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AND JULIO D. ROSSI

Abstract. In this paper we study asymptotics as p→∞ of the Dirich-
let eigenvalue problem for the 1-homogeneous p-Laplacian, that is,{

− 1
p
|Du|2−pdiv (|Du|p−2Du) = λu, in Ω,

u = 0, on ∂Ω.

Here Ω is a bounded starshaped domain in Rn and p > n. There ex-
ists a principal eigenvalue λ1,p(Ω), which is positive, and has associ-
ated a non-negative nontrivial eigenfunction. Moreover, we show that
limp→∞ λ1,p(Ω) = λ1,∞(Ω), where λ1,∞(Ω) is the first eigenvalue corre-

sponding to the 1-homogeneous infinity Laplacian, that is, −
(
D2u Du

|Du|

)
·

Du
|Du| = λu.
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1. Introduction and main results

In this paper we analyze the eigenvalue problem corresponding to the
1-homogeneous p-Laplacian,

(1.1)

{
−∆N

p u = λu, in Ω,
u = 0, on ∂Ω,
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where Ω ⊂ Rn is a bounded domain, p > n and the 1-homogeneous p-
Laplacian is given by

∆N
p u : =

1

p
|Du|2−p · div

(
|Du|p−2Du

)
=

1

p
trace

[(
I + (p− 2)

Du⊗Du
|Du|2

)
D2u

]
=

1

p
∆u+

p− 2

p
∆∞u.

This operator appears naturally when one considers Tug-of-War games with
noise, see [15, 16, 18, 19, 20], where the Poisson problem is studied. More-
over, the sublinear problem associated to the 1-homogeneous p-Laplacian,
namely, the problem with right-hand side λuq for 0 < q < 1, has been
studied in [17].

Our main goal here is to analyze the limit as p → ∞ for the eigenvalue
problem corresponding to the 1-homogeneous p-Laplacian (1.1).

Eigenvalue problems appear in several contexts in the theory of second
order elliptic partial differential equations. It is well-known that, for lin-
ear elliptic operators in divergence form, Lu = div(A(x)Du), the following
Dirichlet problem {

Lu+ λu = 0, in Ω,
u = 0, on ∂Ω,

has a first eigenvalue, that is, a nontrivial solution (u, λ) with u non-negative
and nontrivial. More precisely, the first eigenvalue is given by

λ1 = inf
u∈W 1,2

0 (Ω)\{0}

∫
Ω

(
A(x)Du(x)

)
·Du(x) dx∫

Ω u
2 dx

,

and the corresponding eigenfunctions are the minimizers of this functional.
However, this result is based on variational methods that are not adequate
for operators in non-divergence form.

In [3] the authors deal with this difficulty and prove that the number

λ1 = sup
{
λ ∈ R : ∃v(x) > 0 ∀x ∈ Ω such that (L+ λ)v ≤ 0

}
,

turns out to be the smallest eigenvalue of L. In this direction, in [11] the
following eigenvalue problem is studied

(1.2)

{
−∆∞u(x) = λu(x), in Ω,
u(x) = 0, on ∂Ω,

where the operator

(1.3) ∆∞u =

(
D2u

Du

|Du|

)
· Du
|Du|

is known as the 1-homogeneous infinity Laplacian, see the survey [1]. In [11]
it is proved that the principal eigenvalue is given by

(1.4) λ1,∞(Ω) = sup
{
λ ∈ R : ∃v ∈ C(Ω) such that v(x) > 0 ∀x ∈ Ω

and −∆∞v ≥ λv in the viscosity sense
}
.

Moreover, it is proved that λ1,∞(Ω) > 0 and it is computed explicitly in the
case of a ball.



THE EIGENVALUE PROBLEM FOR THE 1-HOMOGENEOUS p-LAPLACIAN 3

For the problem under consideration here, in [4] and [5] the authors show
existence of a first eigenvalue with a positive eigenfunction (in fact, the
results contained there cover more general fully nonlinear operators). Let

(1.5) λ1,p(Ω) = sup
{
λ ∈ R : ∃v ∈ C(Ω) such that v(x) > 0 ∀x ∈ Ω

and −∆N
p v ≥ λv in the viscosity sense

}
.

In [4] and [5] it is proved that this number is the principal eigenvalue of
problem (1.1).

Theorem 1.1. ([4], [5]) There exists a first eigenvalue for (1.1), which is
given by (1.5). Moreover, this eigenvalue has associated a non-negative and
nontrivial eigenfunction.

For completeness of this paper and since some care has to be taken when
defining viscosity solutions to this operator, we provide a short proof of this
result. In the case of star-shaped domains we prove here (see Proposition 3.7)
that the existence of a nonnegative nontrivial eigenfunction characterizes the
first eigenvalue.

