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[1] In contrast to free shear layers, which grow continuously downstream, shear layers
generated by submerged vegetation grow only to a finite thickness. Because these shear
layers are characterized by coherent vortex structures and rapid vertical mixing, their
thickness controls exchange between the vegetation and the overlying water. Experiments
conducted in a laboratory flume show that the growth of these obstructed shear layers is
arrested once the production of shear-layer-scale turbulent kinetic energy (SKE) is
balanced by dissipation of SKE within the canopy. This equilibrium condition, along with
a mixing length closure scheme, was used in a one-dimensional numerical model to
predict the mean velocity profiles of the experimental shear layers. The agreement
between model and experiment is very good, but field application of the model is limited
by a lack of description of the drag coefficient in a submerged canopy. INDEX TERMS:

1890 Hydrology: Wetlands; 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes; 4211

Oceanography: General: Benthic boundary layers; KEYWORDS: mixing length, shear layer, turbulence,

vegetated flow, vortex
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1. Introduction

[2] Aquatic macrophyte communities, which include the
plants as well as the plankton, benthic flora, and epiphytic
organisms that live among them, depend on a supply of
nutrients from the surrounding water column [e.g., Short et
al., 1990; Taylor et al., 1995]. In turn, these communities
play an important role in maintaining the water quality of
coastal regions by filtering nutrients from the water column
[Short and Short, 1984]. Submerged macrophytes also
provide an important habitat for invertebrate larvae [e.g.,
Phillips and Menez, 1988]. Settlement and recruitment of
larvae to this habitat depend not only on organism behavior
but also on hydrodynamic processes at many scales in and
around the canopy (as reviewed by Butman [1987], also by
Eckman [1983], Duggins et al. [1990], Gambi et al. [1990],
and Grizzle et al. [1996]). The drag exerted by the vegeta-
tion promotes sediment accumulation by reducing the near-
bed stress [Lopez and Garcia, 1997], and this is also
expected to strongly influence the vertical transport of
chemicals released by the sediment. This paper presents
predictive models for key aspects of the canopy-scale
hydrodynamics, described below.
[3] The dominant hydrodynamic feature of flow with

submerged macrophytes is a region of strong shear at the
top of the canopy, created by the vertical discontinuity of the
drag [Gambi et al., 1990; Nepf and Vivoni, 2000]. Figure 1
shows the vertical profile of mean velocity for a flow with
submerged, flexible vegetation (data taken from Ghisalberti
and Nepf [2002]). The shear layer contains an inflection
point, making it dynamically analogous to a mixing layer,
with vertical transport through the layer dominated by

coherent, shear-scale, Kelvin-Helmholtz (KH) vortices
[Raupach et al., 1996; Ikeda and Kanazawa, 1996;
Ghisalberti and Nepf, 2002]. These vortices therefore
control the exchange of nutrients, larvae, and sediment
between a submerged canopy and the overlying water. In
an unobstructed mixing layer, the vortices grow continually
downstream [e.g., Brown and Roshko, 1974]. In a vegetated
mixing layer, however, the vortices grow to a finite size a
short distance from their initiation [Ghisalberti and Nepf,
2002]. In many instances (as in Figure 1), the final vortex
size, and the region of rapid exchange it defines, extends to
neither the water surface nor the bed. This segregates the
canopy into an upper region of rapid exchange and a lower
region with more limited water renewal [Nepf and Vivoni,
2000].
[4] The goal of this paper is to explain the dynamic

equilibrium that arrests the growth of vortices formed in a
vegetated shear layer. Once established, this equilibrium
condition can be used, with simple turbulence closure, to
predict the vertical velocity profile within and above sub-
merged canopies. Previous studies have shown that the
velocity profile above a vegetated boundary follows a
logarithmic form, with velocity scale u* defined by the
turbulent stress at the top of the canopy and roughness scale
zo defined by canopy morphology [e.g., Thom, 1971; Shi et
al., 1995; Nepf and Vivoni, 2000]. However, the logarithmic
form begins a full canopy height h above the actual top of
the canopy (i.e., at z = 2h). The velocity profile within the
canopy is often assumed to be uniform, resulting from a
balance of vegetative drag and hydraulic gradient. The in-
canopy and above-canopy profiles are then matched using
semiempirical relations [e.g., Kouwen et al., 1969; Kouwen
and Unny, 1973]. Numerical models that use turbulence
closure schemes in which the canopy elements are both a
sink of mean flow energy and a source of turbulent energy
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have also been employed to predict velocity profiles in
vegetated flows [e.g., Burke and Stolzenbach, 1983; Lopez
and Garcia, 2001; Neary, 2003]. These models, however,
do not predict the cessation of shear layer growth.

2. Shear Layer Hydrodynamics

[5] This paper presents a one-dimensional approximation
to a three-dimensional flow. The fully developed mean flow
is assumed to be steady, parallel, and uniform in x and y
(with coordinate directions defined in Figure 1). Using the
standard Reynolds decomposition (i.e., ui = Ui + ui

0) and an
over bar to denote temporal averaging, the streamwise
momentum equation takes the form

gS ¼ @u0w0

@z
þ 1

2
CDaU

2; ð1Þ

where a represents the frontal area of the vegetation per unit
volume, CD is the drag coefficient of the canopy, and S is
the surface slope (=�dH/dx). We note that vegetated shear
flow is horizontally inhomogeneous at several scales [see,
e.g., Finnigan, 2000], but in this analysis the inhomogeneity
is removed by spatial averaging. Specifically, all velocity
statistics presented in this paper, including those in
equation (1), represent averages over the horizontal plane
of local temporal means. In equation (1) we assume that the
canopy is sufficiently dense that bed drag is negligible in
comparison with canopy drag and the ‘‘dispersive flux’’
(which arises from spatial averaging) is negligible in
comparison with the turbulent flux [see, e.g., Brunet et
al., 1994].

