |ḃr|2 and ar(0) = 0,

where the sign ± is chosen in order to make the curve (ar(s), br(s)) future-
pointing. Observe that the curves βr(s) = (ar(s), br(s)) define a family of
maximal null geodesics in M (in what follows, we will drop the subscript r
when r = 0).
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Next, we observe that there exists a constant ǫ > 0 depending only on ηc
and gc, such that if

| dist(brk(s0), b(s0)) | < ǫ |ark(s0)− a(s0)|(23)

for a sequence rk → 0, then there exists a causal path between β(s0) and
βrk(s0) for all k sufficiently large.

If (23) does not hold for any sequence rk → 0, then in particular it implies
that |ar(s0) − a(s0)| <

C
ǫ
r2 and all r sufficiently close to zero. But then the

first variation of β among the family of null geodesics βr must vanish at the
point β(s0) and consequently the point β(s0) is a conjugate point to β(0)
along β. By [19, Proposition 10.48], there exists a future pointing time-like
curve connecting β(0) to β(s0) and therefore there exists a null cut point on
β corresponding to β(0) which is a contradiction.

Thus, we assume that (23) holds, for a sequence rk → 0 and consequently
that there exists a future pointing causal path connecting β(s0) to βrk(s0), or
vise versa, for some k. First, we consider the case where this future pointing
causal curve is from β(s0) to βrk(s0). Then the points β(0) and βrk(s0) can be
connected through the concatenation of the curve β that connects β(0) to β(s0)
and the causal curve that connects β(s0) to βrk(s0). By [19, Proposition 10.46],
we conclude that τ(βrk(0), βrk(s0)) 6= 0, which implies that C+

N(β(0)) 6= ∅.
In the other case that the future pointing causal curve connects βrk(s0) to
β(s0), we can use a similar argument to conclude that τ(β(0), β(s0)) 6= 0 and
subsequently that C+

N(β(0)) 6= ∅. �

We are now ready to prove injectivity of the ray transform I when Hy-
pothesis 1 holds. To apply [10, Theorem 1], we need to show that curves in G

are real analytic and that no pair of conjugate points exist on any curve in G .
The latter was shown in Lemma 4. Moreover, since (N , ḡ), N and the Killing
vector field E are assumed to be analytic, it follows from Section 2.1 that ηc
and gc are real analytic as well and consequently the curves b ∈ G are also real
analytic as they solve a second order linear ordinary differential equation (5)
with real analytic coefficients.

Before closing the section, we give some examples to demonstrate the convex
foliation condition in Hypothesis 2.

Example 1. Let
(M, ḡ) ∼= (R×M,−dt2 + g)

with g independent of t. First, note that maximal null geodesics β inM can be
parameterized as (t+T ; γ(t; x, v)) where γ(t; x, v) denotes a unit speed geodesic
on M with initial data (x, v) ∈ ∂inSM . This is in complete agreement with
equation (5), since the function G vanishes identically in this case. Therefore,
the notion of G strict convexity as introduced in Section 1.1 coincides with the
classical notion of strict convexity in the sense of second fundamental form,
and Hypothesis 2 simply states that ∂M is strictly convex and that (M, g)
admits a foliation by strictly convex hypersurfaces.

Example 2. Let us consider the more general case

(M, ḡ) ∼= (R×M,−dt2 + η ⊗ dt+ dt⊗ η + g),
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where (M, g) is a Riemannian manifold of dimension n ≥ 3 with boundary
and η is a covector field on M . Building on the previous example, it is clear
that Hypothesis 2 holds as long as ∂M is strictly convex in the classical sense
and that (M, g) admits a foliation by strictly convex hypersurfaces, provided
that |η|g is sufficiently small in the C2(M) topology.

4. Proof of Theorem 2

We start by considering an embedding of the form (3) with η ≡ 0 and
satisfying Hypothesis 3. Throughout this section and for the sake of brevity
of notation we will assume without loss of generality that κ ≡ 1 so as to
discard the notations ḡc and gc (see Section 2.2). Observe that due to the
more restrictive form of the metric (compared to the stationary case), null
geodesics in (M, ḡ) can conveniently be parameterized as

β(·; r0, x, v) = (r + r0; γ(r; x, v)),

with r0 ∈ R, (x, v) ∈ ∂inSM and γ(·; x, v) denoting a unit speed geodesic with
initial data (x, v) ∈ ∂inSM .

Owing to this identification of null geodesics, we can recast the light ray
transform on R×M for α ∈ C∞

c (R×M ;Sm) as

(Lα)(r0, x, v) =

∫ τ+(x,v)

0

α((r + r0, γ(r; x, v)), (1, γ̇(r; x, v)))dr,

for all (r0, x, v) ∈ R× ∂inSM .

