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The Limitations due to Exposure Detection Limits for Regression
Models

Enrique F. Schisterman1, Albert Vexler1, Brian W. Whitcomb1, and Aiyi Liu1
1Division of Epidemiology, Statistics, and Prevention Research National Institute of Child Health
and Human Development National Institutes of Health 6100 Executive Blvd. Rockville, MD 20852

Abstract
Biomarker use in exposure assessment is increasingly common and consideration of related issues
is of growing importance. Exposure quantification may be compromised when measurement is
subject to a lower threshold. Statistical modeling of such data requires a decision regarding the
handling of such readings. Various authors have considered this problem. In the context of linear
regression analysis, Richardson and Ciampi proposed replacement of data below a threshold by a
constant equal to the expectation for such data to yield unbiased estimates. Use of such an imputation
has some limitations; distributional assumptions are required, and bias reduction in estimation of
regression parameters is asymptotic, thereby presenting concerns to small studies. In this paper the
authors propose distribution-free methods for managing values below detection limits and evaluate
the biases that may result when exposure measurement is constrained by a lower threshold. The
authors utilize an analytical approach as well as a simulation study to assess the effects of the proposed
replacement method on estimates. These results may inform decisions regarding analytical plans for
future studies as well as provide possible explanation for some amount of discordance seen in extant
literature.
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The growing use of biomarkers in exposure assessment suggests the need to address issues
related to their measurement. Even when levels are sufficient for measurement, some random
exposure measurement error is expected, in part related to instrument precision. However, in
many cases a proportion of study participants have levels at or below some experimentally
determined detection limit (dl). Investigators are often interested in risk of negative health
outcomes associated with such levels. For example, studies of serum organochlorine levels,
lipophilic xenobiotics, and breast cancer have determined up to 99% of study participants to
have levels below the dl for some toxicants under study (1).

Biomarker quantification may be compromised if instrumentation cannot detect low levels.
This may occur, for example, in quantitation of immunoassays (e.g., ELISA) which require
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antigen concentrations sufficient for binding by antibodies. Highly specific binding conditions
may impair antibody sensitivity and thereby challenge quantitation of low levels (2).
Alternatively, assays may detect low biomarker levels, but suffer from insufficient specificity,
and measurement of exposure is hampered by background. The detection limit is often
determined as a function of observed variance for a series of blanks; the terms ‘limit of detection
(LOD)’ and ‘limit of quantification (LOQ)’ generally correspond to three and ten, respectively,
standard deviations from serial measurement of blanks (3). As such, numerical data are
observable above and below the dl; even among values above the threshold it may not be
possible to clearly delineate between those that are “real” and those that are not. Data below
the threshold are often reported by laboratories as nondetects (ND), and the data analyst or
epidemiologist is limited to this qualitative assessment.

Statistical modeling of this data requires decisions regarding its handling (4,5). Conventional
approaches include: omission, resulting in a truncated dataset; imputation of a constant like
the dl or fraction thereof (e.g. dl/2, dl/√2), or; the observed values may be used directly or
indirectly (4,5,6,7). Many of these imputations have their origins in well behaved distributions
such as Normal (in the case of dl/2) and lognormal (in the case of dl/√2), and will yield correct
inferences if these distributional assumptions are not grossly violated. Lubin et al. (5) propose
a multiple imputation approach to handling nondetects when the exposure distribution can be
assumed. Richardson and Ciampi (7) developed a coefficient of bias to linear regression
coefficient estimates when exposure is measured with a detection threshold and random error,
and proposed replacement of below-threshold data by the expectation for such data (i.e., E[x|
x < dl]) to yield unbiased estimates. Application of this theory to practice also requires
investigators to assume an exposure distribution function. In contrast to these approaches, there
has been comparatively little attention toward implicitly and explicitly non-parametric
approaches to measurement with a threshold

In this paper the authors propose distribution-free methods for managing values below the dl
and evaluate biases that result when exposure measurement is constrained by a lower threshold.
Results from an analytical approach and those of a simulation study assessing the proposed
replacement method are described. The proposed method allows investigators to relax
assumptions (e.g., distributional, asymptotic) necessary for use of other approaches. These
results may inform decisions by investigators regarding appropriate analytical plans for future
studies and provide possible explanation for discordance seen in current literature.

