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Abstract

When an econometric structural equation includes two endogenous variables and
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1. Introduction

Anderson and Rubin (1949) developed the Limited Information Maximum Like-

lihood (LIML) estimator of the coefficients of a single structural equation in a si-

multaneus equations model. The ”reduced form” of the model may be written

Y = ZΠ + V ,(1.1)

where Y (T ×G) consists of endogenous or dependent variables, Z (T ×K) consists

of exogenous or independent variables, Π (K × G) is a matrix of parameters and

V (T × G) consists of unobserved disturbances. The rows of V are independently

normally distributed with mean 0 and covariance Ω. A ”structural equation” is

Yβ = Z1γ1 + u ,(1.2)

where Z1 (T × K1) consists of some K1 columns of Z, β and γ1 are G and K1

vectors, and u = Vβ. In the simple case that γ1 = 0, the vector β (G× 1) satisfies

Πβ = 0 .(1.3)

If Π is known and its rank is G−1, (1.3) determines β except for a multiplication by

a constant. That constant can be determined by setting a specified coefficient of β

equal to 1 (the conventional normalization). Alternatively, the natural normalization

is

β
′
Ωβ = 1 .(1.4)

To distinguish between solutions β and −β, we can require one specified coordinate

to be positive. Both normalizations were treated by Anderson and Rubin (1949).

The natural normalization has the important advantage that the second-order mo-

ments are finite. [ Anderson (2008). ] Another advantage of this normalization is

that parameters and maximum likelihood estimators transform simply under linear

transformations of the observed variables.
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If G = 2 and Ω = I2, the normalization (1.4) is

β
′
Ωβ = β2

1 + β2
2 = 1 ,(1.5)

where β = (β1, β2)
′
. Thus β can be represented as

β =

⎛
⎝ β1

β2

⎞
⎠ =

⎛
⎝ cos θ

sin θ

⎞
⎠ ,(1.6)

where

tan θ =
sin θ

cos θ
=

β2

β1

.

Then Π (K × 2) satisfying (1.3) can be represented as

Π = π (− sin θ, cos θ) ,(1.7)

where π is a K × 1 vector. We shall call (1.6) the angle form of the structural

coefficient. Note that trΠ
′
Π = π

′
π.

If G = 3 and Ω = I3, the parameter β is a point on the unit sphere β2
1+β2

2+β2
3 = 1

and can be represented in terms of latitude and longitude. [ Anderson (2003), Section

2.7. ]

The model consisting of (1.1), (1.3) and (1.4) with Ω = IG is invariant with

respect to orthogonal transformations. Let Φ be an orthogonal matrix,

Y∗ = YΦ , V∗ = VΦ , Π∗ = ΠΦ , β∗ = Φ
′
β .(1.8)

Then

Y∗ = ZΠ∗ + V∗ , Π∗β∗ = 0 , β∗′β∗ = 1 ,(1.9)

which correspond to (1.1), (1.3) and (1.4). A particular orthogonal matrix is Φ =

−IG; the model is invariant with respect to reflections.

When G = 2, Φ can be written

Φ =

⎡
⎣ cos φ − sin φ

sinφ cosφ

⎤
⎦ .(1.10)
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Then

β∗ = Φ
′
β =

⎡
⎣ cosφ sin φ

− sin φ cosφ

⎤
⎦

⎡
⎣ cos θ

sin θ

⎤
⎦ =

⎡
⎣ cos(θ − φ)

sin(θ − φ)

⎤
⎦ .(1.11)

A rotation of β in the angular form corresponds to a translation of the angle.

If γ1 = 0 and β1 = 1, the structural equation (1.2) is

y1 = −β2y2 + u ,(1.12)

where Y = (y1,y2) and the angle representation is written as

β2 =
sin θ

cos θ
= tan θ .(1.13)

On the other hand, if γ1 = 0 and β2 = 1, the structural equation (1.2) is written as

y2 = −β1y1 + u
′
,(1.14)

and the angle representation is

β1 = cot θ =
1

tan θ
.(1.15)

In this paper we consider the distribution of the angle LIML estimator, which is

invariant to orthogonal transformations, in a systematic way. On the other hand, the

Two-Stage Least Squares (TSLS) estimator and the Generalized Method of Moments

(GMM) estimator for coefficients, which have been often used in recent econometric

studies, depend crucially on the particular normalization chosen in advance. (See

Anderson and Sawa (1977).) This issue is related to the properties of alternative

estimators and the optimality of estimation in structural equations. Some aspects

of the related problems have been discussed by Anderson, Stein and Zaman (1985),

Hiller (1990) and Chamberlain (2007). In particular we shall investigate the behavior

of the adaptation of the LIML estimator to the case of Ω known, that is, the LIMLK

estimator, and compare it to the TSLS estimator in some detail. This simple case

makes clearer some properties of these estimators.