[6] There are two dominant turbulence scales in the flow:
the shear (KH vortex) scale and the wake scale. The
turbulent kinetic energy budget can be separated into these
two distinct eddy scales, such that the canopy acts as a sink
of shear-scale turbulent energy but as a source of wake-scale
turbulent energy. As the KH vortices dominate vertical
transport and govern shear layer growth, only the budget
for shear-scale turbulent kinetic energy (SKE) will be
considered here. Following Shaw and Seginer [1985], the
budget for SKE in a vegetated shear layer can be written as

Dks

Dt
¼ �u0w0 @U

@z
� @w0ks

@z
� 1

r
@w0p0

@z
� eW � es

ðIÞ IIð Þ IIIð Þ IVð Þ Vð Þ
ð2Þ

where r is the fluid density, p is the pressure, and ks is the
instantaneous SKE. The terms on the right-hand side of
equation (2) are shear production (I), turbulent transport of
SKE (II), pressure transport (III), dissipation by canopy drag
(IV), and viscous dissipation of SKE (V). The canopy
dissipation eW represents the conversion of shear-scale
turbulence into wake-scale eddies by the canopy elements.
Similarly to Finnigan [2000],

eW � 1

2
CDaU 2u02 þ v02

� �
; ð3Þ

where here it is expected that because of cylinder geometry,
the dissipation of horizontal turbulent motions by the
canopy will be much more pronounced than that of vertical
turbulent motions. We assume that there is no export of
SKE outside the shear layer. This assumption is supported
by velocity spectra, which exhibit a clear peak at the vortex
frequency inside the shear layer [Ghisalberti and Nepf,
2002], but not outside. If the pressure transport term in
equation (2) is assumed to be due predominantly to shear-
scale pressure fields (as in the work by Zhuang and Amiro
[1994]), then integration of equation (2) between the lower
and upper limits of the shear layer (z1 and z2, respectively,
as shown in Figure 1) eliminates the transport terms.
Furthermore, we expect that drag dissipation of the shear-
scale structures will dominate viscous dissipation [see, e.g.,
Wilson, 1988]. Therefore, for a fully developed vegetated
shear layer (Dks/Dt = 0),

Z z2

z1

�u0w0 @U

@z
dz ¼

Z h

z1

1

2
CDaU 2u02 þ v02

� �
dz; ð4Þ

where h is the canopy height. We postulate that the growth
of vegetated shear layers ceases once SKE production is
countered exactly by canopy drag dissipation within the
shear layer, much as bottom friction impedes the growth of
shallow, horizontal shear layers [see, e.g., Chu and
Barbarutsi, 1988]. We prove this using experimental
observations.
[7] The integral conservation of SKE described in equa-

tion (4) can be simplified with the assumption of an
appropriate eddy viscosity, nT. As the length scale of vertical
transport (i.e., the vortex scale) is not significantly smaller
than the distance over which the curvature of the mean shear
changes appreciably, a flux-gradient model is not strictly
valid [Corrsin, 1974]. However, many turbulent transport

Figure 1. Mean velocity profile of a flow with submerged,
flexible vegetation of height h (data taken from Ghisalberti
and Nepf [2002]). The shear layer is defined by the limits z1
(where the mean velocity is U1) and z2 (U2), and has a
thickness tml. The total shear across the layer is DU (= U2 �
U1). The velocity profile contains an inflection point near
the top of the vegetation. Despite its asymmetry, the profile
qualitatively resembles the hyperbolic tangent profile (solid
line) of a mixing layer.
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problems violate this condition yet are modeled successfully
with an eddy viscosity. Therefore the assumption of an eddy
viscosity was deemed reasonable, if not strictly fundamen-
tally valid. The eddy viscosity can be regarded as the
product of a vertical turbulent length scale (which will scale
upon the thickness of the shear layer, tml) and a vertical
turbulent velocity (which will scale upon the total shear,
DU). Although the turbulent length scale is expected to be
constant throughout the shear layer, the turbulent velocity is
not; the vortices create much stronger vertical velocity
fluctuations along their centerline than at their edges. Thus
nT will be maximized at the vortex center, in the middle of
the shear layer. So we may define

nT ¼ �u0w0

@U=@z
¼ C1DU tml f z*ð Þ; ð5Þ

where C1 is a constant and z* = ((z � z1)/tml) is the
fractional distance above the shear layer bottom. The shape
function f (z*) is expected to peak in the middle of the shear
layer, at z* = 0.5.
[8] Within shear layers created by model aquatic vegeta-

tion, the vertical profile of �u0w0/(2u0 2 + v0 2) is similar
across a wide range of canopy conditions (data taken from
Dunn et al. [1996], ad = 0.002 � 0.016). This ratio
increases from zero at z* = 0 to a maximum at the top of
the canopy, z* = (h � z1)/tml (as also shown by Nepf and
Vivoni [2000] and by our own unpublished data). Note that
the ratio (h � z1)/tml represents the fraction of the shear
layer that lies within the canopy and will henceforth be
denoted by a . If we assume that the vertical profile of
�u0w0/(2u0 2 + v0 2) has the same form as f (z*) but peaks at
z* = a rather than z* = 0.5, then within the canopy

� u0w0

2u02 þ v02
¼ C2 f z*ð Þ

a=0:5ð Þ ; ð6Þ

where C2 is a constant. With equations (5) and (6),
equation (4) becomes

Z 1

0

@U

@z*

� �2

f z*ð Þ dz* ¼ tmla
C2

Z h

z1

CDaU
@U

@z
dz: ð7Þ

[9] Because unbounded vegetated shear layers have no
externally imposed length scale, it is reasonable to assume
an approximate self-similarity of velocity profiles (as is
done for all free shear flows). Furthermore, we will assume
that f (z*) has a single, universal form in vegetated shear
layers. Under these two assumptions, the left-hand side of
equation (7) will scale upon (DU)2. So if (CD a) is assumed
to be constant through the canopy, then equation (7)
becomes