Statement of the problem and analytical solution
Let the observed continuous outcome, Y, satisfy the following linear regression model

Yi = α + βxi + ei, (1)

with exposure variable xi, random noise ei, and regression parameters α and β. However, x is
not observed. A lower threshold, dl, interferes with measurement of low exposure levels. In a
simple case, we observe z, which equals either x or ND, according to the following

for all x > dl, z = x

for all x ≤ dl, z = ND

Alternately, when the explanatory variable is less than dl, there is quantitative random noise,
ζ rather than the qualitative response ‘ND’.
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In this setting, the sample observations are {Y1, …,Yn, z1, …,zn}. Without loss of generality,
Yi and zi can be assumed to be scalars. This model can be considered in a more general context
where the exposure is measured with error, η. Thus, the linear regression model is

Yi = α + βzi + ei, (2)

and

zi = (xi + ηi)I {xi + ηi ≥ dl} + ξiI {xi + ηi < dl}, i = 1, … , n

is the exposure with measurement error, I{•} is an indicator function (1 if {•} is true and 0
otherwise), and ei, ηi, ζi are independent random disturbance terms related to regression error,
measurement error and detection limit error with fɛ(u), fη(u) and fζ(u) densities respectively
and E(ei) = 0, var (ei) = σɛ

2.

The accuracy of regression parameter estimates depends upon the analytic approach to below-
threshold values. One may consider substitution of observed z by z′ whereby,

z ′(a) = {x if x ≥ dl
a if x < dl

.

In this paper, least squares estimation was used to determine an a that may be used in place of
censored data for unbiased estimation of regression parameters. Non-numerical as well as
numerical instrument response for below-threshold measurements were addressed.
Additionally, the circumstances of instrument noise bounded by the detection limit (where the
probability of values above the limit being due to error alone is approximately zero), and
unbounded (where values above the limit will be a mix of noise alone and signal) were
considered. The authors apply the contexts of linear regression models with both known and
unknown intercept and, additionally, provide an extension for application to logistic regression
models.

1. Non-numerical indicator below the detection limit
In certain situations exposure variable values below dl are reported as ‘ND’. For example, this
occurs when instrumentation is set to observe a threshold, and laboratory supplied datasets
include this notation for below-threshold observations. Such responses are clearly
distinguished from numerical data; a decision regarding their management is required.
Substitution of unobserved zi is performed according to the following

z ′
i = (xi + ηi)I {xi + ηi ≥ dl} + a I {xi + ηi < dl}, i = 1, … , n, (3)

1.1 No intercept, α, models—In cases where the intercept is known, such as reliability
studies (when it is equal to zero), investigators may exclude an intercept term from models.
This may also occur when modeling determinants of change from baseline, or centering data
(8,9). Even when the intercept of a general model is unknown, transformations are available
to reduce its influence on estimation of other regression parameters if the intercept is not of
primary interest. In each of these circumstances the intercept may be set to a constant and the
model becomes,

Yi − α = βzi + ei.

Without loss of generality, assume the intercept equals zero.
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Applying least squares fitting to unknown parameter β in the model depicted by equation 2
yields an estimator in the widely known form

β̂n =
∑i=1

n Yiz
′
i

∑i=1
n (z ′

i)
2 = β + Bn + En, (4)

where Bn

Bn = β
∑i=1

n (xi − z ′
i)z ′

i

∑i=1
n (z ′

i)
2

= β

∑i=1
n (z ′

i)
2 ∑
i=1

n
( − xiηiI {xi + ηi ≥ dl} + axiI {xi + ηi < dl} − ηi

2I {xi + ηi ≥ dl} − a2I {xi + ηi < dl})
(5)

signifies the bias to the regression parameter, and En

En =
∑i=1

n ɛiz
′
i

∑i=1
n (z ′

i)
2 ,

signifies noise with expectation zero. Assume that exposure, x, has some distribution, Fx, and
is independent of e and η. Therefore, directly from equation 5, with ηi ≡ 0, there are two
solutions that yield an unbiased estimator β̂n (i.e. Bn = 0)—when a = a1 or a = a2 (for details
and solution without the restriction on ηi see Appendix 1),

a1 =
∑i=1

n xiI {xi < dl}
∑i=1

n I {xi < dl}
(6a)

or

a2 = 0 (6b)

Asymptotically (as n → ∞), a1 is approximately equal to E(x|x < dl) under the condition E
(x2) < ∞. Replacement of values below the detection limit by this value was proposed by
Richardson and Ciampi (7), however as shown in equation 6b, the solution is not unique. There
are important distinctions between these two methods; use of equation 6a assumes knowledge
of the distribution function of x, whereas for a = 0 no distributional assumptions are needed.