A typical and simple application of simultaneous equations has been the econo-

metric analysis of the demand-supply relation in markets. In such case we could take
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the log-quantity as y1 and the log-price as y2, and then we can estimate the price

elasticity of the demand, for instance. The LIML estimate of the price elasticity

is invariant whether we estimate it by using the demand function or the inverse-

demand function as economists often do their empirical analysis interchangeably in

real applications.

2. Inference when G = 2 and Ω = I2

The maximum likelihood estimator of Π when Π is unrestricted is

P = A−1Z
′
Y , A = Z

′
Z .(2.1)

Let

G = P
′
AP , Ḡ =

1

T
G = P

′
ĀP , Ā =

1

T
A .(2.2)

Note that P is a sufficient statistic for Π, which is the only parameter when Ω is

known.

Let d1 and d2 (d1 < d2) be the roots of

0 = |Ḡ − dI2| = d2 − (ḡ11 + ḡ22)d + ḡ11ḡ22 − ḡ2
12 ,(2.3)

where Ḡ = (ḡij). The smaller root of (2.3) is

d1 =
1

2

[
ḡ11 + ḡ22 −

√
(ḡ11 − ḡ22)2 + 4ḡ2

12

]
.(2.4)

The LIMLK estimator b of β with the natural normalization satisfies 1 = b
′
b =

b2
1 + b2

2 and

0 =
(
Ḡ − d1I2

)
b(2.5)

=

⎡
⎣ (ḡ11 − d1)b1 + ḡ12b2

ḡ21b1 + (ḡ22 − d1)b2

⎤
⎦ .

The second component of (2.5) leads to the LIMLK estimator of θ as the solution

of

tan θ̂ =
b2

b1

= − 2ḡ21

ḡ22 − ḡ11 +
√

(ḡ22 − ḡ11)2 + 4ḡ2
12

.(2.6)
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Note that the denominator of (2.6) is positive.

The Two-Stage Least Squares (TSLS) estimator is defined by the second com-

ponent of (2.5) with d1 replaced by 0. The equation is

ḡ21b1 + ḡ22b2 = 0 .(2.7)

The TSLS estimator of θ is defined by

tan θ̂TS =
b2

b1

= − ḡ21

ḡ22

.(2.8)

Note that the sign of tan θ̂TS is the same as the sign of tan θ̂ and

| tan θ̂TS| < | tan θ̂| .(2.9)

In a sense tan θ̂TS is biased towards 0.

A transformation (1.8) effects a transformation of P to

P∗ = PΦ(2.10)

and b, the solution to (2.5), to

Φ
′
b = b∗ =

⎡
⎣ b∗1

b∗2

⎤
⎦ .(2.11)

Then θ̂ defined by (2.5) is transformed to θ̂∗ defined by

b∗2
b∗1

= tan θ̂∗ .(2.12)

Thus θ̂∗ = θ̂ − φ.

Theorem 1 : Let θ∗ = θ − φ, d1 be the smaller root of (2.3), b the vector

satisfying (2.5) and θ̂ the solution to (2.6). Let d∗
1, b∗ and θ̂∗ be the root, vector

and the angle for the model transformed by (1.8). Then θ̂ − θ = θ̂∗ − θ∗.

Note that the distribution of θ̂ − θ is symmetric. In this sense θ̂ is an unbiased

estimator of θ. Theorem 1 implies that the distribution of θ̂− θ is independent of θ.
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The variance of the maximum likelihood estimator θ̂ is invariant under orthogonal

transformations.

Consider the transformation

Z+ = ZM , Π+ = M−1Π ,(2.13)

where M is nonsingular, then (1.3) is transformed to

Π+β = 0 .(2.14)

Furthermore, A transforms to A+ = M
′
AM, P transforms to P+ = M−1P and

P
′
AP = P+′

A+P+.

Corollary 1 : The LIMLK estimator with the natural normalization is invariant

with respect to the transformation (2.13).

Anderson (2008) has shown that the normalization (1.4) implies that E(b
′
b) <

∞.

Note that the LIMLK estimator of θ or of β2/β1 is unaffected by a scale trnsfor-

mation; that is, the LIMLK estimator of β2/β1 based on G is the same as the LIMLK

estimator based on cG, where c > 0. Similarly the TSLS estimator is unaffected by

a scale transformation.

