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THE LIMIT SPACES OF TWO-DIMENSIONAL MANIFOLDS
WITH UNIFORMLY BOUNDED INTEGRAL CURVATURE

TAKASHI SHIOYA

Abstract. We study the class of closed 2-dimensional Riemannian manifolds
with uniformly bounded diameter and total absolute curvature. Our first the-
orem states that this class of manifolds is precompact with respect to the
Gromov-Hausdorff distance. Our goal in this paper is to completely charac-
terize the topological structure of all the limit spaces of the class of manifolds,
which are, in general, not topological manifolds and even may not be locally
2-connected. We also study the limit of 2-manifolds with Lp-curvature bound
for p ≥ 1.

1. Introduction

Let M(C,D) denote the set of isometry classes of closed 2-dimensional Rie-
mannian manifolds M with diameter ≤ D and total absolute curvature cabs(M) :=∫

M
|KM | ≤ C for two constants C,D > 0, whereKM denotes the curvature function

on M . Our first theorem is the following:

Theorem 1.1 (Precompactness Theorem). The class M(C,D) is precompact with
respect to the Gromov-Hausdorff distance.

This theorem means that any sequence of manifolds in M(C,D) has a subse-
quence which converges to some compact metric space. The main purpose of this
paper is to study the topological structure of the limit spaces. Before we describe
our main results, let us see an example.

Example 1.1. Define a function f : [ 0, 2/3π ] → R by f(0) := 0 and f(x) :=
x4 (1 + sin(1/x)) for x ∈ ( 0, 2/3π ] as shown in Figure 1.

Then, we see that

S := { (x, y, z) ∈ R3 | y2 + z2 = f(x)2, 0 ≤ x ≤ 2/3π }
is a limit of M(C,D) for some C,D > 0. In fact, S is approximated by the smooth
surface of revolution

Sε := { (x, y, z) ∈ R2 | y2 + z2 = (f(x) + ε)2, ε ≤ x ≤ 2/3π − ε } for small ε > 0,

which is homeomorphic to a closed annulus. Attaching two suitable small caps to
the two circle boundary components of Sε, we have a C∞-Riemannian manifold
Mε homeomorphic to a sphere such that M(C,D) 3 Mε → S as ε → 0 for some
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C,D > 0, where the uniform boundedness of the total absolute curvature cabs(Mε)
and the diameter of Mε respectively follows from

cabs(Sε) ≤ 2π
∫ 2/3π

0

|f(t)′′| dt < +∞ and
∫ 2/3π

0

√
1 + f ′(t)2 dt < +∞.

We observe that the 2-dimensional homotopy group π2(S) of S is infinitely gener-
ated and S is not locally 2-connected.

In order to describe the topological structure of all the limit spaces of M(C,D),
we give some definitions. Let O be an open subset of the open line segment L :=
{ (x, 0, 0) ∈ R3 | 0 < x < 1 }. Then, O is expressed as the countable union of open
line segments Oi = { (x, 0, 0) | xi − δi < x < xi + δi }, i = 1, 2, . . . . Exclude each
Oi from L and instead attach the two-point-punctured sphere S((xi, 0, 0), δi;R3)−
{(xi − δi, 0, 0), (xi + δi, 0, 0)} centered at (xi, 0, 0) and of radius δi to obtain a
subspace S of R3, which we call the string of pearls associated with the open subset
O. We call the closure S̄ (= S ∪ {(0, 0, 0), (1, 0, 0)}) of S a closed string of pearls,
and the two points (0, 0, 0) and (1, 0, 0) the terminal points of the closed string of
pearls S̄. Notice that the space S in Example 1.1 is homeomorphic to a closed
string of pearls, and that an open punctured disk is homeomorphic to the string of
pearls with O = L.

A topological space X is called a pearl space if there exists an open neighborhood
U at each point p ∈ X such that U−{p} is homeomorphic to a finite disjoint union of
strings of pearls. Here, we can always choose such a neighborhood U satisfying that
the closure Ū of U is homeomorphic to the quotient space

∐k
i=1 S̄i/{x1, . . . , xk} of

the disjoint union
∐k

i=1 S̄i of finitely many closed strings of pearls S̄i, i = 1, . . . , k,
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where xi ∈ S̄i are terminal points. The number k is called the index at p ∈ X and
denoted by ind(p). For instance, the following are all pearl spaces.

• (closed) strings of pearls,
• 2-dimensional topological manifolds,
• locally finite graphs (or 1-dimensional polytopes).

We have the following:

Theorem 1.2 (Topological Structure Theorem). Any limit space X of the class
M(C,D) is a compact pearl space and satisfies the following (1) and (2).

(1) We have ∑
p∈X

max{ ind(p)− 2, 0 } ≤ C

2π
.

(2) The fundamental group π1(X) of X is generated by at most [2 + C/2π] ele-
ments.

The converse of the above is true as described in the following:

Theorem 1.3. Any compact pearl space X possesses a metric for which X is a
limit space of M(C,D) for some C,D > 0.

We next consider the classM(p, C,D) of closed 2-dimensional Riemannian man-
ifoldsM with Lp-norm of curvature

∫
M |KM |p ≤ C and diameter ≤ D for given con-

stants p ≥ 1, C,D > 0. It holds (see Proposition 8.1) thatM(p, C,D) ⊂M(C′, D),
where C ′ is a constant depending only on p, C, and D, so that in particular,
M(p, C,D) is also precompact.

Theorem 1.4. Let X be a topological space and p > 1 a number. Then, the fol-
lowing (1) and (2) are equivalent:

(1) There exists a metric on X for which X is a limit space of M(p, C,D) for
some C,D > 0.

(2) X is a compact pearl space and satisfies that ind(x) ≤ 2 for any x ∈ X.

Our main theorems are connected to the earlier work due to Burago [5]. However,
his paper [5] does not contain the details of the proofs, and our work is completely
independent of his.

There are some other works on convergence of Riemannian manifolds under Lp-
curvature bound and volume lower bound. See [23, 9] for the 2-dimensional case
and [24, 15, 16, 17] for the higher dimensional case. However, since they all rely
on some analytic methods to obtain the regularity of convergence of Riemannian
metrics, it is impossible to extend them to the case where p = 1 or to the case
where the volume (even locally) tends to zero.

For the proof of our theorems (1.2 and 1.4), the triangle comparison theorem
stated in the following plays an essential role. To state it we need some defini-
tions. Over a given limit space X of M(C,D) we find a (not necessarily unique)
Radon measure cXabs, the so-called absolute curvature measure, as the limit of
some sequence of the absolute curvature measures cMi

abs := cabs on Mi, where Mi,
i = 1, 2, . . . , are manifolds inM(C,D) converging toX with respect to the Gromov-
Hausdorff distance (see for details §4.3). For any triangle 4x1x2x3 in X , denote by
∠̃x1x2x3 the angle at x̃2 of a triangle 4x̃1x̃2x̃3 in R2 such that d(xi, xj) = d(x̃i, x̃j)
for any i, j = 1, 2, 3, where d is the distance function. For A,B ⊂ X , let K(A,B)
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be the set of points on all minimal segments joining a ∈ A and b ∈ B. Then, we
have:

Theorem 1.5 (Triangle Comparison Theorem). Let 4pqr be a triangle in a limit
space X of M(C,D) and s a point on a minimal segment joining p and q. Then,
there exist three minimal segments σ from p to s, τ from s to q, and γ from s to r
such that

∠̃spr ≥ ∠̃qpr − λε,

where λ > 0 is a calculable universal constant and

ε := min{ cXabs(K(r, σ ∪ τ)− {p, q}), cXabs(K({p, q}, γ)− {r}) }.

Note that, if cXabs ≡ 0, Theorem 1.5 is equivalent to X having nonnegative
curvature in the sense of Alexandrov (see [6]).

Using the Triangle Comparison Theorem (1.5) enables us to define the angle
between two minimal segments emanating from a common point in the limit space
X of M(C,D) and then to induce ‘the space of directions’, which is a generalized
concept of the unit tangent sphere of Riemannian manifold. Toward proving the
Topological Structure Theorem (1.2), we will develop geometry on the limit spaces
X ofM(C,D). In order to analyze the topology of a small metric ball B(p,R) ⊂ X ,
p ∈ X , R > 0, we need some alternative to the Morse theory for the distance
function. It is however impossible to intactly generalize the Morse theory as done
for Alexandrov spaces ([14]) because of the fact that a string of pearls may have
infinitely many topological critical points. We get over this difficulty to consider the
quotient metric space of B(p,R) modulo the equivalence relation that two points
be contained in a common connected component of some distance sphere ∂B(p, ρ),
0 < ρ < R, which quotient space turns out to be isometric to a cone over a finite
set. Seeing that each equivalent class is either a point or a circle, we thus prove
that X is a pearl space.

Remark 1.1.

(1) Without a bound of total absolute curvature, we can expect nothing about
the limit spaces other than that they are intrinsic metric spaces. In fact,
according to [8], for a given compact intrinsic metric space X there exists a
sequence of closed 2-manifolds converging to X . See §2.5 for the definition
of intrinsic metric space.

(2) For C,D > 0, let M−(C,D) denote the class of closed 2-dimensional Rie-
mannian manifolds M with diamM ≤ D and total negative curvature
c−(M) :=

∫
M
K− ≤ C, where K−(p) := max{−KM(p), 0} for any p ∈ M .

We have M−(C,D) ⊂M(4π+2C,D) (see Lemma 2.1) and that all our the-
orems stated above (Theorems 1.1–1.5) are still true even if all M(C,D)’s
are replaced with M−(C,D) (see Theorem 6.3).

(3) For p ≥ 1, C,D > 0, let M−(p, C,D) be the class of closed 2-dimensional
Riemannian manifolds M with diamM ≤ D and Lp-norm of negative cur-
vature function

∫
M K−p ≤ C. Then, Theorem 1.4 is still true if M(p, C,D)

is replaced with M−(p, C,D) (see Theorem 8.1).
(4) Since all the discussions of the proofs of Theorems 1.1–1.5 are local, they

also hold for any limit space of closed metric balls B̄(pi, R;Mi), i = 1, 2, . . . ,
with radius R of (not necessarily closed) complete 2-dimensional Riemannian
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manifolds Mi such that cabs(B(pi, 2R;Mi)) ≤ C for any fixed constants
R,C > 0. By Proposition 3.1, this is true even if cabs is replaced with c−.

Acknowledgment. This work was done while the author visited the Department of
Mathematics, University of Maryland, College Park. He would like to thank them
for their hospitality during his stay there. He would also like to thank Professors
K. Grove, L. Guijarro, Y. Machigashira, K. Sugahara, and T. Yamaguchi for valu-
able discussions and comments, and to thank the referee for carefully reading this
paper and for helpful comments.

2. Preliminaries

2.1. Total curvature. Let M be a 2-dimensional Riemannian manifold. The
total positive curvature c+(D) of a locally Lebesgue measurable subset D of M
is defined to be the (possibly improper) Lebesgue integral

∫
D
K+ over D of the

function K+ defined by K+(p) := max{KM (p), 0} for any p ∈M , where KM is the
curvature function of M . The total negative curvature c−(D) of D is defined in the
same manner for K−(p) := max{−KM(p), 0} instead of K+. The total curvature
c(D) and the total absolute curvature cabs(D) of D are respectively defined by
c(D) := c+(D) − c−(D) and cabs(D) := c+(D) + c−(D). Note that c±(D) = +∞
may happen and we agree that c(D) is defined only when one of c−(D) and c+(D)
is finite. We sometimes write cM (D), cMabs(D), etc. instead of c(D), cabs(M), etc.

For a domain D of M bounded by piecewise smooth curves, we denote by ∠pD
the inner angle at a point p ∈ ∂D, and by κ(∂D) the sum of exterior angles of D
and of the total geodesic curvature of ∂D with respect to D, i.e., if ∂D splits into
n unit-speed smooth curves αi : R ⊃ Ii → ∂D, i = 1, . . . , n (where n may be ∞)
whose parameterizations are all positive with respect to D, then

κ(∂D) :=
∑

p∈∂D

(π − ∠pD) +
n∑

i=1

∫
Ii

kαi(s) ds,

where kαi is the geodesic curvature of αi. With these notations, the Gauss-Bonnet
formula is described as

c(D) + κ(∂D) = 2πχ(D)

for any compact domain D surrounded by finitely many piecewise smooth closed
curves.

Lemma 2.1. For any closed 2-dimensional Riemannian manifold M , we have

cabs(M) ≤ 4π + 2 c−(M),

and in particular,

M−(C,D) ⊂M(4π + 2C,D).

Proof. It follows from the Gauss-Bonnet theorem that

c+(M) = 2πχ(M) + c−(M) ≤ 4π + c−(M),

which completes the proof.
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2.2. Variants of Landau’s symbols. Denote by ‘constα,β,...’ the symbol express-
ing some constant depending only on α, β, . . . . In particular, ‘const’ means some
universal constant. Let Oα,β,...(·), ωα,β,...(·) be the symbols which express some
functions depending only on α, β, . . . such that lim supt→0 |Oα,β,...(t)|/t < +∞ and
limt→0 ωα,β,...(t) = 0 respectively. If the subscript is just ‘∗’ such as const∗, O∗(·),
ω∗(·), this means to depend possibly on everything.

