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Abstract

A formal Taylor series approach for the generating function of the limit random variable W of a
branching process is presented. The framework is applicable to any production distribution function
for which all moments exist. The Taylor coefficients show an interesting relation to Gaussian
polynomials. The application of the formal series approach to the Poisson production function
leads to (a) a modular-like functional equation for the moment generating function of W and (b)

two different series for the probability distribution function of W .

1 The Limit Random Variable W

We consider a branching process in which each offspring produces a number of items independent

from the others but with same distribution. Let Xk denote the total number of items produced in

generation k and let the i.i.d. production in any generation be specified by the non-negative discrete

random variable Y with E [Y ] = µ > 1. The set Xk describes the evolution of a branching process

over the generations k. The scaled random variables {Wk}k≥1 defined by Wk =
Xk

µk
constitute a

martingale process with characteristic property that E [Wk] = E [X0] for all k. It is known [6] that

the limit variable W = limk→∞Wk exists if µ > 1. In the sequel, we confine to the case where X0 = 1

and, mostly, µ > 1. The moment generating function (mgf) χW (t) = E
£
e−tW

¤
obeys the functional

equation for Re(t) ≥ 0,
χW (t) = ϕY

µ
χW

µ
t

µ

¶¶
(1)

where ϕY (z) = E
£
zY
¤
is production generating function. The limit t→∞ exists and limt→∞ χW (t) =

Pr [W = 0] = π0 is the extinction probability which obeys, as follows from (1), the well-known equation

π0 = ϕY (π0).

The main motivation for this study was the computation of the limit random variable W that

appeared in the distribution of the hopcount or distance between two arbitrary nodes in graphs with

finite variance degree distributions [7, 12]. Although many theoretical results are available (see e.g.

[6],[10],[3]), less effort has been devoted to compute the mgf χW (t) and the probability density function

fW (x) of W .
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This paper presents a formal Taylor series approach for the mgf χW (t) of branching processes with

production generating functions ϕY (z) that possess a Taylor series around z = 1; i.e. all moments of

Y exist. A recursion relation for the Taylor coefficients is given that, on modern computers, allows the

computation to any desired order. By computing the Taylor coefficients of the mgf χW (t) explicitly,

we found a remarkable appearance of Gaussian-like polynomials, also called q-binomials [5, 8].

The major part of the article is devoted to a Poisson production function for which we present

several results that culminate in two exact series for the probability density function fW ;Po (x) ofWPo.

In order to make the dependence on the Poisson production rate µ explicit, we sometimes denote the

corresponding mgf by χW ;Po (µ|t). Apart from the series for fW ;Po (x) and from the well-known

functional equation

χW ;Po (µ|t) = exp
µ
µ

µ
χW ;Po

µ
µ

¯̄̄̄
t

µ

¶
− 1
¶¶

(2)

we found an intriguing theta-function or modular -like functional equation

χW ;Po (µ|t) = π0χW ;Po

µ
µπ0

¯̄̄̄
− Fµ
π0βtβ

¶
(3)

where β = (1−π0)µ
logµ −1 and Fµ is a newly appearing parameter that can be solved from (3) as illustrated

in Section 4. The methods presented indicate that, for entire generating functions χW (t), a same type

of exact series for fW (x) may exist. The duality principle [2, pp. 164] states that a Poisson branching

process with mean µ has, conditional on extinction, the same distribution of the Poisson branching

process with mean µπ0. This duality principle seems related to our modular-like functional equation

(3), however, not in any obvious way. It would be of interest to find a physical or probabilitistic

interpretation of (3) and Fµ.

The confinement to a Poisson production function is not that narrow as it first appears. The

geometric distribution function has as Taylor coefficients around z = 1, uk = µk, while a Poisson

distribution possesses as Taylor coefficients around z = 1, uk =
µk

k! , which are, from an analytic point

of view, two basic types of series coefficients. Moreover, as illustrated in Figure 3, the geometric

distribution leads to a definitely distinct mgf χW (t) and pdf fW (x) than the Poisson distribution.

The next subsection briefly reviews the well-known functional equation for W . Section 2 presents

the Taylor series for χW (t) while Section 3 gives the asymptotic series for χW (t). Section 4 applies

the framework to a Poisson production.