Next, we analyze the limit as p→∞ and we obtain our main result:

Theorem 1.2. Assume that Ω is star-shaped, then it holds that

(1.6) lim
p→∞

λ1,p(Ω) = λ1,∞(Ω)

where λ1,∞(Ω), given by (1.4), is the first eigenvalue for the infinity Lapla-
cian.

Remark 1.3. We prove that the limit as p goes to infinity of the eigenvalue
problem for the 1-homogeneous p-Laplacian (1.1) is (1.2) in contrast to the
case of the variational p-Laplacian (see [13]),

−div (|Du|p−2Du) = λ|u|p−2u,

where the limit problem is given by

min {|Du| − λu, −∆∞u} = 0.

Concerning methods and ideas used in the proofs we just mention that the
equation under consideration is nonlinear and it is not in divergence form. In
addition, it is undefined when Du vanishes. Therefore we use the concept
of viscosity solutions, see [8], and we have to take care in the proof of a
comparison principle that allows us to compare super and subsolutions. We
also need a Harnack inequality to pass to the limit in certain approximating
problems. This Harnack inequality was proved in [6]. To deal with the limit
as p→∞ we use the uniform estimates proved in [7].

The paper is organized as follows, in Section 2 we give some necessary
definitions and we show a Comparison Principle; in Section 3 we deal with
the problem for p <∞ fixed, and we prove that (1.5) is the first eigenvalue
for (1.1); finally, in Section 4 we show the convergence of the eigenvalues as
p→∞ given in (1.6).
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2. Preliminaries

We devote this section to state precisely the notion of solution of problem
(1.1). Note that, if Du = 0 the operator 1

p |Du|
2−pdiv (|Du|p−2Du) is unde-

fined even if u is regular, and we need to deal with this fact. As mentioned
in the introduction, if u is smooth and Du 6= 0 we have

(2.1)
1

p
|Du|2−pdiv (|Du|p−2Du) =

(p− 2)

p
∆∞u(x) +

1

p
∆u(x),

where ∆∞u is the 1−homogeneous infinity Laplacian given by (1.3).

We observe that, in order to define the 1−homogeneous infinity Laplacian,
we have to give a meaning when ξ = 0 to the following function,

F (ξ,X) =

(
X
ξ

|ξ|

)
· ξ

|ξ|
, ξ ∈ Rn, X ∈ SN .

By SN we denote the set of symmetric matrices in Rn×n and by M(A) and
m(A) the largest and smallest eigenvalues of A ∈ SN , respectively, i.e.

M(A) = max
|η|=1

(Aη) · η and m(A) = min
|η|=1

(Aη) · η.

Taking into account (2.1), problem (1.1) can be rewritten as follows

(2.2)

{
− (p−2)

p ∆∞u(x)− 1
p∆u(x) = λu(x), in Ω,

u(x) = 0, on ∂Ω,

and we consider the following standard definitions of viscosity sub and su-
persolutions of (2.2) that use the upper and lower semicontinuous envelopes
(relaxations) of the operator (see [8, Section 9]).

Definition 2.1. Let Ω ⊂ Rn be a bounded domain, p ≥ 2 and λ ∈ R.
We say that an upper semicontinuous function u : Ω → R is a viscosity
subsolution of (2.2) if, u|∂Ω ≤ 0 and, whenever x0 ∈ Ω and ψ ∈ C2(Ω) are
such that u(x0) = ψ(x0) and u(x) < ψ(x), if x 6= x0, then{

− (p−2)
p ∆∞ψ(x0)− 1

p∆ψ(x0) ≤ λψ(x0), if Dψ(x0) 6= 0,

− (p−2)
p M(D2ψ(x0))− 1

p∆ψ(x0) ≤ λψ(x0), if Dψ(x0) = 0.

We say that a lower semicontinuous function u : Ω → R is a viscosity
supersolution of (2.2) if, u|∂Ω ≥ 0 and, whenever x0 ∈ Ω and ϕ ∈ C2(Ω)
are such that u(x0) = ϕ(x0) and u(x) > ϕ(x), if x 6= x0, then{

− (p−2)
p ∆∞ϕ(x0)− 1

p∆ϕ(x0) ≥ λϕ(x0), if Dϕ(x0) 6= 0,

− (p−2)
p m(D2ϕ(x0))− 1

p∆ϕ(x0) ≥ λϕ(x0), if Dϕ(x0) = 0.

Finally, a continuous function u : Ω → R is a viscosity solution of (2.2)
if it is both, a viscosity supersolution and a viscosity subsolution.