2.3. Maximal net. Let X be a metric space, d the distance function on X , and
ε a positive number. Denote by βX(ε) the number of elements of a maximal net
N ⊂ X such that d(p, q) ≥ ε for any different p, q ∈ N . Notice that βX(ε) < +∞
for any ε > 0 if and only if X is precompact. For α ≥ 0, denote by Hα the α-
dimensional Hausdorff measure. Then, a straightforward discussion yields that for
any α ≥ 0,

Hα(X) ≤ constα · lim sup
ε→0

ε−αβX(ε).

2.4. (Measured) Gromov-Hausdorff topology. Let Z be a metric space. The
Hausdorff distance dZ

H(X,Y ) between two compact subsets X and Y of Z is defined
by

dZ
H(X,Y ) := inf{ ρ > 0 | B(X, ρ) ⊃ Y, B(Y, ρ) ⊃ X },

where B(A, ρ) := B(A, ρ;Z) := { p ∈ Z | d(p,A) < ρ } for A ⊂ Z and ρ > 0.
Let C denote the set of isometry classes of compact metric spaces and X,Y ∈ C.
The Gromov-Hausdorff distance dH(X,Y ) between X and Y is defined to be the
infimum of dZ

H(f(X), g(Y )), where f : X → Z and g : Y → Z are any isometric
embeddings of X,Y into any metric space Z. The dH is a distance function on
C and determines a topology on C, called the Gromov-Hausdorff topology. A δ-
approximation ϕ : X → Y , δ > 0, is defined to satisfy

| d(ϕ(p), ϕ(q)) − d(p, q) | ≤ δ for any p, q ∈ X ,(2.1)

B(ϕ(X), δ) = Y.(2.2)

Then, dH(X,Y ) ≤ O(δ) if and only if there exists an O(δ)-approximation from X
to Y .

Let CM denote the class of pairs (X,µ) of compact metric space X and Borel
measure µ over X with µ(X) ≤ 1. Let (Xi, µi), (X,µ) ∈ CM , i = 1, 2, . . . . The se-
quence {(Xi, µi)} is said to converge to (X,µ) in the sense of the measured Gromov-
Hausdorff convergence if there exists a Borel measurable ω∗(1/i)-approximation
ϕi : Xi → X for every i such that

lim
i→∞

∫
Xi

f ◦ ϕi dµi =
∫

X

f dµ(2.3)

for any continuous function f on X . The topology of CM defined by the measured
Gromov-Hausdorff convergence is called the measured Gromov-Hausdorff topology.
Fukaya proved:

Proposition 2.1 (2.10 of [10]). The projection Π: CM → C is proper.

As a direct consequence of the proposition, we have:

Corollary 2.1. Assume that a sequence {Xi} of compact metric spaces converges
to a compact metric space X in the sense of the Gromov-Hausdorff topology and
µi is a Borel measure over each Xi such that µ(Xi) ≤ const. Then, there exists a
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Borel measure µ over X such that some subsequence of {(Xi, µi)} tends to (X,µ)
in the sense of the measured Gromov-Hausdorff topology.

Denote by PC the class of finitely compact pointed metric spaces (X, p), where
the finitely compactness of X is defined by that the closed metric ball B̄(p,R) :=
{ q ∈ X | d(p, q) ≤ R } for any R > 0 is compact. Denote by PMC the class
of pairs (X, p, µ), where (X, p) ∈ PC and µ is any Borel measure over X . A
sequence {(Xi, pi)} ⊂ PC (resp. {(Xi, pi, µi)} ⊂ PMC) is said to converge to an
(X, p) ∈ PC (resp. (X, p, µ) ∈ PMC) in the sense of the pointed Gromov-Hausdorff
convergence (resp. the measured and pointed Gromov-Hausdorff convergence) if for
any fixed R > 0 there exists an ω∗(1/i)-approximation ϕi : (B̄(pi, R;Xi), pi) →
(B̄(p,R;X), p) (resp. in addition to that, ϕi is measurable and satisfies (2.3) for
any continuous function f on B̄(p,R;X)). This defines topologies on PC and PMC
respectively.

2.5. Minimal segment and intrinsic metric space. Let (X, d) be a metric
space. The length L(c) of a continuous curve c : [ a, b ] → X is defined by

L(c) := sup
a=s0<···<sk=b

k−1∑
i=0

d(c(si), c(si+1)).

A continuous curve joining two points p, q ∈ X is called a minimal segment if the
curve attains the minimal length among all continuous curves joining p and q. Of
course, a minimal segment joining given two points does not necessarily exist and
is not unique in general. We assume that all minimal segments are parametrized
by arc-length. Denote by pq one of minimal segments joining p and q (if any).

The intrinsic metric d̂ induced from d is defined by

d̂(p, q) := inf
c
L(c) for any p, q ∈ X,

where c is any continuous curve joining p and q. Here, we agree that if the two
points p and q are contained in two different arcwise connected components, then
d̂(p, q) = +∞. We say that (X, d) is an intrinsic metric space if d = d̂. When X
is a finitely compact intrinsic metric space, it follows that any two points in X are
joined by at least one minimal segment.

2.6. Triangle. Let X be a metric space. For three points p, q, r ∈ X , we mean a
triangle 4pqr as consisting of three minimal segments pq, qr, and rp in X . For a
triangle 4pqr in a Riemannian manifold, we indicate by ∠pqr the angle between
pq and qr. A comparison triangle 4̃pqr of a triangle 4pqr in X is defined to
be a triangle in R2 whose edges have the same lengths as the corresponding ones
of 4pqr, i.e., if we set 4p̃q̃r̃ := 4̃pqr, then d(p̃, q̃) = d(p, q), d(q̃, r̃) = d(q, r),
and d(r̃, p̃) = d(r, p). For a triangle 4pqr in X , denote by ∠̃pqr the angle of the
comparison triangle 4̃pqr at the vertex corresponding to q, i.e., if 4p̃q̃r̃ := 4̃pqr,
then ∠̃pqr := ∠p̃q̃r̃.

3. Precompactness of M(C,D)

The purpose of this section is to prove the Precompactness Theorem (1.1).
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3.1. Volume estimate of metric balls. In this subsection, we will give the esti-
mate of the volumes of metric balls by the total absolute curvature, which is needed
for the proof of the Precompactness Theorem (1.1).

Assume that M is a 2-dimensional complete Riemannian manifold and p ∈M a
fixed point.

Definition 3.1 ([12]). A number t > 0 is called an exceptional radius with respect
to p if there exists a cut point q ∈ ∂B(p, t) to p which satisfies at least one of the
following three conditions:

(1) The point q is a conjugate point to p along some minimal geodesic segment
joining p and q.

(2) The two points p and q are connected by at least three different minimal
segments.

(3) The two points p and q are connected by exactly two different minimal
segments and the angle at q between them is just equal to π.

Hartman ([12]) proved that the set of exceptional radii with respect to p is of
measure zero and the metric circle ∂B(p, t) with any nonexceptional radius t > 0
consists of finitely many piecewise smooth closed curves whose break points co-
incide with the cut points to p. Note that he indeed proved them only when M
is homeomorphic to R2; nevertheless this assumption is not essential in his proof
and they extend to the case where M is any 2-dimensional complete Riemannian
manifold (cf. [20]).

The length L(∂B(p, ρ)) of the metric sphere ∂B(p, ρ) with any nonexceptional
radius ρ > 0 satisfies (see [12, 20])

L(∂B(p, ρ)) ≤
∫ ρ

0

κ(∂B(p, t)) dt,(3.1)

where we note that κ(∂B(p, t)) is defined for all nonexceptional t ∈ ( 0, ρ ], i.e., for
almost all t ∈ ( 0, ρ ]. Since L(∂B(p, ρ)) > 0 and since any exceptional radius is a
limit of nonexceptional radii, we have∫ ρ

0

κ(∂B(p, t)) dt ≥ 0 for any ρ ≥ 0.(3.2)

Let R > r > 0 be two fixed nonexceptional radii with respect to p. Denote by
S the set of all connected components of ∂B(p, r) homotopic to zero in B(p,R) −
B(p, r). Any S ∈ S surrounds a disk domain, say DS , in B(p,R) − B(p, r). For
any nonexceptional t ∈ [ r, R ], set

χ(t) := χ

(
B̄(p, t) ∪

⋃
S∈S

DS

)
.

Proposition 3.1. We have

c+(B(p, r)) − 2πχ(r) ≤ 2πr +Rc−(B(p,R))
R− r

.

Proof. We first claim the following:

χ(B̄(p, t)) ≤ χ(t) ≤ χ(r) for any nonexceptional t ∈ [ r, R ].(3.3)

The first inequality is trivial. Let us prove the second. For a nonexceptional radius
t ∈ ( r, R ], let Ct,i, i = 1, 2, . . . , be all the connected components of B̄(p, t)−B(p, r).
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Then, for any j we have

χ

(
B̄(p, r) ∪

j+1⋃
i=1

Ct,i

)
− χ

(
B̄(p, r) ∪

j⋃
i=1

Ct,i

)
= χ(Ct,j+1),

which is positive only if Ct,j+1 = DS for S := ∂B(p, r) ∩ Ct,j+1 ∈ S. This proves
(3.3).

Since κ(∂B(p, t)) = 2πχ(B̄(p, t)) − c(B(p, t)) for all nonexceptional t > 0, we
have

0 ≤
∫ R

0

κ(∂B(p, t)) dt

≤
∫ r

0

(2π + c−(B(p, r))) dt +
∫ R

r

{ 2πχ(r) + c−(B(p,R))− c+(B(p, r)) } dt,

which completes the proof.

Proposition 3.2 (cf. [22]). Let p ∈M and 0 < ρ < rad(M, p) := supq∈M d(p, q).
(1) If ρ is nonexceptional with respect to p, then

L(∂B(p, ρ)) ≤ (2π + c−(B(p, ρ))) ρ.

(2) We have

volB(p, ρ) ≤ 1
2

(2π + c−(B(p, ρ))) ρ2,

and in particular

volM ≤ 1
2

(2π + c−(M)) (diamM)2.

(3) If B(p, t) is homeomorphic to an open disk for any t ∈ ( 0, ρ ), then

volB(p, ρ) ≥ 1
2

(2π − c+(B(p, ρ))) ρ2.

Proof. (1): It follows from the Gauss-Bonnet formula that for any nonexceptional
radius t > 0,

κ(∂B(p, t)) = 2πχ(B(p, t))− c(B(p, t)),

where one has χ(B(p, t)) ≤ 1 if t < rad(M, p), which together with (3.1) proves (1).
(2): Since

volB(p, ρ) =
∫ ρ

0

L(∂B(p, t)) dt

(see [12]), (1) implies (2).
(3): Assume that ρ satisfies the assumption of (3) and let r ∈ ( 0, ρ ) be any fixed

nonexceptional radius. Denote by {qi}i=1,...,m the set of cut points to p on ∂B(p, r).
There are exactly two minimal segments joining p to each qi, which surrounds a
closed disk domain in B̄(p, r), say Di. Let Fi, i = 1, . . . ,m, be the connected
components of B(p, r)−

⋃
i Di, each of which is an open disk domain bounded by a

triangle. Since each Fi contains no cut points, a straightforward calculation using
the geodesic polar coordinate yields

volFi =
∫ r

0

∫ t

0

κ(∂B(p, s) ∩ Fi) ds dt,
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where, by the Gauss-Bonnet formula, κ(∂B(p, s) ∩ Fi) = ∠pFi − c(B(p, s) ∩ Fi) ≥
∠pF − c+(B(p, r) ∩ Fi). Hence,

volB(p, r) ≥
m∑

i=1

volFi ≥
1
2

{(∑
i

∠pFi

)
− c+

(
B(p, r) ∩

⋃
i

Fi

)}
r2.

Applying the Gauss-Bonnet formula to each Di yields

2π −
∑

i

∠pFi =
∑

i

∠pDi ≤ c+

(⋃
i

Di

)
.

Therefore we have

volB(p, r) ≥ 1
2

(2π − c+(B(p, r))) r2 .

By taking r → ρ, this completes the proof.

3.2. Upper bound of the order of the maximal net. We first prove the fol-
lowing lemma.

Lemma 3.1. Let B(p, ρ) be a metric ball in a complete Riemannian manifold.
Then, if B(p, ρ) is not simply connected, there exists a minimal geodesic loop in
B(p, ρ) with base point p which is not homotopic to zero in B(p, ρ).

Proof. Let α : [ 0, ` ] → B(p, ρ) be any unit-speed smooth loop with base point p
which is not homotopic to zero in B(p, ρ), and let d := maxs∈[ 0,` ] d(p, α(s)). There
is a sequence 0 = s0 < · · · < sk = ` such that si+1−si ≤ ρ−d for any i. Denote by
σi a minimal segment from p to α(si) for each i. Since α is not homotopic to zero,
there is an i0 such that α̂ := σi0 ∪ α|[ si0 ,si0+1 ] ∪ σi0+1 is not homotopic to zero. It
follows that

L(α̂) = d(p, α(si0 )) + si0+1 − si0 + d(p, α(si0+1)) ≤ d+ ρ.