3. A Canonical Form

Make the transformation (2.13) so that Ā+ = IK , that is, M
′
ĀM = IK . Let

P+ = M−1P = Q and

M−1P = Q , M−1π = η ,M−1Π = η(− sin θ, cos θ) .(3.1)

In the case of G = 2, the model is

Q = η (− sin θ, cos θ) + W ,(3.2)
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where

W = M−1A−1Z
′
V = M

′
Z

′
V ,(3.3)

and the rows of W are independently distributed according to N(0, I2). Note that

Ḡ = P
′
ĀP = Q

′
Q and

Π
′
ĀΠ = η

′
η

⎡
⎣ − sin θ

cos θ

⎤
⎦ (− sin θ, cos θ) .(3.4)

The ”canonical form” is closely related to the classical ”errors-in-variables”

model, also known as a ”linear functional relationship” in statistics. Suppose Q =

(qki), k = 1, · · · ,K; i = 1, 2, E(qki − μki) = 0, E(qki − μki)
2 = σ2, E(qk1 − μk1)(qk2 −

μk2) = 0. The pairs (μk1, μk2) are considered to lie on a straight line

μk2 = α + ρμk1 , k = 1, · · · ,K.(3.5)

When α = 0 and ρ = tan θ, this model corresponds to (3.2). Adcock (1878) recom-

mended estimating α and ρ by minimizing

K∑
k=1

[
(qk1 − μk1)

2 + (qk2 − μk2)
2
]

(3.6)

subject to (3.5). This solution agrees with the LIMLK estimator. Anderson (1976)

pointed out this relationship between the LIMLK estimator and the maximum likeli-

hood estimator of the slope in the linear functional relationships. See also Anderson

(1982) and Anderson and Sawa (1982).

In the linear functional relationship in terms of (3.5) it is natural to describe the

line by the angle it makes with the first coordinate axis and the intercept on one of

the coordinate axis. The estimator of this angle was studied by Anderson (1976).

4. Admissibility of the LIMLK estimator

Anderson, Stein and Zaman (1985) have considered the best invariant estimator
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of a direction. The model corresponds to (3.2) with η
′
η = λ2. The loss function is

L(β, λ2; β̂) = 1 − (β
′
β̂)2(4.1)

= 1 −
⎡
⎣(cos θ, sin θ)

⎛
⎝ cos θ̂

sin θ̂

⎞
⎠

⎤
⎦

2

= sin2(θ̂ − θ) .

Lemma 1 : Let β∗ = Φ
′
β and β̂

∗
= Φ

′
β̂ as in (1.11). Then

L(β∗, λ2; β̂
∗
) = L(β, λ2; β̂) .(4.2)

Let β− = −β and β̂
−

= −β̂. Then

L(β−, λ2; β̂
−
) = L(β, λ2; β̂) .(4.3)

Proof : The left-hand side of (4.3) is 1 minus

β∗′β̂
∗

= β
′
ΦΦ

′
β̂ = β

′
β̂ .(4.4)

Q.E.D.

The loss function L(β, λ2; β̂) is invariant under rotations and reflections.

Lemma 2 : Under the transformation (1.8), E(θ̂ − θ)2 is invariant.

Anderson, Stein and Zaman (1985) showed that of all invariant procedures the

LIMLK estimator has minimum loss.

By using the Taylor series expansion of sin x = x − x3/6 + x5/120 − · · · , we

obtain an approximation

E sin2(θ̂ − θ) ∼ E(θ̂ − θ)2 − 1

3
E(θ̂ − θ)4 +

2

45
E(θ̂ − θ)6 + · · · .(4.5)

5. Empirical Distributions
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We write (3.2) as

qk1 = −ηk sin θ + wk1 , qk2 = ηk cos θ + wk2 ,(5.1)

where the random variables {wkj} , k = 1, · · · ,K, j = 1, 2, are N(0, 1). Define

λ2 = η
′
η , α

′
= (− sin θ, cos θ) .(5.2)

The matrix Q
′
Q has a noncentral Wishart distribution with covariance matrix I2,

noncentrality matrix η
′
ηαα

′
and K degrees of freedom [Anderson and Girshick

(1944)]. The exact distributions of b and θ̂ have been given by Anderson and Sawa

(1982), but they are very complicated.

The asymptotic expansions of the distributions of the angle LIMLK and TSLS

estimators (λ → ∞, K fixed) are

P (λ(θ̂LIMLK − θ) ≤ ξ) = Φ(ξ)− 1

2λ2
[(K − 1)ξ +

1

3
ξ3]φ(ξ) + O(λ−4),(5.3)

and

P (λ(θ̂TS − θ) ≤ ξ) = Φ(ξ) +
K − 1

λ
tan θφ(ξ)(5.4)

− 1

2λ2
[{(K − 1)2 tan2 θ − (K − 1)}ξ +

1

3
ξ3]φ(ξ) + O(λ−3),

respectively (Anderson (1976)).

For symmetric intervals, the expansions are

P (λ(θ̂LIMLK − θ) ≤ ξ) − P (λ(θ̂LIMLK − θ) ≤ −ξ)(5.5)

= Φ(ξ) − Φ(−ξ) − 1

λ2

[
(K − 1)ξ +

1

3
ξ3

]
φ(ξ) + O(λ−4),

and

P (λ(θ̂TS − θ) ≤ ξ) − P (λ(θ̂TS − θ) ≤ −ξ)(5.6)

= Φ(ξ) − Φ(−ξ) − 1

λ2

[{
(K − 1)2 tan2 θ − (K − 1)

}
ξ +

1

3
ξ3

]
φ(ξ) + O(λ−3) .

