

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2013 Society for Industrial and Applied Mathematics
Vol. 23, No. 4, pp. 2150–2168

THE LIMITED MEMORY CONJUGATE GRADIENT METHOD∗

WILLIAM W. HAGER† AND HONGCHAO ZHANG‡

Abstract. In theory, the successive gradients generated by the conjugate gradient method ap-
plied to a quadratic should be orthogonal. However, for some ill-conditioned problems, orthogonality
is quickly lost due to rounding errors, and convergence is much slower than expected. A limited mem-
ory version of the nonlinear conjugate gradient method is developed. The memory is used to both
detect the loss of orthogonality and to restore orthogonality. An implementation of the algorithm
is presented based on the CG DESCENT nonlinear conjugate gradient method. Limited memory
CG DESCENT (L-CG DESCENT) possesses a global convergence property similar to that of the
memoryless algorithm but has much better practical performance. Numerical comparisons to the
limited memory BFGS method (L-BFGS) are given using the CUTEr test problems.

Key words. nonlinear conjugate gradients, CG DESCENT, unconstrained optimization, lim-
ited memory, BFGS, limited memory BFGS, L-BFGS, reduced Hessian method, L-RHR, adaptive
method

AMS subject classifications. 90C06, 90C26, 65Y20

DOI. 10.1137/120898097

1. Introduction. A new implementation of the nonlinear conjugate gradient
method is developed for the unconstrained optimization problem

min{f(x) : x ∈ R
n},(1.1)

where f : Rn → R is continuously differentiable. The nonlinear conjugate gradient
method is very effective for a wide range of unconstrained optimization problems
with first-order derivatives available. However, in some ill-conditioned cases, the con-
vergence can be extremely slow, even for very small problems. As an illustration,
let us consider the CUTEr [3] test problem PALMER1C, a positive definite quadratic
optimization problem of dimension 8 with a condition number around 1012; the eigen-
values range from 0.0002 up to 2 × 108. In theory, the conjugate gradient method
should reach the minimum in 8 iterations. In actuality, with an exact line search,
it takes the PRP+ conjugate gradient method [9, 23] 26,563 iterations to reduce the
Euclidean norm of the gradient to 10−6. Figure 1.1 plots the base 10 logarithm of the
Euclidean norm of the gradient, as a function of the iteration number k. In contrast,
with an exact line search and with memory of 8, the unscaled limited memory BFGS
algorithm (L-BFGS) [16, 20] is able to reduce the Euclidean norm of the gradient
beneath 10−6 in 16 iterations.

In theory, for this quadratic test problem, the conjugate gradient method and L-
BFGS should yield exactly the same iterates. In Table 1.1 we give the Euclidean norm

∗Received by the editors November 7, 2012; accepted for publication (in revised form) August 19,
2013; published electronically November 5, 2013. The authors gratefully acknowledge support by
the National Science Foundation under grant 1016204, by the Office of Naval Research under grant
N00014-11-1-0068, and by the Defense Advanced Research Project Agency under contract HR0011-
12-C-0011. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government. Approved for public release, distri-
bution unlimited.

http://www.siam.org/journals/siopt/23-4/89809.html
†Department of Mathematics, University of Florida, Gainesville, FL 32611-8105 (hager@math.ufl.

edu, http://www.math.ufl.edu/∼hager).
‡Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918

(hozhang@math.lsu.edu, http://www.math.lsu.edu/∼hozhang).

2150

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2151

0 0.5 1 1.5 2 2.5 3

x 10
4

−8

−6

−4

−2

0

2

4

6

8

Iteration Number (10,000s)

lo
g 10

(|
|g

k||)

Fig. 1.1. A plot of log10(‖gk‖) versus the iteration number k for the test problem PALMER1C
and the PRP+ conjugate gradient algorithm.

Table 1.1

Comparison between L-BFGS and the conjugate gradient method for test problem PALMER1C.