Therefore, the minimal length of loops in B(p, ρ) with base point p which are not
homotopic to zero is attained by a loop contained in B̄(p, (d + ρ)/2) ⊂ B(p, ρ),
which is a geodesic loop.

The following lemma is essential to prove the Precompactness Theorem (1.1).

Lemma 3.2. For any M ∈M(C,D) and ε > 0, we have

βM (ε) ≤ constC,D (1 + ε−2).

Proof. Let M ∈ M(C,D), ε > 0, and let N be a maximal net of M such that
d(p, q) ≥ ε for any different p, q ∈ N , i.e., #N = βM (ε). To prove the lemma,
it may be assumed that ε < diamM and ε � 1. Since all B(p, ε/2), p ∈ N , are
disjoint to each other and by Proposition 3.2(2), setting δ := π

16 ε
2 one has

#{ p ∈ N | volB(p, ε/2) ≥ δ } ≤ volM
δ

≤ 8
π

(2π + C)D2 ε−2,

#{ p ∈ N | c+(B(p, ε/2)) ≥ δ } ≤ C

δ
=

16
π
C ε−2.

Therefore, it suffices to estimate the number of elements of

N ′ := { p ∈ N | volB(p, ε/2) < δ, c+(B(p, ε/2)) < δ }.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT SPACES OF MANIFOLDS WITH BOUNDED INTEGRAL CURVATURE 1775

Assume that N ′ contains at least two different points. For p ∈M , we set

ρp := sup{ ρ > 0 | B(p, t) is homeomorphic to an open disk for any t ∈ ( 0, ρ ) }.
It clearly follows that ρp > 0.

Sublemma 3.1. We have

ρp < ε/2 < rad(M, p) for any p ∈ N ′.

Proof. By Proposition 3.2(3), one has for any p ∈ N ′ and for t = min{ρp, ε/2},
δ > volB(p, t) ≥ (π − c+(B(p, t))) t2 > (π − δ) t2,

and hence

t <

√
δ

π − δ
< ε/2,

which implies t = ρp < ε/2.
The assumption ε < diamM proves ε/2 < rad(M, p).

Next we prove:

Sublemma 3.2. The metric ball B(p, ρp) for any p ∈ N ′ is homeomorphic to a
disk.

Proof. Sublemma 3.1 shows that ∂B(p, ρp) 6= ∅. If B(p, ρp) is not homeomorphic
to a disk, there is a loop α with base point p in B(p, ρp) which is not homotopic to
zero in B(p, ρp). For any ρ ∈ (0, ρp) close enough to ρp, the ball B(p, ρ) contains α,
where α is still nonzero-homotopic because of B(p, ρ) ⊂ B(p, ρp). This contradicts
that B(p, ρ) is homeomorphic to a disk.

Let p ∈ N ′ be fixed. There exists a sequence ρi ↘ ρp such that B(p, ρi) is
not homeomorphic to a disk. By Lemma 3.1, we have a minimal geodesic loop
γi with base point p in B(p, ρi) which is not homotopic to zero in B(p, ρi). Since
γi|[ 0,L(γi)/2 ] is a minimal segment, one has ρi > L(γi)/2. Now, if L(γi)/2 < ρp,
then γi is contained in B(p, ρp), which contradicts that B(p, ρp) is homeomor-
phic to a disk. Therefore we have L(γi)/2 ≥ ρp. There is a subsequence of {γi}
which converges to some simple geodesic loop γp in B̄(p, ρp) such that γp|[ 0,L(γp)/2 ],
γp|[ L(γp)/2,L(γp) ] are minimal segments and L(γp)/2 = ρp.

It follows from ρp < ε/2 (see Sublemma 3.1) that γp and γq do not intersect for
any different p, q ∈ N ′. If a point p ∈ N ′ satisfies that γp is homotopic to zero
in M , then γp bounds at least one disk domain in M . Denote by D the set of
open disk domains bounded by all γp, p ∈ N ′, homotopic to zero, and by D̂ the
set of minimal elements of D with respect to the inclusion relation. Obviously, D̂
is a family of disjoint disk domains in M and hence M̂ := M −

⋃
D̂ is a compact

manifold possibly with boundary.
We observe that all the geodesic loops γp, p ∈ N ′, are no more homotopic to

zero in M̂ . Since, by the Gauss-Bonnet formula, each disk domain in D̂ has total
curvature > π, the number of elements of D̂ is < C/π. Since |χ(M)| = |c(M)|/2π ≤
C/2π, one has |χ(M̂)| < 3C/2π. Therefore, the number of free homotopy classes
of M̂ represented by simple closed curves is ≤ constC . (See Figure 2.)

If two different geodesic loops γp and γq, p, q ∈ N ′, are homotopic to each
other in M̂ , then there is a domain A ⊂ M̂ homeomorphic to an annulus such that
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∂A = γp∪γq. Now, for a given nonzero free homotopy class C ∈ [S1; M̂ ] represented
by a simple closed curve, one finds all geodesic loops γpi with pi ∈ N ′ belonging to
the class C. Assume that the number of pi, say n, is not less than 2. Then, there
are a domain AC homeomorphic to an annulus and a permutation τ : { 1, . . . , n } →
{ 1, . . . , n } such that ∂AC = γpτ(1) ∪ γpτ(n) ,

⋃
i=2,...,n−1 γpτ(i) divides AC into n− 1

annuli, and γpτ(1) , . . . , γpτ(n) lie in AC in this order. Since a minimal segment in
M joining pτ(1) and pτ([n/2]) has to intersect at least [n/2]− 2 geodesic loops γpτ(i)

with i 6= 1, [n/2] whose lengths are all less than ε/2, the triangle inequalities show
that

D ≥ d(pτ(1), pτ([n/2])) ≥ ([n/2]− 1) ε/2,

which implies n ≤ 4+4Dε−1. Recalling the number of all such classes C is ≤ constC ,
we have

#N ′ ≤ (4 + 4Dε−1) constC .

This completes the proof of Lemma 3.2.

Proof of the Precompactness Theorem (1.1). The theorem follows from the same
discussion as in the proof of the Gromov precompactness theorem ([11]) using
Lemma 3.2.

Theorem 3.1. Any limit space X ∈ M(C,D) satisfies

H2(X) ≤ constC,D.
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Proof. A straightforward discussion shows that Lemma 3.2 holds also for any limit
X ∈M(C,D) instead of M ∈M(C,D), which implies the theorem.

The same discussions using Proposition 3.1 prove the following lemma and the-
orem.

Lemma 3.3. If a complete pointed 2-dimensional Riemannian manifold (M, p) sat-
isfies cabs(B(p, 2R)) ≤ C for given constants C,R > 0, then

βB(p,R)(ε) ≤ constC,R (1 + ε−2).

Theorem 3.2. For any fixed C,R > 0, any limit (X, p) of complete pointed 2-
dimensional Riemannian manifolds (M, q) such that cabs(B(q, 2R)) ≤ C satisfies

H2(B(p,R)) ≤ constC,R.

4. Triangle comparison

In this section, we will prove the Triangle Comparison Theorem (1.5).

4.1. Almost flat triangular domains. A triangular domain Npqr (or simply N)
is defined to be a 2-dimensional Riemannian manifold homeomorphic to a closed
disk and surrounded by a triangle 4pqr whose edges are all minimal geodesics. For
ε > 0, we say that a triangular domain N = Npqr is ε-almost similar to a triangular
domain N′ = Np′q′r′ if

|∠pN− ∠p′N′ | ≤ ε, |∠qN− ∠q′N′ | ≤ ε, |∠rN− ∠r′N′ | ≤ ε.

The comparison triangular domain Ñ = Ñpqr of a triangular domain N = Npqr
is defined to be the piece of R2 surrounded by the comparison triangle 4̃pqr. A
triangular domain N = Npqr is said to be ε-almost flat if cabs(N) ≤ ε. It follows
from the Gauss-Bonnet formula that any ε-almost flat triangular domain N = Npqr
satisfies

|∠pN + ∠qN + ∠rN− π | ≤ ε.

The following theorem is well known (see Lemma 6.3.1 of [19]).

Theorem 4.1. Any ε-almost flat triangular domain Npqr is O(ε)-almost similar
to its comparison triangular domain Ñpqr.
4.2. Triangle comparison for manifolds. Throughout this subsection, let M
be a complete 2-dimensional Riemannian manifold.

It is easy to prove the following:

Lemma 4.1. If two triangles 4pqr and 4p′q′r′ in R2 satisfy

1 ≤ d(p, q)
d(p′, q′)

≤ 1 + ε, d(p, r) = d(p′, r′), and d(q, r) = d(q′, r′),

then

∠pqr ≤ ∠p′q′r′ +O(ε1/2).

Lemma 4.2. Any triangle 4pqr in M (which does not necessarily bound a trian-
gular domain) satisfies

∠pqr ≥ ∠̃pqr −O(cabs(K(r, pq))),

where K(·, ·) is as in the Triangle Comparison Theorem (1.5).
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Proof. If the triangle 4pqr degenerates, i.e., the sum of the lengths of two edges
is equal to the length of the other, then the lemma is trivial. Assume thus that
4pqr is nondegenerate. Set γ := pq and for each t ∈ [ 0, d(p, q) ] denote by S−t
(resp. S+

t ) the set of minimal segments σ from γ(t) to r such that ∠(σ̇(0),−γ̇(t))
(resp. ∠(σ̇(0), γ̇(t))) attains its minimum among all choices of minimal segments
from γ(t) to r. Note here that there are at most two element of S−t (resp. S+

t ) for
each t, because M is 2-dimensional. Define

T := {N ⊂M | N is the triangular domain surrounded by σ, τ , and γ|[ s,t ] for

some s, t ∈ [ 0, d(p, q) ] with s < t and for some σ ∈ S+
s , τ ∈ S−t }.

For N ∈ T , let s(N), t(N), σN, τN denote the above s, t, σ, τ associated with N.
For δ ∈ ( 0, conv(K(r, pq))/4 ), where conv(·) denotes the convexity radius, we put

Tδ := {N ∈ T | N ⊂ B̄(K(r, pq), δ) }.

Let us now prove the following:

Sublemma 4.1. For any s ∈ [ 0, d(p, q) ) there exists a triangular domain N ∈ Tδ

such that s(N) = s.

Proof. For a given s ∈ [ 0, d(p, q)) one finds a sequence si ↘ s, i = 1, 2, . . . , and
minimal segments σi ∈ S−si

. There is a subsequence {σi(j)} of {σi} converging to a
minimal segment σ from γ(s) to r. A standard discussion using the first variation
formula shows that σ is an element of S+

s . For each sufficiently large j, the segment
σi(j) is contained in B̄(σ, δ), and hence σ, σi(j), and γ|[ s,si(j) ] together bound a
triangular domain contained in B̄(σ, δ), which is an element of Tδ.

Since any limit of triangular domains in Tδ is also a triangular domain in Tδ,
the above sublemma implies that for any s ∈ [ 0, d(p, q) ) there exists a triangular
domain Nδ,s ∈ Tδ with s(Nδ,s) = s such that

t(Nδ,s) = max{ t(N) | N ∈ Tδ, s(N) = s }.

Now, we define a finite or infinite monotone increasing sequence of numbers
t0, t1, . . . recursively by t0 := 0 and ti+1 := t(Nδ,ti) whenever ti < d(p, q). For
simplicity, set Ni := Nδ,ti , σi := σNi and τi := τNi . We will prove that tn =
d(p, q) for some n. Suppose the contrary, so that {ti} is an infinite monotone
increasing sequence tending to some number t∞ ∈ ( 0, d(p, q) ]. By replacing with
a subsequence, the segment σi tends to some minimal segment σ∞ from γ(t∞) to
r. For a sufficiently large i, the segments σi, σ∞, and γ|[ ti,t∞] together bound
a triangular domain contained in B(σ∞, δ), which is an element of Tδ (cf. the
discussion in the proof of Sublemma 4.1). This contradicts the maximality of t(Ni),
so that there is an n such that tn = d(p, q). (See Figure 3.)

Let εi := cabs(Ni). Then, Theorem 4.1 implies that for each i = 0, . . . , n −
1 the triangular domain Ni is O(εi)-almost similar to its comparison triangular
domain Ñi. Identify the edge of Ñi−1 corresponding to τi−1 with the edge of Ñi

corresponding to σi for every i. Then, the union D̃δ :=
⋃n

i=0 Ñi is bounded by
the two line segments corresponding to pr, qr, say p̃r̃, q̃r̃, and the broken line
segment corresponding to γ, say γ̃. Since L(γ̃) = d(p, q) < d(p̃, r̃) + d(q̃, r̃), one has
∠r̃D̃δ =

∑n−1
i=0 ∠r̃Ni < π, so that D̃δ may be assumed to be isometrically embedded
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into R2. For any i = 1, . . . , n− 1,

∠γ̃(ti)D̃δ = ∠γ̃(ti)Ñi−1 + ∠γ̃(ti)Ñi = ∠γ(ti)Ni−1 + ∠γ(ti)Ni +O(εi−1 + ε)

≤ π +O(εi−1 + εi),

where the last inequality follows from τi−1 ∈ S−ti−1
and σi ∈ S+

ti
. Since N◦i ∩N◦j = ∅

for any i 6= j (whereA◦ is the interior ofA), which we will prove later (see Sublemma
4.2), one has

n−1∑
i=0

εi ≤ cabs(B(K(r, pq), δ)) =: ε(δ).