2 Taylor Expansions of the Generating Functions

If f (z) has a Taylor series around z0,

f (z) =
∞X
k=0

fk (z0) (z − z0)
k with fk (z0) =

1

k!

dkf (z)

dzk

¯̄̄̄
z=z0

then the general relation where G (z) is analytic around f (z0) is

G(f(z)) = G(f (z0)) +
∞X

m=1

Ã
mX
k=1

1

k!

dkG(p)

dpk

¯̄̄̄
p=f(z0)

s[k,m]f(z)(z0)

!
(z − z0)

m (4)
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where the characteristic coefficient [13] of a complex function f (z) is

s[k,m]f(z) (z0) =
X

k
i=1 ji=m;ji>0

kY
i=1

fji(z0)

which obeys the recursion relation

s[1,m]f(z) (z0) = fm (z0)

s[k,m]f(z) (z0) =
m−k+1X
j=1

fj (z0) s[k − 1,m− j]f(z) (z0) (k > 1) (5)

2.1 Expansion of χW (t) around t = 0

If ϕY (z) is analytic inside a circle with radius RY > 0 centered at z = 1, then the Taylor series around

z0 = 1,

ϕY (z) = 1 +
∞X
k=0

uk(z − 1)k

with u1 = µ and for k > 1,

uk =
1

k!

dkϕY (z)

dzk

¯̄̄̄
z=1

(6)

converges for all |z − 1| < RY . The definition χW (t) = E
£
e−tW

¤
implies that the maximum value of

|χW (t)| inside and on a circle with radius r around the origin is attained at χW (−r). The functional
equation (1) then shows that χW (t) is analytic inside a circle around t = 0 with radius RW for which

χW

³
−RW

µ

´
< 1+RY . Since χW (0) = 1, χW (t) is convex and decreasing for real t and RY > 0, there

exists such a non-zero value of RW . This implies that the Taylor series

χW (t) = 1 +
∞X
k=1

ωkt
k (7)

converges around t = 0 for |t| < RW . Since χW (t) = E
£
e−tW

¤
=
P∞

k=0(−1)kE
£
W k

¤
tk

k! , there holds

for k > 0 that

ωk =
1

k!

dkχW (t)

dtk

¯̄̄̄
t=0

=
(−1)kE £W k

¤
k!

(8)

and ω1 = −E [W ] = −1. In other words, the coefficients ωk are alternating because E
£
W k

¤
> 0.

We will expand the functional equation (1) around t0 = 0. Using (4), the right hand side of (1)

has the Taylor series

ϕY

µ
χW

µ
t

µ

¶¶
= 1 +

∞X
m=1

Ã
mX
k=1

1

k!

dkϕY (p)

dpk

¯̄̄̄
p=1

s[k,m]χW (0)

!µ
t

µ

¶m

Equating corresponding powers in t yields for m > 0,

ωm =
1

µm

mX
k=1

uk s[k,m]χW (0)
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from which the recursion for ωm follows because s[1,m] = ωm by (5),

ωm =
1

µm − µ

mX
k=2

uk s[k,m]χW (0) (9)

In summary, only if the probability generating function of the production process ϕY (z) is analytic

in some region around z = 1 (which implies that all derivatives uk at z = 1 exist), the recursion

relation (9) determines all derivatives ωm of χW (t) around t = 0, for µ 6= 1. For µ = 1, we obtain

with s[2,m]χW (0) =
Pm−1

j=1 ωjωm−j for m > 1,

ωm−1 = − 1
u2

⎛⎝m−1X
j=2

ωjωm−j +
mX
k=3

uk s[k,m]χW (0)

⎞⎠
For µ 6= 1, the first few values are, with ω1 = −1,

ω2 =
u2

µ(µ− 1)
ω3 =

2u22 + µ(µ− 1)u3
µ2 (µ− 1) (µ2 − 1)

ω4 =
(µ+ 5) u32 + µ (µ− 1) (3µ+ 5) u2 u3 + µ2 (µ− 1) ¡µ2 − 1¢ u4

µ3 (µ− 1) (µ2 − 1) (µ3 − 1)

ω5 =
2
¡
2µ2 + 3µ+ 7

¢
u42 + µ (µ− 1) ¡3µ3 + 14µ2 + 20µ+ 21¢ u22 u3

µ4 (µ− 1) (µ2 − 1) (µ3 − 1) (µ4 − 1)

+
2µ (µ− 1) ¡µ2 − 1¢ ¡2µ2 + 2µ+ 3¢ u2 u4 + 3µ2 (µ− 1) ¡µ3 − 1¢ u23

µ4 (µ− 1) (µ2 − 1) (µ3 − 1) (µ4 − 1)

+
µ3 (µ− 1) ¡µ2 − 1¢ ¡µ3 − 1¢ u5

µ4 (µ− 1) (µ2 − 1) (µ3 − 1) (µ4 − 1)
from which, by inspection, the general structure arises

ωm (µ) =
(−1)mP(m2 )−1k=0 ak (m)µ

k

µm−1
m−1Y
j=1

(µj − 1)
(10)

where ak(m) are, in general, rather cumbersome coefficients in the uk with a(m2 )−1 (m) = −a(m2 )−2 (m) =
um. This form bears resemblance to Gaussian polynomials [5, 8].