Additionally, there are differences regarding the variance of the bias resulting from detection
limit error. The variance of bias, var(β̂n | x), under a1 (equation 6a) is shown as,

var(β̂n | x; a1) = β 2on(1) +
σɛ
2

∑i=1
n (xi)2I {xi ≥ dl} + (E(x | x < dl))2∑i=1

n I {xi < dl}
,

lim
n→∞

sup
β

var(β̂n | x; a1) = ∞

(7a)

with asymptotic properties represented by the function on (1), which approaches 0 as n goes
to infinity. Estimates will have some amount of bias for a fixed sample size. Conversely, under
the second solution, (equation 6b), the variance is derived as,
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var(β̂n | x; a2) =
σɛ
2

∑i=1
n (xi)2I {xi ≥ dl}

. (7b)

Note that the variance solution using a1 comprises two terms, the first being a proportion of
the parameter of interest, dependent upon the sample size. The solution using a2 is invariant
of the unknown parameter β, however for “small” β, the variance may exceed that when a1 is
employed.

1.2 Models that estimate the intercept, α—Commonly, investigators have no
foreknowledge of the intercept value or a need to center their data and the regression intercept
must be estimated. As previously, consider the situation where non-numerical noise is returned
below dl. As in the previous discussion, η can be assumed to be zero, and hence the imputation
is z′(a) = x I{x≥dl} + a I{x<dl}. Using least squares estimation, the slope parameter estimator
based on z′ instead of x can be shown as,

βn =
∑
i=1

n (Yi − 1
n ∑ j=1

n Yj)z ′
i

∑
i=1

n (z ′
i − 1

n ∑ j=1
n z ′

j)2
. (8)

Again, bias results from using z′ for estimation instead of the true explanatory variables (see
Appendix 2 for equations for bias). As previously, there are two solutions for a to yield an
unbiased estimator shown in equation 8. The bias is zero if and only if

a =
∑
i=1

n
xiI (xi < dl)

∑
i=1

n
I (xi < dl)

(9a)

or

a =
∑
i=1

n
xiI (xi ≥ dl)

∑
i=1

n
I (xi ≥ dl)

(9b)

As in the previous circumstance, the Richardson and Ciampi solution (equation 9a) is valid
here. Since x I[x<dl] is not observed, application of the this solution requires some distribution,
Fx, be assumed for determination of the mean of the missing values. Additionally, the
asymptotic result a ≅ E(x | x<dl), as n→∞ must be assumed valid. However, the second solution
(equation 9b) requires neither distributional nor asymptotic assumptions—the replacement
value (a) may be calculated.

2. Numerical noise below the LOD
Whereas the previous sections concerned the instrumentation response of ‘ND’, numerical
information may be available for data below dl. Importantly, if detection limit error is known
to be less than the dl itself (ζ is reasonably bounded by the dl), observations below dl may be
identified as such and this becomes a special case of section 1. In this case investigators may
follow the previously discussed methodologies for models with or without intercept.
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When ζ is unknown or is known to have greater magnitude than dl, the observations due to
noise can not be easily identified; the zi are observed both above and below dl for all individuals
and those with detection limit error are not easily discernable from those free of this error.
Formally, suppose Pr(ζ > dl) > 0. Under the described scenario of detection limit error, this
may be the case if the detection limit is set as two, rather than three (LOD) or ten (LOQ)
standard deviations of noise. In this circumstance there is no simple approach to determining
an optimal imputation, however numerical approaches for models both with and without
intercept are shown in Appendix 3.

Remark: Alternatively, detection limits are occasionally determined based solely on the
distribution of additive random error (or concurrent detection of some contaminant). Consider
true exposure, x, and all concurrently detected other, ω; all samples may be reasonably thought
of as the sum of these two components (i.e., x + ω). When all levels of x are subject to the same
source of error, which is independent of x, then the proposed imputations remain valid,
however, alternately the observed values may be used for analysis in combination with
commonly used methods for handling random measurement error (10,11).

Motivating example
We consider the association between total cholesterol and serum vitamin E in a healthy
population using a population-based sample of randomly selected residents of two counties in
western New York State, 35 to 79 years of age. After exclusions, a total of 857 men and women
were selected for analysis. Blood specimens were analyzed for routine chemistry, hematology
and a number of chronic disease and nutritional factors as well as serum vitamin E levels.

For cholesterol and vitamin E, all observations were measured above the dl. Regression
analysis suggests a linear association between serum cholesterol and serum vitamin
E( β̂ = 4.07, R2 = 0.14, p<0.0001). However, if one stipulates that 30% of serum vitamin E
levels are below the dl, the question arises how to treat these “unobserved” values.

To this end estimates were compared from linear regression of serum cholesterol on serum
vitamin E. For exposure data, these models used; 1. All available exposure data (“gold
standard”), or; replacement of all data below the imposed threshold with 2. The mean vitamin
E of all data below the threshold, or; 3. The mean of all data above the threshold, or; 4. Zero.
Importantly, both the first and second circumstances rely on distributional assumptions that
would be unverifiable under a true detection limit. Models were run for known intercept as
well as for estimation of the intercept.