Thus,

κ−(γ̃) := −
n−1∑
i=1

min{ π − ∠γ̃(ti)D̃δ, 0 } ≤ O(ε(δ)).

Let k ∈ {1, . . . , n− 1} be a number such that γ̃(tk) is a convex vertex of D̃δ. We
stretch the hinge γ̃|[ tk−1,tk+1 ] keeping d(p, γ̃(ti)) for all i 6= k and d(γ̃(ti), γ̃(ti+1))
for all i to obtain a new broken line segment γ̃′ such that

L(γ̃′) = L(γ̃), ∠γ̃′(tk−1)D̃
′
δ ≤ ∠γ̃(tk−1)D̃δ,

∠γ̃′(tk)D̃
′
δ = π, ∠γ̃′(tk+1)D̃

′
δ ≤ ∠γ̃(tk+1)D̃δ,

where D′
δ is the domain surrounded by γ̃′, γ̃′(0)r̃, and γ̃′(tn)r̃. In particular, one

has κ−(γ̃′) ≤ κ−(γ̃). Repeating such a stretching until there are no more convex
vertices on the broken line segment, we eventually obtain a concave broken line
segment γ̃∗ joining a point p̃∗ to a point q̃∗ which satisfies

d(p̃∗, r̃) = d(p̃, r̃) = d(p, r), d(q̃∗, r̃) = d(q̃, r̃) = d(q, r), L(γ̃∗) = L(γ̃) = d(p, q),

κ−(γ̃∗) ≤ κ−(γ̃), ∠p̃∗D̃
∗
δ ≤ ∠p̃D̃δ, ∠q̃∗D̃

∗
δ ≤ ∠q̃D̃δ,

where D̃∗
δ denotes the domain surrounded by γ̃∗∪p̃∗r∪q̃∗r. It follows from κ−(γ̃∗) ≤

O(ε(δ)) that ∠(vγ̃∗(t)p̃∗ , ˙̃γ∗(t − 0)) ≤ O(ε(δ)) for any t ∈ ( 0, d(p, q) ], where vxy

for x, y ∈ R2 is the unit vector in TxR2 identified with (y − x)/|y − x|. Hence,
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the first variation formula to the variation consisting of the line segments p̃∗γ̃∗(t),
t ∈ [ 0, d(p, q) ], shows

1 ≤ d(p, q)
d(p̃∗, q̃∗)

≤ 1 +O(ε(δ)2).

Applying Lemma 4.1 to 4̃pqr and 4p̃∗q̃∗r yields ∠̃pqr ≤ ∠p̃∗q̃∗r + O(ε(δ)), and
therefore,

∠̃pqr ≤ ∠p̃∗q̃∗r̃ +O(ε(δ)) = ∠q̃∗D̃
∗
δ +O(ε(δ)) ≤ ∠q̃D̃δ +O(ε(δ))

= ∠qNn−1 +O(ε(δ)) ≤ ∠pqr +O(ε(δ)).

Since ε(δ) tends to cabs(K(r, pq)) as δ → 0, this proves Lemma 4.2.

Sublemma 4.2. We have N◦i ∩ N◦j = ∅ for any i 6= j.

Proof. Without loss of generality, it may be assumed that i < j. The minimal
property of the segments γ, σi, τi, σj , and τj shows that

∂Ni ∩ ∂Nj =


{r} if i+ 1 < j,

{r, γ(tj)} if i+ 1 = j and τi 6= σj ,

τi if i+ 1 = j and τi = σj .

If Ni ⊃ γ|[ ti+1,d(p,q) ], then γ|[ ti+1,tj+1 ]∪τj divides Ni into two triangular domains
as shown in Figure 4, the one of which surrounded by γ|[ ti,tj+1 ] ∪ σi ∪ τj is an
element of Tδ. Since i < j, this contradicts the maximality of t(Ni), so that we
have Ni∩γ|( ti+1,d(p,q) ] = ∅. The same discussion yields Nj∩γ|[ 0,tj ) = ∅. Therefore,
if i + 1 < j, we have Ni ∩ Nj = {r}, which implies the sublemma. If one supposes
i + 1 = j and N◦i ∩ N◦j 6= ∅, then both Ni and Nj must contain the disk domain
bounded by the biangle σj ∪ τi. This means that ∠(σ̇j(0), γ̇(tj)) < ∠(τ̇i(0), γ̇(tj)),
which contradicts σj ∈ S+

ti
and τi ∈ S−tj

.

σ

σ

τ

τ i

(t  )γ j

(t    )i+1

γ (t    )j+1
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For any triangle 4pqr in a metric space, we define

e(4pqr) :=
d(p, q) + d(p, r)

d(q, r)
− 1.

Clearly, this is always nonnegative. It follows from a direct calculation that

∠̃pqr = O

(√
d(p, r)
d(p, q)

e(4pqr)
)
,(4.1)

e(4pqr) = O((π − ∠̃qpr)2).(4.2)

Lemma 4.3. Let 4pqr be a triangle in a metric space, s ∈ pq a point, and ε > 0
a number. Then, if ∠̃psr + ∠̃qsr ≤ π + ε, we have

∠̃sqr ≥ ∠̃pqr −O(ε).

Proof. We glue the two comparison triangle domains Ñpsr =: Np̃s̃r̃ and Ñsqr =:
Ns̃q̃r̃ at the edge s̃r̃ to obtain a quadrangle p̃s̃q̃r̃, which we embed into R2.

If s̃ is a convex vertex of the quadrangle, or ∠̃psr+ ∠̃qsr ≤ π, then one obviously
has ∠̃sqr ≥ ∠̃pqr, which implies the lemma.

Assume that s̃ is a concave vertex, i.e., ∠̃psr + ∠̃qsr ≥ π. Since ∠p̃s̃q̃ ≥ π − ε,
applying (4.2) for 4p̃s̃q̃ yields

1 ≤ d(p, q)
d(p̃, q̃)

= 1 +O(ε2).

Hence, applying Lemma 4.1 completes the proof.

Lemma 4.4. For any triangle 4pqr in M and for any number ρ with 0 < ρ� 1,
we have

∠pqr ≥ ∠̃pqr −O(ερ)−Oµ(ρ1/4),

where

γ := pq,

tρ := sup{ t ∈ [ 0, d(p, q) ] | γ(t)r ∩B(p, ρ) 6= ∅ for some minimal

segment γ(t)r joining γ(t) and r },
ερ := cabs(K(r, γ|( tρ,d(p,q) ])),

µ := (d(p, q), d(q, r), d(r, p)),

and where Oµ(·) is continuous in µ.

Proof. If tρ < ρ1/2, applying Lemma 4.2 to 4xqr, x := γ(ρ1/2), yields

∠pqr = ∠xqr ≥ ∠̃xqr −O(ερ).

By d(p, x) = ρ1/2, it is easy to prove that

∠̃xqr = ∠̃pqr +Oµ(ρ1/4),

where Oµ(ρ1/4) is continuous in µ. Therefore, the proof is completed in this case.
Assume that tρ ≥ ρ1/2. The definition of tρ and the triangle inequality together

imply

d(γ(tρ), r) ≥ d(p, γ(tρ)) + d(p, r)− 2ρ.(4.3)
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If tρ = d(p, q), we set x := q. If tρ < d(p, q), we find a number t′ρ ∈ ( tρ,min{tρ +
ρ, d(p, q)}) and set x := γ(t′ρ). Then, in either case, (4.3) implies

d(x, r) ≥ d(p, x) + d(p, r) − 4ρ,(4.4)

and hence, by (4.1),

∠̃pxr ≤ O

(√
d(p, r)ρ

d(p, x)d(x, r)

)
.

Here, it follows from (4.4) and d(p, x) ≥ ρ1/2 that d(x, r) ≥ d(p, r) + ρ1/2 − 4ρ ≥
d(p, r), so that

d(p, r)ρ
d(p, x)d(x, r)

≤ ρ1/2.

Thus,

∠̃pxr ≤ O(ρ1/4).(4.5)

If x = q, this completes the proof. If x 6= q, (4.5) implies ∠̃pxr + ∠̃qxr ≤
π +O(ρ1/4) and hence, by Lemma 4.3,

∠̃xqr ≥ ∠̃pqr −O(ρ1/4).

On the other hand, by Lemma 4.2,

∠̃xqr ≤ ∠pqr +O(ερ).

This completes the proof.

4.3. Triangle comparison for limit spaces. For each X ∈ M(C,D), by ap-
plying Corollary 2.1, there exists a (not necessarily unique) Radon measure cXabs

over X such that (X, cXabs) is a measured Gromov-Hausdorff limit of the class
{ (M, cMabs) |M ∈ M(C,D) }.

Remark 4.1. Even if an open domain D ⊂ X is isometric to a piece of R2, it
may possibly have positive measure cXabs(D) > 0. Let us give such an example.
Assume first that a sequence {(Mi, c

Mi

abs)} converges to (X, cXabs) and a flat unit
open disk Di = B(pi, 1) ⊂ M tends to a flat unit open disk D = B(p, 1) ⊂ X

in this convergence, so that obviously, cMi

abs(Di) = cXabs(D) = 0. We then attach a
small handle Hi to B(pi, 1/2) which shrinks to the point p ∈ D as i→ ∞. In this
case, we still have Mi → X ; however (Mi, c

Mi

abs) does not converge to (X, cXabs) any
more, because cabs(Di) ≥ −c(Di) = 4π. We may assume that cabs(Di) tends to
some number a ≥ 4π as i→∞. Then, (Mi, c

Mi

abs) converges to (X, ĉXabs), where ĉXabs

is the Radon measure defined by

ĉXabs(A) :=

{
cXabs(A) if p /∈ A,
cXabs(A) + a if p ∈ A

for any Borel subset A ⊂ X .

Proof of the Triangle Comparison Theorem (1.5). Let ϕi : Mi → X , i = 1, 2, . . . ,
be measurable ω(1/i)-approximations from Mi ∈ M(C,D) to X such that

lim
i→∞

∫
Mi

f ◦ ϕi dc
Mi

abs =
∫

X

f dcXabs
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for any continuous function f : X → R. Find four points pi, qi, ri, si ∈Mi such that
ϕi(pi) → p, ϕi(qi) → q, ϕi(ri) → r, and ϕi(si) → s as i → ∞, and set σi := pisi,
τi := siqi. By replacing with a subsequence, it may be assumed that there are two
minimal segments σ from p to s and τ from s to q in X such that ϕi(σi) and ϕi(τi)
both tend to σ and τ respectively. Applying Lemma 4.4 one has for any fixed ρ > 0,

∠pisiri ≥ ∠̃pisiri −O(cMi

abs(K(ri, σi)−B(pi, ρ)))−Oµi(ρ
1/4),

∠qisiri ≥ ∠̃qisiri −O(cMi

abs(K(ri, τi)−B(qi, ρ))) −Oµi(ρ
1/4),

where µi := (d(z, w))z,w=pi,qi,ri,si . Let x ∈ σ − {s}, y ∈ τ − {s} be such that
d(s, x), d(s, y) � ρ, and let xi ∈ σi, yi ∈ τi be such that ϕi(xi) → x and ϕi(yi) → y
as i→∞. Then, Lemma 4.4 implies that for all sufficiently large i,

∠pisiqi = ∠xisiyi ≥ ∠̃xisiyi −O(cMi

abs(B(si, ρ)))−Oνi(ρ
1/4),

where νi := (d(xi, yi), d(yi, si), d(si, xi)). Therefore,

2π ≥ ∠pisiri + ∠qisiri + ∠pisiqi

≥ ∠̃pisiri + ∠̃qisiri + ∠̃xisiyi −O(cMi

abs(K(ri, σi)−B(pi, ρ)))

−O(cMi

abs(K(ri, τi)−B(qi, ρ)))−O(cMi

abs(B(si, ρ)))−Oµi,νi(ρ
1/4).

Since ∠̃xisiyi → ∠̃xsy = π, taking ρ→ 0 after i→∞ yields

∠̃psr + ∠̃qsr ≤ π +O(cXabs(K(r, σ)− {p})) +O(cXabs(K(r, τ) − {q})).
Now, if q 6∈ K(r, σ) and p 6∈ K(r, τ), then

∠̃psr + ∠̃qsr ≤ π +O(cXabs(K(r, σ ∪ τ)− {p, q})).
If q ∈ K(r, σ), there are a point z ∈ σ and a minimal segment zr 3 q, so that τ ∪ qr
is a minimal segment and ∠̃qsr = 0; in particular,

∠̃psr + ∠̃qsr ≤ π.

If p ∈ K(r, τ), then ∠̃psr = 0 and hence

∠̃psr + ∠̃qsr ≤ π.

Thus, in either case, by Lemma 4.3 we have

∠̃spr ≥ ∠̃qpr −O(cXabs(K(r, σ ∪ τ)− {p, q})).
The same discussion leads to

∠̃spr ≥ ∠̃qpr −O(cXabs(K({p, q}, γ)− {r}))
for some minimal segment γ joining r and s. This completes the proof.