Iteration Euclidean norm of gradient distance{gk ,Sk}/‖gk‖
Number L-BFGS CG L-BFGS CG

0 1.236601e+04 1.236601e+04 1.000000e+00 1.000000e+00
1 5.963288e+02 5.963288e+02 1.000000e+00 1.000000e+00
2 7.407602e+02 7.407604e+02 1.000000e+00 1.000000e+00
3 1.522621e+02 4.295004e+03 1.000000e+00 1.000000e+00
4 1.854969e+01 1.522737e+02 1.000000e+00 6.071837e-02
5 8.570299e-01 1.855053e+01 1.000000e+00 2.970627e-09
6 1.916191e-02 2.735232e+05 1.000000e+00 1.547388e-03
7 5.895725e-01 5.585652e+03 9.999946e-01 1.291663e-06
8 5.077823e-02 8.561509e-01 9.959666e-01 4.454090e-08
9 1.578722e-02 4.375147e+01 8.544348e-01 9.995882e-01

10 1.229866e-02 9.167281e+02 7.709504e-01 3.273471e-07
11 8.741490e-03 6.924029e+01 6.475927e-01 5.993251e-06
12 1.179530e-03 2.844638e+02 9.789403e-01 3.497028e-05
13 1.704901e-05 9.924564e-01 9.999620e-01 4.165132e-08
14 4.185954e-06 7.273669e+02 9.999951e-01 3.995330e-04
15 1.096675e-08 2.769453e+01 1.000000e+00 1.225716e-05

of the gradient versus the iteration number for these two algorithms. In iterations
0 and 1, the errors are identical, while at iteration 2, the errors agree to at least 6
significant digits. At iteration 3, the errors differ by more than a factor of 10, and
by iteration 6, the errors differ by more than a factor of 107. The sharp contrast
between the theoretically predicted performance and the observed performance is due
to the propagation of numerical errors in inexact 64-bit (double precision) floating
point arithmetic.

In theory, for this quadratic test problem, the gradient at each iterate of either
the conjugate gradient method or L-BFGS should be orthogonal to the space spanned
by the previous search directions. Table 1.1 also gives the distance between gk/‖gk‖
and the space Sk spanned by the previous search directions up to a maximum of 6
directions. If gk is orthogonal to Sk, then this distance is 1, while if gk ∈ Sk, then this

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2152 WILLIAM W. HAGER AND HONGCHAO ZHANG

distance is 0. Observe that L-BFGS preserves the orthogonality of gk to Sk, while
the conjugate gradient method loses orthogonality at about the same time that the
iterate error grows substantially. Moreover, the gradients in the conjugate gradient
method not only lose orthogonality, but by iteration 5, the gradient essentially lies in
the space spanned by the first 5 search directions.

The performance of the conjugate gradient method depends both on the problem
conditioning and on the propagation of arithmetic errors in finite precision arithmetic.
If the problem is quadratic, then there is an easy way to correct for the loss of
orthogonality associated with the propagation of arithmetic errors. For a quadratic
optimization problem of the form

min
1

2
xTAx− bTx,

where A is a symmetric, positive definite matrix, the following code corresponds to
an implementation of the Fletcher–Reeves [8] conjugate gradient method.

Fletcher–Reeves conjugate gradient method for a quadratic.

g0 = Ax0 − b, d0 = −g0

for k = 0, 1, . . .
pk = Adk

xk+1 = xk + αkdk, αk = ‖gk‖2/dT
kpk

gk+1 = gk + αkpk

dk+1 = −gk+1 + βkdk, βk = ‖gk+1‖2/‖gk‖2
end

When this code is applied to PALMER1C, the norm of the gradient is reduced below
10−9 by iteration 39, and below 10−12 by iteration 54.

This formulation of the conjugate gradient only applies to a quadratic since the
gradient is updated by the formula gk+1 = gk + αkAdk. For a general nonlinear
function, we treat the gradient as a black box with input x and output ∇f(x). If the
gradient update was replaced by the gradient formula gk+1 = Axk+1 − b in the test
problem PALMER1C, then for double precision arithmetic, the conjugate gradient
algorithm cannot reduce ‖gk‖ below 10−8.

