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Abstract

In this paper, the limit case of the SD (smooth and discontinuous) oscillator
is studied. This system exhibits standard dynamics governed by the hyper-
bolic structure associated with the stationary state of the double-well. The
substantial deviation from the standard dynamics is the non-smoothness
of the velocity in crossing from one well to another, caused by the loss
of local hyperbolicity due to the discontinuity. Without dissipation, the
KAM structure on the Poincaré section is constructed with generic KAM
curves and a series of fixed points associated with surrounded islands of
quasi-periodic orbits and the chaotic connection orbits. It is found that,
for a fixed set of parameters, a special chaotic orbit exits there which fills a
finite region and connects a series of islands dominated by different chains
of fixed points. As one adds weak dissipation, the periodic solutions in
this finite region remain unchanged while the quasi-periodic solutions (iso-
lated islands) are converted to the corresponding periodic solutions. The
relevant dynamics for the system with weak dissipation under external ex-
citation is shown having period doubling bifurcation leading to chaos, and
multi-stable solutions.

keywords: SD oscillator, discontinuity, KAM structure, chaotic sea

1 Introduction

Discontinuous dynamical systems have attracted a lot of interest from the nonlin-
ear dynamics community both in terms of theory, see for example [1, 2], and its

∗Corresponding author’s e-mail: e.pavlovskaia@abdn.ac.uk
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application [3, 4, 5]. Various types of discontinuities reported and studied in the
literature are: Filippov-type discontinuity, the discontinuous right hand side [6],
typical of dry friction dampers [7, 8], phase state discontinuity, such as impacting
systems [9, 10], and also the system with non-smooth Jacobian matrix, such as
the piecewise linearity[11, 12].

Discontinuous dynamical systems are of wide applicability both in engineering
and mathematics, and a significant amount of work has been done to analyse the
behaviour of these systems. Di Bernardo and co-workers [13, 14, 15] studied the
bifurcations for the sliding system with a border collision bifurcation. Banerjee
et al. [16, 17] investigated bifurcations of the discontinuous maps for a power
circuit system with discontinuous switches. Whiston [18] examined the singular-
ities of a vibro-impact system. These studies range from theoretical formulation,
methodology to the applications in engineering.

The motivation of this paper is to study the limit discontinuous case of the smooth
and discontinuous (SD) oscillator introduced in [19] and modelled as a piecewise
linear system in [20]. The SD oscillator is derived from an arch model which was
first proposed by Thompson and Hunt, 1973 in [21], where stability of the arch
was investigated by the energy method. This SD oscillator shown in Fig. 1a is
comprised of a mass moving vertically and linked by a pair of inclined springs to
rigid supports. The springs are assumed to be capable of resisting both tension
and compression. This model is widely used in engineering, see [22, 23]. In
[20], we introduced a trilinear model to investigate the SD oscillator analytically.
The current study is focussed on the nonlinear behaviour of the system in the
limiting discontinuous case, where the influence of weak dissipation and external
excitation on the system dynamics is investigated.

This paper is organised as follows. In Section 2, the static response analysis is
given for the archetypal oscillator representing the arch model showing the phys-
ical characteristics. In Section 3, conceptual response analysis and the physical
model are established and the equations of motion are derived and formulated for
the limit case of the archetypal SD oscillator. In Section 4, standard dynamics of
the equilibrium state hyperbolicity of the double-well and the loss of local hyper-
bolicity at the saddle-like equilibrium for the unperturbed system is presented.
In Section 5, numerical results for the system with weak dissipation and external
excitation are presented showing relevant dynamics, co-existence of attractors,
period doubling bifurcation leading to chaos and various harmonic responses.

2 Static Response of the SD oscillator

In this paper we consider the limit case for the smooth and discontinuous oscil-
lator introduced in [19, 20]. The arch model presented there has some physical
characteristics, but the assumed response of the idealised springs is far from phys-
ical, especially in the limit case which is examined here. So it is better to think
of it as a conceptual model. In spite of that, the results obtained by the dynam-
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Figure 1: (a) A nonlinear oscillator with a lump mass and a pair of springs pinned
to rigid supports, (b) function P (E) for L = 1, k = 1

2
and l = 1

2
.

ical analysis carried out herein follows the mathematical tradition of nonlinear
dynamics. They are, therefore, qualitatively typical and dynamically relevant.
This conceptual model was used by Thompson & Hunt, in [21], as an archetypal
example of snap-through buckling. It is built using a mass, m and two idealised
elastic springs of stiffness k by pinning them together at one end (the crown)
and to two rigid foundations at the other as shown in Fig. 1a. Each spring has
the initial (unstressed) length, L, and is assumed to remain straight under either
tensile or compressive loading. The distance between these two rigid foundations
(often called abutments, as in civil engineering) is written as 2l. Most of the time
L > l shall be taken, which gives one an unloaded symmetric arch of height

X0 = ±
√

L2 − l2. (1)

Here the minus sign corresponds to the inverted arch which is of course a valid
(and stable) equilibrium state. Notice that if L < l, the unloaded springs will
lie horizontally under tensile stress, and the behaviour will be that of a stretched
elastic string.