2.2 Computation of χW (t)

If χW (t) is not known in closed form, the interest of the Taylor series (7) of χW (t) around t = 0

lies in the fast convergence for small values of |t| < 1. The recursion (9) for the Taylor coefficients

ωk enables the computation of χW (t) for |t| < 1 to any desired degree of accuracy. The functional

equation χW (t) = ϕY

³
χW

³
t
µ

´´
extends the t-range to the entire complex plane. For large values of

t and in particular for negative real t, χW (t) is best computed from χW

³
t

µ[logµ|t|]+1

´
after [logµ |t|]+1

functional iteratives of (1). Indeed, since µ > 1 such that t

µ[logµ|t|]+1
< 1, the Taylor series (7) provides

an accurate start value χW
³

t

µ[logµ|t|]+1

´
for this iterative scheme.
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3 The Asymptotic Behavior of χW (t)

The convexity of χW (t) = E
£
e−tW

¤
implies that χ0W (t) ≤ 0 for all real t and that χ0W (t) is increasing

in t. We know that χ0W (0) = −E [W ] = −1. Since limt→∞ χW (t) = π0, it follows that limt→∞ χ0W (t) =

0. The following Lemma 1 is a little more precise.

Lemma 1 χ0W (t) = o(t−1) for t→∞.

Proof: The derivative of the functional equation (1) is µχ0W (µt) = ϕ0Y (χW (t))χ0W (t). By itera-

tion, we have

µKχ0W
¡
µKt

¢
= χ0W (t)

K−1Y
j=0

ϕ0Y
¡
χW

¡
µjt
¢¢

Since χW (t) ∈ [π0, 1] for real t ≥ 0, then ϕ0Y (π0) ≤ ϕ0Y
¡
χW

¡
µjt
¢¢ ≤ µ for any j. In addition, it is well-

known in the theory of branching processes that, if µ = ϕ0Y (1) > 1, then there are two zeros π0 and 1 of
f (z) = ϕY (z)−z in z ∈ [0, 1]. By Rolle’s Theorem applied to the continuous function f (z) = ϕY (z)−z,
there exist an ξ ∈ (π0, 1) for which f 0 (ξ) = 0. Equivalently, ϕ0Y (ξ) = 1 and ξ > π0. Since ϕ0Y (z) is
monotonously increasing in z ∈ [0, 1], we have that ϕ0Y (0) = Pr [Y = 1] ≤ ϕ0Y (π0) < 1. Since χW (t)

is continuous and monotone decreasing, there exists an integer K0 such that ϕ0Y
¡
χW

¡
µjt
¢¢

< 1 for

j > K0 and any t > 0. Hence,

lim
K→∞

K−1Y
j=0

ϕ0Y
¡
χW

¡
µjt
¢¢
=

K0−1Y
j=0

ϕ0Y
¡
χW

¡
µjt
¢¢ ∞Y

j=K0

ϕ0Y
¡
χW

¡
µjt
¢¢→ 0

and, for any finite t > 0, µKχ0W
¡
µKt

¢→ 0 for K →∞ which implies the lemma. ¤
Lemma 1 is, for large t, equivalent to |χ0W (t) | ≤ Ct−1−β for some real β > 0 and where C is a

finite positive real number. Lemma 1 thus suggests to consider

χ0W (t) = −gµ (t) t−β−1 (11)

where 0 < gµ (t) ≤ C on the real positive t−axis.

Lemma 2 If ϕ0Y (π0) > 0 and µ > 1, then

Fµ = lim
t→∞ gµ (t) (12)

exists, is finite and strict positive.

Proof: We first use (a) the convexity of any pgf χW (t) implying that χ00W (t) ≥ 0 for all t and we
then invoke (b) the functional equation (1) of χW (t).

(a) The function gµ (t) = −χ0W (t) tβ+1 is differentiable, thus continuous, and has for real t > 0

only one extremum at t = τ obeying τ =
−χ0W (τ)
χ
00
W (τ)

(β + 1) > 0. Since χ0W (0) = −1 implying that
gµ (t) = tβ+1 (1 + o(t) as t ↓ 0 or that gµ(t) is initially monotone increasing in t, the extremum at

t = τ is a maximum. The derivative of gµ (t) = −χ0W (t) tβ+1 is with (11)

g0µ (t) =
β + 1

t
gµ (t)− χ00W (t) tβ+1
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such that, for τ finite, max gµ (t) = τβ+2

β+1 χ
00
W (τ). Since χ00W (t) ≥ 0 for all t, we also obtain the inequality

g0µ (t) ≤
β + 1

t
gµ (t) ≤ β + 1

t
C

from which limt→∞ g0µ (t) ≤ 0. Hence, gµ (t) is not increasing for t→∞.
(b) Substitution of (11) in the derivative of the functional equation (1) yields

gµ (t) = ϕ0Y

µ
χW

µ
t

µ

¶¶
gµ

µ
t

µ

¶
µβ (13)

Since ϕ0Y
³
χW

³
t
µ

´´
≥ ϕ0Y (π0) > 0 (restriction of this Lemma), there holds with A = ϕ0Y (π0)µ

β > 0

for all t > 0 that

gµ (t) ≥ Agµ

µ
t

µ

¶
For t < τ , gµ (t) is shown in (a) to be monotone increasing which requires that A ≥ 1 for µ > 1.