Then

P (λ|θ̂LIMLK − θ| ≤ ξ) − P (λ|θ̂TS − θ| ≤ ξ)(5.7)

=
1

λ2
(K − 1)

[
(K − 1) tan2 θ − 2

]
φ(ξ) + O(λ−3) .
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The LIMLK estimator dominates the TSLS estimator unless tan2 θ ≤ 2/(K − 1).

The expansion (5.3) corresponds to an approximate density

φ(ξ)− 1

2λ2

[
K − 1 − (K − 2)ξ2 − 1

3
ξ4

]
φ(ξ)(5.8)

and the variance of (5.8) is

1 − 1

2λ2

[
(K − 1) − 3(K − 2) − 15

3

]
= 1 +

K

λ2
.(5.9)

Then the approximate variance of θ̂LIMLK − θ is

1

λ2
+

K

λ4
.(5.10)

The expansion (5.4) corresponds to an approximate density

φ(ξ)− K − 1

λ
tan θξφ(ξ)(5.11)

− 1

2λ2

[
(K − 1)2 tan2 θ − (K − 1) +

{−(K − 1)2 tan2 θ + K
}

ξ2 − 1

3
ξ4

]
φ(ξ) .

The integral of (5.11) times ξ2, which is an approximate MSE of λ(θ̂TS − θ), is

1 +
1

λ2

[
(K − 1)2 tan2 θ − K + 2

]
.(5.12)

Note that the approximate MSE increases with θ from 1 − (K − 2)/λ2 to ∞. The

approximate MSE of the TSLS estimator is less than the approximate MSE of the

LIMLK estimator if tan2 θ < 2/(K − 1). For K = 3 the inequality is tan θ < 1 (θ <

π/4) and for K = 30 tan θ <
√

2/29 (= 0.069). We give some numerical values of

the appromimate MSE in Tables 1 and 2.

The empirical distributions of the (standardized) angle LIMLK and TSLS esti-

mators, −π
2

< θ̂ − θ < π
2
,

P (λ(θ̂ − θ) ≤ ξ),(5.13)

and the asymptotic expansions (5.3) and (5.4) are compared. See Figures 1 to 18 in

the appendix.
For each K, λ and θ, 10,000 data sets were obtained. The estimate of the loss

E[sin2(θ̂ − θ)], Ê[sin2(θ̂ − θ)] = 1
10000

∑10000
j=1 sin2(θ̂j − θ), and the estimate of the

11



Table 1: Approximate MSE of θ̂ − θ

K = 3

λ2 = 100 λ2 = 50 λ2 = 10

θ LIMLK TSLS LIMLK TSLS LIMLK TSLS

0.4π 0.0103 0.0212 0.13

0.2π 0.0103 0.0101 0.0212 0.0204 0.13 0.1111

0 0.0103 0.0099 0.0212 0.0196 0.13 0.0900

Table 2: Approximate MSE of θ̂ − θ

K = 30

λ2 = 100 λ2 = 50 λ2 = 10

θ LIMLK TSLS LIMLK LIMLK

0.4π 0.013 0.032 0.4

0.2π 0.013 0.032 0.4

0 0.013 0.0072 0.032 0.4

Table 3: Esin2(θ̂ − θ)

K = 3

λ2 = 100 λ2 = 50 λ2 = 10

θ LIMLK TSLS LIMLK TSLS LIMLK TSLS

0.4π 0.0102 0.0175 0.0206 0.0619 0.1269 0.3580

0.2π 0.0102 0.0100 0.0210 0.0202 0.1276 0.1039

0 0.0102 0.0098 0.0205 0.0187 0.1273 0.0798
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Table 4: Esin2(θ̂ − θ)

K = 30

λ2 = 100 λ2 = 50 λ2 = 10

θ LIMLK TSLS LIMLK TSLS LIMLK TSLS

0.4π 0.0130 0.3503 0.0340 0.5752 0.2760 0.8184

0.2π 0.0130 0.0353 0.0338 0.0806 0.2693 0.2456

0 0.0131 0.0077 0.0335 0.0123 0.2701 0.0244

Table 5: E(θ̂ − θ)2

K = 3

λ2 = 100 λ2 = 50 λ2 = 10

θ LIMLK TSLS LIMLK TSLS LIMLK TSLS

0.4π 0.0103 0.0191 0.0210 0.0762 0.1561 0.5382

0.2π 0.0103 0.0101 0.0214 0.0206 0.1584 0.1224

0 0.0103 0.0099 0.0209 0.0191 0.1572 0.0879

Table 6: E(θ̂ − θ)2

K = 30

λ2 = 100 λ2 = 50 λ2 = 10

θ LIMLK TSLS LIMLK TSLS LIMLK TSLS

0.4π 0.0131 0.4214 0.0356 0.8024 0.4055 1.3909

0.2π 0.0136 0.0361 0.0355 0.0844 0.3902 0.2797

0 0.0133 0.0077 0.0354 0.0125 0.3927 0.0250
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MSE, 1
10000

∑10000
j=1 (θ̂j − θ)2 were calculated. (See Tables 3 to 6.) The empirical cdf

of an estimator is within 0.02 of the true cdf everywhere with probability more than
0.99 on the basis of 10,000 replications by using the Kolmogorov-Smirnov statistic.
(See Anderson, Kunitomo and Sawa (1982).)