For the sake of clarity, we will keep in the sequel the notation used in the
above definitions. That is, we will denote by ϕ the test functions touching
the graph of u from below, and by ψ the test functions touching the graph
of u from above.
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Note that the contact condition in the above definition is local in the sense
that it is required to hold only in a neighborhood of x0. Hence, it is possible
to relax the strict inequality, we refer to [8] for more details about general
theory of viscosity solutions, and [10, 12] for viscosity solutions related to
the Infinity Laplacian and the p−Laplacian operators.

At this point we are ready to prove a comparison principle for problem
(2.2) inspired by the ideas in [11].

Proposition 2.2. Let µ < λ and v ∈ C(Ω) such that v > 0 in Ω and
−∆N

p v ≥ λv. If u ∈ C(Ω) verifies −∆N
p u ≤ µu and u ≤ 0 on ∂Ω, then u ≤ 0

in Ω.

Proof. Arguing by contradiction, suppose that there exists an interior point
at which u is strictly positive. Since u ≤ 0 on ∂Ω and v > 0 in Ω, this

implies that there exists x0 ∈ Ω where u(x)
v(x) attains a positive maximum.

Denote by Ω0 an open set containing x0, where u is positive. We consider
w(x) = log(u(x)) in Ω0 and g(x) = log(v(x)) in Ω. It is not difficult to see
that

(2.3)
− (p−1)

p |Dw|
2 − (p−2)

p ∆∞w − 1
p∆w ≤ µ, in Ω0,

− (p−1)
p |Dg|

2 − (p−2)
p ∆∞g − 1

p∆g ≥ λ, in Ω.

Note that x0 is also a positive maximum of w(x)−g(x) = log
(
u(x)
v(x)

)
. Then,

using arguments in [11], we consider

(2.4) ψj(x, y) = w(x)− g(y)− θj(x, y), j ∈ N, θj(x, y) =
j

4
|x− y|4,

and let (xj , yj) ∈ Ω0 × Ω0 such that

ψj(xj , yj) = sup
(x,y)∈Ω0×Ω0

ψj(x, y).

Then we have that

xj → x0, yj → x0, j|xj − yj |4 → 0, as j →∞.

Thus we can assume that ψj(x, y) attains a positive maximum at (xj , yj)
for j large. Applying the maximum principle for semicontinuous functions
we obtain that there exist symmetric matrices Xj , Yj ∈ SN , such that

(2.5) (ηj , Xj) ∈ J
2,+
w(xj), (ηj , Yj) ∈ J

2,−
g(yj),

being ηj = j|xj − yj |2(xj − yj), and(
Xj 0
0 −Yj

)
≤ D2θj(xj , yj) +

1

j

(
D2θj(xj , yj)

)2
.

After some computations and denoting zj = xj − yj , the previous inequality
reads as follows

(2.6)

(
Xj 0
0 −Yj

)
≤ j(|zj |2 + 2|zj |4)

(
I −I
−I I

)
+16j|zj |2

(
zj ⊗ zj −zj ⊗ zj
−zj ⊗ zj zj ⊗ zj

)
.
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Evaluating these quadratic forms at (ξ, ξ) ∈ R2N it leads to

(2.7) (Xjξ) · ξ ≤ (Yjξ) · ξ, for all ξ ∈ Rn,

that is, Yj −Xj is positive semidefinite. From (2.3) and (2.5) together with
(2.7), if xj 6= yj we can conclude that

λ ≤ −(p− 1)

p
|ηj |2 −

(p− 2)

p

(
Yj

ηj
|ηj |

)
· ηj
|ηj |
− 1

p
trace(Yj)

≤ −(p− 1)

p
|ηj |2 −

(p− 2)

p

(
Xj

ηj
|ηj |

)
· ηj
|ηj |
− 1

p
trace(Xj) ≤ µ,

which is a contradiction with the assumption λ > µ.

If xj = yj then ηj = zj = 0 and by (2.6) we get that Xj ≤ 0 ≤ Yj . Taking
into account (2.3) and (2.5), it implies that

λ ≤ −(p− 2)

p
m(Yj)−

1

p
trace(Yj) ≤ −

(p− 2)

p
M(Xj)−

1

p
trace(Xj) ≤ µ,

getting again a contradiction. �

In particular, for our purposes we have the following corollary. Recall
that λ1,p(Ω) is given by (1.5).

Corollary 2.3. Let µ < λ1,p(Ω) and u ∈ C(Ω) satisfying −∆N
p u ≤ µu and

u ≤ 0 on ∂Ω. Then u ≤ 0 in Ω.

Moreover, we have also obtained that any real number λ < λ1,p(Ω) cannot
be an eigenvalue.

Corollary 2.4. Let u ∈ C(Ω) a non-negative viscosity solution of{
−∆N

p u(x) = λu(x), in Ω,
u(x) = 0, on ∂Ω,

with λ < λ1,p(Ω). Then u ≡ 0. In particular, λ is not an eigenvalue.