But, since the inequality with A ≥ 1 holds for all t > 0, we must have that τ → ∞. Hence, gµ(t) is
continuous and strict increasing for all t ≥ 0 with a maximum at infinity which proves the existence

of a unique limit Fµ ≤ C.

If Fµ = 0, the suggestion (11) is not correct implying that χ0W (t) decreases faster than any power

of t−1. The proof of Lemma 1 indicate that his case can occur if ϕ0Y (π0) = 0. ¤
In fact, A = 1. For, when passing to the limit t→∞ in (13) using Lemma 2, we obtain

µ−β = ϕ0Y (π0)

which determines the exponent β ≥ 1 as

β = − logϕ
0
Y (π0)

logµ
(14)

Dubuc [3, Theorem 1.1 ] has derived (14) earlier based on an entirely different method. Applying (4)

to G(f−1(z)), the exact series of ϕ0Y (π0) in terms of µ can be derived. For small µ→ 1, we obtain

ϕ0Y (π0) = 2− µ+
u3
u22
(µ− 1)2 + 2u

2
3 − u2u4
u42

(µ− 1)3 +O
³
(µ− 1)4

´
which shows that β → 1 if µ→ 1.

3.1 Asymptotic series for gµ (t)

We now give the precise asymptotic series for gµ (t) in case ϕ0Y (π0) > 0 and µ > 1. Integrating both

sides of (11) gives

χW (t) = π0 +

Z ∞

t
gµ (u)u

−β−1du (15)

Iterating (13) yields

gµ (t) =
gµ
¡
tµK

¢
µ−Kβ

K−1Y
j=0

ϕ0Y (χW (tµj))

= gµ
¡
tµK

¢K−1Y
j=0

ϕ0Y (π0)

ϕ0Y
³
π0 +

R∞
tµj gµ (u)u

−β−1du
´
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where (15) is used. The limit K →∞ gives with Lemma 2,

gµ (t) = Fµ

∞Y
j=0

ϕ0Y (π0)

ϕ0Y
³
π0 +

R∞
tµj gµ (u)u

−β−1du
´ (16)

Since 0 ≤ gµ (t) ≤ Fµ for t ≥ 0, we haveZ ∞

µjt
gµ (u)u

−β−1du ≤ Fµ

¡
µ−β

¢j
tββ

=
Fµ
β

(ϕ0Y (π0))
j

tβ

For large t, expanding (16) gives

gµ (t) = Fµ exp

⎛⎝− ∞X
j=0

log
ϕ0Y
³
π0 +

R∞
tµj gµ (u)u

−β−1du
´

ϕ0Y (π0)

⎞⎠
∼ Fµ

Ã
1− ϕ

00
Y (π0)Fµ
tββ

µ2β

µβ − 1 +O
³
t−2β

´!

which suggests that gµ (t) has an asymptotic series of the form

gµ (t) =
N−1X
k=0

gkt
−kβ +O

³
t−Nβ

´
(17)

with g0 = Fµ. Using (15) with (17) gives

χW (t) = π0 +
NX
k=1

gk−1
βk

³
t−β
´k
+O

³
t−(N+1)β

´
≡

NX
k=0

ckz
k +O

¡
zN+1

¢
(18)

where ck =
gk−1
βk and c0 = π0 and z = t−β. This series for χW (t) can be regarded as a truncated

Taylor series at t → ∞. Earlier, Dubuc [3, Theorem 2] has shown that the term by term (inverse)

Laplace transform of the series (18) exists. Expanding the functional equation (1) in a Taylor series

around t→∞ using (4) with z − z0 = t−β and z0 →∞, gives

ϕY

µ
χW

µ
t

µ

¶¶
= ϕY (π0) +

∞X
m=1

Ã
mX
k=1

1

k!

dkϕY (p)

dpk

¯̄̄̄
p=π0

s[k,m]χW (∞)
!³

µβt−β
´m

We denote the Taylor coefficient of the production generating function ϕY (z) around z = π0 with

v0 = ϕY (π0) = π0 and v1 = ϕ0Y (π0) = µ−β < 1 by (14). After equating corresponding powers of t−β

in (1) leads for m > 0 to

cm = µmβ
mX
k=1

vk s[k,m]χW (∞)

from which the recursion for cm and m > 1 follows using v1 = µ−β as

cm =
1

µ−mβ − µ−β

mX
k=2

vk s[k,m]χW (∞)

For m = 1 for which c1 = µβv1 s[1, 1]χW (∞) = c1, we obtain an identity for c1 =
Fµ
β where the

parameter Fµ appears as a natural measure or property for χW (t). This recursion for cm (χW (t)
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expanded around t0 =∞) is formally the same as (9) for ωm (χW (t) expanded around t0 = 0) if we

replace uk → vk, µ → µ−β and the initial start value ω1 = −1 by c1 =
Fµ
β . Hence, the Gaussian

polynomial-like form (10) for ωm translates to

cm =

P(m2 )−1
k=0 eak ¡µ−β¢k

(µ−β)m−1
m−1Y
j=1

³
(µ−β)j − 1

´
µ
Fµ
β

¶m

where the coefficients eak are functions of vk. Provided the set of uk and the set of vk together with
Fµ is known, the computation of the Taylor coefficients of χW (t) around t = 0 and t =∞ is equally

intensive.