The equilibrium response under a dead (prescribed and time independent) down-
wards vertical load, P , is written in terms of the downwards displacement of the
crown, E as

P = −2k(X0 − E)

⎛

⎝1 − L
√

(X0 − E)2 + l2

⎞

⎠ , (2)

and shown in Figure 1b. Here the use of the downwards load against its corre-
sponding displacement, E, gives us the conventional plot for an arch with stable
regimes being easily identified as having positive slopes. Notice that m is an
inertial mass only, which does not contribute to the vertical loading on the arch.
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3 Equations of motion for the limit case

We are interested in the limit case shown in Figure 2a as l decreases to zero, where
the distance between the abutments, 2l, vanishes. In this case if the arch carries
a compressive load, P , it will undergo a shortening, s, governed (we assume) by
the linear constitutive law P = 2ks and the stored strain-energy will be

U =
1

2
(2k)s2. (3)

This is a good approximation to reality when s << L where it corresponds
to Hooke’s Law for an elastic body. The approximation is reasonably physical
under tensile loads when P and s are both negative. However, under compressive
loads, this idealisation allows one to shrink the springs to zero length (s = L) by
applying the finite compressive load P = 2kL.

The load-deflection characteristic, P (E) for the limit case of l = 0 is shown in
Figure 2b. We can now use this diagram to trace out the response of the limit
arch with l = 0. On the stable equilibrium path ABC the arch points upwards
with the springs vertical, and its height varies linearly with the applied load.
Meanwhile on the stable equilibrium path DEF the arch points downwards with
the springs again vertical, and with its depth varying linearly with the applied
load. Under a normal physical loading sequence under a slow increase of the dead
load, P , the response would start at the unloaded state B and proceed quasi-
statically along the stable equilibrium path to C. Here the system experiences a
degenerate saddle-node fold, from which it would jump dynamically to an upside-
down configuration. The degenerate equilibrium path CD is unstable everywhere.

-0.50 0.25 1.75 2.50
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-0.5

0.0

0.5

1.0
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)

E
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Dynamic jump
under dead load

X =10

Figure 2: (a) The limit case, discontinuous oscillator with lump mass and a
conical spring of stiffness 2k capable of moving both above and below its pivot
point, (b) limit case (l = 0) characteristics P (E) for k = 1

2
and L = 1.
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Notice that this limiting system under consideration is illustrated in Figure 2(a)
using a notional conical spring which can pass through itself. This helps us to
visualise the snap-through process, though a conical spring would not be expected
to accurately give the same discontinuous response as our arch (further research
on this might be interesting). Assuming the mass to be hinged to the spring in
such a way that it could move inside, we can imagine that under forcing it could
pass through the fully compressed state at X = 0, causing the spring to flip.
Thus the resistance of the spring could force the mass to oscillate either around
the upper or lower equilibrium positions (or both).

The equation of motion for this limit case can be written as:

mẌ + 2k(X − sign(X)L) = 0, sign(X) =

⎧

⎨

⎩

1, if X > 0
0, if X = 0

−1, if X < 0
(4)

System (4) can be made dimensionless by letting ω2
0 = 2k

m
, x = X

L
into

ẍ + ω2
0(x − sign(x)) = 0. (5)

For the system with damping and external harmonic excitation of amplitude F0

and frequency Ω, the equation of motion in the dimensionless form can be written
as

x′′ + 2ξx′ + (x − sign(x)) = f0 cos ωτ, (6)

where τ = ω0t, f0 = F0

mLω2

0

, ω = Ω
ω0

and x′ =
dx

dτ
.

Figure 3a shows the discontinuous restoring force and the potential energy with
double well for ω2

0 = 1. As can be seen the potential energy curve is non-smooth
at x = 0 due to the discontinuity.