4.1. Notations. For symmetric tensors f and h, we denote the symmetrized
tensor product simply by fh. In particular, if f and h are 1-forms, then

fh(v, w) =
1

2
(f(v)h(w) + f(w)h(w)), v, w ∈ TM.

Following [6], we next define three operators. The operator

iii : C∞(M ;Sm) → C∞(M ;Sm+2)

is defined through iiif = fg, where we recall that Sm denotes the bundle of
symmetric tensors of rank m on M . Next, the operator jjj is the trace with
respect to g, that is,

jjj : C∞(M ;Sm+2) → C∞(M ;Sm)

is the adjoint of iii, and in local coordinates we can write, (jjjf)j1...jn = gjkfjkj1...jn.
The composition jjjiii is self-adjoint and positive definite [6, Lem. 2.3]. In par-
ticular, the inverse (jjjiii)−1 exists. Moreover, by the same lemma, the bundle
Sm has the orthogonal decomposition into sub-bundles Sm = Ker(jjj)⊕Ran(iii).
Finally, the operator

ppp : C∞(M ;Sm) → C∞(M ;Sm)

is defined to be the orthogonal projection from Sm to Ker(jjj), and it can be
written as

ppp = 1− iii(jjjiii)−1jjj,

see [6, Eq. (2.15)].
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4.2. Helmholtz decomposition. Let us first recall the Helmholtz decompo-
sition as proven in [24, Th. 3.3.2], that is, given any ω ∈ C∞(M ;Sm), there
are unique ωs ∈ C∞(M ;Sm) and h ∈ C∞(M ;Sm−1) satisfying

ω = ωs + dsh, δsωs = 0, h|∂M = 0,

where δs is the adjoint of ds. We say that ω is solenoidal if ω = ωs.
For a family ω ∈ C∞

c (R;C∞(M ;Sm)) we define ωs(t) = (ω(t))s. As the cor-
responding potential h(t) is obtained by solving the elliptic partial differential
equation,

δsdsh(t) = δsω(t), h(t)|∂M = 0,

we see that h ∈ C∞
c (R;C∞(M ;Sm−1)) and ωs ∈ C∞

c (R;C∞(M ;Sm)).
We define also the Fourier transform in time by

ω̂(τ) =

∫

R

e−ιτtω(t) dt.

Then dsω̂(τ) = d̂sω(τ) and δsω̂(τ) = δ̂sω(τ). In particular, ω̂(τ) = ω̂s(τ) +

dsĥ(τ) and δsω̂s(τ) = 0. As the Helmholtz decomposition of ω̂(τ) is unique,
we obtain

(ω̂(τ))s = ω̂s(τ).(24)

4.3. Trace-free Helmholtz decomposition. We will next recall the trace-
free Helmholtz decomposition as discussed for example in [6]. By [6, Th.
1.5], for any ω ∈ C∞(M ;Sm) there are unique ωtfs ∈ C∞(M ;Sm), h ∈
C∞(M ;Sm−1) and ωt ∈ C∞(M ;Sm−2) satisfying

ω = ωtfs + iiiωt + dsh, δsωtfs = 0, h|∂M = 0, jjjωtfs = 0, jjjh = 0.(25)

This decomposition is obtained by first solving the following elliptic partial
differential equation for h,

δspppdsh = δspppω, h|∂M = 0.

Then ωt = (jjjiii)−1jjj(ω − dsh) and ωtfs = ω − iiiωt − dsh.
The last equation jjjh = 0 in the decomposition (25) is in fact a consequence

of the first four equations. That is, if

ω = ω0 + iiiω1 + dsω2, δsω0 = 0, ω2|∂M = 0, jjjω0 = 0,(26)

then ω0 = ωtfs, ω1 = ωt and ω2 = h. Indeed, writing ω′
0 = ω0−ωtfs, ω′

1 = ω1−ωt

and ω′
2 = ω2 − h, we obtain ω′

1 = −(jjjiii)−1jjjdsω′
2. Then pppdsω′

2 = −ω′
0 and ω′

2

solves

δspppdsω′
2 = 0, ω′

2|∂M = 0.

Therefore ω′
2 = 0 and ω2 = h. Now also ω0 = ωtfs and ω1 = ωt by [6, Th. 1.5].

We record the following consequence that will be useful in what follows.

Remark 1. If w = dsh for some h ∈ C∞(M ;Sm−1) satisfying h|∂M = 0, then
wtfs = 0 and wt = 0.
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Analogously to the previous section, for a family ω ∈ C∞
c (R;C∞(M ;Sm))

we can define

ωtfs(t) = (ω(t))tfs, ωt(t) = (ω(t))t,

that gives smooth families of tensors that are compactly supported in time.