DUð Þ2� h� z1ð ÞCD a U2
h � U2

1

� �
; ð8Þ

where Uh and U1 are the mean velocities at the top of the
canopy and at the bottom of the shear layer, respectively.
Recall that the scaling relationship in equation (8) holds
if the production and drag dissipation of SKE are equal.
As we postulate that shear layer growth ceases once this

equality is satisfied, it is expected that the stability
parameter

W ¼ 1

h� z1ð ÞCD a

DUð Þ2

U2
h � U2

1

 !
ð9Þ

will be a universal constant for fully developed vegetated
shear flows. At the beginning of shear layer development,
SKE production outweighs dissipation and W (a scaled ratio
of production to dissipation) will be high. The resulting
increase in SKE is manifest as vortex growth, and thus an
increase in (h � z1), such that W will decrease along the
canopy until reaching its equilibrium value. SKE production
and dissipation will then be equal and shear layer growth
will cease. The following experiments were conducted to
confirm the universal constancy of W in fully developed
vegetated shear layers.

3. Experimental Methods

[10] Laboratory experiments were conducted in a 24-m-
long, glass-walled recirculating flume with a width (b) of
38 cm (Figure 2). A constant flow depth (H) of 46.7 cm was
employed. Smooth inlet conditions were created using a
dense array of emergent cylinders to dampen inlet turbu-
lence and a flow straightener to eliminate swirl. Model
canopies consisted of circular wooden cylinders (d =
0.64 cm) arranged randomly in holes drilled into 1.26-m-
long Plexiglas boards. Five boards were used, creating a
model meadow 6.3 m in length. The packing density a
was varied between 0.025 and 0.08 cm�1, as described
in Table 1. The range of dimensionless plant densities
(ad = 0.016 � 0.051) is representative of dense aquatic
meadows [see, e.g., Chandler et al., 1996]. The average
height of the canopy (h) was 13.8 or 13.9 cm (Table 1),
changing slightly as dowels were added.
[11] Velocity measurements (u, v, w) were taken simulta-

neously by three three-dimensional (3-D) acoustic Doppler
velocimeters (ADV), separated laterally by 10 cm (Figure 2).
Velocity statistics from the three probes were averaged to
obtain the spatial mean, as discussed earlier. All probes
were located within the central 30 cm of the flume, outside
of the sidewall boundary layers [Nepf and Vivoni, 2000].
Vertical profiles consisting of 32 ten-minute velocity
records were collected at a sampling frequency of 25 Hz.
Because of the configuration of the ADV probes, the
uppermost 7 cm of the flow could not be sampled. An
8-cm-long slice of dowels (equivalent to 1.6–2.8 times the
intercylinder spacing, DS) was removed across the channel
to allow probe access. As shown by Ikeda and Kanazawa
[1996], the removal of canopy elements over a short length
(7DS in their study) has little impact upon the measured
velocity statistics. All velocity profiles were measured at x =
6.0 m. Fully developed flow (i.e., @/@x = 0) was established
well before this sampling point; e.g., tml and DU changed by
less than 1% between x = 4.6 m and x = 6.0 m in run G.
[12] Eleven flow scenarios with varying values of dis-

charge, Q, and a were examined (Table 1). The hydraulic
radius Reynolds number (ReRh = Q/{n(2H + b)}) varied
between 1250 (transitional) and 11,800 (fully turbulent).
However, as discussed by Ghisalberti and Nepf [2002], the
nature of vegetated flows is likely to be much more
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dependent upon the mixing layer Reynolds number (Reml =
DUtml/n). In unobstructed mixing layers, the transition from
laminar to turbulent conditions is characterized by the
development of small-scale turbulence superimposed upon
the coherent vortical structures. This transition occurs over
the range Reml � 6 	 103 to 2 	 104 [Koochesfahani and
Dimotakis, 1986]. As shown in Table 1, the flow scenarios
of this study encompass values of Reml less than, within,
and greater than the critical range.
[13] The surface slope S along the meadow was too small

to be accurately measured by surface displacement gauges.
Therefore S was estimated as

S ¼ 1

g

@u0w0

@z

� �
; h < z < z2 ð10Þ

in accordance with equation (1). This method provided
good estimates of the measured surface slope in the flume of

Dunn et al. [1996] and (in a previous study) the flume used
here [Nepf and Vivoni, 2000]. As shown in Figure 3, the
vertical profile of u0w0 within h < z < z2 is clearly linear,
allowing easy estimation of S. Above z = z2, secondary
circulation appears to significantly affect the vertical
gradient of u0w0 [see Dunn et al., 1996].

4. Experimental Results

4.1. Basic Properties of Velocity Profiles

[14] The parameters defining the vegetated shear layer in
each experiment are listed in Table 1. In this table the
cylinder Reynolds number has been evaluated using the
velocity at the top of the canopy (i.e., Red = Uhd/n).
The limits of the shear layer (i.e., z1 and z2) were taken as
an average of the estimated locations of zero shear and of
zero Reynolds stress.
[15] The vertical profiles of mean velocity and Reynolds

stress for runs H and J (a = 0.08 m�1 for both) are shown in

Figure 2. Side view of the 38-cm-wide laboratory flume (note the vertical exaggeration). Smooth inlet
conditions were created using a dense array of emergent cylinders to dampen inlet turbulence and a flow
straightener to eliminate swirl. Vertical profiles of 10-min velocity records were taken with three three-
dimensional acoustic Doppler velocimeters at 25 Hz.