4 Hamiltonian dynamics

In this section, standard dynamics governed by the hyperbolic structure associ-
ated with the stationary state of the double-well and the loss of local hyperbolicity
at the saddle-like point is investigated for free oscillations. Then the weakly dissi-
pative system without external excitation and, finally, the undampted forced os-
cillations are considered. The KAM (Kolmogorov-Arnold-Moser) structure [24]
is shown with islands presenting quasi-periodic solutions and surrounded by a
chaotic sea for the driven system without damping.

4.1 Free oscillations

The free undamped system (5) can be written as two first order differential equa-
tions by letting x′ = y:
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Figure 3: (a) Potential energy marked by solid curves and restoring force marked
by dashed lines. (b) Phase portraits of the limit case oscillator for four different
values of Hamiltonian function H(x, y) = E.

{

x′ = y,
y′ = − (x − sign(x)) .

(7)

The equilibria of the system are (0, 0) and (±1, 0). Although the Jacobian matrix
at point (0, 0) does not exist due to the discontinuity of the system at this point,
the structure of the phase portrait near (0, 0) looks like a hyperbolic one, so it is
referred to as the saddle-like singularity. However, the Jacobian matrix at (±1, 0)
does exist and it is calculated as

J(±1,0) =

(

0 1
−1 0

)

,

with eigenvalues λ1,2 = ±i. Thus the points (±1, 0) are centre equilibria.

Multiplying both sides of the second equation of Eq. (7) by the first one, and
integrating over [0, x], one gets the Hamiltonian function as

H(x, y) =
1

2
x2 +

1

2
y2 − |x|. (8)

The trajectories can be classified by taking different values of H(x, y) = E and the

corresponding phase portrait of the system is shown in Figure 3b. The dynamic
behaviour is similar to that of the Duffing oscillator for the double well except
for the homoclinic-like orbit. The Hamitonian (8) represents two centre points
(±1, 0) for E = −1

2
. The trajectories for −1

2
< E < 0 are two families of circles

with the centres at (−1, 0) and (1, 0) respectively, while the trajectories for E > 0
are comprised of two large segments of circles with their centres located at (−1, 0)
and (1, 0) connected at x = 0.
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In the most interesting case, E = 0, the phase portrait of the system is depicted
by two circles centered at (±1, 0) and connected to each other at the singularity
point (0, 0), forming a special singular homoclinic-like orbit. The structure near
this point looks like a saddle. As discussed above, the Jacobian at (0, 0) does not
exist, and this isolated singularity has neither eigenvalue nor eigenvector. The
two circles with exception of point (0, 0), are not the manifolds of the singularity,
but the flow along these circles approaches the point (0, 0) as x → 0 at the rate
dy/dx equal to infinity. The flow is trapped by the singularity when entering it
in a finite time. This homoclinic-like orbit for E = 0, shown in Figure 3b, can be
described in a parametric form as

Γ0 = {(x±(τ), y±(τ)), τ ∈ (−π, π)}
⋃

{(0, 0)}, (9)

where (x±(τ), y±(τ)) = (±1 ± cos τ,∓ sin τ) .

4.2 Dissipative oscillations

In this subsection, the limit case oscillator with dissipation is investigated. For
the case when ξ �= 0 and f0 = 0, Eq. (6) takes form

x′′ + 2ξx′ + (x − sign(x)) = 0. (10)

The damping ratio ξ is always assumed to be small, ξ << 1. The equilibria of
this damped system are the same as that of the system (7). The equilibria (±1, 0)
of system (10) are stable spirals with the eigenvalues having negative real parts,
λ1,2 = −ξ ± i

√
1 − ξ2. The property of the saddle-like singularity (0, 0) remains

unchanged as that of system (7).

The basins of attraction of the stable singularities (±1, 0) are shown in Figure 4a
and the basin boundary is plotted in Figure 4b. The point (0, 0) is located in the
basin boundary. This boundary is the separatrix curve which separates the basins
of attraction of equilibria (±1, 0). Along this separatrix, the flow approaches the
point (0, 0) as x → 0 at the rate dy/dx equal to infinity. The flow will be
trapped by the singularity when entering it in finite time, which is similar with
the undamped situation discussed in Section 4.1.