4.4. Angle between minimal segments in the limit spaces.

Definition 4.1 (Angle). Let X ∈ M(C,D), p, q, r ∈ X , γ := pq, and σ := pr.
Since limρ→0 c

X
abs(B(p, ρ)−{p}) = 0, the Triangle Comparison Theorem (1.5) proves

the existence of the limit

lim
s,t>0, s,t→0

∠̃γ(s)pσ(t),

which we call the angle at p between γ and σ, and denote by ∠(γ, σ) or ∠qpr.
The following proposition, analogous to the Toponogov comparison theorem, is

a direct consequence of the definition of the angle.
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Proposition 4.1. For any triangle 4pqr in X ∈M(C,D), we have

∠qpr ≥ ∠̃qpr −O(cXabs(B(p, 2(d(p, q) + d(p, r))) − {p})).

We have the following properties of the angle, the proofs of which are slightly
modified versions of those of 2.8 in [6] and are omitted.

Lemma 4.5. Let X ∈M(C,D).

(1) For any p, q, r, s ∈ X with p ∈ qr − {q, r},

π ≤ ∠qps+ ∠rps ≤ π +O(cXabs({p})).

(2) If two sequences of segments piqi and piri respectively tend to pq and pr in
X as i→∞, then

lim inf
i→∞

∠qipiri ≥ ∠qpr −O(cXabs({p})).

5. Structure of the space of directions

Throughout this section, let X ∈ M(C,D) be a limit space. In this section,
we will define the space of directions at a point in X and prove that it is a finite
disjoint union of points and circles (see Theorem 5.2).

5.1. Foundation of the space of directions. Since we have the triangle in-
equality for the angles between minimal segments from a common point p ∈ X (see
Theorem 1 of Chapter II of [4]), the angle is a pseudo-distance function on the set
of minimal segments {pq}q∈X , so that the relation between minimal segments from
p that two have angle zero is an equivalence relation, and the quotient space, say
Σ′p, of {pq}p∈X modulo this equivalence relation becomes a metric space.

Definition 5.1 (Space of Directions and Tangent Cone). The metric completion
of Σ′p for a point p ∈ X is called the space of directions at p and denoted by
Σp or ΣpX . We call each element of Σp a direction at p. Denote by vpq the direc-
tion at p which is the equivalence class represented by a minimal segment pq in X .
The tangent cone Kp at p is defined to be the Euclidean cone over Σp, where the
Euclidean cone ‘coneY ’ over a metric space Y is defined to be the quotient space
Y × [ 0,+∞ )/Y × {0} with the metric defined by

d((v, s), (w, t)) :=
√
s2 + t2 − 2 s t cosmin{ d(v, w), π }

for (v, s), (w, t) ∈ coneY . Denote by o the point of Kp corresponding to Σp × {0}
and call it the vertex of Kp.

For a metric space Y and a number λ > 0 we denote by λY the space Y with
distance function multiplied by λ-times.

Proposition 5.1. For any p ∈ X and ε > 0 we have

βΣp(ε) ≤ constC (1 + ε−1).

In particular, the space of directions Σp at any point p ∈ X is compact and satisfies

H1(Σp) ≤ constC .
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Proof. Let p ∈ M and 0 < ε � π be both fixed. To prove the first assertion, it
suffices to prove that βΣ′p(ε) ≤ constC (1 + ε−1). We find a maximal net N ⊂ Σ′p
such that ∠(v, w) ≥ ε for any different v, w ∈ N . Notice here that N may possibly
be an infinite net. Assign a minimal segment γv to each v ∈ Σ′p in such a way
that the direction of γv is v. It follows from the definition of the angle that there
is a ρv,w > 0 for any different v, w ∈ N such that ∠̃(γv(s), γw(t)) ≥ 0.99ε for any
s, t ∈ ( 0, ρv,w ]. Hence, by remarking ε� π, there exists a ρ > 0 depending on any
finite subnet N̂ of N such that

d(γv(s), γw(t)) ≥ ε ρ/2

for any s, t ∈ ( 0, 2ρ ] and for any different v, w ∈ N̂ . This implies that

βB̄(p,2ρ)(ερ/2) ≥ βB̄(p,2ρ)−B(p,ρ)(ερ/2) ≥ [2ε−1] ·#N̂ ≥ (2ε−1 − 1) ·#N̂ .
For any δ > 0 there exist an M ∈ M(C,D) and a δ-approximation ϕ : X → M .
We thus have βB̄(ϕ(p),2ρ+δ)(ερ/2− δ) ≥ (2ε−1 − 1) ·#N̂ , where, if δ is taken to be
small enough, then

βB̄(ϕ(p),3ρ)(ερ/3) ≥ (2ε−1 − 1) ·#N̂ .
On the other hand, since the total absolute curvature is an invariant up to scaling
metric, one has cabs(ρ−1M) ≤ C, so that applying Lemma 3.3 to B(ϕ(p), 3; ρ−1M)
yields

βB̄(ϕ(p),3ρ)(ερ/3) = βB̄(ϕ(p),3;ρ−1M)(ε/3) ≤ constC (1 + ε−2).

Therefore we obtain #N̂ ≤ constC (1 + ε−1). Since N̂ is any finite subnet of N ,
this proves the first assertion.

Since βΣp(ε) < +∞ means the precompactness of Σp, the second assertion di-
rectly follows from the first (see §2.3).

Remark 5.1. For Alexandrov spaces, the compactness of the space of directions is
implied by only the Alexandrov convexity (i.e., the Triangle Comparison Theorem
under cXabs ≡ 0). On the other hand, that is not true in our case as seen in §9.

Proposition 5.2. For any fixed point p ∈ X, the pointed space (ρ−1X, p) tends to
(Kp, o) as ρ→ 0.

Proof. The proposition is proved by the same discussion as in 7.8.1 of [6] using the
compactness of the space of directions and the triangle comparison theorem.

From Propositions 5.1 and 5.2, we see that the tangent cone Kp at any p ∈ X
is a complete locally compact intrinsic metric space of Hausdorff dimension ≤ 2.
Define a Radon measure cKp

abs over Kp by

c
Kp

abs(A) :=

{
0 if o /∈ A,
cXabs({p}) if o ∈ A

for any Borel subset A ⊂ Kp. Then, since limρ→0 c
X
abs(B(p, ρ) − {p}) = 0, we have

that (ρ−1X, p, cXabs) converges to (Kp, o, c
Kp

abs) as ρ → 0 in the sense of the mea-
sured and pointed Gromov-Hausdorff convergence. Therefore, (Kp, c

Kp

abs) satisfies
the Triangle Comparison Theorem (1.5).

Proposition 5.3. The space of directions Σp at any point p ∈ X is a finite disjoint
union of points, circles, and compact arcs.
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Proof. Since Σp is compact, Kp−{o} has at most finitely many connected compo-
nents. Each component A of Kp−{o} satisfies cKp

abs(A) = 0, i.e., A is nonnegatively
curved in the sense of Alexandrov and hence each component of Σp has curva-
ture ≥ 1 locally (see 4.2.3 of [6]). By recalling Proposition 5.1, this completes the
proof.

Lemma 5.1. For any u, v, w ∈ Σp, p ∈ X, we have

∠(u, v) + ∠(v, w) + ∠(w, u) ≤ 2π +O(cXabs({p})).

Proof. For simplicity, let ε := cXabs({p}). Then, ε = c
Kp

abs(Kp) = c
Kp

abs({o}). Propo-
sition 4.1 implies that ∠ūv̄w̄ ≥ ∠̃ūv̄w̄ − O(ε), where ū := (u, 1), v̄ := (v, 1), w̄ :=
(w, 1) ∈ Kp. On the other hand, ∠ūv̄w̄ ≤ ∠ov̄ū+∠ov̄w̄ = π−(∠(u, v)+∠(v, w))/2.
Therefore,

π − (∠(u, v) + ∠(v, w))/2 ≥ ∠̃ūv̄w̄ −O(ε),

as well as

π − (∠(v, w) + ∠(w, u))/2 ≥ ∠̃v̄w̄ū−O(ε),

π − (∠(w, u) + ∠(u, v))/2 ≥ ∠̃w̄ūv̄ −O(ε).

Adding up these three completes the proof.

5.2. Strainer. In order to more study the space of directions, we need the notion
of strainer introduced in [6].

Definition 5.2. A point p ∈ X is said to be (n, δ)-strained, n ∈ N, δ > 0, if there
exist points qi ∈ X , i = ±1, . . . ,±n, such that

∠̃qipqj >
{
π/2− δ, if i 6= ±j,
π − δ, if i = −j.

Here, the sequence {qi}i=±1,...,±n is called an (n, δ)-strainer at p.

Remark 5.2. Assume that cabs(B(p,R)) ≤ δ for a point p ∈ X and two numbers
δ, R > 0. Then, there exists an (n,O(δ))-strainer {qi} at p such that d(p, qi) ≤ R/2
for each i if and only if there exists {vi}i=±1,...,±n ⊂ Σp such that

∠(vi, vj) >

{
π/2−O(δ), if i 6= ±j,
π −O(δ), if i = −j.

Definition 5.3. A map f from a metric space Y to a metric space Z is said to be
δ-almost isometric, δ > 0, if∣∣∣∣ d(f(p), f(q))

d(p, q)
− 1

∣∣∣∣ ≤ δ for any p, q ∈ Y .

Remarking that X has Hausdorff dimension ≤ 2, we have the following theorem
in the same way as in §5 of [6]. Here, we omit the proof.

Theorem 5.1. Assume that a point p ∈ X is an (n, δ)-strained point with a
strainer {qi}i=±1,...,±n for given numbers n ∈ N and δ > 0 and that

cXabs(B(p, 2 max
i
d(p, qi))) < δ.

Then, we have the following (1) and (2).
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(1) There exists a universal constant δ0 > 0 such that, if δ ≤ δ0, we have n ≤ 2.
(2) Assume n = 2 and let f : B(p, ρ) → R2 for a ρ > 0 be the map defined by

f(x) := (d(q1, x), d(q2, x)) for any x ∈ B(p, ρ). Then, there exists a universal
constant ε0 > 0 such that, if ε := δ + ρ/mini d(p, qi) ≤ ε0, the map f is an
ω(ε)-almost isometric into homeomorphism and its image f(B(p, ρ)) is an
open subset of R2.

The following lemma is important for the proof of Theorem 5.1 and will be used
later.

Lemma 5.2. Assume that ∠̃prq ≥ π − δ, max{ d(r, s)/d(p, r), d(r, s)/d(q, r)} ≤ δ,
and cXabs(B(r, 2 max{d(p, r), d(q, r)}) − {p}) ≤ δ for four different points p, q, r, s ∈
X and for a number δ > 0. Then, we have

∠̃prs+ ∠̃qrs = π + ω(δ),

∠prs = ∠̃prs+ ω(δ), ∠qrs = ∠̃qrs+ ω(δ).

In addition, if | d(p, r)− d(p, s) |/d(r, s) ≤ δ, then

∠̃prs, ∠̃qrs,∠prs,∠qrs =
π

2
+ ω(δ).

The proof of the lemma is also omitted.

5.3. Nonexistence of the boundary of the space of directions. The following
lemma is essential to prove that the space of directions Σp at any point p ∈ X
contains no arc as a component.

Lemma 5.3. There exists a δ > 0 such that, if a sequence of pointed Riemannian
2-manifolds (Mi, pi) satisfies cMi

abs(B(pi, 1)) ≤ δ for every i, then it never converges
to the half-plane (R× [ 0,+∞ ), o), o := (0, 0).

Proof. Suppose that such a sequence (Mi, pi) converges to the half plane (H, p) :=
(R× [ 0,+∞ ), o). Let q := ( 1, 0 ) ∈ H and {xs} := ∂B(p, s)∩∂B(q, 1) ⊂ H for 0 <
s < 1. We find a di-approximation ϕi : (B(p, 10), p) → (B(pi, 10), pi), where di → 0,
and put qi := ϕi(q). Since xs is a (2,ω(s))-strained point with strainer containing
{p, q}, the point ϕi(xs) for each i is a (2, ω(s+di/s))-strained point with the strainer
containing {pi, qi}. Find a number ρ > 0 and assume that di � ρ� s� 1. Then,
applying Theorem 5.1 yields that the map fi := (d(pi, ·), d(qi, ·)) from B(ϕi(xs), ρ)
to R2 is an ω(s+di/s+ρ/s)-almost isometric into homeomorphism and its image is
an open subset of R2. Since | d(pi, qi)−1 | ≤ ω(di) and | (s, 1)−fi(ϕi(xs)) | ≤ ω(di),
one has (s, d(pi, qi)) ∈ B(fi(ϕi(xs)), ω(di)) ⊂ fi(B(ϕi(xs), ρ)) and hence there is a
point xs,i ∈ B(ϕi(xs), ρ) such that fi(xs,i) = (s, d(pi, qi)). We now prove that

∂B(pi, s) ∩ ∂B(qi, d(pi, qi)) = {xs,i}.(5.1)

In fact, xs,i ∈ ∂B(pi, s)∩∂B(qi, d(pi, qi)) is trivial. Let yi be any point in ∂B(pi, s)∩
∂B(qi, d(pi, qi)) and find y ∈ H in such a way that d(ϕi(y), yi) ≤ di. Since d(p, y) =
s+ ω(di) and d(q, y) = d(pi, qi) + ω(di) = 1 + ω(di), one has d(xs, y) ≤ ω(di) and
hence d(ϕi(xs), yi) ≤ ω(di), which together with di � ρ implies that yi is contained
in B(ϕi(xs), ρ). Since fi(yi) = (s, d(pi, qi)), we have yi = xs,i, so that (5.1) has
been proved.