Table 1. Summary of Experimental Conditions and Vegetated Shear Flow Parameters

Run

A B C D E F G H I J K

Q, 	10�2 cm3 s�1 48 17 74 48 143 94 48 143 94 48 17
h, cm 13.9 13.9 13.9 13.9 13.8 13.8 13.8 13.8 13.8 13.8 13.8
a, cm�1 0.025 0.025 0.034 0.034 0.040 0.040 0.040 0.080 0.080 0.080 0.080
S,a 	105 0.99 0.18 2.5 1.2 7.5 3.2 1.3 10 3.4 1.3 0.26
tml, ±1.0 cm 32.8 25.3 31.4 30.7 35.4 33.5 28.8 33.9 32.7 28.5 21.8
U1, cm s�1 1.3 0.50 1.7 1.1 3.5 2.4 1.1 2.7 1.7 0.77 0.27
Uh, cm s�1 2.5 1.0 3.5 2.4 6.7 4.6 2.3 6.3 4.0 2.1 0.93
DU, cm s�1 3.2 1.3 4.9 3.5 9.5 6.0 3.3 11 7.4 3.9 1.7
h � z1, ±0.5 cm 12.5 9.0 11.7 11.3 11.3 10.9 10.5 10.6 9.6 8.3 6.4
a 0.38 0.36 0.37 0.37 0.32 0.32 0.36 0.31 0.29 0.29 0.29
Reml, 	10�4 1.1 0.32 1.6 1.1 3.7 2.2 1.0 3.8 2.4 1.1 0.36
Red 170 68 230 150 460 320 160 400 250 130 57
CDh 1.2 1.4 1.1 1.1 0.95 0.99 1.1 0.79 0.84 0.92 1.1

aThe uncertainty of S, which was obtained through least squares regression, was estimated as roughly 5%. Likewise, U1, Uh, and DU represent lateral
averages that approximate the horizontal mean with estimated uncertainties of 5%, 10%, and 2%, respectively.
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Figure 3. Below the mixing layer (z < z1), the Reynolds
stress and velocity shear are both negligible. The value of
ju0w0j increases upward through the canopy to approximately
0.02(DU)2 at the canopy top and then decreases linearly
above the canopy to a value of zero at z � z2. The
maximum shear occurs not at the drag discontinuity but
an average of 1.2 cm (�2d) below the top of the canopy.
This is due presumably to a greatly reduced drag coeffi-
cient near the free end of the cylinders, as will be shown in
section 4.3. The Reynolds stress, however, is maximized
exactly at the top of the canopy, providing the first
indication of a reduction in the rate of vertical turbulent
transport within the canopy. Figure 3 highlights the fol-
lowing trend shown in Table 1. For a given value of a
(0.08 cm�1 in Figure 3), increasing the surface slope (S =
1.3 	 10�5 and 1.0 	 10�4 for runs J and H, respectively)
increases the shear layer thickness (tml) and the shear layer
penetration into the canopy (h � z1). This is due predom-
inantly to the reduction in drag coefficient with increasing
cylinder Reynolds number. Table 1 also shows an inverse
correlation (r2 = 0.8) between a (the packing density) and
a (the fraction of the shear layer within the canopy). That
is, denser arrays act as a stronger sink of vortex energy and
thus allow less vortex penetration therein.
[16] A distinct correlation was observed between the

normalized shear (DU/Uh) and the dimensionless plant
density (ad) (Figure 4), namely,

DU

Uh

� 16 adð Þ þ 1; 0:016 < ad < 0:081: ð11Þ

While it is not surprising that denser arrays generate more
shear, we would expect that DU/Uh would also be
proportional to CD. However, the data in this study do not

bear out a dependence upon the drag coefficient; consider-
ing the ad = 0.051 data, the observed values of DU/Uh vary
by only 4%, despite a 35% variation in a representative drag
coefficient, CDh, defined in section 4.4 and listed in Table 1.
It is important to note that equation (11) is only valid within
the experimental range 0.016 < ad < 0.081. We currently

Figure 3. Vertical profiles of U and u0w0 for run H (S = 1.0 	 10�4) and run J (S = 1.3 	 10�5). An
increase in surface slope causes a slight increase in shear layer thickness and penetration. The value of
ju0w0j is approximately 0.02 (DU)2 at the top of the canopy and decreases linearly above the canopy to a
value of zero at z � z2. The thick horizontal lines indicate the limits of the shear layers. The thin
horizontal bars represent the standard uncertainties in the lateral means of U and u0w0. In some instances,
this measure is smaller than the marker.

Figure 4. The correlation between the normalized shear
(DU/Uh) and the dimensionless plant density (ad). The ad =
0.081 data come from experiments in which the shear layers
penetrated to the bed (d = 0.64 cm, h = 7.1 cm, provided
by M. Ghisalberti (unpublished data, 2002)). The vertical
bars represent the standard uncertainty in the lateral mean of
DU/Uh.
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have insufficient data from sparse canopies to speculate on
the behavior of the curve below ad = 0.016. In extremely
sparse canopies where the canopy contribution to drag is
much less than the bed contribution, the mixing layer
analogy will break down completely and the scaling in
Figure 4 will be invalid.
[17] As shown in Figure 3, the flow above the shear layer

cannot be described by the one-dimensional momentum
balance in equation (1). This is likely the result of secondary
currents. As described by Ghisalberti and Nepf [2002], the
shear layer vortices have a finite width (bv � tml/2) and the
flow is divided laterally into several subchannels of this
width. Each subchannel contains a vortex street that is out
of phase with those in neighboring subchannels. It is
expected that cellular secondary currents develop within
each subchannel, much as secondary currents are generated
between neighboring longitudinal bed forms in rivers [see
Nezu and Nakagawa, 1993]. We suggest that these second-
ary currents are not generated by the flume walls, but rather
are inherent to flows with submerged vegetation. This
assertion is supported by the fact that vegetated shear layers
generated in a wide flume (2.3 < b/H < 5.5) [Dunn et al.,
1996] exhibit the same growth behavior as the shear layers
in this study (b/H = 0.8) [see White et al., 2003].