4.3 Undamped forced oscillations

For ξ = 0 and f0 �= 0, Eq. (6) takes the form

x′′ + (x − sign(x)) = f0 cos ωτ, (11)

which describes an undamped externally driven oscillator. This system is non-
integrable due to the explicit presence of time τ in the forcing term. The time-
dependent Hamiltonian function is obtained and written as

Hτ (x, y, τ) =
1

2
y2 +

1

2
x2 − |x| − f0x cos ωτ. (12)
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Figure 4: Damped behaviour for ξ = 0.2. (a) The basins of attraction are shown
in grey for the spiral (1, 0) and in white for (−1, 0); (b) the separatrix on the
border of the basins of attraction, is marked as the bold solid curve, and the
trajectories converging to the stable spirals (1, 0) and (−1, 0) are shown by thin
solid and dashed curves respectively.

Numerical investigations of the system described by Eq.(11) have been carried
out using semi-analytical method proposed in [20]. The results of this study are
presented next in the form of Poncaré sections based on the forcing frequency
and taken at zero phase angle and trajectories on the phase plane.

Figure 5 demonstrates Poincaré section calculated for ξ = 0, f0 = 0.8 and ω =
1.05. In this Poincaré section, the KAM structure, [24, 25], is presented with a
series of periodic fixed points and their surrounding islands, and also the chaotic
orbit connecting these islands. Among these chaotic orbits, there exists a special
one identified as a chaotic sea [25, 26, 27], which fills the finite area and connects
the isolated islands encircling associated series of fixed points. As can be seen
from this figure, KAM curves and another series of fixed points (a pair of period-
6, a pair of period-7 and period-13 marked by arrows) and the associated quasi-
periodic islands with the chaotic orbits connecting these islands can be found
outside the finite region filled by the special chaotic orbit.

Figure 6a shows the dynamics within the finite area filled by the special chaotic
orbit. This orbit connects quasi-periodic islands, [27], encircling a number of
periodic fixed points. A pair of period-2, a pair of period-5, one period-9 and one
period-11 orbits were found co-existing with the chaotic orbit in this region. Thus
as can be seen the dynamical structure of this region is formed by the chaotic sea
together with periodic and associated quasi-periodic solutions.

Figure 6b and 6c present details of the Poincaré section for two rectangular areas
marked in Figure 5. Again a number of periodic fixed points with associated
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Period 13

Pair of Period 7
KAM curve

Pair of Period 6

Figure 5: Global KAM structure on Poincaré section with KAM orbits, series of
fixed points with the associated quasi-periodic islands and also the chaotic sea
chaining these islands. KAM curve and series of fixed points of period 13, pair
of period 6 and pair of period 7 fixed points are marked.

quasi-periodic islands surrounded by chaotic orbits can be seen in these figures.
Period-5, period-6, period-11, period-17 and period-23 orbits are marked in Fig-
ure 6b whereas period-6, period-11, period-17 and period-23 orbits are specified
in Figure 6c. Figure 6d shows the details of the chaotic orbit connecting the
island chain in the rectangle area marked on Figure 6c.

Other examples of chaotic seas and co-existing periodic orbits found under varying
the external frequency ω are presented in Figure 7 for f0 = 0.8. In Figure 7a
obtained at ω = 1.3, four different period-5 orbits are shown in gray, light gray,
green, and blue colours respectively. Figure 7b obtained at ω = 1

3
presents a pair

of period-1 orbits shown in gray and light gray colours, a pair of period-4 orbits
shown in dark gray and yellow colours and period-5 orbit shown in red colour.
Trajectories and Poincaré sections for one of the period-5 orbits shown in Figure
7a and one of the period-1 orbits shown in Figure 7b are displayed on the phase
plane in Figures 7c and 7d respectively.
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(a) (b)

(c)

Period 9
Pair of period 2

Pair of period 5Period 11

Period 5

Period 11

Period 23

Period 17

Period 6

Period 11

Period 23

Period 6

Pair of Period 17

Figure 6: Details of Figure 5. (a) The chaotic trajectory filling the finite region
and connecting islands encircling a series of fixed points; (b) details of the struc-
ture in the right rectangle area marked on Figure 5; (c) details of the structure
in the left rectangle area marked on Figure 5; (d) chaotic orbit connecting the
quasi-periodic islands chain in the rectangle area marked on Figure 6c.

5 Driven system with weak dissipation

In this Section, numerical analysis is carried out to investigate the dynamics for
the system with weak dissipation and external excitation. The semi-analytical
method [20] is used in the following analysis to overcome the numerical difficulties
caused by the discontinuity. All the bifurcation diagrams are plotted with 5000
cycles of pre-iterates and 200 samples for each calculation.