Since, by di � 1, ∂B(qi, d(pi, qi)) contains no critical points of the distance
function to qi, it is a compact 1-manifold without boundary, i.e., a finite disjoint
union of circles. The component, say S, of ∂B(qi, d(pi, qi)) containing xs,i splits
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into the two parts S ∩ B(pi, s) and S ∩ (X − B(pi, s)) whose joint consists of the
only one point xs,i. This is a contradiction.

Theorem 5.2. The space of directions Σp at any point p ∈ X is a finite disjoint
union of points and circles.

Proof. It suffices to prove that Σp has no component homeomorphic to a closed line
segment. Suppose the contrary and let v ∈ Σp be a terminal point of a component
homeomorphic to a line segment. Then, by setting v̄ := (v, 1) ∈ Kp, the pointed
space (ρ−1Kp, v̄) tends to the half plane (H, o) := (R × [ 0,+∞ ), o) as ρ → 0. By
Proposition 5.2, there are a positive number Rρ ↗ +∞ and an ωp(ρ)-approximation
ϕρ : B(o,Rρ;Kp) → B(p,Rρ; ρ−1X). Let qρ := ϕρ(v̄). Since (ρ−1X, qρ) tends to
(Kp, v̄), finding a positive number R′ρ slowly tending to +∞ as ρ→ 0 one has

lim
ρ→0

(ρ−1R′ρX, qρ) = lim
ρ→0

(R′ρKp, v̄) = (H, o).

Besides, it follows from d(p, qρ)/ρ = 1+ωp(ρ) that cXabs(B(qρ, ρR′ρ
−1)) tends to 0 as

ρ → 0. Find a sequence of manifolds Mi ∈ M(C,D) tending to X and an ω(1/i)-
approximation fi : X →Mi. There exists a number i(ρ) for each ρ > 0 such that the
pointed space (ρ−1R′ρMi(ρ), fi(ρ)(qρ)) tends to (H, o) and cabs(B(fi(ρ)(qρ), ρR′ρ

−1))
to 0 as ρ→ 0, which contradicts the previous lemma.

Remark 5.3. Although, by the definition, the angle ∠(v, w) between any v, w ∈ Σp

is ≤ π, yet the minimal length of curves in Σp joining two directions may possibly
exceed π. If two directions v, w ∈ Σp satisfy ∠(v, w) < π, then v and w are
contained in a common component of Σp and ∠(v, w) is just the minimal length
of curves joining v and w in Σp. Therefore, if ∠̂ denotes the intrinsic metric of Σp

induced from ∠, it may exceed π and we have

∠(v, w) = min{∠̂(v, w), π} for any v, w ∈ Σp.

Notice here that if two directions v, w ∈ Σp are contained in different components,
we have ∠(v, w) = π and ∠̂(v, w) = +∞.

The following proposition is a direct consequence of Theorem 5.2, Remark 5.3
and Lemma 5.1.

Proposition 5.4.

(1) The length of each circle component of Σp at any p ∈ X is ≤ 2π+O(cXabs({p})).
(2) There exists a universal constant δ > 0 such that, if cXabs({p}) ≤ δ for a point

p ∈ X, the space of directions Σp at p has at most two connected components,
and if it has exactly two components, the diameter of each component is
≤ O(cXabs({p})).

6. Topological structure of the limit spaces

In this section we will prove the Topological Structure Theorem (1.2). Through-
out this section, let X ∈M(C,D) be a limit space.
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6.1. Construction of local polar coordinate. The main purpose of this sub-
section is to construct a bi-Lipschitz homeomorphism (a so-called local polar coor-
dinate) between an annulus and a small neighborhood of a circle component of the
distance sphere ∂B(p, ρ) centered at a point p ∈ X and with a small radius ρ > 0
(see Lemma 6.2).

Lemma 6.1. For any p, x ∈ X and λ > 1 we have the following:
(1) for any ρ ∈ ( d(p, x), λd(p, x) ] there exists a point q ∈ ∂B(p, ρ) such that

{p, q} is a (1, ωp,λ(d(p, x)))-strainer at x;
(2) if x is not an isolated point of ∂B(p, d(p, x)), then x is a (2, ωp,λ(d(p, x)))-

strained point with strainer {p, q, r, s} for some r, s ∈ X and the q in (1).

Proof. (1): Let p, x ∈ X , λ > 1, and ρ ∈ ( d(p, x), λd(p, x) ]. By Proposition 5.2,
supposing d(p, x) is small enough against p and λ, there is a point q′ ∈ X such that
λd(p, x) ≤ d(p, q′) ≤ 2λd(p, x) and ∠̃pxq′ ≥ π − ωp,λ(d(p, x)). If one finds a point
q ∈ xq′ with d(p, q) = ρ, applying Theorem 1.5 yields

∠̃pxq ≥ ∠̃pxq′ − ωp(d(p, q′)) ≥ π − ωp,λ(d(p, x)).

(2): Assume that x is not an isolated point of ∂B(p, d(p, x)). Then, there is a
sequence {xi} of points in ∂B(p, d(p, x)) tending to x such that xi 6= x for any i.
Let r′ := xi for a sufficiently large i. Since ∠̃pxq ≥ π − ωp,λ(d(p, x)) and d(p, r′) =
d(p, x), applying Lemma 5.2 yields that ∠pxr′,∠qxr′ = π/2 + ωp,λ(d(p, x)). This
and Lemma 5.4 together show that Σx is isometric to the circle of length 2π +
ωp,λ(d(p, x)) provided x is close enough to p. One can find a point s′ ∈ X such that
∠r′xs′ ≥ π−ωp,λ(d(p, x)) and ∠pxs′,∠qxs′ = π/2+ωp,λ(d(p, x)). If two points s ∈
xs′ and r ∈ xr′ are taken to be close enough to x, we have ∠̃rxs ≥ π−ωp,λ(d(p, x)),
so that Lemma 5.2 proves that {p, q, r, s} is a (2, ωp,λ(d(p, x)))-strainer at x.

Lemma 6.2. If a number ρ > 0 is small enough against a given point p ∈ X, then
(1) ∂B(p, ρ) is a finite disjoint union of points and rectifiable circles;
(2) for each circle component Γ of ∂B(p, ρ) there exist a neighborhood U of Γ,

a number ε > 0, and a map ψ : U → Γ such that f := (d(p, ·), ψ) : U →
( ρ− ε, ρ+ ε )× Γ is a bi-Lipschitz homeomorphism.

Proof. (1): Let Γ be a connected component of ∂B(p, ρ) such that Γ does not
consist of only one isolated point of ∂B(p, ρ). To prove (1), it suffices to show that
Γ is a rectifiable circle. Lemma 6.1(2) implies that for any point x ∈ Γ there are
qx, rx, sx ∈ X such that {p, qx, rx, sx} is a (2, ωp(ρ))-strainer at x. If ρ is small
enough against p, by Theorem 5.1, there are a neighborhood Ux at x and a number
εx > 0 such that ϕx := (d(p, ·), d(rx, ·)) : Ux → I(ρ, εx)× I(d(rx, x), εx) is an ωp(ρ)-
almost isometric homeomorphism, where I(a, d) := ( a − d, a + d ) ⊂ R for a ∈ R
and d > 0. Hence, ∂B(p, ρ) ∩ Ux = ϕ−1

x ({ρ} × I(d(rx, x), εx)) for any x ∈ Γ is a
rectifiable open arc. Since Γ is compact, it is a rectifiable circle.

(2): Under the same notation as in the proof of (1), there are finitely many points
x1, . . . , xk in a circle component Γ of ∂B(p, ρ) such that Γ ⊂

⋃
i Uxi . Gluing the

almost isometric homeomorphisms ϕxi , i = 1, . . . , k, by using partition of unity, we
obtain the desired bi-Lipschitz homeomorphism f from some tubular neighborhood
U of Γ to ( ρ − ε, ρ+ ε ) × Γ, ε := mini εxi, with the property that f = (d(p, ·), ψ)
for some Lipschitz map ψ : U → Γ. Since this gluing process to construct f is by a
standard discussion, we omit the details.
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Remark 6.1. Although we can prove that f is locally almost isometric in the proof
of Lemma 6.2, yet it is not necessarily almost isometric globally, because a minimal
segment joining two points in U may not be contained in U .

Lemma 6.3. For any p ∈ X, R > 0, and 0 < λ ≤ 1, there exists a family of maps
{Φρ,ρ′ : ∂B(p, ρ) → ∂B(p, ρ′) }ρ,ρ′∈[ λR,R ] such that

d(x,Φρ,ρ′ (x)) = (1 + ωp,λ(R)) | ρ− ρ′ |
for any ρ, ρ′ ∈ [λR,R ] and x ∈ ∂B(p, ρ).

Proof. If ρ ≥ ρ′, we find a point Φρ,ρ′(x) ∈ px ∩ ∂B(p, ρ′) and have

d(x,Φρ,ρ′ (x)) = | ρ− ρ′ |.

If ρ < ρ′, by Lemma 6.1(1), there is a point q ∈ ∂B(p, ρ′) such that ∠̃pxq ≥
π − ωp,λ(R). Defining Φρ,ρ′(x) := q completes the proof.

The following corollary is a direct consequence of Lemma 6.3.

Corollary 6.1. For any p ∈ X there exists an R > 0 such that the metric sphere
∂B(p, ρ) is continuous in ρ ∈ [ 0, R ] with respect to the Hausdorff distance.

6.2. Space of components of metric circles. Assume that a number R > 0
is small enough against a given point p ∈ X . Let B := B̄(p,R)/ ∼, where ∼ is
the equivalence relation defined in the following: x ∼ y holds for two points x, y ∈
B̄(p,R) if d(p, x) = d(p, y) =: ρ and if x and y are contained in a common connected
component of ∂B(p, ρ). Recall that, by Lemma 6.2(1), any such component is
either a point or a rectifiable circle. Denote by [x] the equivalence class in B
represented by a point x ∈ B̄(p,R). We put ρ([x]) := ρ(x) := d(p, x) for any
x ∈ B̄(p,R), and denote by L the set of liftable curves in B, i.e., L := {Π ◦ α̃ |
α̃ is a continuous curve in B̄(p,R) }, where Π: B̄(p,R) → B denotes the projection.
Define the length L(α) of any curve α : [ a, b ] → B in L by

L(α) := sup
a=s0<···<sk=b

k−1∑
i=0

| ρ(α(si+1))− ρ(α(si)) |.

This induces an intrinsic (or length) metric d on X (cf. [11]), i.e., the distance
d([x], [y]) between any two points [x], [y] ∈ B is defined by

d([x], [y]) := inf
α∈L([x],[y])

L(α),

where L([x], [y]) is the set of curves in L joining [x] to [y]. It is easily verified that any
curve α in L is continuous with respect to d and its length induced from d coincides
with the original length L(α). It follows that the projection Π: B̄(p,R) → B is
distance nonincreasing and hence B is compact.

In order to prove that X is a pearl space, it is crucial to prove that B is isometric
to a closed cone over a finite set (see Theorem 6.1).

It is easy to prove the following

Lemma 6.4. For any x, y ∈ B̄(p,R) we have

d([x], [y]) ≥ | ρ([x]) − ρ([y]) |,(1)

d([p], [x]) = ρ([x]) = L(Π(px)).(2)

In particular, Π(px) is a minimal segment in B.
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Lemma 6.5. The closed metric ball B̄(p,R) is simply connected.

Proof. Suppose that B̄(p,R) is not simply connected. Then, there is a minimal
loop γ with base point p in B̄(p,R) which is not homotopic to zero. Put q :=
γ(L(γ)/2). By Lemma 6.1(1), there exists a point r ∈ X such that ∠̃pqr ≥ π −
ωp(R). Denote by u, v ∈ Σq the directions at q respectively corresponding to
γ|[ 0,L(γ)/2 ] and γ|[L(γ/2),L(γ) ]. By ∠(u, v) = π and Lemma 5.1, one has

min{∠(u, vqr),∠(v, vqr) } ≤ π/2 + ωp(R).

Since Proposition 4.1 implies that the left-hand side of the above is ≥ ∠̃pqr −
ωp(R) ≥ π−ωp(R), this is a contradiction. Therefore, B̄(p,R) is simply connected.

The following is a direct consequence of the lemma.

Corollary 6.2. Any liftable simple closed curve α ∈ L([x], [x]), [x] ∈ B, is homo-
topic to zero.

Lemma 6.6. For any α ∈ L there exists an injective curve α′ ∈ L whose image is
contained in that of α.