4.2. Vertical Profiles of Eddy Viscosity and
Mixing Length

[18] This section examines the vertical profiles of eddy
viscosity (nT) and specifically the validity of the critical
assumption that f (z*) (= nT(z*)/C1DUtml, from equation (5))
has a universal form in vegetated shear layers. First, point
estimates of @U/@z were obtained using central differencing.

Then the vertical profiles of both @U/@z and u0w0 were
smoothed using a weighted, five-point moving average.
The smoothed values of @U/@z and u0w0 were used in
equation (5) to estimate nT. With the data grouped according
to their value of ad, Figure 5 depicts the profiles of eddy
viscosity (normalized by DUtml) in the shear layers. Note
that the vertical scale in this figure is z*, the distance from
the bottom of the shear layer (z1) normalized by the shear
layer thickness (tml). Because of the differencing and
smoothing processes, only values within the range 0.1 �
z* � 0.9 could be determined. The data from runs B and K
were not included in this analysis because the measured
values of ju0w0j within the shear layer (O(10�2 cm2 s�2))
were not significantly greater than the noise levels of the
ADV probes (O(10�2 cm2 s�2) [Voulgaris and Trowbridge,
1998]. The collapse of the profiles of nT (normalized by
DUtml) is excellent, validating the assumption of a singular
form of f (z*) in vegetated shear layers. As expected, the
eddy viscosity takes a maximum value (of roughly
0.012DUtml) in the center of the shear layer (z* = 0.5),
irrespective of a.
[19] The validity of a constant mixing length model was

also examined, as this will be used in section 5 to predict the
velocity profile. The vertical mixing length l is defined by

l2 ¼ �u0w0

@U=@zð Þ2
ð12Þ

and would be expected to scale upon tml. Figure 6 depicts
the vertical profiles of l/tml. The assumption of a constant

Figure 5. Vertical profiles of eddy viscosity (nT) through-
out the shear layers. The data have been normalized by
DUtml and are grouped according to their value of ad. The
vertical scale, z*, represents the distance from the bottom of
the shear layer (z1) normalized by the shear layer thickness
(tml). The shaded area represents the range of locations of the
canopy top (z* = a). The collapse of the profiles of nT/DUtml
is excellent, validating the assumption of a universal form
of f (z*) in vegetated shear layers. The horizontal bar is
representative of the standard uncertainty in each data point.

Figure 6. Vertical profiles of mixing length (l) throughout
the shear layers. The data have been normalized by tml and
are grouped according to their value of ad. The vertical
scale is as in Figure 6. The shaded area represents the range
of locations of the canopy top (z* = a). The mixing length
varies little throughout the shear layer; the standard
deviation of all values is less than 20% of the mean. For
modeling purposes, the mean mixing length above the
canopy (lac) is 0.095tml. The horizontal bar is representative
of the standard uncertainty in each data point.
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mixing length throughout the shear layer is quite reasonable
as the standard deviation of all values is less than 20% of
the mean. In the upper half of the mixing layer, the mixing
length is constant ((0.10 ± 0.01) tml) and the collapse of the
data is excellent. Below this region, there is a smooth
transition to a minimum value just below the canopy top
(located at z* = a). It is worth noting that similarly
depressed values are observed near the top of canopies that
are more dense (ad = 0.081, provided by M. Ghisalberti
(unpublished data, 2002)) and less dense (ad = 0.007, from
Lopez and Garcia [1997]) than those employed in this
study. For modeling purposes, the mean mixing length
above the canopy (lac) is 0.095tml.
[20] Moving downward into the canopy, l increases and

takes significantly larger values in the sparser arrays. It was
initially thought that the profile of l within the canopy arose
from the vertical variation in CD (as will be discussed in
section 4.3). However, even with CD assumed constant in a
k-e model, Lopez and Garcia [1997] predicted that l reaches
a local maximum within the canopy and then tends toward
zero at the bottom of the shear layer. Examination of the
unsmoothed statistics of this study, as well as experiments
in which the shear layers penetrated to the bed (h = 7.1 cm,
ad = 0.081, provided by M. Ghisalberti (unpublished data,
2002)), reveals that all vertical profiles of l (with the
exception of run J) do indeed exhibit local maxima deep
within the canopy. That the maxima occur at a fairly
consistent distance (0.10 ± 0.03 tml) from z1, and not the
bed (1–8 cm), suggests that boundary effects are not
responsible. Finally, the values of l at the limits of the shear
layer make physical sense. At z1, all vortical motion has
been dissipated by the canopy elements, so l should ap-
proach zero. Above the canopy there is no drag dissipation,
so l is expected to maintain its constant value to z2, as
demonstrated by the unsmoothed data and by Lopez and
Garcia [1997].
[21] For modeling purposes, the slight vertical variation

of l within the canopy will be ignored. The mean in-canopy
mixing length (lc) for each run was taken as the average of
the unsmoothed values, where a linear extrapolation from
the local maximum to zero at z = z1 was applied. The mean
normalized in-canopy mixing length (lc/tml) correlates well
with the penetration ratio (a). Considering all nine runs in
Figure 6,

lc=tml
a

¼ 0:22� 0:01: ð13Þ

This indicates that the destruction of vortical motion by the
canopy decreases the in-canopy mixing length and the
extent of vortex penetration to the same degree. In an
infinitely sparse array (for which we would expect a = 0.5),
the mean mixing length based on equation (13) approaches
the value observed well above the canopy (0.1tml), as
expected.
[22] An approximately constant mixing length in vege-

tated aquatic shear layers contrasts sharply with the terres-
trial analogue, in which vertical turbulent length scales
increase with height [see, e.g., Raupach et al., 1996].
Terrestrial vegetated shear layers are, however, embedded
within an atmospheric boundary layer of a much larger
scale. The height-dependence of vertical length scales is

indicative of the extent to which boundary-layer-scale
turbulence affects transport within terrestrial vegetated shear
layers. In aquatic flows, the general absence of an extensive
overlying boundary layer should allow an approximately
constant mixing length (that scales upon the vortex size)
throughout the shear layer, irrespective of the canopy
density.