Comments on the empirical distributions of the LIMLK and TSLS esti-

mators when Ω = I2

1. The empirical values of E[sin2(θ̂ − θ)] and E[(θ̂ − θ)2] for the LIMLK estimator

are invariant with respect to θ for each pair of value of λ and K.

2. The empirical values of E[sin2(θ̂ − θ)] and E[(θ̂ − θ)2] for the TSLS estimator at

each pair of values of λ and K increase with θ from a value less than the measure

at θ = 0 to a value considerably greater than the measure at θ = π/2.

3. Since λ(θ̂LIMLK − θ) has a limiting distribution N(0, 1), the variance of θ̂LIMLK

is approximately 1/λ2. In Tables 5 and 6 the empirical variance of the LIMLK esti-

mator is approximately .01 for λ2 = 100 and .02 for λ2 = 50, but is approximately

.16 for λ2 = 10 and K = 3 and .39 for λ2 = 10 and K = 30. For smaller values of

λ2 the approximation 1/λ2 underestimates the variance.

4. The estimate of E[sin2(θ̂ − θ)] is less than the estimate of E[(θ̂ − θ)2] for λ2 = 10

for every θ and K.

5. At λ2 = 100 and λ2 = 50, the distributions of λ(θ̂ − θ) for the LIMLK estimator

are almost exactly N(0, 1).

6. More General Models

6.1 Arbitrary Variance

If the covariance matrix Ω of the disturbances is σ2I2, the noncentrality param-
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eter is

λ2 =
η

′
η

σ2
.(6.1)

6.2 Arbitrary Intercept

If γ1 �= 0, we partition Z and Π as

Z = (Z1,Z2) , Π =

⎡
⎣ Π1

Π2

⎤
⎦ ,(6.2)

where Z1 has K1 columns, Z2 has K2 columns (K1 + K2 = K), Π1 has K1 rows,

and Π2 has K2 rows. Then (1.3) is replaced by

⎡
⎣ Π1

Π2

⎤
⎦ β =

⎡
⎣ γ1

0

⎤
⎦ .(6.3)

The second part of (6.3) determines β. Let

A22.1 = A22 − A21A
−1
11 A12 , Z

′
2.1 = Z

′
2 − A21A

−1
11 Z

′
1 .(6.4)

Then

P2 = A−1
22.1Z

′
2.1Y , G = P

′
2A22.1P2 .(6.5)

Then the proceeding analysis applies with Π replaced by Π2.

6.3 General Ω

When Ω is known, the LIMLK estimator of β in the natural parameterization

is defined by

(
P

′
ĀP − d1 Ω

)
b = 0 , b

′
Ωb = 1 ,(6.6)

where d1 is the smallest root of

|P′
ĀP − d Ω| = 0 .(6.7)
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This case can be reduced to the special case of Ω = IG. Write Ω = Φ
′
ΔΦ, where

Δ is diagonal and Φ is orthogonal and

Ω1/2 = Φ
′
Δ1/2Φ(6.8)

is the symmetric square root of Ω. Then (6.6) can be written

(
P

′
ĀP − d1 (Ω1/2)2

)
b = 0 , b

′
(Ω1/2)2b = 1 ,(6.9)

which leads to

(
P∗′ĀP∗ − d1 IG

)
b∗ = 0 , b∗′b∗ = 1 ,(6.10)

where

P∗ = PΩ−1/2 , Ω1/2b∗ = b .(6.11)

Let

Π∗ = ΠΩ−1/2 , β∗ = Ω1/2β .(6.12)

Then

Π∗β∗ = 0 , β∗′β∗ = 1 .(6.13)

When G = 2,

β∗ =

⎡
⎣ cos θ∗

sin θ∗

⎤
⎦ , b∗ =

⎡
⎣ cos θ̂∗

sin θ̂∗

⎤
⎦ .(6.14)

The case of Ω known, not necessarily IG, can be reduced to the case of Ω = IG.