Proof. It is obvious that there exists an injective continuous curve α′ whose image is
contained in that of α. The rest is to show that α′ ∈ L. Note that α′ is obtained by
reparametrizing α and excluding at most countably many loops, say αi, i = 1, 2, . . . .
Let α̃ be a lift of α into B̄(p,R), and α̃i for each i the lift of αi which is a subarc of
α̃. Denote by xi and yi both the terminal points of α̃i. Notice then that [xi] = [yi]
holds for each i. To obtain a lift of α′ into B̄(p,R), we may replace each subarc α̃i

of α̃ with some injective curve in Π−1([xi])(= Π−1([yi])) joining xi and yi.

Lemma 6.7. Let [x], [y] ∈ B and α, β ∈ L([x], [y]). Then, if α is injective, the
image of α is contained in that of β.

Proof. Let α, β : [ 0, 1 ] → X ∈ L([x], [y]) and assume α is injective. Set O :=
{ s ∈ [ 0, 1 ] | α(s) 6∈ β([ 0, 1 ]) }. It follows that O is an open subset of the interval
( 0, 1 ). Pick up any s ∈ O and fix it. By Lemma 6.2(1), the number of points [z] ∈ B
such that ρ([z]) = ρ(α(s)) is finite, and hence there is a closed neighborhood U of
α(s) such that ρ(U − {α(s)}) 63 ρ(α(s)). The set U − {α(s)} is decomposed into
the two disjoint subsets

U+ := { [z] ∈ U | ρ([z]) > ρ(α(s)) },
U− := { [z] ∈ U | ρ([z]) < ρ(α(s)) },

which satisfy Ū+ ∩ Ū− = {α(s)}. There is a δ > 0 such that α([ s− δ, s+ δ ]) ⊂ U .
The injectivity of α yields that α([ s− δ, s ) ∪ ( s, s+ δ ]) ⊂ U+ ∪ U−.

We now prove that ρ ◦ α attains its local extremum at s. Suppose the contrary,
so that, by reversing the parameter of α if necessary, one has α([ s−δ, s )) ⊂ U− and
α(( s, s+δ ]) ⊂ U+. The union of α and β forms a simple closed curve, say γ, which is
liftable intoX because there are two lifts α̃, β̃ of α, β and one can find a curve joining
α̃(0) to β̃(0) (resp. α̃(1) to β̃(1)) contained in Π−1([x]) (resp. Π−1([y])). Therefore,
by Corollary 6.2, γ is homotopic to zero. On the contrary, the intersection number
of the curve γ and the point α(s) is ±1 (depending on the orientation). This is a
contradiction.

Thus, ρ ◦ α attains its local extremum at any s ∈ O and therefore O = ∅.
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The following proposition is a direct consequence of Lemmas 6.6 and 6.7.

Proposition 6.1. For any two points [x], [y] ∈ B we have:
(1) a minimal segment [x][y] joining [x] to [y] uniquely exists and is an element

of L;
(2) the image of any curve in L([x], [y]) contains the minimal segment [x][y].

Proposition 6.2. Any minimal segment in B does not branch except at [p].

Proof. Suppose there are [xi], i = 1, 2, 3, and [y] 6= [p] in B such that [xi] and [y]
are all different and [x1][x2] ∩ [x1][x3] = [x1][y]. Proposition 6.1 proves [x2][x3] =
[x2][y] ∪ [y][x3]. If Π−1([y]) is homeomorphic to a circle, Lemma 6.2 shows that [y]
has a neighborhood homeomorphic to an arc, which is a contradiction. Therefore,
Π−1([y]) = {y}, so that xixj 3 y for any i 6= j, which causes a contradiction by
using the Triangle Comparison Theorem (1.5).

Letting ∂B := { [x] ∈ B | ρ([x]) = R }, we have:

Proposition 6.3. The minimal segment [p][x] for any [x] ∈ B can be extended to
[p][x′] for some [x′] ∈ ∂B.

Proof. Set R′ := d(p, x) and k := min{ i ∈ Z | 2iR′ ≥ R }. Define k + 1 points
x0, . . . , xk ∈ X recursively by

xi :=


x if i = 0,
Φ2i−1R′,2iR′(xi−1) if i < k,

Φ2i−1R′,R(xi−1) if i = k,

where Φ·,· is in Lemma 6.3. We will prove that [p][xi] ⊂ [p][xi+1] for every i. Let i be
fixed. Lemma 1.5 implies that for any y ∈ xixi+1−{xi} one has ∠̃pxiy ≥ ∠̃pxixi+1−
ωp(R) ≥ π − ωp(R), so that ρ(xi) < ρ(y). This implies that [p][xi] ∩ Π(xixi+1) =
{[xi]}. Since Π(xixi+1) ⊃ [xi][xi+1], we have [p][xi] ∩ [xi][xi+1] = {[xi]}, which
together with Proposition 6.1(2) shows [p][xi] ∪ [xi][xi+1] = [p][xi+1].

Therefore, [p][x] = [p][x0] ⊂ [p][x1] ⊂ · · · ⊂ [p][xk]. Since xk ∈ ∂B(p,R), [xk] is
the desired [x′].

The compactness of B and Propositions 6.1, 6.2, and 6.3 together lead to the
following:

Theorem 6.1. The space B is isometric to B̄(o,R; cone∂B) and ∂B is a finite set.

Theorem 6.2. Any limit space X ∈ M(C,D) is a pearl space.

Proof. Assume that a number R > 0 is small enough against any fixed point p ∈ X .
Theorem 6.1 implies that there are at most finitely many connected components of
B(p,R)−{p} and that the projection L := Π(S) ⊂ B of each connected component
S of B(p,R) − {p} is isometric to the open line segment of length R. Denote by
O the set of all [x] ∈ L such that Π−1([x]) is homeomorphic to a circle. Applying
Lemma 6.2(2) to Γ := Π−1([x]) for every [x] ∈ O yields that O is an open subset of
L and the preimage Π−1(O′) of any connected component O′ of O is homeomorphic
to an open annulus. Since Corollary 6.1 implies the continuity of the map L 3 [x] 7→
Π−1([x]) ⊂ S, the component S is a string of pearls associated with the open subset
O ⊂ L. This completes the proof.
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Remark 6.2. We observe that there is a natural correspondence between the con-
nected components of Σp and those of B(p,R) − {p}. In particular, ind(p) is
equal to the number of components of Σp. Assume now that a component S of
B(p,R)−{p} is corresponding to a circle component Γ of Σp. Since (ρ−1S̄, p) con-
verges to (K(Γ), o) as ρ → 0, we have that S ∩ ∂B(p, ρ) for all sufficiently small
ρ ∈ ( 0, R ] is homeomorphic to a circle, so that S ∩B(p, ρ) is homeomorphic to an
open annulus if ρ > 0 is small enough.

6.3. Upper bound of the index and the fundamental group. As well as cXabs,
we can define the measure cX+ (resp. cX− ) over X as a limit of cM+ (resp. cM− ), where
M ∈ M(C,D) tends to X . Define cX := cX+ − cX− . These measures over X are also
not necessarily unique. It may be assumed that cXabs = cX+ + cX− .

Proposition 6.4. Let X be a limit space of M(C,D). Then, the index at any
point p ∈ X satisfies

ind(p) ≤ 2 +
1
2π

cX− ({p})

and consequently, ∑
p∈X

max{ ind(p)− 2, 0 } ≤ 1
2π

cX− (X).

Proof. There are an Mδ ∈ M(C,D) and a measurable δ-approximation ϕδ : Mδ →
X for any δ > 0 such that

lim
δ→0

∫
Mδ

f ◦ ϕδ dc
Mδ± =

∫
X

f dcX±(6.1)

for any continuous function f on X . For a given point p ∈ X , one finds a point
pδ ∈ Mδ in such a way that d(ϕδ(pδ), p) < δ. Let ρ ∈ ( 0, 1 ) be a number small
enough against p and t ∈ [ ρ2, ρ ] any number. We assume δ ≤ ρ3. Then, since
(t−1B̄(pδ, t;Mδ), pδ) is close to (B̄(o, 1;Kp), o), the number of connected compo-
nents of the metric sphere ∂B(pδ, t) is at least ind(p) (see Remark 6.2), so that in
particular,

χ(B(pδ, t)) ≤ 2− ind(p).

Therefore, by (3.2),

0 ≤
∫ ρ

0

κ(∂B(pδ, t)) dt

≤
∫ ρ2

0

(2π + C) dt+
∫ ρ

ρ2
{ 2π(2− ind(p)) + cMδ− (B(pδ, t)) } dt,

which implies

ind(p) < 2 +
(

1 +
C

2π

)
1

ρ−1 − 1
+

1
2π

cMδ− (B(pδ, ρ)).

Letting ρ→ 0 after δ → 0 completes the proof.

In order to prove (2) of the Topological Structure Theorem (1.2), we need some
lemmas.

Lemma 6.8. Let c : [ 0, 1 ] → X be a continuous curve in a metric space X. Then,
for any ε > 0, there exists a sequence 0 = s0 < s1 < · · · < sk = 1 such that
c([ si, si+1 )) ⊂ B(c(si), ε) for any i = 1, . . . , k − 1.
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Proof. The lemma is implied by the uniform continuity of c.

Definition 6.1 (ε-locally 1-connectivity). A metric space X is said to be ε-locally
1-connected, ε > 0, if any closed curve with diameter ≤ ε in X is homotopic to zero.

Lemma 6.9. Let X be an ε-locally 1-connected intrinsic metric space, ε > 0, and
let α, β : [ 0, 1 ] → X be two continuous curves such that α(0) = β(0) and α(1) =
β(1). Then, if d(α, β) := sups∈[ 0,1 ] d(α(s), β(s)) < ε/3, then α and β are homotopic
to each other fixing their terminal points.

Proof. By Lemma 6.8, there exists a sequence 0 = s0 < · · · < sk = 1 such that
diamα([ si, si+1 ]), diamβ([ si, si+1 ]) ≤ ε/6. For every i one finds a curve γi join-
ing α(si) and β(si) and with length L(γi) ≤ ε/3. Then, since the closed curve
α|[ si,si+1 ] ∪ γi+1 ∪ β|[ si,si+1 ] ∪ γi for each i has diameter ≤ ε, it is homotopic to
zero. Therefore, α and β are homotopic to each other.

Proposition 6.5. The fundamental group π1(X) of any limit space X of M(C,D)
is generated by at most [2 + cX− (X)/2π] elements.

Proof. Let X be a limit space of M(C,D). It follows that there exists an ε > 0
such that X is ε-locally 1-connected. Find a number δ with 0 < δ � ε and
an M ∈ M(C,D) such that dH(M,X) ≤ δ. Fix a base point p0 ∈ M and set
x0 := ϕ(p0), where ϕ : M → X is a 2δ-approximation. For a loop α : [ 0, 1 ] → M
with base point p0, we define a loop ᾱ : [ 0, 1 ] → X with base point x0 in the
following. By Lemma 6.8, there exists a sequence 0 = s0 < · · · < sk = 1 such that
diamα([ si, si+1 ]) ≤ δ for any i. Join ϕ(α(si)) to ϕ(α(si+1)) by a minimal segment
ᾱi for each i, and set ᾱ :=

⋃
i ᾱi, which is a loop in X with base point x0. We

parameterize ᾱ so that ᾱ(si) = ϕ(α(si)) for any i.
We have the following:

Sublemma 6.1. If two loops α, β : [ 0, 1 ] → M with base point p0 are homotopic
to each other, then so are ᾱ and β̄.

Proof. Since α is homotopic to β, there exists a homotopy H : [ 0, 1 ]× [ 0, 1 ] →M
such that H0 = α and H1 = β, where Ht := H(·, t) : [ 0, 1 ] → M for t ∈ [ 0, 1 ].
Applying Lemma 6.8 to c := t 7→ Ht yields that there exists a sequence 0 =
t0 < · · · < tm = 1 such that d(Hti , Hti+1) ≤ δ for each i. We therefore have
d(H̄ti , H̄ti+1) ≤ const δ < ε/3, which together with Lemma 6.9 implies that H̄ti is
homotopic to H̄ti+1 for any i. This completes the proof of the sublemma.

By this sublemma, the correspondence π1(M) 3 [α] 7→ [ᾱ] ∈ π1(X) defines a
map f : π1(M) → π1(X). Notice that, although there are many choices of ᾱ for a
given α, by Lemma 6.9, the class [ᾱ] is uniquely determined for the α. It is easy
to prove that f is a homomorphism. We will show that f is surjective. In fact,
for any loop α in X with base point x0, one can define a loop ᾱ in M with base
point p0 as in the same manner as before. Since the definition of the loop ¯̄α in X
implies d(¯̄α, α) ≤ const δ < ε/3, and by Lemma 6.9, the two loops α and ¯̄α in X
are homotopic to each other and hence

f([ᾱ]) = [¯̄α] = [α].

Thus, f is surjective.
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The homomorphism theorem yields that π1(X) is isomorphic to π1(M)/ ker f .
Moreover, since the Gauss-Bonnet theorem implies −χ(M) ≤ c−(M)/2π, the fun-
damental group π1(M) is generated by at most [2 + c−(M)/2π] elements. This
completes the proof of Proposition 6.5.

Remark 6.3. In the proof of Proposition 6.5, the fundamental groups π1(M) and
π1(X) are not necessarily isomorphic to each other. See Remark 4.1 for such an
example.

The following theorem is a stronger version of the Topological Structure Theorem
(1.2).