5.1 Influence of weak dissipation

As discussed in previous sections, the discontinuous system without dissipation
exhibits periodic solutions and the associated quasi-periodic solutions. In this
subsection, we investigate the behaviour of these solutions in the presence of
weak dissipation.
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(a) (b)

(c) (d)

Figure 7: Chaotic seas and periodic solutions for f0 = 0.8. (a) For ω = 1.3, four
different period-5 orbits are shown in gray, light gray, green and yellow colours
respectively; (b) for ω = 1

3
, a pair of period-1 orbits are marked by gray and light

gray points, a pair of period-4 orbits by dark gray and yellow points, and period-5
orbit is shown in red; (c) and (d) are the trajectories and the Poincaré sections
for one of the period-5 orbits shown in Figure 7(a) and one of the period-1 orbits
shown in Figure 7(b), respectively.

Bifurcation diagrams are given for velocity y versus the weak dissipation ξ in
Figs. 8a and 8b starting from quasi periodic solutions for ξ = 0. It is known
that introduction of an arbitrary small dissipation destroys the quasi-periodic
solutions, and for the considered system as soon as ξ �= 0 they become periodic
solutions of the same period. Therefore these diagrams show the bifurcation from
corresponding periodic solutions to chaotic solutions as the dissipation increases.

As can be seen from Figure 6a a pair of period-2, a pair of period-5, one period-
9 and one period-11 orbits and associated with them quasi-periodic orbits were
found co-existing with the chaotic sea in this region. The bifurcations of three
of these quasi-periodic solutions generated corresponding periodic solutions in
the presence of damping as shown in Figure 8a. In this figure three diagrams
are plotted showing bifurcations of originally period-2 orbits (in blue), period-
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(a) (b)

Figure 8: Bifurcation diagrams showing the stroboscopically-sampled velocity y
versus damping ratio ξ for f0 = 0.8, ω = 1.05. (a) The black points indicate an
originally period-9 orbit and its behaviour as ξ increases, the blue points show
bifurcations of an originally period-2 orbit and the red points present bifurcations
of an originally period-5 orbit; (b) The black points show the bifurcations of an
originally quasi-periodic orbit of period-6, the blue points an originally quasi-
periodic orbit of period-11 and the red points an originally quasi-periodic orbit
of period-13.

5 orbit (in red) and period-9 orbit (in black). Figure 9 shows the co-existing
periodic orbits for ξ = 0.001, f0 = 0.8, ω = 1.05, i.e. a pair of period-2 solutions
(given in Figure 9a), a pair of period-5 solutions (Figure 9b), period-9 solution
(Figure 9c) and period-11 solution (Figure 9d). Figure 9e presents the Poincaré
section for co-existing periodic orbits. This analysis allows one to conclude that
the co-existence of periodic solutions within the finite region as shown in Figure 6a
remains unchanged as one goes from the Hamiltonian to the dissipative dynamics
by the addition of weak dissipation [28, 29].

A number of quasi-periodic solutions co-exist also outside the finite area filled by
the chaotic sea as shown in Figures 6b and 6c. Their behaviour in the presence of
weak dissipation was also examined and some of the results are given in Figure 8b,
which presents bifurcation of originally quasi-periodic orbits of period-6 (in black),
of period-11 orbit (in blue) and of period-13 orbit (in red). It was found that the
periodic solutions existing for ξ = 0 outside of the finite area filled by the chaotic
sea together with the associated quasi-periodic solutions are nonpersistent in the
presence of damping.

In addition to the periodic bifurcations, other periodic windows and chaotic re-
gions can be seen from Figures 8a and 8b. There are two main intervals in
which chaotic motions occur. The chaotic attractors for f0 = 0.8, ω = 1.05, are
presented in Figure 10a for ξ = 0.005 and 10b for ξ = 0.01, respectively.

Our numerical studies also suggest the presence of long chaotic transients before
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Figure 9: The co-existence of periodic orbits for ξ = 0.001, f0 = 0.8, ω = 1.05.
(a) A pair of period-2 solutions; (b) a pair of period-5 solutions; (c) period-
9 solution; (d) period-11 solution; (e) Poincaré section for all the co-existing
periodic solutions.
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the trajectory settles down to a periodic solution. This behaviour can be charac-
terized by chaotic saddles, see [30, 31, 32]. The chaotic transient and the final
period 2 attractor are shown in Figure 11a, for ξ = 0.0035. Figure 11b shows the
velocity y as function of time τ presenting the transient process from the chaotic
saddle to the period-2 orbit. Similar behaviour was observed by Thompson and
Ghaffari, see also Thompson and Stewart, [33, 34]. The latter arose in a linear
oscillator with impacts, [34], which has apparent similarities with the present
model.