Table 1 displays results of the known intercept regression. Replacement of sub-threshold data
by the average of sub-threshold data yielded estimates almost identical to those when all data
were used. However, under usual conditions direct calculation of this quantity is not possible,
and it must be estimated assuming some distribution. Conversely, replacement by zero requires
no such assumptions and resulted in estimates not statistically different from those under the
ideal scenario of no threshold. Table 2 displays results of linear regression models estimating
both slope and intercept. Use of the proposed average of above-threshold data for replacement
of missing data yielded good estimates of parameters, both intercept and slope. As with use of
zero for no intercept models, use of this imputation for estimation is non-parametric and
requires no distributional knowledge. Moreover, estimates of slope were hampered by slight
departures from the assumptions of linear regression of the data. Use of zero for replacement
of missing data resulted in estimates statistically different from those under no constraint by a
detection threshold.
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Logistic regression
Frequently, investigators face exposure measurement thresholds when investigating binary
outcomes (e.g, presence or absence of disease) using logistic regression models for evaluation
of risk. These models are often employed for analysis of case-control study data. In this context,
investigators rarely have interest in intercept estimates, interpretation of which is generally
meaningless (9). In such situations the discussion for condition 1A applicable, and bias is
minimized when a equals zero. This is shown empirically in a simulation study described in
the next section. A more detailed discussion and proof is shown in Appendices 4 and 5.

The solution under maximum likelihood estimation is complicated even with known intercept.
When the intercept is unknown, solutions to two non-linear equations are required (Appendix
4, similar to equation 17). A solution can be determined only in rare cases and where strong
assumptions regarding the observed data are employed, and the proposed methodology applied.
However, this problem is beyond the scope of this paper.

Monte Carlo simulation study
We extend previous work (7) to apply a solution to the detection limit problem to binary disease
variables and use of a logit-linear model. To evaluate the effects of detection limit bias on
logistic regression, 10,000 datasets were simulated with n = 300, outcome = Y and measured
exposure z to comprise the observations {(Yi, zi(a)), i=1, …,n}, following the model,

P{Yi = 1 | xi} = (1 + exp( − c − βxi))
−1,

zi(a) = xiI {xi ≥ dl} + a I {xi < dl}.

We evaluated two distributions for the exposure of interest. A bimodal distribution was chosen
to exemplify a poorly behaved density, and gamma, a skewed distribution that is often assumed
for biomarkers (as shown in Figure 1). After data for true exposure were generated, several
detection thresholds were applied. The observed exposure after replacement of values below
detection limit was determined for both a1 {a = E(x|x<dl)} and a2 {a = 0} according to the
above, as well as for the common imputations a = dl and a = dl/2. Bias and variance were
assessed by comparing results based on use of true exposure to those subject to detection limits.

Table 3 displays the simulated Monte Carlo variance of the maximum likelihood estimator
β̂, Var(a) = (β − β̂)2̄, and the Monte Carlo average bias, Bias(a) = β − β̄̂, for each evaluated a
under the bimodal distribution for exposure. The specified values for dl correspond to the
circumstances where 25%, 50%, and 75% of data are below the threshold. In most cases
imputation of zero resulted in minimally biased estimates, with Monte Carlo relative biases
comparable to those observed under use of the E(x|x<dl). Imputation of dl and dl/2 resulted in
substantially greater biases. Table 4 displays the results of simulations where exposure is
gamma distributed. Results for the gamma distributed exposure were similar to those for the
bimodal distribution; imputation of zero and E(x|x<dl) performed similarly well while use of
dl or dl/2 resulted in substantially biased estimates.

Discussion
We have considered analysis of exposures subject to a lower threshold, a circumstance
frequently confronted in epidemiological studies evaluating relations between laboratory data
and health outcomes. Appropriate management of data below such a threshold is imperative
for proper conclusions, and available information may not be sufficient for use of parametric
approaches. Using an analytical approach to finding unbiased estimators, substitution of zero
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for sub-threshold/missing data was observed to minimize bias when using no/known intercept
linear regression models; when estimating the intercept, imputation of the average of data above
detection limits yielded optimal estimates. Data from a population-based study was used to
display the effects of the proposed solutions. Additionally, Monte Carlo simulations were used
to demonstrate solutions applied to logistic regression where the intercept is known and/or
excluded from models, which is appropriate for case-control study data. Imputation of zero
performed optimally in these circumstances.

While this result may seem illogical, the solutions for linear regression may be understood
intuitively. Imputation of zero for exposure values below detection limits essentially eliminates
the leverage of those data on estimation when concerned solely with the slope of the regression
line (i.e., the no intercept model). If the data perfectly meet the assumptions for this model then
use of the subset of data above the threshold will yield identical estimates to those produced
using all data when they are not subject to a threshold. Similarly, imputation of the expected
value for all observed data (i.e. z > dl) eliminates the leverage of those data points on estimation
of the regression line slope while also allowing for estimation of the intercept; imputation of
zero clearly has implications for estimation of the linear regression intercept.