If we show that λ1,p(Ω) is indeed an eigenvalue, then Corollary 2.4 will
lead to our characterization for the first eigenvalue.

We will use the following result, see [6], Theorem 4.3 (see also Theorem
4.8).

Lemma 2.5. (Harnack inequality) Let u be a solution of the 1−homogeneous
p−Laplacian, if x0 ∈ Ω and 0 < r < R ≤ dist(x0, ∂Ω), then there exists a
constant C such that

sup
y∈B(x0,r)

u(y) ≤ C inf
y∈B(x0,r)

u(y).

Now we need to establish a comparison result for a related problem. We
use the ideas in [11].

Theorem 2.6. Let λ < λ1,p(Ω), and let u and v be a viscosity subsolution
and a supersolution, respectively, of the equation

−∆N
p φ(x) = λφ(x) + f(x),
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where f ∈ C(Ω). Suppose that either

f(x) > 0, ∀x ∈ Ω

or

f(x) ≥ 0, ∀x ∈ Ω and λ > 0.

Then, if both v ≥ u and v > 0 on ∂Ω, we have v ≥ u in Ω.

Proof. Arguing by contradiction, we assume that {x ∈ Ω : u(x) > v(x)} 6= ∅.
Applying Proposition 2.2 to −v we deduce that v is non-negative. In fact
v > 0 in Ω, if λ ≥ 0, thanks to the Harnack inequality (see Lemma 2.5). In
the case λ < 0, just notice that the trivial function is a test function (from
below) at the points where v vanishes and then use the assumption f(x) > 0
for all x ∈ Ω. We consider x̃ ∈ Ω as a point verifying

(2.8) 1 <
u(x̃)

v(x̃)
= sup

x∈Ω

u(x)

v(x)
.

Let us assume that u > v > 1 in some neighborhood Ω̃ of x̃ (otherwise we
can rescale f). As in Proposition 2.2, a simple computation shows that the
functions w(x) = log(u(x)) and g(x) = log(v(x)), are a subsolution and a
supersolution, respectively, of

(2.9) −(p− 1)

p
|Dφ(x)|2 − (p− 2)

p
∆∞φ(x)− 1

p
∆φ(x)− λ− f(x)e−φ(x) = 0

in the subdomain Ω̃. Now we apply the maximum principle for semicontin-
uous functions as in (2.4). If xj 6= yj , it follows from Xj ≤ Yj and the fact
that w and g are a subsolution and a supersolution of (2.9) that

λ+ f(yj)e
−g(yj) ≤ −(p− 1)

p
|ηj |2 −

(p− 2)

p

(
Yj

ηj
|ηj |

)
· ηj
|ηj |
− 1

p
trace(Yj)

≤ −(p− 1)

p
|ηj |2 −

(p− 2)

p

(
Xj

ηj
|ηj |

)
· ηj
|ηj |
− 1

p
trace(Xj)

≤ λ+ f(xj)e
−w(xj).

On the other hand, if xj = yj , then ηj = 0 and we obtain

λ+ f(yj)e
−g(yj) ≤ −(p− 2)

p
m(Yj)−

1

p
trace(Yj)

≤ 0 ≤ −(p− 2)

p
M(Xj)−

1

p
trace(Xj) ≤ λ+ f(xj)e

−w(xj).

Hence, in both cases we conclude that λ + f(yj)e
−g(yj) ≤ λ + f(xj)e

−w(xj)

for each j. Then, if f(x̃) > 0, we let j →∞ to obtain a contradiction with
(2.8).

If f ≥ 0, in order to obtain a strict inequality, we perturb g, so that it
becomes a strict supersolution. More precisely, we consider G(x) := h(g(x))
for

h(t) =
1

α
log(1 +A(eαt − 1)), α > 1, A > 1.

In [13], the following properties for h can be found. We have that h′(t) > 1
and h′(t) − h′(t)2 − h′′(t) > 0 for all t ≥ 0. Moreover, 0 < h(t) − t < A−1

α
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for t ≥ 0 and thus h(t)→ t uniformly if A→ 1+. Taking into account these
properties, we can deduce that G verifies

− (p− 1)

p
|DG|2 − (p− 2)

p
∆∞G−

1

p
∆G

≥ h′(g)
[
λ+ fe−g

]
+

(p− 1)

p
|Dg|2

[
h′(g)− h′(g)2 − h′′(g)

]
> λ+ fe−G.

In the last inequality we have used that h′(t) > 1 and h(t) > t for all t ≥ 0.
Since h is smooth and increasing, we obtain that G is a strict supersolution
as we wanted, namely

−(p− 1)

p
|DG|2 − (p− 2)

p
∆∞G−

1

p
∆G > λ+ f(x)e−G(x),

in the viscosity sense. By choosing A > 1 close enough to one, we have that
also w − G achieves its positive maximum at certain x̃ ∈ Ω̃. We argue as
before, but applying the maximum principle for semicontinuous functions to

Ψ(x, y) = w(x)−G(y)− θj(x, y), j ∈ N.