The analysis shows first of all that all Taylor coefficients around t → ∞ exist and that χW (t) is

analytic around t→∞ such that the asymptotic series (18) exists for all N . Hence, we may termwise

integrate that series within the radius of convergence. If that radius is infinite, a series for probability

density function fW (x) is obtained from

fW (x) =
1

2πi

Z c+i∞

c−i∞
χW (t) extdt (19)

An example is the branching process for a Poisson production function given in Section 4.6. Second,

if there is a simple relation (independent of k) between uk =
1
k!

dkϕY (z)
dzk

¯̄̄
z=1

and vk = 1
k!

dkϕY (z)
dzk

¯̄̄
z=π0

such as in the case of a Poisson production function ϕY ;Po (z) = eµ(z−1) where uk;Po =
µk

k! and

vk;Po = π0
µk

k! = π0uk;Po, a new, modular-like functional equation (3) is obtained as shown in Section

4.4. Finally, if µ > 1, ϕY (z) has two fixed points z = 1 and z = π0. The theory of automorphisms [9]

illustrates the importance of fixed points. Hence, it is not surprising that the two expansions around

the two fixed points of ϕY (z) play a characteristic role.

4 The Poisson Distribution

4.1 The Functional Equation of χW ;Po(t)

For a Poisson production function with generating function ϕY ;Po (z) = eµ(z−1), the functional equation
(1) of χW ;Po (t) is given in (2). By taking the logarithm of the functional equation (2), we obtain

log
¡
χW ;Po (t)

¢
= µ

µ
χW ;Po

µ
t

µ

¶
− 1
¶

(20)

while the logarithmic derivative of the functional equation (2) is

χ0W ;Po (t) = χW ;Po (t)χ
0
W ;Po

µ
t

µ

¶
(21)

4.2 Properties of χW ;Po(t)

Theorem 3 χW ;Po (t) is an entire function.

8



An entire function has no singularities in the finite complex plane. Consequently, any Taylor series

around a finite point has an infinite radius of convergence implying that the Taylor series

χW ;Po (t) = 1 +
∞X

m=1

ωm;Po (µ) t
m (22)

converges for all t.

Proof: Suppose that χW ;Po (t) possesses a singularity at t = ts and that ts is the singularity with

the smallest modulus. Moreover, ts > 0 because χW ;Po (t) is analytic in a region around t = 0 as

ϕY (z) = eµ(z−1) is an entire function. Since the precise type of singularity is not relevant, but only
its position matters, we confine ourselves here to a simple pole. Then, we may write

χW ;Po (t) =
α

t− ts
+ g (t)

where g (t) is analytic for |t| ≤ |ts| and where α is a complex number. Introduced into the functional
equation (2),

χW ;Po (t) = exp

Ã
µ

Ã
α

t
µ − ts

+ g

µ
t

µ

¶
− 1
!!

shows that χW ;Po (t) is analytic for |t| < µ|ts|. Since µ > 1, the initial assumption that χW ;Po (t) has

a singularity at ts leads to a contradiction. Hence, χW ;Po (t) cannot have singularities in the finite

complex plane. ¤

Corollary 1 χW ;Po (t) does not possess zeros in the finite complex plane.

Theorem 3 applied to the logarithm (20) of the functional equation indicates that also log
¡
χW ;Po (t)

¢
is an entire function which immediately implies Corollary 1. The proof also follows from Jensen’s the-

orem [11, sec. 3.61]. This type of entire function can be written as χW ;Po (t) = exp (h(t)), where h (t)

is also an integral function. An entire function h (t) is of finite order ρ [11, pp. 248] if h (t) = O
³
et
ρ+
´

for any arbitrary small, but positive .

Corollary 2 χW ;Po (t) is an entire function of infinite order.

It is readily verified from (20) that, for large real t, χW ;Po (−t) cannot be of the form χW ;Po (−t) ∼
Ket

ρ
for finite ρ.

The order ρ of the entire function χW ;Po(t) is determined [11, pp. 253] by
1
ρ = limm→∞

− logωm;Po(µ)
m logm .

Corollary 2 shows that, for all finite µ and any finite, positive a, the coefficients ωm;Po (µ) tend slower

than a
m! to zero for large m, but since χW ;Po(t) has infinite radius, the ωm;Po (µ) tend faster than a

−m

to zero.