The real data example results display the effectiveness of these imputations as well as certain
limitations. Estimates under the proposed imputations were not statistically different from
those subjected to no detection threshold; however, nor were they identical. In combination
with normal sampling variability, when data do not perfectly conform to the assumptions for
linear regression this is expected to be the case. Non-linear relations can be poorly represented
when a subset of data is observable. Additionally, when error is not Normally and/or identically
distributed, data with disproportionate leverage on estimation may be subject to the threshold
and the parameter estimates unequal to those without a detection threshold. Importantly, in
these cases the estimates under a no-threshold linear model are subject to the same limitations;
data transformation techniques should be considered. Under the assumptions of linear
regression, imputation of zero for no intercept or the mean of observed values for intercept
models are appropriate for investigators opting for non-parametric approaches.

Various approaches to management of data measured with a lower limit including imputations
derived from the LOD itself, such as dl/2 or dl/√2, have been used in laboratory and data
analysis settings (4,6,12). A multiple imputation approach based on bootstrapping has also
been proposed (5). The utility of these approaches depends upon proper determination of the
exposure distribution function distribution. Recent work showed that use of E(x|x<dl) for those
data below detection limits allows unbiased estimation of linear and, under certain conditions,
logistic regression parameters; however, this approach requires assumptions regarding the
underlying exposure distribution. We have shown that unbiased estimates may also be obtained
if data below the detection limit are replaced by zero for no intercept models and by E(x|
x>dl) for models estimating the intercept; use of these methods requires no distributional
assumptions.

We performed Monte Carlo simulations of bimodal and gamma exposures with a logit-linear
relation to the outcome and stipulated varying proportions of the data to be below a detection
threshold. Under a no-intercept model (α = 0) with slope parameter equal to 0.3 (OR = 1.35)
imputation of zero resulted in similarly minimally biased results as use of E(x|x<dl). This
approach may be useful for logistic regression models when available information makes
distributional assumptions difficult to validate, thereby extending upon previously published
work (7). We have presented analytic solutions for linear regression and no-intercept logistic
regression; the solutions presented here are not generalizable to other complex modeling
situations.
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Conclusion
Measurement of laboratory data can be limited by a detection threshold when sample exposure
levels are in the range of that threshold. When a meaningful proportion of data falls below the
detection threshold there is a need for simple yet valid approaches to handling the data. When
investigators are confident of the validity of distributional assumptions parametric methods
may be used. We have demonstrated approaches that require no distributional assumptions and
are easily applied to achieve unbiased estimates. In all cases, sensitivity analyses to evaluate
the chosen approach are recommended. Importantly, this paper has focused on analytic studies
primarily interested in estimating linear relations between signal and response. Nevertheless,
investigators should evaluate the nature of the data, detection limit, as well as the parameter
to be estimated when choosing the optimal method for management of sub-threshold data.
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Appendix 1
Application of the definition for z′ from equation 3,

z ′
i = (xi + ηi)I {xi + ηi ≥ d} + a I {xi + ηi < d}, i = 1, … , n

to equation 5 for the least squares estimator with detection limit error,
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Bn = β
∑i=1

n (xi − z ′
i)z ′

i

∑i=1
n (z ′

i)
2

yields the following,

= β

∑i=1
n (z ′

i)
2 ∑
i=1

n
( − xiηiI {xi + ηi ≥ d} + axiI {xi + ηi < d} − ηi

2I {xi + ηi ≥ d} − a2I {xi + ηi < d})

The bias of estimator β̂n is zero (i.e. Bn = 0) if and only if the numerator of Bn (equation 5) is
equal to zero:

a2 1
n ∑

i=1

n
I {xi + ηi < d} − a 1

n ∑
i=1

n
xiI {xi + ηi < d} + 1

n ∑
i=1

n
(ηi

2I {xi + ηi ≥ d} + xiηiI {xi + ηi ≥ d}) = 0 (A1.1)

Asymptotically (as n → ∞), under the restrictions: 1. E(x2) < ∞; 2. E(|ζ|)3 < ∞, and; 3. E(xζ)2

< ∞; the solution of the equation 5 is almost surely equal to the solution of

a2Pr{x1 + η1 < d} − a E(x1, x1 + η1 < d)

+ E(η1
2, x1 + η1 ≥ d) + E(x1η1, x1 + η1 ≥ d) = 0.