Observe that iiiω̂(τ) = îiiω(τ) and jjjω̂(τ) = ĵjjω(τ), and analogously with (24),
we have

(ω̂(τ))tfs = ω̂tfs(τ), (ω̂(τ))t = ω̂t(τ).

4.4. Injectivity of the light ray transform on tensors. For the remainder
of the paper and for the sake of brevity, we will abuse the notation slightly and
identify tensors in M with their identical copies in Φ−1(M) without explicitly
writing the embedding. Let α ∈ C∞(M;Sm) and suppose that Lα ≡ 0. As
ḡ = −dt2 + g and α is symmetric, we write

α = f dt+ ω + b ḡ,(27)

where

f ∈ C∞
c (R;C∞(M ;Sm−1)) ω ∈ C∞

c (R;C∞(M ;Sm)) b ∈ C∞
c (M;Sm−2).

We can simplify (27) further by considering the Helmholtz decomposition
of f , that we denote by f = f s + dsp. To this end, we begin by writing

dsp dt = d̄s(p dt) + ∂tp ḡ − ∂tp g.

Note that the term d̄s(p dt) + ∂tp ḡ takes the form of the gauge (10) and by
Lemma 1 lies in the kernel of L, while

−∂tp g ∈ C∞
c (R;C∞(M ;Sm)).

In particular, we can replace ω with ω − ∂tp g in (27). As also b ḡ is in the
kernel of L, we can assume without loss of generality that

α = f dt+ ω, f = f s.(28)

We have the following Fourier slicing lemma

Lemma 5. Suppose that α ∈ C∞
c (R×M ;Sm) is of the form (28). Then for

k = 0, 1, . . . , and (x, v) ∈ ∂inSM it holds that

∂k
τ L̂α(τ, x, v)|τ=0 = I(∂k

τ f̂(τ, ·)|τ=0)(x, v) +
k−1∑

j=0

(
k

j

)
Rk−j(∂

j
τ f̂(τ, ·)|τ=0)(x, v)

(29)

+ I(∂k
τ ω̂(τ, ·)|τ=0)(x, v) +

k−1∑

j=0

(
k

j

)
Rk−j(∂

j
τ ω̂(τ, ·)|τ=0)(x, v),

where

Rjω(x, v) =

∫ τ+(x,v)

0

(ιr)jω(γ(r; x, v), γ̇(r; x, v)) dr, ω ∈ C∞
c (M ;Sm).

We are now ready to prove the main theorem.
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Proof of Theorem 2. As discussed above, we can write α in the form (28) with
f = f s. Now note that for any (x, v) ∈ ∂inSM we have that (y, w) ∈ ∂inSM
as well, where

y = γ(τ+(x, v); x, v), w = −γ̇(τ+(x, v); x, v).

Moreover, we have that Iω(x, v) = Iω(y, w) for any ω ∈ C∞
c (M ;Sm) with

even m but Iω(x, v) = −Iω(y, w) for any f ∈ C∞
c (M ;Sm) with odd m.

Applying (29) with k = 0 and using the above observation implies that

I(f̂(0)) = 0, I(ω̂(0)) = 0.(30)

Using Hypothesis 3 together with f = f s and Remark 1 we deduce that

f̂(0) = 0, ω̂tfs(0) = 0, ω̂t(0) = 0.

Let us define

a0(t, x) =

∫ t

−∞

ωt(t′, x) dt′.(31)

As ω is compactly supported in time, a0(t) vanishes for t sufficiently small.
Moreover, for large t,

a0(t) =

∫ ∞

−∞

ωt(t′)dt′ = ω̂t(0) = 0.

Thus a0 ∈ C∞
c (R;C∞(M ;Sm−2)). Observe also that ∂ta0 = ωt and hence

ιτ â0 = ω̂t. In particular,

∂k
τ ω̂

t(0) = ιk∂k−1
τ â0(0), k = 0, 1, . . . .

In what follows, we will write

ω = ωtfs + iiiωt + dsa1, a1 = as1 + dsh,

to denote the trace-free Helmholtz decomposition of ω and the Helmholtz
decomposition of a1 respectively. We will use the fact that for any u ∈
C∞

c (M ;Sm),

Rj(d
su) = ιj

∫ τ+

0

rj dsu(γ(r), γ̇(r))dr = ιj
∫ τ+

0

rj∂r(u(γ(r), γ̇(r)))dr

= −ιjRj−1(u).

When k = 1, equation (29) reduces to the fact that

I(∂τ f̂) + I(∂τ ω̂tfs + ιâ0) +R1(d
sâ1) = I(∂τ f̂) + I(∂τ ω̂tfs + ιâ0)− ιI(â1)

= I(∂τ f̂ − ιâs1) + I(∂τ ω̂tfs + ιâ0g)

vanishes at τ = 0. Note that ∂τ f̂ − ιâs1 is solenoidal and of rank m − 1.
Moreover, the tensor

w := ∂τ ω̂tfs + ιâ0g

is of rank m and satisfies

wt = ιâ0g and wtfs = ∂τ ω̂tfs.
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Hence at τ = 0,

∂τ f̂ = ιâs1, ∂τ ω̂tfs = 0, â0 = 0.