7. LIML when Ω is unknown

This model consisting of (1.1), (1.3) and (1.4) is invariant with respect to non-

singular transformations

Y∗ = YC , V∗ = VC , Ω∗ = C
′
ΩC, Π∗ = ΠC , β∗ = C−1β ;(7.1)
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that is

Π∗β∗ = 0, β∗′Ω∗β∗ = 1 .(7.2)

When Ω is unknown, let b be the solution of

(Ḡ − d1 H̄)b = 0, b
′
H̄b = 1,(7.3)

and d1 is the smallest root of

|Ḡ − d H̄| = 0,(7.4)

Ḡ = (1/T )G and

H = Y
′
Y − G, H̄ =

1

T
H .(7.5)

Then Ω̂ = (1/T )H + d1(1/T )Hbb
′
(1/T )H and the LIML estimator of β is

β̂ =
1√

1 + d1

b .(7.6)

The transformation (7.1) effects the transformation

P∗ = PC , G∗ = C
′
GC, H∗ = C

′
HC, b∗ = C−1b .(7.7)

The transformed estimator of β satisfies

(Ḡ∗ − d1H̄
∗)b∗ = 0, b∗′H̄b∗ = 1,(7.8)

In this sense the LIML estimator is invariant with respect to nonsingular linear

transformations.

Let Ω1/2 be the symmetric square root of Ω defined by (6.8). Then Π∗ = ΠΩ−1/2

and β∗ = Ω1/2β satisfy (7.2). When G = 2, we can define

β∗ =

⎡
⎣ cos θ∗

sin θ∗

⎤
⎦ .(7.9)

Let H̄1/2 be the symmetric square root of H̄. Then β̂
∗

= H̄1/2b satisfies

(H̄−1/2ḠH̄−1/2 − d1 I2)β̂
∗

= 0, β̂
∗′
β̂

∗
= 1,(7.10)
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Define θ̂∗ by

β̂
∗

=

⎡
⎣ cos θ̂∗

sin θ̂∗

⎤
⎦ .(7.11)

Then θ̂∗ is the maximum likelihood estimator of θ∗.

As T → ∞, Ḡ
p→ Π

′
(limT→∞ Ā)Π, H̄

p→ Ω, d1
p→ 0, b̄

p→ β and β̂
p→ β.

Hence θ̂
∗ p→ θ∗. However, θ̂

∗ − θ∗ does not have an invariant distribution for

fixed T because the transformation C that carries β to β∗ is not the same as the

transformation C that carries β̂ to β̂
∗
.

8. The Noncentral Wishart Distribution

The (central) Wishart distribution of G with the covariance matrix Ω = I2,

Π = O, and K degrees of freedom is

w2(G|I2,K) =
|G|(K−3)/2e−

1
2
tr G

2Kπ1/2Γ[K/2]Γ[(K − 1)/2)]
.(8.1)

The matrix G can be represented as

G = ORO
′

,(8.2)

where R is diagonal with diagonal elements r1 and r2 (0 ≤ r1 ≤ r2 < ∞) and O is

orthogonal. The orthogonal matrix O can be written as

O =

⎡
⎣ cos t − sin t

sin t cos t

⎤
⎦ .(8.3)

The diagonal elements of R are the roots of |G − rI2| = 0. The Jacobian of the

transformation (8.2) of (g11, g12, g22) to (r1, r2, t) is r2 − r1. (See Chapter 13 of

Anderson (2003).) Also tr(G) = r1 + r2 and |G| = r1r2. The density of r1, r2 and t

is

(r1r2)
(K−3)/2e−

1
2
(r1+r2)(r2 − r1)

2Kπ1/2Γ[K/2]Γ[(K − 1)/2)]
.(8.4)
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Note that (r1, r2) and t are independent. The distribution of O is the same as the

distribution of OΦ, where Φ is the orthogonal matrix defined by (1.10). It follows

that the distribution of t is the same as the distribution of t − φ; the distribution

of t is uniform on (0, 2π). Since we identify t with −t and hence with 2π − t, the

density of t is 1/π on the interval [−π/2, π/2].

Let

G = Q
′
Q = (ηα

′
+ W)

′
(ηα

′
+ W) .(8.5)

The density of G [Anderson and Girshick (1944)] is

w2(G|η′
ηαα

′
, I2,K) =

e−
1
2
η′η− 1

2
tr G|G|K−3

2

2Kπ1/2Γ(K−1
2

)

∞∑
j=0

(α
′
Gα η

′
η)j

22jj! Γ(K
2

+ j)
,(8.6)

where α
′
= (− sin θ, cos θ) and

α
′
Gα = g11 sin2 θ − 2g12 sin θ cos θ + g22 cos2 θ .(8.7)

Note that for η
′
η = 0, (8.6) is the same as (8.1).