In this paper, we develop a limited memory conjugate gradient method that cor-
rects for the loss of orthogonality that can occur in ill-conditioned optimization prob-
lems. In our method, we check the distance between the current gradient and the
space Sk spanned by the recent prior search directions. When the distance becomes
sufficiently small, the orthogonality property has been lost, and in this case, we opti-
mize the objective function over Sk until achieving a gradient that is approximately
orthogonal to Sk. This approximate orthogonality condition is eventually fulfilled
by the first-order optimality conditions for a local minimizer in the subspace. The
algorithm continues to operate in this same way: We apply the conjugate gradient
iteration until the distance between the current gradient and Sk becomes sufficiently
small, and then we solve a subspace problem to obtain an iterate for which the gradient
is approximately orthogonal to Sk.

Our limited memory algorithm has connections with both L-BFGS of Nocedal [20]
and Liu and Nocedal [16], and with the reduced Hessian method of Gill and Leonard
[10, 11]. Unlike either of these limited memory approaches, we do not always use the
memory to construct the new search direction. The memory is used to monitor the
orthogonality of the search directions; and when orthogonality is lost, the memory is
used to generate a new orthogonal search direction. Our rational for not using the
memory to generate the current search when orthogonality holds is that conjugate

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2153

gradients can be very efficient and the benefit from using old search directions in the
computation of the current search direction can be small when the successive search
directions are locally orthogonal.

Our limited memory conjugate gradient algorithm is related to the reduced Hes-
sian algorithm of Gill and Leonard in that both algorithms use the recent search
directions to build the memory, not the recent gradients. On the other hand, our al-
gorithm differs from the reduced Hessian method in the way that the memory enters
into the computation of the search direction. When our algorithm detects a loss of
orthogonality, it operates in an affine space associated with the memory until orthog-
onality is restored. In contrast, the reduced Hessian algorithm uses the memory in
each iteration to update the search direction.

In the L-BFGS method, the formula for the new search direction is expressed in
terms of both the recent gradients and the recent search directions. In our limited
memory conjugate gradient algorithm, we only retain the recent search directions, not
the gradients so the storage associated with the memory is cut in half. On the other
hand, when the loss of orthogonality is detected, we utilize an L-BFGS iteration in
the subspace in order to generate a gradient orthogonal to the subspace. And when
the iterate leaves the subspace, we exploit an L-BFGS-based preconditioner. In our
implementation of the subspace L-BFGS method, we save both the subspace direction
and the subspace gradient vectors. But since the dimension of the subspace problem
is small, the L-BFGS memory requirements in this subspace context are insignifi-
cant. Moreover, L-BFGS usually solves the subspace problem quickly due to its small
dimension.

The paper is organized as follows. In section 2, we present the preconditioned
version of CG DESCENT. Section 3 discusses the composition of subspace and the
criteria for switching between the subspace and the full-space conjugate gradient al-
gorithms. Section 4 presents a quasi-Newton based preconditioner that can be used
when returning to the full space after solving the subspace problem. Section 5 sum-
marizes the three components of the limited memory conjugate gradient algorithm:
the standard conjugate gradient iteration, the subspace iteration, and the precondi-
tioner when leaving the subspace. Section 6 provides a convergence analysis for the
limited memory algorithm. Section 7 discusses the implicit implementation of the sub-
space techniques, while section 8 gives numerical comparisons with L-BFGS and with
(memoryless) CG DESCENT 5.3 using the unconstrained CUTEr test problems [3].

Notation. ∇f(x) denotes the gradient of f , a row vector. The gradient of f(x),
arranged as a column vector, is g(x). The subscript k often represents the iteration
number in an algorithm; for example, xk is the kth x iterate while gk stands for g(xk).
‖ · ‖ denotes the Euclidean norm. If P ∈ R

n×n, then P−1 denotes the pseudoinverse
of P. If P is invertible, then P−1 is the ordinary inverse. If x ∈ R

n and S ⊂ R
n, then

dist{x,S} = inf{‖y− x‖ : y ∈ S}.
2. Preconditioned CG DESCENT. The development of our limited mem-

ory conjugate gradient algorithm will be done in the context of the CG DESCENT
nonlinear conjugate gradient algorithm [13, 14, 15]. In this algorithm, the search
directions are updated by the formula

dk+1 = −gk+1 + βkdk,(2.1)

where

βk =
yT
kgk+1

dT
kyk

− θk
yT
kyk

dT
kyk

dT
kgk+1

dT
kyk

.(2.2)

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2154 WILLIAM W. HAGER AND HONGCHAO ZHANG

Here yk = gk+1−gk and θk > 1/4 is a parameter associated with the CG DESCENT
family. In the first papers [13, 14] analyzing CG DESCENT, θk was 2. Our limited
memory conjugate gradient algorithm uses a preconditioned version of (2.1)–(2.2).
The idea behind preconditioning is to make a change of variables x = Uy, where
U ∈ R

n×n is nonsingular, in order to improve the condition number of the objective
function. The Hessian of f(Uy) is

∇2
yf(Uy) = UT∇2f(x)U.