We will now proceed with an an induction argument to show that for all
j ∈ N, it holds at τ = 0 that

∂j
τ f̂ = ιj∂j−1

τ âs1, ∂j
τ ω̂

tfs = 0, ∂j−1
τ â0 = −ι(j − 1)∂j−2

τ ĥ.(32)

Indeed, let us suppose that this hypothesis holds for all j = 1, . . . , k − 1.
Together with (29) this implies that

I(∂k
τ f̂) + ι

k−1∑

j=0

(
k

j

)
jRk−j(∂

j−1
τ âs1) + I(∂k

τ ω̂
tfs + ιk∂k−1

τ â0)

+

k−1∑

j=0

(
k

j

)
Rk−j(ιj∂

j−1
τ â0 + ds∂j

τ â1)

vanishes at τ = 0. As a1 vanishes on R× ∂M , we have

(33)
Rk−j(d

s∂j
τ â1) = −ι(k − j)Rk−(j+1)(∂

j
τ â1)

= −ι(k − j)Rk−(j+1)(∂
j
τ â

s
1)− ι(k − j)Rk−(j+1)(d

s∂j
τ ĥ).

Next, using the identity

−ι
k−1∑

j=0

k!

j!(k − j)!
(k − j)Rk−(j+1)(∂

j
τ â

s
1) = −ι

k∑

j=1

(
k

j

)
jRk−j(∂

j−1
τ âs1),

together with (33), we see that

I(∂k
τ f̂) + I(∂k

τ ω̂
tfs + ιk∂k−1

τ â0)− ιkI(∂k−1
τ âs1)

+

k−1∑

j=0

(
k

j

)
Rk−j(ιj∂

j−1
τ â0)− ι

k−1∑

j=0

k!

j!(k − (j + 1))!
Rk−(j+1)(d

s∂j
τ ĥ)

vanishes at τ = 0. As h vanishes on R× ∂M , we have for j = 0, . . . , k − 2,

Rk−(j+1)(d
s∂j

τ ĥ) = −ι(k − (j + 1))Rk−(j+2)(∂
j
τ ĥ),

and for j = k − 1,

Rk−(j+1)(d
s∂j

τ ĥ) = I(ds∂j
τ ĥ) = 0.

We rewrite

− ι
k−1∑

j=0

k!

j!(k − (j + 1))!
Rk−(j+1)(d

s∂j
τ ĥ) =

k−2∑

j=0

k!

j!(k − (j + 2))!
Rk−(j+2)(∂

j
τ ĥ)

=

k∑

j=2

k!

(j − 2)!(k − j)!
Rk−j(∂

j−2
τ ĥ),

and, using ∂j−1
τ â0 = −ι(j − 1)∂j−2

τ ĥ,

k−1∑

j=0

(
k

j

)
Rk−j(ιj∂

j−1
τ â0) =

k−1∑

j=2

k!

(j − 2)!(k − j)!
Rk−j(∂

j−2
τ ĥ).
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Therefore

I(∂k
τ f̂) + I(∂k

τ ω̂
tfs + ιk∂k−1

τ â0)− ιkI(∂k−1
τ âs1) + k(k − 1)I(∂k−2

τ ĥ)

vanishes at τ = 0. We obtain at τ = 0,

∂k
τ f̂ = ιk∂k−1

τ âs1, ∂k
τ ω̂

tfs = 0, ι∂k−1
τ â0 = (k − 1)∂k−2

τ ĥ,

and this closes the induction argument.
We can now use (32) to deduce that

f = ∂ta
s
1, ωtfs = 0, a0 = −∂th.

To see this, recall that since the functions f , as1, ω
tfs, a0 and h are compactly

supported in time, their Fourier transforms in t are real analytic. Hence:

f̂(τ, ·) =
∞∑

k=0

∂k
τ f̂(0, ·)

τk

k!
= ιτ

∞∑

k=0

∂k
τ â

s
1(0, ·)

τk

k!

implying that f = ∂ta
s
1. The other two claims follow similarly. Recalling also

that ωt = ∂ta0, equation (28) can be rewritten as

α = ∂ta
s
1 dt+ dsa1 + ∂ta0 g.

This expression can be further simplified to obtain

α = d̄s (a0 dt+ a1)︸ ︷︷ ︸
T

+ (∂ta0)︸ ︷︷ ︸
U

ḡ,(34)

thus concluding the proof of the theorem. �
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