4.3 The Taylor series of χW ;Po(t)

The Taylor coefficients of χW ;Po(t) in (22) for a Poisson production function follow from (9) with

uk =
µk

k! as

ωm;Po (µ) =
(−1)mµm−1Ωm (µ)

m!
m−1Y
j=1

(µj − 1)
(23)
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with, for m ≥ 1, the polynomial Ωm (µ) =
P(m−12 )

k=0 bk(m)µ
k. Specifically,

Ω1 (µ) = 1

Ω2 (µ) = 1

Ω3 (µ) = 2 + µ

Ω4 (µ) = 6 + 6µ+ 5µ2 + µ3

Ω5 (µ) = 24 + 36µ+ 46µ2 + 40µ3 + 24µ4 + 9µ5 + µ6

Ω6 (µ) = 120 + 240µ+ 390µ2 + 480µ3 + 514µ4 + 416µ5 + 301µ6 + 160µ7 + 64µ8 + 14µ9 + µ10

Ω7 (µ) = 720 + 1800µ+ 3480µ2 + 5250µ3 + 7028µ4 + 8056µ5 + 8252µ6 + 7426µ7 + 5979µ8

+4208µ9 + 2542µ10 + 1295µ11 + 504µ12 + 139µ13 + 20µ14 + µ15

Further, by inspection, some coefficients are found explicitly,

b(m−12 )
(m) = 1

b(m−12 )−1(m) =

µ
m

2

¶
− 1 = S(m−1)m − 1

b(m−12 )−2(m) = S(m−2)m − 1

b(m−12 )−3(m) = S(m−3)m + S(m−2)m +

µ
m− 2
3

¶
+

µ
m− 2
2

¶
−
µ
m− 2
1

¶
− 1

...

b2 (m) = (m− 3)!
µ
S(m−3)m−1 + 4

µ
m− 1
3

¶¶
b1(m) = (m− 2)!

µ
m− 1
2

¶
= (m− 2)!S(m−2)m−1

b0(m) = (m− 1)!
where S(k)m are the Stirling Numbers of the Second Kind [1, Sec. 24.1.4] and

Ωm (1) =
mY
j=2

µ
j

2

¶
=

m!(m− 1)!
2m−1

Ωm (−1) =

m−2
3Y

j=0

µ
m− 2j
3

¶
The positive integers Ωm (2) ,Ωm (3) , . . . that rapidly increase in m contain in their factorization

relatively large prime numbers different for different m which quite likely excludes the existence of

simple expressions as for Ωm (1) and Ωm (−1). Also, we found that the polynomials Ωm (µ) are not
divisible by polynomials in the numerator of ωm;Po, in contrast to the geometric distribution where the

presence of Gaussian-like polynomials is eliminated in this way. Perhaps, here lies the basic difference

in the properties of W between a geometric and a Poisson production function.

We can rewrite the series as

χW ;Po(t) = 1 +
∞X

m=1

1 +
P(m−12 )

j=1 b(m−12 )−j(m)µ
−j

m−1Y
j=1

³
1− 1

µj

´ (−t)m
m!

10



The theory of partitions [8, pp. 222] states that the series

1
mY
j=1

(1− xj)

=
∞X
n=0

pm (n)x
n (24)

where pm (n) is the number of partitions of n into parts not exceeding m, converges for |x| < 1.

Introduced yields the expansion of χW ;Po (µ|t) in powers of 1µ ,

χW ;Po (µ|t) = e−t+
t2e−t

2µ
+
e−t

µ2

µ
t4

8
− t3

6
+

t2

2

¶
+
∞X
n=2

⎛⎝ ∞X
m=0

(−t)m
m!

nX
j=0

b(m−12 )−j(m)pm−1 (n− j)

⎞⎠µ−n

For large µ, χW ;Po(t) ∼ e−t which implies1 that fW (t) = δ (t− 1), an atom at t = 1 or W = 1 for

µ→∞.

5
6
7
8

0.01

2

3

4

5
6
7
8

0.1

2

3

4

5
6
7
8

1

χ W
;P

o(
t)

100806040200

t

µ = 2

µ = 3

µ = 4

µ = 5

Figure 1: The generating function χW ;Po(t) as a function of t for various values of µ. Observe that

χW ;Po(t) rapidly converges to π0.

The generating function χW ;Po (t) is efficiently computed by using the well-known Euler transfor-

mation because the coefficients ωk (µ) are alternating

χW ;Po (t) = 1 +
∞X

m=1

"
mX
k=1

µ
m− 1
k − 1

¶
ωk;Po (µ) q

k−m
# µ

t

1 + qt

¶m

(25)

1 It also follows from the functional equation (2) and the expansion χW (t) = 1− t+O t2 that

χW ;Po (t) = e−t 1 +O
t2

µ

The fact that E [WPo] = 1 and var [WPo] =
1

µ−1 gives additional support.