Theorem 6.3. Any limit space X ∈ M−(C,D) is a pearl space and satisfies the
following (1) and (2):

(1) We have ∑
p∈X

max{ ind(p)− 2, 0 } ≤ C

2π
.

(2) The fundamental group π1(X) of X is generated by at most [2 + C/2π] ele-
ments.

Proof. If X ∈ M−(C,D), then X ∈ M(4π + 2C,D) (see Lemma 2.1) and hence,
by Theorem 6.2, X is a pearl space. By remarking cX− (X) ≤ C, (1) and (2) follow
from Propositions 6.4 and 6.5 respectively.

The same idea as in the proof of Proposition 6.5 leads to the following proposi-
tion, where we omit the proof.

Proposition 6.6. Let X and Y be two compact metric spaces which are LGC(k, ρ)
and LGC(k−1, ρ) respectively. Then, there exists a δ > 0 depending only on k and
ρ such that, if dH(X,Y ) < δ, there is a surjective homomorphism from πk(Y ) to
πk(X).

Here, for the definition of LGC(k, ρ) see [8].

Remark 6.4. We do not know whether any limit space of M(C,D) is LGC(1, ρ) or
not.

7. Existence of the limit metric on pearl spaces

In this section we provide:

Proof of Theorem 1.3. We first construct a metric on any given string of pearls.
Let ϕ : R→ R be a C∞-function such that

ϕ ≡ 0 on (−∞, 0 ] ∪ [ 1,+∞ ),

ϕ > 0 on ( 0, 1 ),∫ 1

0

|ϕ′′(t)| dt = 1.

For any ε > 0, set ϕε(t) := ε2ϕ(t/ε). Then, one has∫ ε

0

|ϕ′′ε (t)| dt = ε.
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Let O =
⋃

i∈I( ai, bi ) ⊂ ( 0, 1 ) be any given open subset, where ( ai, bi )’s are all
disjoint to each other. Define a function f : ( 0, 1 ) → R by

f(t) :=

{
0 for t ∈ ( 0, 1 )−O,

ϕbi−ai(t− ai) for t ∈ ( ai, bi ).

The space

S := S(f) := { (x, y, z) ∈ R3 | y2 + z2 = f(x)2, 0 < x < 1 }
with its induced intrinsic metric is homeomorphic to the string of pearls associated
with the open subset O.

We next see that S can be approximated by a C∞-manifold homeomorphic to an
annulus. For any ε > 0, put I(ε) := { i ∈ I | bi−ai ≥ ε } and O(ε) :=

⋃
i∈I(ε)( ai, bi ).

Define a C∞-function fε : ( 0, 1 ) → R by

fε(t) :=

{
ε for t ∈ ( 0, 1 )−O(ε),
ϕbi−ai(t− ai) + ε for i and t such that bi − ai ≤ ε and t ∈ ( ai, bi ).

The C∞-surface of revolution Sε := S(fε) is homeomorphic to an open annulus and
converges to S as ε→ 0, while

cabs(Sε) = 2π
∑

i∈I(ε)

(bi − ai) ≤ 2π for any ε > 0.

Now, let X be a given compact pearl space, and {Si} the family of maximal
strings of pearls embedded in X as open subsets such that the boundary of each Si

in X consists of at most two points. The compactness of X yields that #{Si} <
∞. One observes that there are finitely many points x1, . . . , xk ∈ X such that
X̂ := X −

⋃
i S̄i − {x1, . . . , xk} is a (not necessarily connected) finitely connected

topological manifold without boundary, i.e., there is an embedding of X̂ into a (not
necessarily connected) compact 2-dimensional topological manifold V such that
V − X̂ consists of finitely many points e1, . . . , em ∈ V , called the endpoints of X̂.
Find a C∞-Riemannian metric on V and equip each string of pearls Si with the
intrinsic metric defined above. This induces an intrinsic metric on X . (See Figure
5.)

We prove that X ∈M(C,D) in the following. In order to obtain a Riemannian
manifold approximated to X , for 0 < ε � 1, we replace the metric ball B(p, ε1/2)
centered at every p ∈ T :=

⋃
i ∂Si∪{x1, . . . , xk} with the standard sphere of radius

ε1/2 excluded n disjoint disks with perimeter 2πε, where n := ind(p). Notice here
that ε is needed to be small enough against n. Replace every Si with Si,ε, where Si,ε

is the annulus Sε defined above for S = Si. Then, glue the circle boundaries of the
replaced sphere excluded disks with all ∂Si,ε and ∂(X̂ −B(p, ε1/2)) in the manner
as the original pieces did, so that we have a compact 2-dimensional topological
manifold, say Xε, with piecewise C∞-Riemannian metric which is ω(ε)-close to X
with respect to the Gromov-Hausdorff distance. We deform the piecewise C∞-
metric of Xε slightly to obtain a C∞-Riemannian metric on Xε. It is possible to
perform such a deformation satisfying that dH(X,Xε) ≤ ω(ε) and

C := sup
0<ε�1

cabs(Xε) < +∞.

Therefore, we have M(C,D) 3 Xε → X as ε→ 0 for D := 2 diamX .
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8. Limit spaces of 2-manifolds with Lp
-curvature bound

Throughout this section, let p > 1, C,D > 0 be given constants. Denote by
M−(p, C,D) the class of closed 2-dimensional Riemannian manifolds M with di-
ameter ≤ D and Lp-norm of negative curvature function

∫
M
K−p ≤ C. First we

have the following:

Proposition 8.1. There exists a constant C ′ = constp,C,D such that

M(p, C,D) ⊂M−(p, C,D) ⊂M−(C ′, D) ⊂M(4π + 2C ′, D).
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Proof. The first implication is clear and the third has already been proved in Lemma
2.1. We will prove the second.

Let M ∈M−(p, C,D). Then, by Hölder’s inequality, one has

c−(M) ≤
(∫

M

K−p

)1/p

(volM)1/q,

where q > 1 is defined by 1/p + 1/q = 1. This together with Proposition 3.2(2)
implies

c−(M) ≤ C1/pD2/q

21/q
(2π + c−(M))1/q.

Therefore, there exists a constant C ′ = constp,C,D such that c−(M) ≤ C ′. This
completes the proof.

Proposition 8.2. Any limit space X of M−(p, C,D) satisfies that cX− ({x}) = 0
for any x ∈ X.

Proof. Let y ∈ M ∈ M−(p, C,D). Then, since M ∈ M−(C ′, D), C′ = constp,C,D,
Proposition 3.2(2) implies

volB(y, ρ) ≤ 1
2

(2π + C′) ρ2.

Hence, by Hölder’s inequality, for any ρ > 0,

c−(B(y, ρ)) ≤
(∫

B(y,ρ)

K−p

)1/p

(volB(y, ρ))1/q ≤ constp,C,D ρ2/q,(8.1)

where 1/p+ 1/q = 1.
For x ∈ X ∈ M−(p, C,D), there is a sequence of pointed manifolds (Mi, yi) with

Mi ∈ M−(p, C,D) such that (Mi, yi, c
Mi− ) tends to (X, x, cX− ) in the sense of the

measured Gromov-Hausdorff convergence. Therefore, by (8.1) one has

cX− (B(x, ρ)) ≤ constp,C,D ρ2/q,

which completes the proof.

Theorem 8.1. Any limit space X of M−(p, C,D) is a compact pearl space and
satisfies that ind(x) ≤ 2 for any x ∈ X.

Proof. Proposition 8.1 and Theorem 1.2 together imply that any limit space X of
M−(p, C,D) is a compact pearl space. Combining Lemma 8.2 and Proposition 6.4
yields the estimate of the index.

Theorem 1.4 follows from Theorem 8.1 and the following:

Theorem 8.2. If a compact pearl space X satisfies ind(x) ≤ 2 for any point x ∈ X,
then X has a metric such that X ∈M(p, C,D) for some C,D > 0 depending on p
and X.

Proof. For a fixed number p > 1, let ϕ : R→ R be a C∞-function such that

ϕ ≡ 0 on (−∞, 0 ] ∪ [ 1,+∞ ),

ϕ > 0 on ( 0, 1 ),∫ 1

0

|ϕ′′(t)|p
ϕ(t)p−1

dt = 1,
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and set ϕε(t) := ε2p(ϕ(t/ε) + ε) for t ∈ R and ε > 0. Then, it follows that∫ 1

0

|ϕ′′ε (t)|p
ϕε(t)p−1

dt ≤ ε.

For a given open subset O of ( 0, 1 ), we define the functions f and fε in the same way
as in the proof of Theorem 1.3. Define two more functions f+− : (−1/2, 1+1/2 )→
R and f+−

ε : (−1/2, 1 + 1/2 ) → R by

f+−(t) :=


ϕ(t+ 1) for t ∈ (−1/2, 0 ],
f(t) for t ∈ ( 0, 1 ),
ϕ(t− 1) for t ∈ [ 1, 1 + 1/2 ),

f+−
ε (t) :=


ϕ(t+ 1) + ε for t ∈ (−1/2, 0 ],
fε(t) for t ∈ ( 0, 1 ),
ϕ(t− 1) + ε for t ∈ [ 1, 1 + 1/2 ).

We set

f+ := f+−|[ 0,1+1/2 ), f− := f+−|(−1/2,1 ],

f+
ε := f+−

ε |[ 0,1+1/2 ), f−ε := f+−
ε |(−1/2,1 ],

S∗ := S(f∗), S0 := S/{(0, 0, 0), (1, 0, 0)}, S+−
ε := S(f+−

ε ),

where ∗ is any of ‘+’, ‘−’, ‘+−’, or the empty character ‘’. Let S∗ε := S(f∗ε )/ ∼∗ε
for ∗ = +,−, ‘’, 0, where ∼∗ε is the equivalence relation on S(f∗ε ) ⊂ R3 defined as
follows: For any numbers x, y, z ∈ R such that x = 0, 1 and y2 + z2 = ε2, the
relations

(0, y, z) ∼+
ε (0,−y,−z), (1, y, z) ∼−ε (1,−y,−z),

(x, y, z) ∼ε (x,−y,−z), (0, y, z) ∼0
ε (1, y, z)

are only defined to be true. It follows that S±ε is homeomorphic to the punctured
projective plane (or the open Möbius strip), Sε to the Klein bottle, and S0

ε to the
torus. For any ∗ = +,−,+−, ‘’, 0, the space S∗ε is a C∞-Riemannian manifold and
satisfies ∫

S∗ε

|KS∗ε |
p ≤ 4π.

Let X be a compact pearl space such that ind(x) ≤ 2 for any x ∈ X , and
{Si} the family of strings of pearls in X defined in the proof of Theorem 1.3. If
X is homeomorphic to S0 associated with some open subset O ⊂ ( 0, 1 ), since
M(p, C,D) 3 S0

ε → S0 as ε → 0 for some C,D > 0, this completes the proof. If
not, there is a disjoint family of open neighborhoods Ui of S̄i such that each Ui− S̄i

consists of one or two punctured open disk domains and that X̂ := X −
⋃

i Ui is
a compact manifold with boundary. Each Ui is homeomorphic to S∗i , where S∗i
is the string of pearls S∗ defined above for S = Si and ∗ is one of +, −, +−,
or the empty character. Equip each Ui with the intrinsic metric of S∗i and find a
C∞-Riemannian metric on X̂ such that the metric of X is of C∞ around ∂X̂. To
obtain a C∞-Riemannian manifold Xε ∈ M(p, C,D) close to X , we replace each
Ui = S∗i with S∗i,ε and deform the metric on X̂ slightly. It is easy to prove that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1800 TAKASHI SHIOYA

Xε → X as ε→ 0 and

sup
0<ε�1

∫
Xε

|KXε |p < +∞.

This completes the proof.

9. Remark on metric space of bounded integral curvature

It seems natural to consider some concept of metric spaces with bounded total
absolute curvature as a generalization of the limit spaces of M(C,D). One natural
condition of such a metric space X is that there is a Radon measure cXabs over X
for which the conclusion of the Triangle Comparison Theorem (1.5) is satisfied.
However, this condition does not imply the compactness of the spaces of directions
of X , as is seen in the following examples:

Example 9.1. The subset of the complex plane C

X := { r e2−kπ
√−1 ∈ C | 0 ≤ r ≤ 2−k, k = 0, 1, . . . }

with its induced intrinsic metric is compact and satisfies the conclusion of the
Triangle Comparison Theorem (1.5); however the space of direction ΣoX at the
origin o ∈ C is an infinite and discrete set.

Another example is due to F. Ohtsuka1.

Example 9.2 (cf. Example 2.1 of [13]). Let M be a complete Riemannian 2-
manifold and F ⊂M a compact subset. We define an intrinsic metric dM/F on the
quotient space M/F by

dM/F ([p], [q]) := min{ d(p, q), d(p, F ) + d(q, F ) }
for any p, q ∈M , where [p] is the class of M/F represented by a point p ∈M and d
the distance function on M . Then, (M/F, dM/F ) satisfies the Triangle Comparison
Theorem (1.5). Moreover, the space of directions at the point [F ] is noncompact if
and only if F is an infinite subset.

We see [4], [5], and [21] for the study of metric spaces of bounded integral cur-
vature.
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