Again we obtain in both cases (xj = yj and xj 6= yj) that λ+f(yj)e
−g(yj) <

λ + f(xj)e
−w(xj) for each j, which leads to a contradiction upon letting

j →∞, so the result follows. �

As a consequence we get the following result.

Corollary 2.7. Let λ < λ1,p(Ω) and assume that f : Ω→ R and g : ∂Ω→ R
are continuous functions such that g is positive and either f is positive in Ω
or f is non-negative in Ω and λ > 0. Then the Dirichlet problem{

−∆N
p φ(x) = λφ(x) + f(x), in Ω,

φ(x) = g(x), on ∂Ω,

has at most one solution.

3. The principal eigenvalue for fixed p

In this section, our purpose is to show that the principal eigenvalue of
(1.1) is given by (1.5). Note that constant functions verify −∆N

p v = 0, thus
λ1,p(Ω) is well-defined and non-negative. Moreover, if Ω1 ⊂ Ω2 then

λ1,p(Ω2) ≤ λ1,p(Ω1).

This fact will allow us to estimate λ1,p(Ω) for a general domain Ω by the
principal eigenvalue in a ball.

3.1. The principal eigenvalue in a ball. Consider Ω = BR = BR(0) and
let us look for radial solutions of problem (2.2). A simple calculation shows
that for radial functions g = g(r) problem (2.2) reads as follows

(3.1)

 −
(p− 1

p

)
g
′′
(r)−

(n− 1

p

) g′(r)
r

= λ1,p(BR) g(r), in [0, R),

g(R) = 0, g′(0) = 0.
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Lemma 3.1. If Ω = BR the principal eigenvalue defined in (1.5) is given
by

(3.2) λ1,p(BR) =
(p− 1)

p

(
t0
R

)2

,

where t0 is the first zero of the Bessel function solving

(3.3) t2
d2u

dt2
+ t

du

dt
+ (t2 − ν2)u = 0, ν2 =

(
p− n
p− 1

)2

.

Proof. Equation (3.1) is equivalent to

(3.4) −g′′(r)−
(n− 1

p− 1

) g′(r)
r

=
( p

p− 1

)
λ1,p(BR) g(r).

Hence, we obtain (3.3) by means of the following change of variables
g =

(
t√
c

)−α
u,

x =
t√
c
,

for α =
n− p

2(N − 1)
< 0 and c =

p

p− 1
λ1,p(Ω).

Let us denote

µ(R) =
(p− 1)

p

(
t0
R

)2

.

Then, by (1.5) it holds that λ1,p(BR) ≥ µ(R). In order to prove the equality,
let us assume for the sake of contradiction that λ1,p(BR) > µ(R). Since µ
is non-increasing in R, we can take 0 < ρ < R such that λ1,p(BR) > µ(ρ) >
µ(R) and let

w(x) =

{
gρ(|x|), if |x| ≤ ρ,
0, if |x| > ρ,

with gρ verifying

−g′′(r)−
(n− 1

p− 1

) g′(r)
r

= µ(ρ) g(r) in Bρ.

Note that −∆N
p w ≤ µ(ρ)w in BR and w ≤ 0 on ∂BR. Then, the comparison

principle (Corollary 2.3) implies that w ≤ 0 in BR, a contradiction. �

Remark 3.2. Notice that taking limits as p→∞ in (3.4) we can see that

lim
p→∞

λ1,p(BR) = λ1,∞(BR).

This convergence also holds for the case of a general star-shaped domain,
see Section 4 for the details.

3.2. The principal eigenvalue in a general domain. Our purpose now
is to prove that λ1,p(Ω) defined in (1.5) is an eigenvalue. This result is
contained in [4] and [5] but we include here a short proof for completeness.
Thanks to the results for the radial case and the fact that Ω1 ⊂ Ω2 implies
λ1,p(Ω1) ≥ λ1,p(Ω2), we will be able to find bounds (uniformly in p) for the
principal eigenvalue λ1,p(Ω). Define

R∗ = inf{r > 0 : Ω ⊂ Br(x) for some x}
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and

R∗ = sup{r > 0 : Br(x) ⊂ Ω for some x}.
Then,

(3.5) λ1,p(BR∗) ≤ λ1,p(Ω) ≤ λ1,p(BR∗),

where λ1,p(BR∗) and λ1,p(BR∗) are the radial principal eigenvalues given
by (3.2). We emphasize that these values do not depend on p for p large
enough.