4.3. Drag Coefficient of a Submerged Array

[23] While characterization of the drag coefficient (CD)
for arrays of submerged cylinders was not a focus of
this study, it is a necessary step toward evaluating W
(equation (9)) and modeling the flow. As a framework, we
first consider established relationships for the drag coeffi-
cient from previous studies. The drag coefficient of an
isolated, infinite, smooth cylinder (CDC) is well known, its
dependence on Reynolds number (Red) having the form

CDC � 1:0þ 10:0 Redð Þ�2=3; 1 < Red < 2	 105 ð14Þ

[White, 1974, p. 210].
[24] For an array of submerged cylinders, however, wake

interactions and finite cylinder length will both affect the
drag coefficient (CD). Unfortunately, these effects have not
been comprehensively evaluated. The turbulence of up-
stream wakes delays separation on downstream cylinders,
resulting in a lower drag [Zukauskas, 1987]. Although the
transition to a turbulent wake structure within a sparse (ad <
0.1), emergent array is expected to occur at Red  200
[Nepf, 1999], the shear-layer-scale turbulence sweeping
through submerged arrays may trigger wake turbulence at
lower local Reynolds numbers. Bokaian and Geoola [1984]
quantitatively described the suppression of the drag coeffi-
cient of a cylinder when in the wake of an upstream cylinder
and its dependence upon the relative positions of the two
cylinders. Using this information, Nepf [1999] conducted a
numerical experiment to evaluate the bulk drag coefficient
of an emergent array by assuming that the reduction in the
drag coefficient of an individual cylinder is due entirely to
the wake of the nearest upstream cylinder. The author found
that the bulk drag coefficient (CDA) of a random, emergent
array of cylinders at high Reynolds number decreases with
increasing cylinder density (ad), according to the best fit
polynomial

CDA ¼ CDC

1:16
1:16� 9:31 adð Þ þ 38:6 adð Þ2�59:8 adð Þ3
n o

ð15Þ

for ad < 0.1. The agreement between experimental data
from random, emergent arrays with Red > 200 and the
expression in equation (15) is very good [Nepf, 1999].
[25] The free end of a cantilevered circular cylinder

generates strong longitudinal vortices near the tip that cause
considerable disturbance to the wake structure. The effect of
this free-end disturbance is to increase the wake pressure,
leading to a reduction in drag, as compared with an
infinitely long cylinder. For a single cylinder with a large
aspect ratio (h/d > 13) at high Reynolds number (Red � 4 	
104), the magnitude of drag coefficient suppression is
independent of aspect ratio and is confined to a region that
extends 20d from the free end [Fox and West, 1993]. In such
cases, the minimum drag coefficient is roughly 0.7CDC.
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[26] The data of Luo et al. [1996] show that a submerged
cylinder (h/d = 8) placed a distance 5d immediately behind
another submerged cylinder has a mean drag coefficient
roughly equal to that predicted by combining upstream
proximity and free-end effects. However, shear-scale turbu-
lence in the free stream of vegetated shear flows will
undoubtedly alter these effects and the interaction between
them. Because no previous studies enable accurate predic-
tion of CD(z), an empirical form was sought in these
experiments for subsequent use in the numerical model.
[27] For each experimental run, the vertical profile of the

drag coefficient within the canopy was evaluated using
equation (1), i.e.,

CD zð Þ ¼
2 gS � @ u0w0

� �
=@z

� �
aU2 zð Þ : ð16Þ

The vertical gradient of u0w0 was evaluated using a central
difference. The ratio of the observed drag coefficient to that
for an infinite cylinder array (CDA, evaluated using the
depth-specific velocity) will be defined as

h zð Þ ¼ CD zð Þ
CDA zð Þ : ð17Þ

This parameter explicitly describes the effects of the free
end on the drag coefficient of the array. The vertical profiles
of h for the experimental arrays are shown in Figure 7. As in
section 4.2, runs B and K were not included in this analysis
because of uncertainty in recorded values of u0w0. The
collapse of h is good across all flow conditions, with no
discernible dependence upon Red or ad. From a value of
roughly 0.45 at the bed, h increases toward the free end,
taking a maximum value of approximately 1.2 at z/h � 0.76.
Above this point, h decreases steadily to zero at the top of

the cylinders. The collapsed profiles of h are in fair
qualitative agreement with the data of Dunn et al. [1996]
(ad = 0.002 � 0.016). The best fit curve shown in Figure 7
takes the form

h ¼
1:4

z

h

� �2:5
þ 0:45; 0 � z=h � 0:76

�4:8
z

h

� �
þ 4:8; 0:76 < z=h � 1

8><>:
9>=>;: ð18Þ

4.4. Behavior of the Stability Parameter

[28] To facilitate evaluation of the stability parameter (W),
the product CDhh was chosen as a representative bulk drag
coefficient for the submerged arrays. CDh is the value of CDA

at the top of the canopy (see Table 1) and accounts for the
effects of Reynolds number and packing density on the drag
coefficient. The parameter h represents the arithmetic aver-
age of h(z) within the shear layer and accounts for free-end
effects. Since z1/h < 0.76 for all runs, from equation (18),

h ¼ 1

1� b

Z 1

b
h z=hð Þd z=hð Þ

h ¼ 0:63� 0:4b3:5 � 0:45b
1� b

;