(a) (b)

Figure 10: Chaotic orbits in the presence of weak dissipation obtained for f0 =
0.8, ω = 1.05 at (a) ξ = 0.005; (b) ξ = 0.01.

(a) (b)

Figure 11: State space plots for f0 = 0.8, ω = 1.05 and ξ = 0.0035. (a) Poincaré
section of the chaotic saddle and trajectory of the resulting period-2 orbit; (b)
stroboscopic velocity y versus time τ exhibiting the long transient before settling
down to a period-2 orbit.
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(a) (b)

Figure 12: Bifurcation diagrams: (a) for y versus f0 for ω = 1.05 and ξ = 0.01,
(b) for y versus ω for f0 = 0.8 and ξ = 0.001.

5.2 Influence of external forcing

Here the influence of forcing on the dynamic behaviour of the system in the
presence of weak dissipation is examined. The bifurcation diagrams and the
attractors are displayed to show the results.

Figure 12a shows the bifurcation diagram of the system under varying amplitude
of the external forcing f0 for ω = 1.05 and ξ = 0.01. From this bifurcation
diagram, multiple periodic windows and chaotic regions can be seen. As an
example, the periodic doubling leading to chaos is presented in Figure 13 for
ω = 1.05 and ξ = 0.01. Figure 13a to Figure 13c shows the periodic trajectories
on the phase plane and the corresponding Poincaré sections, i.e. period-2 orbit
at f0 = 0.75 (Figure 13a), period-4 orbit at f0 = 0.7 (Figure 13b), and period-8
orbit at f0 = 0.6875 (Figure 13c). Finally Figure 13d shows the chaotic attractor
at f0 = 0.675.

The influence of the external frequency ω is shown in Figure 12b where the
bifurcation diagram for the velocity y versus ω is presented for f0 = 0.8 and
ξ = 0.001. From this bifurcation diagram, multiple periodic windows and chaos
can be seen. Some special periodic orbits are shown in the following figures.

Figures 14a and 14b shows the trajectories of period-3 and period-2 orbits, for ω =
0.5 and ω = 0.56, respectively. Figures 15a and 15b present trajectories of period-
7 and period-3 orbits, for ω = 1.125 and ω = 1.64, respectively and Figures 16a
and 16b display the trajectories of period-2 and period-3 orbits for ω = 1.4
and ω = 2, respectively. The black stars in the figures mark the corresponding
Poincaré points.
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6 Conclusions

In this paper, we have investigated the behaviour of the limit discontinuous case
of the archetypical SD oscillator introduced to study transition from smooth to
discontinuous dynamics. It has been shown that the system exhibits not only
the standard dynamics associated with the equilibrium state of the double-well
but also the dynamics associated with the loss of the local hyperbolicity due to
the discontinuity resulting in a homoclinic-like structure. The velocity flow along
this homoclinic-like orbit approaches the saddle-like equilibrium (0, 0) at the rate
dy/dx = ±∞ as dx → 0.

The KAM structure in the Poincaré section has been constructed for the driven
system without dissipation with the generic KAM curves and the series of periodic
orbits with the surrounded island chains connected by chaotic orbits. Chaotic seas
have been depicted with a special chaotic trajectory filling a finite area together
with several series of periodic orbits and the surrounded islands.

The results obtained in this paper showed that the co-existence of these periodic
solutions remains unchanged in the presence of weak dissipation. The relevant
dynamics has also been depicted for this discontinuous system with weak dissi-
pation under external excitation exhibiting period doubling leading to chaos and
coexistence of attractors.
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Figure 13: Period doubling bifurcation leading to chaos for ω = 1.06066 and
ξ = 0.01: trajectories on the phase plane with Poincaré points for (a) period-
2 orbit for f0 = 0.75, (b) period-4 orbit for f0 = 0.7, (c) period-8 orbit for
f0 = 0.6875, and (d) Poincaré map of the chaotic attractor arising from period
doubling for f0 = 0.675.
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Figure 14: Periodic solutions for f0 = 0.8 and ξ = 0.001 (a) period-3 orbit for
ω = 0.5 and (b) period-2 orbit for ω = 0.56.
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Figure 15: Periodic solutions for f0 = 0.8 and ξ = 0.001: (a) period-7 orbit for
ω = 1.125 and (b) period-3 orbit for ω = 1.64.
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Figure 16: Periodic solutions for f0 = 0.8 and ξ = 0.001: (a) period-2 orbit for
ω = 1.4 and (b) period-3 orbit for ω = 2.0.