Remark 3.3. From (3.5) we obtain that λ1,p(Ω) > 0. In fact, from the
ABP-type estimate [7, Theorem 4.1], we easily obtain that

λ1,p(Ω) ≥
(
p− 1

p

)
diam(Ω)−2.

We state the main result of this section.

Theorem 3.4. Let Ω ⊂ Rn be a bounded domain. Then, there exists w ∈
C(Ω) such that  −∆N

p w = λ1,p(Ω)w, in Ω,
w > 0, in Ω,
w = 0, on ∂Ω.

We will need in the sequel the following Cα-estimates that can be found
in [7, Section 5].

Lemma 3.5. Let Ω be a bounded domain, 2 ≤ n < p <∞, and u a viscosity
solution of

−∆N
p u = f in Ω

with f ∈ C(Ω). Then, for any x ∈ Ω we have that

|u(y)− u(x)|
|y − x|1−αp

≤
2‖u‖L∞(Ω)

dist(x, ∂Ω)1−αp +
Cp

1− αp
diam(Ω)1+αp ‖f‖L∞(Ω)

for every y ∈ Ω, where αp = n−1
p−1 and Cp = p

p+n−2 .

Lemma 3.6. Let Ω ⊂ Rn be a bounded domain and 0 < λ < λ1,p(Ω). Then,

there exists w ∈ C(Ω) viscosity solution of −∆N
p w = 1 + λw, in Ω,

w > 0, in Ω,
w = 0, on ∂Ω.

Proof. The proof follows by the Perron method (see [9, Section 2.4]). Since
Theorem 2.6 provides a comparison principle for this problem, we need to
construct a viscosity sub and supersolution, v and v. We begin by construct-
ing the supersolution. Note that thanks to (3.5) we can take 0 < λ < λ1,p(Ω)
such that there exists a positive continuous function u, verifying−∆N

p u ≥ λu
in the viscosity sense in Ω. Let η0 = minx∈∂Ω u(x) > 0. For 0 < η < η0 the
function uη = u − η, which is positive by the Maximum Principle, see [2],
verifies

−∆N
p uη ≥ λuη + λη.
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Defining û =
uη
λη , then û is a supersolution of −∆N

p v = λv + 1.

However, û does not necessarily vanish on ∂Ω. In order to get a super-
solution of this equation with the right boundary data, we define for any
given z ∈ ∂Ω the function uz(x) = |x− z|2α, which verifies

−∆N
p uz(x) = −2α[(2α− 1)(p− 1) + n− 1]

p
|x− z|2(α−1).

Now the choices

p > n and α < min

{
1,

p− n
2(p− 1)

}
ensure that −2α[(2α− 1)(p− 1) + n− 1] > 0. Therefore, it follows that

−∆N
p uz(x) =

(
−2α[(2α− 1)(p− 1) + n− 1]

p
− β

)
uz(x)

|x− z|2
+ β|x− z|2(α−1).

Then, choosing β appropriately, since α < 1 there exists ρ = ρ(λ) > 0
such that −∆N

p uz ≥ λuz + 1 in Bρ(z) ∩ Ω. Taking some constant verifying

C(ρ/2)1/2 ≥ supΩ û we get that û(x) ≤ Cuz(x) outside Bρ/2(z) ∩ Ω, thus

U(x) = inf
z∈∂Ω

(
min{Cuz(x), û(x)}

)
is the desired positive supersolution of −∆N

p v = λv + 1, vanishing on ∂Ω.

We can take the function u = 0 as a subsolution of −∆N
p v = λv + 1.

At this point, the existence of a solution follows from the Perron method.
Notice that v > 0. Otherwise, there would exist a point x0 ∈ Ω such that
v(x0) = 0 and, since v ≥ 0, we could use 0 as a test function in the definition
of viscosity solution, a contradiction. �

Now we are ready to prove Theorem 3.4. The proof of is based in the
previous two results.

Proof of Theorem 3.4. Consider a sequence of numbers λk ↗ λ1,p(Ω). By
Lemma 3.6 we can assure the existence of wk a positive solution of−∆N

p wk =
λkwk+1 vanishing on ∂Ω. First we show that supΩwk is not bounded. If we
assume that it is bounded, by Lemma 3.5 we have that the sequence {wk}
is locally equicontinuous and hence convergent (up to a subsequence) to a
positive viscosity solution w of{

−∆N
p w = λ1,p(Ω)w + 1, in Ω,

w = 0, on ∂Ω.

The homogeneous boundary condition is obtained using uniform barriers of
the form x 7→ C|x− z| with z ∈ ∂Ω. Then, we define wε = w+ ε, a positive
function in Ω satisfying

−∆N
p wε = (1− ελ1,p(Ω)) + λ1,p(Ω)wε ≥ µwε

for any 0 ≤ µ ≤ λ1,p(Ω) +
1−ελ1,p(Ω)

supΩ wε
, which contradicts the definition of

λ1,p(Ω) choosing ε such that ελ1,p(Ω) < 1.