11



Since χW ;Po (t) is an entire function, the Euler transform converges for all t with Re(t) > 0 provided

q > 0 and for all t with Re(t) < 0 provided q < 0. We have used for the computations in Figure 1 and

Figure 2 the value q = 1 for t > 0 and q = −1 for t < 0. Since limt→∞ χW ;Po (t) = π0, it follows from

the Euler transformation that the extinction probability obeys

π0 = 1 +
∞X

m=1

"
mX
k=1

µ
m− 1
k − 1

¶
ωk;Po (µ) q

k−m
#
1

qm
(26)

1

2

3

4

5

6

7

8
9

10

2

lo
g(

χ W
;P

o(
t))

1 2x100 3 4

-t

101
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107

108

µ = 3

µ = 4

µ = 5

µ = Infinity

µ = 2

Figure 2: The logarithm of generating function χW ;Po (t) as a function of real negative values of t for

several values of µ on a log-log plot.

4.4 Second Recursion for ωk;Po

By equating in (21) corresponding powers in t and using ω0;Po (µ) = 1, we obtain a new recursion

ωk+1;Po (µ) =
1³

1− 1
µk

´
(k + 1)

k−1X
m=0

(m+ 1)ωm+1;Po (µ)

µm
ωk−m;Po (µ) (27)

which is computationally more attractive than the general recursion (9).

The recursion (27) can be used to obtain an additional relation between the polynomials Ωm (µ).

Substitution of (23) into (27) and invoking Gaussian polynomials defined [8, pp. 250] as"
k

l

#
(q) =

Qk
j=1(1− qj)Ql

j=1(1− qj)
Qk−l

j=1(1− qj)
k ≥ 0, l > 0

yields

Ωk+1 (µ) =
k−1X
m=0

"
k − 1
m

#
(µ)Ωk−m (µ)Ωm+1 (µ)

µ
k

m

¶
µk−1−m

12



Since Ω1 (µ) = 1 and Ω2 (µ) = 1, the relation shows that all Ωm (µ) are polynomials with positive

coefficients bk (m) because all appearing terms in the sum are positive for µ > 1 and the Gaussian

polynomials have positive coefficients. The argument also shows that bk(m+ 1) > bk(m).

4.5 Second Functional Equation

Lemma 4 For a Poisson production function, the coefficients of the asymptotic series (17) are

gm = Fµ(−1)m+1 (m+ 1)ωm+1;Po (µπ0)

µ
Fµ
π0β

¶m

(28)

Proof: Change in the recursion (27) for ωk+1;Po the summation index to j = k − 1−m and rewrite

that recursion as

(k + 1)ωk+1;Po (µ) = − 1

µ (1− µk)

kX
j=1

(k + 1− j)ωk+1−j;Po (µ)ωj;Po (µ)µj

Substitution of χ0W ;Po (t) = −gµ (t) t−β−1 in the functional equation (21) yields

gµ (t) = gµ

µ
t

µ

¶µ
1 +

1

π0

Z ∞

t
gµ (u)u

−β−1du
¶

Using the asymptotic expansion (17) of gµ (t) leads after equating corresponding powers in t−β to the
recursion for k > 0

gk = − 1

βπ0

³
1− (µπ0)k

´ kX
m=1

gm−1gk−m
m

(µπ0)
m

Comparison shows that gk possesses a same recursion as (k + 1)ωk+1;Po with µ → µπ0, apart from

the scaling by a factor µ
β and the initial value g0 = Fµ while ω1;Po (µ) = −1. This correspondence

proves the expression (28). ¤
By using (28) into (15), we obtain the asymptotic series for

χW ;Po (t)

π0
= 1 +

NX
m=1

ωm;Po (µπ0)

µ
− Fµ
π0βtβ

¶m

+O
³
t−(N+1)β

´
This sum converges for all N provided

¯̄̄
Fµ

π0βtβ

¯̄̄
< 1. For these values of t, comparison with the

Taylor series (22) leads to a second, modular-like functional equation (3). By analytic continuation

because χW ;Po (µ|t) is an entire function in t, the second, modular-like functional equation (3) for

χW ;Po (µ|t) holds for all t and µ, except for negative real t where the right hand side has a branch

cut. This modular-like functional equation (3) extends the µ-range to values smaller than 1 since

µπ0 < 1. Since Ωm (µ) is a polynomial and with (24), the definition (23) of ωm;Po (µ) demonstrates

that ωm;Po (µ) is an analytic function for µ < 1, and, hence, so is χW ;Po (µ|t) for µ < 1.