ð19Þ

where b = z1/h.
[29] The estimated values of W (8.7 ± 0.5), evaluated

using equation (9) and CD = CDhh, are remarkably constant
(Figure 8). Furthermore, W exhibits no dependence upon a,
suggesting that this constancy extends beyond the experi-
mental range of 0.29 < a < 0.38. The universal constancy of
W validates the analysis presented in section 2 and confirms
that the growth of vegetated shear layers ceases once the
production and dissipation of SKE are equal.
[30] Interestingly, W is independent of both Reynolds

numbers that characterize vegetated shear flows: that of
the individual cylinders (Red = Uhd/n) and that of the
mixing layer (Reml = DUtml/n). Specifically, W is indepen-
dent of whether Reml is less than, within, or greater than
the observed range for transition in mixing layers (� 6 	
103 to 2 	 104). This is not unexpected, as the transition
has a strong effect on small-scale scalar mixing but not
on shear layer growth [Moser and Rogers, 1991]. Also
note that in several runs, Red < 200 (Table 1), violating a
requirement of using equation (15) to predict CD [Nepf,
1999]. However, the values of W exhibit little dependence
on Red, and the use of equation (15) in this context appears
appropriate for Red  60.

5. Numerical Model of Vegetated Shear Flow

[31] Having identified the stability constant (W) and a
mixing length model for Reynolds stress closure, we now
use these universal functions to predict the vertical velocity
profile of vegetated shear flows. A one-dimensional numer-
ical model of equation (1) was created to determine if
experimental velocity profiles could be accurately predicted
under the assumptions of constant W and mixing length (lac
above the canopy and lc within). The model requires as
input the canopy parameters a, d, and h, the slope S, and the
form of h(z).

Figure 7. Vertical profiles of h, the ratio of the observed
drag coefficient to the theoretical value predicted by
considering array density and Reynolds number effects.
The solid line is a best fit curve through all points, and has
the form shown in equation (18). The horizontal bar is
representative of the standard uncertainty in each data point.
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[32] In the model, the flow was divided into two
regions: the portion of the shear layer within the canopy
(i.e., z1 � z � h, zone 1) and the portion of the shear layer
above the canopy (i.e., h < z � z2, zone 2). Below z1, the
velocity is assumed to be independent of depth and
dictated solely by a balance of pressure and drag forces.
The nature of the velocity profile above the shear layer
was not explored here and will certainly depend upon
the fraction of the depth that the region encompasses (1 �
(z2/H)). The model assumes a constant mixing length (lc)
within zone 1, such that equation (1) becomes

@

@z

@U

@z

� �2
" #

¼ 1

l2c

1

2
CDaU

2 � gS

� �
zone1½ �; ð20Þ

which must be solved numerically. However, an analytical
solution can be found in zone 2. With a constant mixing
length, lac = 0.095tml, and an absence of drag, equation (1)
becomes

@

@z

@U

@z

� �2
" #

¼ �gS

0:095tmlð Þ2
; ð21Þ

which has the solution

U zð Þ ¼ Uh þ
2
ffiffiffiffiffiffi
gS

p

3 0:095tmlð Þ z2 � hð Þ3=2 � z2 � zð Þ3=2
n o

zone 2½ �: ð22Þ

[33] The equations that form the basis of the numerical
model of zone 1 are shown in Table 2, where Dz (= (h � z1)/
400) is the chosen distance between grid points. The sub-
script i specifies the grid point number. The use of i � 0.5
indicates that the value taken is the mean of values at points i
and i � 1. The first equation in the table is a discretization of
equation (20). As U, @U/@z, and CD are all interdependent,
the model was created in Microsoft Excel, which iterates the
modeling equations to determine the solution (Ui(z)). The
results of a model based on equations (20) and (22) will
depend heavily upon where the model is initiated (z1) and
where the shear layer ends (z2). We thus require two
independent relationships that permit the evaluation of
these end points. The first relationship is obtained from
the definition of the stability parameter in equation (9), with
W = 8.7 and CD = CDhh as described above:

h� z1 ¼
1

8:7CDhh a
DUð Þ2

U2
h � U2

1

 !
: ð23Þ

To avoid the interdependence of all variables, it was also
necessary to utilize a relationship between characteristics of
the shear layer and of the vegetation. To this end, the
dependence of the normalized shear (DU/Uh) on solely the
dimensionless plant density (ad) (shown in equation (11))
was also employed.
[34] The model is initiated at the base of the shear layer

(z1), where U = U1 and @U/@z = 0. Under the assumption of
zero Reynolds stress below the shear layer, U1 is predicted

Figure 8. The invariability of the stability parameter W. The standard deviation (0.5) of the observed
values of W around the mean (8.7) is very small. There is no dependence of W on a, as indicated by the
dashed line of regression. The constancy of W confirms that shear layer growth ceases once the
production and dissipation of SKE are equal. The vertical bars represent the standard uncertainty in
the lateral mean of W.

Table 2. Summary of Modeling Equations for the ith Point in

Zone 1

Parameter Modeling Equation

Velocity profile 1. @U
@z

� �2
i
¼ @U

@z

� �2
i�1

þ 1
l2c

1
2
CD;i�0:5aU

2
i�0:5 � gS

� �h i
Dz

2. Ui = Ui�1 +
@U
@z

� �
i�0.5 Dz

Drag coefficient CD,i = hiCDA,i
a

Mixing length lc = 0.22(h � z1), from equation (13)

aThe function h(z/h) is given in equation (18), and CDA(z) is given in
equation (15).
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from a balance of pressure and drag forces in equation (1)
(i.e., U1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gS=CD z1ð Þa

p
). As CD(z1) (= h(z1)CDA(z1)) is

itself a function of U1, a simple iteration is required. The
most accurate predictions of U1 were obtained with h(z1) =
0.38, which lies within the range of values observed deep
within the canopy (0.45 ± 0.15) in Figure 7. The model then
requires the following iteration:
[35] 1. First, initial guesses of z1 and tml are made. On the

basis of results of this study, good initial values are z1 � h �
0.4a�1 and tml � (h � z1)/0.33.
[36] 2. Then, with the initial conditions of (U, @U/@z)z1 =