(A1.2)

The preceding determines an “a” such that bias, Bn, equals zero, asymptotically. When
detection limit error can be clearly delineated, i.e., Pr(ζ < d) ≡ 1, a may be either a1 = E(x|x <
d) or a2 = 0.

Appendix 2
For estimation of the regression parameter and unknown intercept when exposure is measured
with a threshold,

Bn = β
∑
i=1

n
z ′

i(xi − 1
n ∑ j=1

n xi) − ∑
i=1

n (z ′
i − 1

n ∑ j=1
n z ′

j)2

∑
i=1

n (z ′
i − 1

n ∑ j=1
n z ′

j)2
.

The numerator of Bn may be demonstrated as

∑
i=1

n
z ′

i(xi − 1
n ∑ j=1

n xi) − ∑
i=1

n (z ′
i − 1

n ∑ j=1
n z ′

j)2 =

= ∑
i=1

n
xi
2I (xi ≥ dl) + a ∑

i=1

n
xiI (xi < dl) − 1

n ∑
i=1

n
xi ∑i=1

n
xiI (xi ≥ dl)

− a
n ∑

i=1

n
xi ∑i=1

n
I (xi < dl) − ∑

i=1

n
xi
2I (xi ≥ dl) − a2 ∑

i=1

n
I (xi < dl)

+ 1
n ( ∑i=1n xiI (xi ≥ dl))2 + 2a

n ∑
i=1

n
xiI (xi ≥ dl) ∑

i=1

n
I (xi < dl) + a2

n ( ∑i=1n I (xi ≥ dl))2
= − a ∑

i=1

n
I (xi < dl) − ∑

i=1

n
xiI (xi < dl) a

n ∑
i=1

n
I (xi ≥ dl) − 1

n ∑
i=1

n
xiI (xi ≥ dl) .

(A2.1)

Hence, the bias is equal to zero if the right side of equation A2.1 is equal to zero.
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Appendix 3
For models not estimating the intercept with a numerical response below dl rather than ‘ND’,
first define a substitution of observed z

z ′
i(a) = ziI {zi ≥ dl ′} + a I {zi < dl ′}, for i = 1, … , n, (A3.1)

where dl′ is the fixed detection limit. The bias of the least squares estimator is given by

Bn = β
∑i=1

n (xi − z ′
i)z ′

i

∑i=1
n (z ′

i)
2 . (A3.2)

In this case, bias Bn is asymptotically close to 0 if a and d′ are solutions of the equation

E(z ′
1x1) − E(z ′

1)
2 = 0. (A3.3)

Solving equation 12 requires the distribution functions of xi, ηi and ζ be assumed, and may be
performed numerically by grid searching a and dl′ such that the left side of equation 12 is
approximately equal to zero.

When the density function of regression error is known and well behaved, then we may consider
maximum likelihood estimation of β

β̂n = arg max
b

∏
i=1

n
f ɛ(Yi − bz ′

i) (A3.4)

and the consideration of bias reduction from sections 1.1 and 1.2 is similarly relevant here.

To address a numerical response below dl when estimating the intercept, the replacement
defined in A3.1 is employed. Using the proposed method, in the case where the distributions
of all random variables in equation 1 are known, the unbiased least square estimator of
parameter β based upon the sample{Y,z′} is obtained by applying a and d′ such that

E z ′(x − E(x) − E z ′ − E(z ′)
2

= 0.

Appendix 4
Note that, asymptotically, by the definition of least squares slope parameter estimators under

the detection limit problem (e.g. equation A1.2), we attain Eβ̂n → λβ, where λ = cov(x, z ′)

var(z ′)
.

This form is similar to an asymptotic property of the ordinary least squares estimator of the
parameters from linear regression with additive measurement error (7).

Appendix 5
The logistic regression model with exposure measurement error is given by

P(Yi = 1 | xi) = (1 + e
−βzi)−1

,

zi = (xi + ηi)I {xi + ηi ≥ d} + ξiI {xi + ηi < d}, i = 1, … , n,
(A5.1)
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where Yi, i=1, …,n are Bernoulli variates whose exact distribution depends on the predictor
xi. Let xi + ηi be observed, if xi + ηi ≥ d, hence we assume a substitution of observed zi by zi’
= (xi + ηi) I{ xi + ηi ≥ d }+ a I{ xi + ηi < d}, i=1,…,n. Applying the maximum likelihood
method we obtain the estimator of β by solving the following

∑
i=1

n
z ′

i(Yi − e
β̂nz ′

i

1 + e
β̂nz ′

i ) = 0.