It follows from the functional equation (3) that limt→−∞ χW ;Po (µπ0|t) = 1
π0
.
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4.5.1 The Parameter Fµ

The series for gµ (t) and for log gµ (t),

log gµ (t) = logFµ − µπ0

∞X
m=1

ωm;Po (µπ0)

1− (µπ0)m
µ
− Fµ
π0βtβ

¶m

contain Fµ as a natural parameter which seems equally important as π0. We have determined Fµ

numerically from the second, modular-like functional equation (3) after rescaling that equation as

χW ;Po (µ|aµy) = π0χW ;Po

³
µπ0

¯̄̄
− 1

yβ

´
with aµ =

³
Fµ
π0β

´ 1
β
and solving for aµ with y = 1. For a few

values for µ, we have listed the relevant parameters in the table below:

µ π0 β aµ Fµ

2 0.203188 1.29910 2.35150 0.80161

3 0.0595202 1.56818 5.94034 1.55259

4 0.0198274 1.82818 9.53381 2.23646

5 6.97715 10−3 2.08500 13.0823 3.09793

6 2.51646 10−3 2.34024 16.6420 4.24581

7 9.17759 10−4 2.59399 20.2566 5.83328

8 3.36367 10−4 2.84580 23.9487 8.05973

9 1.23547 10−4 3.09557 27.7262 11.1980

10 4.54206 10−5 3.34275 31.5893 15.6293

Although for µ ∈ [2, 5], the linear approximation Fµ ≈ 0.75 (µ− 1) seems good, for larger values of
µ, Fµ exhibits a faster than linear growth in µ. A good fit for µ ∈ [4, 10] is logFµ = 0.3229µ− 0.4899.

4.6 Series for the Probability Density Function fW ;Po (x)

In this section, we present two different series for the probability density function fW (x) for a Poisson

production function.

The probability density function fW (x) can be obtained from (19) by termwise integration of the

series for π0χW ;Po

³
µπ0

¯̄̄
− Fµ

π0βtβ

´
in (3) for sufficiently large t. Indeed, since χW ;Po(t) is an entire

function and
¯̄
χW ;Po(t)

¯̄ ≤ χW ;Po(Re(t)), the line of integration in (19) can be shifted to any arbitrary

real number c. With 1
2πi

R c+i∞
c−i∞

ext

tB
dt = xB−1

Γ(B) for B > 0, the probability density function fW (x) is

fW ;Po (µ|x) = π0δ (x) +
π0
x

∞X
m=1

ωm;Po (µπ0)

Γ (mβ)

µ
−Fµx

β

π0β

¶m

(29)

Alternatively, the series (25) obtained by the Euler transform can be termwise integrated provided

the contour stays in one half-plane. Formally, we apply (19),

fW ;Po (x) = δ (x) +
∞X

m=1

"
mX
k=1

µ
m− 1
k − 1

¶
ωk;Po(µ) q

k−m
#

1

2πi

Z c+i∞

c−i∞
ext

tm

(1 + qt)m
dt
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For x > 0 and q > 0, the contour in the integral can be closed over the negative Re (t)-plane. Cauchy

integral theorem applied to the (m− 1)-th derivative gives

1

2πi

Z c+i∞

c−i∞
ext

tm

(1 + qt)m
dt =

1

qm(m− 1)!
dm−1

dtm−1
¡
tmext

¢¯̄̄̄
t=− 1

q

= − 1

qm+1
e−

x
q

m−1X
j=0

µ
m

j + 1

¶
1

j!

µ
−x
q

¶j

= − 1

qm+1
e−

x
qmM

µ
1−m, 2,

x

q

¶
whereM (a, b, z) = Γ(b)

Γ(a)

P∞
k=0

Γ(a+k)
Γ(b+k)

xk

k! is Kummer’s confluent hypergeometric function [1]. For x = 0,

the integral diverges which we represent by 1
qm δ (x). Then, taking (26) into account,

fW ;Po (x) = π0δ (x) +
e−

x
q

x

∞X
m=1

"
mX
k=1

µ
m− 1
k − 1

¶
ωk;Po(µ) q

k

#⎡⎣ mX
j=1

µ
m

j

¶
1

(j − 1)!
µ
−x
q

¶j
⎤⎦ 1

q2m

Although q may be chosen in a special way, we just choose q = 1 and obtain the series

fW ;Po (x) = π0δ (x)− e−x
∞X

m=1

"
mX
k=1

µ
m− 1
k − 1

¶
ωk;Po (µ)

#⎡⎣ mX
j=1

µ
m

j

¶
1

(j − 1)! (−x)
j−1
⎤⎦ (30)

Finally, Figure 3 shows the distinct difference between a Poisson and Geometric production func-

tion, where [4]

fW ;Geo(x) =

⎧⎪⎪⎨⎪⎪⎩
³
1
µ − 1

´2
exp

³
−x

³
1− 1

µ

´´
x > 0

1
µδ (x) x = 0

0 x < 0

(31)

5 Conclusion

The presented formal Taylor series approach enables numerical computations of the generating func-

tions of the limit random variable W of a branching process produced by a generation distribution

function for which all moments exist. Applications to a Poisson production function illustrates the

power of the method and suggests that, via the Euler transform, a series for the probability density

function of W may be obtained for other production functions as well.

Apart from the computational aspect, we discovered an interesting relation to Gaussian polyno-

mials and the theory of partitions or modular forms. For a Poisson branching process, a second,

modular-like functional equation (3) is presented.
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