Let G = ORO
′
as in (8.2). Then

α
′
Gα = α

′
ORO

′
α(8.8)

and

O
′
α =

⎡
⎣ cos t sin t

− sin t cos t

⎤
⎦

⎡
⎣ − sin θ

cos θ

⎤
⎦ =

⎡
⎣ sin(t − θ)

cos(t − θ)

⎤
⎦ ,(8.9)

which is α with t replaced by t − θ. Thus

α
′
Gα = [sin(t − θ), cos(t − θ)]

⎡
⎣ r1 0

0 r2

⎤
⎦

⎡
⎣ sin(t − θ)

cos(t − θ)

⎤
⎦(8.10)

= r1 sin2(t − θ) + r2 cos2(t − θ)

= r1 + (r2 − r1) cos2(t − θ) .
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The density of r1, r2 and t is

f(r1, r2, t|η′
η, θ) =

1

2Kπ1/2Γ(K−1
2

)
e−

1
2
η′η− 1

2
(r1+r2)(r1r2)

1
2
(K−3)(r2 − r1)(8.11)

×
∞∑

j=0

[r1 sin2(t − θ) + r2 cos2(t − θ)]j(η
′
η)j

22jj! Γ(j + 1
2
K)

=
1

2Kπ1/2Γ(K−1
2

)
e−

1
2
λ2− 1

2
(r1+r2)(r1r2)

1
2
(K−3)(r2 − r1)

×
∞∑

j=0

[r1 + (r2 − r1) cos2(t − θ)]j(λ2)j

22jj! Γ(j + 1
2
K)

.

Then (8.4) in r1, r2, t is f(r1, r2, t|0, 0). The marginal density of t is obtained by

integrating (8.11) over 0 ≤ r1 ≤ r2 < ∞. Note that (8.11) is a convergent series.

For each r1 and r2 (r1 ≤ r2) (8.10) is a decreasing function of t − θ for 0 ≤
t − θ ≤ π/2; its maximum occurs at t − θ = 0. If (8.11) is considered as the

likelihood function of the parameter θ, it is maximized at θ = t (defined in (8.4)).

Thus θ̂ = t is the maximum likelihood estimator of θ.

In the general case with G > 2, it has been known that the distribution of the

LIML estimator for coefficients has a complicated form. The finite sample properties

of the LIML estimator for coefficients have been explored by Phillips (1984, 1985),

for instance.

9. Weak Instruments

Consider the case of LIML when Ω = IG. The LIML estimator of β when

normalized by β
′
β = 1 is defined by

(Ḡ − d1 H̄)β̂ = 0, β̂
′
H̄β̂ = 1 .(9.1)

Let Π = ΠT , ĀT = Ā, and

λ2
T = tr Π

′
T ĀTΠT .(9.2)

Suppose ĀT → A∞ and λ2
T → 0. Then the instruments (or exogenous variables) are

called weak. Suppose that as T → ∞, λ2
T → 0. Then H̄

p→ Ω = IG, ΠT → O, and
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the distribution of G approaches the Wishart distribution with covariance matrix

Ω = IG and K degrees of freedom. When G = 2, the density of the limiting

distribution of the matrix G is (8.1).

Theorem 2 : When Ω = I2, T → ∞ and λ2
T → 0, the limiting distribution of

θ̂LIML − θ is the uniform distribution on [−π/2 − θ, π/2 − θ].

We can write (8.11) as

f(r1, r2, t|λ2, θ)(9.3)

= f(r1, r2, t|0, 0)e−λ2/2

[
1 +

Γ( 1
2
K)

4Γ( 1
2
K + 1)

[
r1 + (r2 − r1) cos2(t − θ)

]
λ2

]
+ O(λ4) .

Then by integrating out d1 and d2

f(t|λ2, θ) = e−λ2/2

{
1

π
+

[
C1(K) + C2(K) cos2(t − θ)

]
λ2

}
+ O(λ4) ,(9.4)

where

C1(K) =

∫
0<r1<r2

f(r1, r2, t|0, 0)r1

1

2K
dr1dr2 ,

C2(K) =

∫
0<r1<r2

f(r1, r2, t|0, 0)(r2 − r1)
1

2K
dr1dr2 .

This is an asymptotic expansion of the density of the angle θ̂ as λ2 → 0. If more

terms in the density (8.11) were used, the asymptotic expansion would have a smaller

error.

10. Conclusions

1. The fact that E(θ̂LIMLK − θ)2 is independent of θ makes conparison with other

estimators clearer.

2. The results of Anderson, Stein and Zaman (1985) show that the LIMLK estima-

tor is the best invariant estimator when Ω = I or Ω = σ2I.

3. The asymptotic expansions of the LIMLK and TSLS estimators show that the
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measn square error of the LIMLK estimator is smaller than that of the TSLS esti-

mator unless θ is very small; tan2 θ ≤ 2/(K − 1). [ For K = 3, the inequality is

θ ≤ π/4.]

4. For given K and λ2 the quantity E(θ̂ − θ)2 for TSLS increases with θ in terms of

the asymptotic expansions and simulations. At θ = 0 (β2 = 0) E(θ̂ − θ)2 is less for

TSLS than for LIMLK, but for larger θ E(θ̂ − θ)2 is much larger for TSLS than for

LIMLK.
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Appendix

This appendix gives the exact and approximate distributions of the LIMLK and

TSLS estimators based on simulations in the normalized form of Pr{λ(θ̂ − θ) ≤ t}.
The empirical values of Ê[λ(θ̂−θ)]2 are calculated in the normalized form for λ(θ̂−θ).