It follows from the usual Taylor expansion that

β̂n − β = ∑
i=1

n
z ′

i(Yi − e
βxi

1 + e
βxi ) + β ∑

i=1

n
z ′

i(xi − z ′
i)Qi ∑

i=1

n
(z ′

i)2Qi

−1
,

Qi ∈ ( e
βxi

(1 + e
βxi)2

, e
β̂nz ′

i

(1 + e
β̂nz ′

i)2 ). (A5.2)

Thus, in this case, the detection limit error bias is defined by

Bn =
β∑i=1

n z ′
i(xi − z ′

i)Qi

∑
i=1

n
(z ′

i)2Qi

(A5.3)

Therefore, even though ηi = 0, i = 1, …,n, we obtain

Bn =
β∑i=1

n (axiI (xi < d) − a2I (xi < d))Qi

∑
i=1

n
(z ′

i)2Qi

where Bn is zero only if a is zero, because generally Qi is dependent on i, and target unknown
β, and unobserved xi.
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Figure 1.
Probability distribution functions for Monte Carlo simulation study; exposure distributed
bimodal Normal (left panel) and gamma (right panel)
Caption: Dotted lines indicated the values utilized for the threshold corresponding to the
25th, 50th and 75th percentiles.
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TABLE 1
Coefficient estimates from linear regression with known intercept of serum cholesterol on serum vitamin E with
values below the LOD replaced by the average (x|x<dl) and zero.

All values (reference) Replace by Average (x|x<dl) Replace by Zero

β̂ 4.07 4.06 4.19
S.E. (β̂) 0.14 0.14 0.15
β̂ (95% CI) (3.80, 4.34) (3.79, 4.33) (3.90, 4.48)
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Schisterman et al. Page 15

TABLE 2
Coefficient estimates from linear regression of serum cholesterol on serum vitamin E with values below the LOD
replaced by the average (x|x<dl), average (x|x>dl) and zero.

All values (reference) Replace by Average (x|
x<dl)

Replace by Average (x|
x>dl)

Replace by Zero

α̂ 196.88 197.39 204.53 219.76
S.E. (α̂) 5.21 5.26 7.51 3.35
α̂ (95% CI) (186.67, 207.09) (187.08, 207.7) (189.81, 219.25) (213.19, 226.33)
β̂ 4.07 4.03 3.02 2.89
S.E. (β̂) 0.36 0.36 0.46 0.24
β̂ (95% CI) (3.36, 4.78) (3.32, 4.74) (2.12, 3.92) (2.42, 3.36)

Am J Epidemiol. Author manuscript; available in PMC 2006 March 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schisterman et al. Page 16
TA

B
LE

 3
Lo

gi
st

ic
 re

gr
es

si
on

 si
m

ul
at

io
n 

st
ud

y 
w

ith
 b

im
od

al
 N

or
m

al
 d

is
tri

bu
te

d 
ex

po
su

re
; b

ia
s a

nd
 v

ar
ia

nc
e 

of
 th

e 
es

tim
at

or
 u

nd
er

 re
pl

ac
em

en
t v

al
ue

, a
, e

qu
al

 to
 0

,
E(

x|x
<d

l),
 d

l a
nd

 d
l/2

B
ia

s (
M

on
te

 C
ar

lo
 e

st
im

at
or

 o
f β

)
V

ar
ia

nc
e 

(M
on

te
 C

ar
lo

 e
st

im
at

or
 o

f β
)

a=
a=

β
d

%
 x

 <
 d

l
0

E(
x|

x<
d)

dl
dl

/2
0

E(
x|

x<
d)

dl
dl

/2

0.
3

5
25

%
0.

00
02

6
0.

00
01

9
0.

00
11

7
0.

00
05

7
0.

00
02

5
0.

00
02

5
0.

00
02

7
0.

00
02

6
8.

5
50

%
0.

00
06

8
0.

00
05

9
0.

01
40

7
−0

.0
00

82
0.

00
02

6
0.

00
02

5
0.

00
04

3
0.

00
02

6
12

75
%

0.
00

11
7

−0
.0

07
96

0.
05

36
0

0.
00

19
7

0.
00

03
9

0.
00

03
8

0.
00

30
7

0.
00

04
6

0.
5

5
25

%
−0

.0
00

45
−0

.0
00

75
0.

00
27

6
−0

.0
01

27
0.

00
02

4
0.

00
02

4
0.

00
02

4
0.

00
02

4
8.

5
50

%
−0

.0
00

62
−0

.0
05

18
0.

04
61

1
−0

.0
08

33
0.

00
02

8
0.

00
03

1
0.

00
22

5
0.

00
03

7
12

75
%

−0
.0

01
83

−0
.0

44
09

0.
12

60
8

−0
.0

83
98

0.
00

06
8

0.
00

23
9

0.
01

59
8

0.
00

79
4

0.
7

5
25

%
−0

.0
02

30
−0

.0
04

76
0.