Now, if we consider vk = wk
supΩ wk

, it verifies −∆N
p vk = λkvk + 1

supΩ wk
in

the viscosity sense. Since supΩ vk = 1 then, again by Lemma 3.5 it holds
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that vk converges (up to a subsequence) locally uniformly to some positive
nontrivial v (the positivity follows from the Harnack inequality in Lemma
2.5). Since supΩwk → ∞ as k → ∞ (up to a subsequence), the limit v
solves {

−∆N
p v = λ1,p(Ω)v, in Ω,

v = 0, on ∂Ω,

by the same barrier argument as before. This function v is the desired
eigenfunction and the proof is complete. �

In the final result of this section we prove, for star-shaped domains, that
any positive eigenfunction necessarily corresponds to the first eigenvalue.

Proposition 3.7. Let Ω ⊂ Rn be a bounded star-shaped domain with respect
to a point (that we may assume to be the origin), λ > 0 and assume that
there exists φ ∈ C(Ω) such that −∆N

p φ = λφ, in Ω,
φ > 0, in Ω,
φ = 0, on ∂Ω.

Then, necessarily, λ = λ1,p(Ω).

Proof. Since Corollary 2.4 implies λ ≥ λ1,p(Ω), we can assume for the sake
of contradiction that λ > λ1,p(Ω).

Now, let Ωµ = µΩ. Using that Ω is star-shaped with respect to the origin
we get Ω ⊂ Ωµ for µ > 1. For x ∈ Ωµ consider the function

ψ(x) = φ(x/µ)

which is a solution to −∆N
p ψ = µ−2λψ, in Ω,

ψ > 0, in Ω,
ψ > 0, on ∂Ω

(note that the operator is homogeneous under dilations and also that we are
restricting ψ to Ω).

To obtain the desired contradiction, we only have to take µ > 1 but close
to one in such a way that µ−2λ > λ1,p(Ω). �

Remark 3.8. Note that a similar argument shows that λ1,p(Ω) is continuous

with respect to Ω for a star-shaped domain. In fact, if ν < 1 < µ and Ω̃ a
domain verifying

νΩ ⊂ Ω̃ ⊂ µΩ,

it holds that
µ−2λ1,p(Ω) ≤ λ1,p(Ω̃) ≤ ν−2λ1,p(Ω),

and obviously
µ−2λ1,p(Ω) ≤ λ1,p(Ω) ≤ ν−2λ1,p(Ω).

But then
|λ1,p(Ω)− λ1,p(Ω̃)| ≤ (ν−2 − µ−2)λ1,p(Ω),

which shows that λ1,p(Ω) is continuous with respect to the domain, whenever
Ω is star-shaped.
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4. Convergence of the eigenvalues as p→∞

We devote this section to analyze the behaviour of the first eigenvalue
and its corresponding eigenfunction as the exponent p goes to infinity.

Proposition 4.1. Let Ω be a bounded star-shaped domain and up a viscosity
solution of

(4.1)

{
−∆N

p up(x) = λ1,p(Ω)up(x) in Ω,
up(x) = 0 on ∂Ω,

with λ1,p(Ω) defined in (1.5). Then,

lim
p→∞

λ1,p(Ω) = λ1,∞(Ω),

for λ1,∞(Ω) the first eigenvalue of the 1-homogeneous infinity Laplacian,
given in (1.4). Moreover, there exists a subsequence up′, that converges
uniformly to some u > 0, a viscosity solution of

(4.2)

{
−∆N

∞u(x) = λ1,∞(Ω)u(x), in Ω,
u(x) = 0, on ∂Ω.

In addition, u ∈ C0,1(Ω).

Proof. Estimate (3.5) and the fact that µ(R∗) ≤ C in the radial case imply
that there exists a subsequence still denoted by p such that

lim
p→∞

λ1,p(Ω) = Λ(Ω).

for some Λ(Ω). Our aim is to prove that Λ(Ω) = λ1,∞(Ω).

Let us consider the sequence up of first eigenfunctions corresponding to
the subsequence above and assume the normalization ‖up‖∞ = 1. Fix p0

such that n < p0. Then, for p ≥ p0, [7, Corollary 5.5] yields the following
estimate
(4.3)

‖up‖
C

0,
p0−n
p0−1 (Ω)

≤ diam(Ω)

(
p−n
p−1
− p0−n
p0−1

)
· ‖up‖

C0,
p−n
p−1 (Ω)

≤ diam(Ω)
2− p0−n

p0−1 ·
(

2 p
p−1 diam(Ω)

p−n
p−1 + p

p+n−2

)
µ(R∗).