The method of simulations are similar to the one used by Anderson, Kunitomo

and Matsushita (2008) and we have enough accuracy. (i) We first generate 10,000

data sets by using the two-equations system of y1t = −z′tπsinθ + v1t and y2t =

z′tπcosθ+v2t for t = 1, . . . , T where zt ∼ N(0, IK), (v1t, v2t) ∼ N(0, I2), and (v1t, v2t)

are independent of zt. We set K × 1 vector π = c(1, . . . , 1)′ so that λ2 = π′Aπ

and A =
∑T

t=1 ztz
′
t. (ii) Then the distributions of the LIMLK and TSLS estimators

of tanθ are computed by (2.6) and (2.8), respectively. (iii) Finally, we have the

distributions of the angle LIMLK and TSLS estimators by transforming tan(θ̂) to θ̂

so that −π
2

< θ̂ − θ < π
2

in each case.
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Figure 1: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0.4π and λ2 = 100

Ê[λ(θ̂LIMLK − θ)]2 = 1.03, Ê[λ(θ̂TSLS − θ)]2 = 1.91
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Figure 2: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0.2π and λ2 = 100

Ê[λ(θ̂LIMLK − θ)]2 = 1.03, Ê[λ(θ̂TSLS − θ)]2 = 1.01
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Figure 3: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0 and λ2 = 100

Ê[λ(θ̂LIMLK − θ)]2 = 1.03, Ê[λ(θ̂TSLS − θ)]2 = 0.99
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Figure 4: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0.4π and λ2 = 50

Ê[λ(θ̂LIMLK − θ)]2 = 1.05, Ê[λ(θ̂TSLS − θ)]2 = 3.81
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Figure 5: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0.2π and λ2 = 50

Ê[λ(θ̂LIMLK − θ)]2 = 1.07, Ê[λ(θ̂TSLS − θ)]2 = 1.03
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Figure 6: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0 and λ2 = 50

Ê[λ(θ̂LIMLK − θ)]2 = 1.045, Ê[λ(θ̂TSLS − θ)]2 = 0.955
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Figure 7: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0.4π and λ2 = 100

Ê[λ(θ̂LIMLK − θ)]2 = 1.31, Ê[λ(θ̂TSLS − θ)]2 = 42.14
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Figure 8: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0.2π and λ2 = 100

Ê[λ(θ̂LIMLK − θ)]2 = 1.36, Ê[λ(θ̂TSLS − θ)]2 = 3.61

28



−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LIMLK
approx

LIMLK
TSLS
N(0,1)

Figure 9: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0 and λ2 = 100

Ê[λ(θ̂LIMLK − θ)]2 = 1.33, Ê[λ(θ̂TSLS − θ)]2 = 0.77
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Figure 10: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0.4π and λ2 = 50

Ê[λ(θ̂LIMLK − θ)]2 = 1.78, Ê[λ(θ̂TSLS − θ)]2 = 40.12
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Figure 11: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0.2π and λ2 = 50

Ê[λ(θ̂LIMLK − θ)]2 = 1.78, Ê[λ(θ̂TSLS − θ)]2 = 4.22
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Figure 12: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0 and λ2 = 50

Ê[λ(θ̂LIMLK − θ)]2 = 1.77, Ê[λ(θ̂TSLS − θ)]2 = 0.63
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Figure 13: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0.4π and λ2 = 10

Ê[λ(θ̂LIMLK − θ)]2 = 1.56, Ê[λ(θ̂TSLS − θ)]2 = 5.38
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Figure 14: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0.2π and λ2 = 10

Ê[λ(θ̂LIMLK − θ)]2 = 1.58, Ê[λ(θ̂TSLS − θ)]2 = 1.22
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Figure 15: Pr{λ(θ̂ − θ) ≤ t} for K = 3, θ = 0 and λ2 = 10

Ê[λ(θ̂LIMLK − θ)]2 = 1.57, Ê[λ(θ̂TSLS − θ)]2 = 0.88
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Figure 16: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0.4π and λ2 = 10

Ê[λ(θ̂LIMLK − θ)]2 = 4.06, Ê[λ(θ̂TSLS − θ)]2 = 13.9
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Figure 17: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0.2π and λ2 = 10

Ê[λ(θ̂LIMLK − θ)]2 = 3.90, Ê[λ(θ̂TSLS − θ)]2 = 2.80
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Figure 18: Pr{λ(θ̂ − θ) ≤ t} for K = 30, θ = 0 and λ2 = 10

Ê[λ(θ̂LIMLK − θ)]2 = 3.93, Ê[λ(θ̂TSLS − θ)]2 = 0.25
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