(U1, 0), the equations described in Table 2 are used to
evaluate U(z) up to z = h.
[37] 3. With the value of Uh obtained in step 2, and the

guessed values of z1 and tml from step 1, the velocity profile
above the canopy (up to z = z2 = z1 + tml) is determined
using equation (22).
[38] 4. From the complete profile, the value of DU/Uh is

evaluated. The value of tml is then varied, and steps 2–4
are repeated, until DU/Uh takes the value required by
equation (11).
[39] 5. On the basis of the stability analysis, the required

value of z1 is calculated using equation (23). If the required
value does not agree with the initial guess, we return to
step 1 and take the required value as the next guess.
Steps 1–5 are repeated until the required value of z1 agrees
with the guessed value. The final velocity profile then
satisfies both conservation of momentum and the criterion
defined by the stability parameter.

5.1. Comparison Between the Model and
Experimental Data

[40] The agreement between the observed velocity
profiles and those predicted by the model is very good,
as shown in Figure 9. The predicted values of tml, h � z1,
and DU all deviated from observed values by, on average,
less than 7%. As a constant in-canopy mixing length was

employed, the curvature of the velocity profile within the
canopy cannot be modeled exactly. In addition, the
velocity gradient has a discontinuity at z = h because
of the assumed discontinuity in mixing length. Note that
the model is only used to predict U(z) within the region
0 < z < z2. Above z2, the velocity begins to decrease as
u0w0 becomes positive (Figure 3). The exact nature of the
velocity profile above this point could not be determined
with the ADV and was not modeled. Finally, there is
excellent agreement between the predicted and observed
values of DU over a wide range of that parameter, as

Figure 9. A comparison between observed (marker) and predicted (solid line) profiles of mean velocity
for runs B (a = 2.5 m�1), C (3.4 m�1), and H (8 m�1). The thin horizontal bars represent the lateral
variability of the observed velocity. The thick horizontal lines indicate the predicted values of z2; the
model is not strictly valid above this point. The table compares the predicted and observed values (P,O) of
tml, h � z1 and DU. Over all runs, the model predicts the values of each of these three parameters to
within an average of 7%.

Figure 10. The comparison between observed values of
DU and those predicted by the model. The dashed line
indicates perfect agreement. The horizontal bars represent
the lateral variability in the observed value of DU.
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demonstrated in Figure 10. Note that while DU/Uh is
prescribed by equation (11), Uh is predicted independently,
so the accuracy of predicted DU values is an independent
check of model performance. The good agreement shown in
Figure 10 indicates that the model is accurate across the
gamut of experimental conditions.
[41] The sensitivity of the model to changes in the value

of U1 is highlighted by Figure 11, which demonstrates how
predicted velocity profiles for run G vary with U1. The
predicted values of tml and DU are quite sensitive to a 10%
variation in U1, changing by roughly 9% and 15%, respec-
tively. The predicted value of h � z1 is relatively insensitive,
changing by less than 1%. That the accuracy of the model
relies heavily upon the accurate prediction of U1 reinforces
the importance of quantifying the drag coefficients of
submerged canopies.

5.2. Extension of the Model to Field Conditions

[42] First, it is important to note that the analysis
described in this paper applies only to completely un-
bounded vegetated shear layers, i.e., shear layers that
extend neither to the free surface nor to the bed. The
agreement between model and experiment demonstrates
that assumptions of constant mixing lengths (lc, lac) and a
universal stability parameter (W) lend themselves to accu-
rate predictions of the velocity profile within and above
dense aquatic canopies. However, to extend the model to
the field, several pieces of information are required. For
example, the relationship between DU/Uh and ad in sparse
canopies (ad < 0.016) must be ascertained. Potentially the
biggest obstacle to field application of the model, however,
is the lack of knowledge concerning CD(z). The profile

used in this study, described by equations (18) and (15), is
strictly valid only for cylinders with h/d � 22 within the
experimental range of 130 < Red < 460. Further research
into the dependence of CD(z) upon the aspect ratio,
packing density, Reynolds number, and morphology of
submerged canopies is much needed. In the limit of
infinitely thin vegetation (h/d ! 1), however, the as-
sumption of a constant CD (evaluated using equation (15))
may be appropriate. Furthermore, the experiments in this
study used rigid dowels to simulate submerged, aquatic
vegetation. In reality, such vegetation is often flexible
and can exhibit pronounced coherent waving (monami)
in a unidirectional current [Ackerman and Okubo, 1993;
Grizzle et al., 1996]. The monami can significantly
increase the penetration of turbulent stress into the canopy,
as the waving reduces the drag exerted by the vegetation
[Ghisalberti and Nepf, 2002]. A means of estimating
temporal averages of (CDa) is therefore required before
application of this model to waving canopies.

6. Conclusion

[43] It was postulated that the growth of vegetated shear
layers ceases once the production of shear-layer-scale tur-
bulent kinetic energy is balanced by drag dissipation. This
was confirmed by flume experiments, which showed that a
scaled ratio of production to dissipation is a constant (W =
8.7 ± 0.5) for fully developed vegetated shear layers. This
stability constant was used to close a one-dimensional
numerical model that predicts the vertical velocity profile
of vegetated shear flows. The model also uses the assump-
tion of a single mixing length above the vegetation and a
single, reduced mixing length within it. The agreement
between model and experiment is good, but field applica-
tion of the model is limited by a lack of description of the
drag coefficient in real canopies.

[44] Acknowledgments. This material is based upon work supported
by the National Science Foundation under grant 0125056. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the
National Science Foundation.
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