Note that the right-hand side can be bounded independently of p, thus
Arzelà-Ascoli Theorem yields the existence of a further subsequence con-
verging uniformly to some limit u ∈ C(Ω). We will still denote by up the
subsequence for which we have that up → u uniformly and limp→∞ λ1,p(Ω) =
Λ(Ω).

In addition, we may assume that the limit u has a uniform modulus of
continuity, this fact follows from (4.3) taking p→∞.

Now we observe that (also from (4.3)) we get that the maximums of up are
located at some points xp that have a unform distance from the boundary.
Extracting a subsequence if necessary we may assume that xp → x0 ∈ Ω and
from the uniform convergence we get u(x0) = 1. Now the uniform modulus
of continuity of u implies that u ≥ 1/2 in a small ball around x0 and hence
u is nontrivial.
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Now, we focus on checking that the limit u is a viscosity solution of (4.2).
Let x0 ∈ Ω and a function ϕ ∈ C2(Ω) such that u−ϕ attains a local minimum
at x0. Up to replacing ϕ(x) with ϕ(x) − |x − x0|4, we can assume without
loss of generality the minimum to be strict.

Since u is the uniform limit of the subsequence up and x0 is a strict
minimum point, there exists a sequence of points xp → x0 as p → ∞, such
that (up − ϕ)(xp) is a local minimum for each p in the sequence.

Let us suppose first that |Dϕ(x0)| > 0. Then, |Dϕ(xp)| > 0 for p large
enough and, since up is a viscosity supersolution of (4.1), we have that,

−1

p
trace

[(
I + (p− 2)

Dϕ(xp)⊗Dϕ(xp)

|Dϕ(xp)|2

)
D2ϕ(xp)

]
= −∆N

p ϕ(xp)

≥ λ1,p(Ω)up(xp).

Letting p→∞ we get

−
〈
D2ϕ(x0)

Dϕ(x0)

|Dϕ(x0)|
,
Dϕ(x0)

|Dϕ(x0)|

〉
= −∆∞ϕ(x0) ≥ Λ(Ω)u(x0).

If, on the contrary, we assume that Dϕ(x0) = 0, we have to consider two
cases. Suppose first that there exists a subsequence, still indexed by p, such
that |Dϕ(xp)| > 0 for all p in the subsequence. Then, by Definition 2.1, we
can let p→∞ to get

− lim inf
p→∞

〈
D2ϕ(xp)

Dϕ(xp)

|Dϕ(xp)|
,
Dϕ(xp)

|Dϕ(xp)|

〉
= −m

(
D2ϕ(x0)

)
= −∆∞ϕ(x0) ≥ Λ(Ω)u(x0).

If such a subsequence does not exist, according to Definition 2.1, we deduce
that

−1

p
∆ϕ(xp)−

(p− 2)

p
m
(
D2ϕ(xp)

)
≥ −∆N

p ϕ(xp) ≥ λ1,p(Ω)up(xp).

for every p large enough. Taking p→∞, we get

−m
(
D2ϕ(x0)

)
= −∆∞ϕ(x0) ≥ Λ(Ω)u(x0).

Hence u is a viscosity supersolution of (4.2). The proof of the fact that u
is a subsolution runs similarly. Moreover, u is the uniform limit of positive
functions, thus u ≥ 0.

Since u is not trivial, by the Harnack inequality for the infinity laplacian,
Lemma 5.1 in [11], we deduce that, indeed u > 0 in Ω. Finally, we conclude
that u ∈ C0,1(Ω) either letting p0 →∞ or using that u is a solution of (4.2),
and hence the estimates in [7, Corollary 5.5] apply.

Therefore, it just remains to see that Λ(Ω) = λ1,∞(Ω). We notice that
Λ(Ω) ≥ λ1,∞(Ω). Otherwise Corollary 3.4 in [11] implies that the limit u is
non-positive, which is not true. Now, the same argument as in Proposition
3.7 but with p =∞ implies that Λ = λ1,∞(Ω) and the proof is finished. �
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[17] P. J. Mart́ınez-Aparicio, M. Pérez-Llanos and J. D. Rossi, The sublinear problem for
the 1-homogeneous p-Laplacian. Preprint.

[18] Y. Peres, G. Pete and S. Somersielle, Biased Tug-of-War, the biased infinity Laplacian
and comparison with exponential cones. Calc. Var. and PDE 38 (2010), 541-564.

[19] Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Lapla-
cian, J. Amer. Math. Soc. 22 (2009), 167-210.

[20] Y. Peres, S. Sheffield; Tug-of-war with noise: a game theoretic view of the p-Laplacian,
Duke Math. J. 145(1) (2008), 91–120.
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