01
81

4
−0

.0
08

07
0.

00
06

8
0.

00
06

8
0.

00
07

8
0.

00
07

7
8.

5
50

%
0.

00
66

8
−0

.0
38

78
0.

14
70

2
−0

.0
91

31
0.

00
16

0
0.

00
25

3
0.

02
17

4
0.

02
17

4
12

75
%

−0
.1

21
20

−0
.0

79
91

0.
26

26
4

0.
14

12
3

0.
10

95
9

0.
07

71
2

0.
16

90
6

0.
14

07
6

N
ot

es
: v

al
ue

s o
f E

(x
|x<

d)
 a

re
; 3

.4
05

 fo
r d

 =
 5

; 4
.9

34
 fo

r d
 =

 8
.5

; 6
.7

00
 fo

r d
 =

 1
2.

 P
{Y

i =
 1

|x i
} =

 (1
+ 

ex
p(
−c
−β

x i
))
− ¹

, c
=−

5,
 c

 is
 k

no
w

n 
x i

 =
 N

(5
,2

2 )
(1

 −
 θ

i) 
+ 

N
(1

2,
22

)θ
i, 

w
he

re
, θ

i, 
i ≥

 1
 a

re
 in

de
pe

nd
en

t
id

en
tic

al
ly

 B
er

no
ul

li 
di

st
rib

ut
ed

 ra
nd

om
 v

ar
ia

bl
es

 w
ith

 P
{θ

i =
 1

}=
1/

2

Am J Epidemiol. Author manuscript; available in PMC 2006 March 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schisterman et al. Page 17
TA

B
LE

 4
Lo

gi
st

ic
 re

gr
es

si
on

 si
m

ul
at

io
n 

st
ud

y 
w

ith
 g

am
m

a 
di

st
rib

ut
ed

 e
xp

os
ur

e;
 b

ia
s a

nd
 v

ar
ia

nc
e 

of
 th

e 
es

tim
at

or
 u

nd
er

 re
pl

ac
em

en
t v

al
ue

, a
, e

qu
al

 to
 0

, E
(x

|x<
dl

),
dl

 a
nd

 d
l/2

B
ia

s (
M

on
te

 C
ar

lo
 e

st
im

at
or

 o
f β

)
V

ar
ia

nc
e 

(M
on

te
 C

ar
lo

 e
st

im
at

or
 o

f β
)

a 
=

a=
β

d
%

 x
 <

 d
l

0
E(

x|
x<

d)
dl

dl
/2

0
E(

x|
x<

d)
dl

dl
/2

0.
3

0.
63

4
25

%
0.

00
15

3
0.

00
14

8
0.

00
73

0
−0

.0
01

65
0.

01
20

4
0.

01
14

8
0.

01
41

2
0.

01
37

3
0.

91
9

50
%

0.
00

30
9

0.
00

28
0

0.
02

92
6

−0
.0

05
95

0.
01

37
3

0.
01

26
9

0.
01

58
0

0.
01

45
0

1.
27

8
75

%
0.

00
70

8
0.

00
58

6
0.

07
38

3
−0

.0
13

68
0.

01
38

4
0.

01
28

9
0.

01
62

8
0.

01
47

4
1.

5
0.

63
4

25
%

−0
.0

04
27

−0
.0

04
05

0.
04

31
9

−0
.0

23
75

0.
01

63
6

0.
01

58
2

0.
01

69
9

0.
01

73
2

0.
91

9
50

%
−0

.0
06

30
−0

.0
05

99
0.

18
29

2
−0

.0
79

87
0.

01
93

3
0.

01
59

0
0.

04
40

8
0.

02
82

1
1.

27
8

75
%

−0
.0

10
79

0.
00

08
5

0.
42

68
5

−0
.1

44
73

0.
02

45
0

0.
01

98
2

0.
18

93
4

0.
04

34
8

N
ot

es
: v

al
ue

s o
f E

(x
|x<

d)
 a

re
; 0

.4
54

 fo
r d

 =
 0

.6
34

; 0
.6

15
 fo

r d
 =

 0
.9

19
; 0

.7
72

 fo
r d

 =
 1

.2
78

. P
{Y

i =
 1

|x i
} =

 (1
+ 

ex
p(
−c
−β

x i
))
− ¹

, c
=−

1,
 c

 is
 k

no
w

n,
 x

i ~
 G

am
m

a(
sh

ap
e 

= 
4,

sc
al

e 
= 

4)

Am J Epidemiol. Author manuscript; available in PMC 2006 March 22.


	University of Massachusetts Amherst
	From the SelectedWorks of Brian W. Whitcomb
	2006

	The Limitations due to Exposure Detection Limits for Regression Models
	tmp0HM5yI.pdf