In a perfectly conditioned problem, the eigenvalues of the Hessian are all the same.
Hence, the goal in preconditioning is to chooseU so that the eigenvalues ofUT∇2f(x)U
are roughly the same. Since UT∇2f(x)U is similar to∇2f(x)UUT, the product UUT

is usually chosen to approximate the inverse Hessian ∇2f(x)−1.
In the y variable, the conjugate gradient algorithm takes the form

yk+1 = yk + α̂kd̂k,(2.3)

d̂k+1 = −ĝk+1 + β̂kd̂k, d̂0 = −ĝ0,(2.4)

where α̂k is the stepsize, which is often computed to satisfy a line search condition
such as the Wolfe conditions [27, 28]. Here the hats remind us that all the derivatives
are computed with respect to y. In practice, it is more convenient to perform the
equivalent iteration in the original x variable. Multiplying (2.3) and (2.4) by U and
substituting ĝk = UTgk and x = Uy, we obtain

xk+1 = xk + α̂kdk,(2.5)

dk+1 = −UUTgk+1 + β̂kdk, d0 = −UUTg0.(2.6)

The product P = UUT is usually called the preconditioner. This matrix also enters
into the formula for β̂k; for example, ŷT

k ĝk+1 = yT
kPgk+1 since ŷk = UTyk and

ĝk+1 = UTgk+1. On the other hand, d̂T
k ŷk = dT

kyk, so P only appears in some of

terms forming β̂k. For a Wolfe line search, we have α̂k = αk.
In our preconditioned version of CG DESCENT, we allow the preconditioner to

change in each iteration. If Pk denotes a symmetric, positive semidefinite precondi-
tioner, then the search directions for preconditioned CG DESCENT are updated by
the formula

dk+1 = −Pkgk+1 + βkdk,(2.7)

where

βk =
yT
kPkgk+1

dT
kyk

− θk
yT
kPkyk

dT
kyk

dT
kgk+1

dT
kyk

.(2.8)

Note that Pk = I corresponds to the original update formula (2.1)–(2.2). For the
CG DESCENT family associated with (2.8), it follows from [15, eq. (7.3)] that the
search directions satisfy the sufficient descent condition

dT
k+1gk+1 ≤ −

(
1− 1

4θk

)
gT
k+1Pkgk+1.(2.9)

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2155

To ensure global convergence, we must truncate βk when it becomes too small.
We have found that a lower bound β+

k of the following form both guarantees global
convergence and works well in practice:

β+
k = max{βk, ηk}, ηk = η

(
dT
kgk

dT
kP

−1
k dk

)
,(2.10)

where η is a positive parameter (= 0.4 in the numerical experiments) and P−1
k denotes

the pseudoinverse of Pk. In our original CG DESCENT paper [13], the proposed
truncation formula was not scale invariant in the sense that β+

k changed if either the
objective function was multiplied by a positive constant or the independent variable x
was multiplied by a nonzero scalar. The truncation formula (2.10), on the other hand,
is scale invariant. Unlike the PRP+ conjugate gradient algorithm [9, 23], ηk < 0 in
(2.10) and βk < 0 can be accepted. By permitting βk < 0, there are more cases where
β+
k = βk, which implies that there are fewer cases where βk is truncated to ensure

convergence. A related truncation strategy is given in [4] in which the dT
kgk term in

the numerator of ηk is replaced by dT
kgk+1. With an exact line search, dT

kgk+1 = 0,
and the resulting truncation strategy becomes the PRP+ truncation analyzed by
Gilbert and Nocedal. In contrast, the truncation (2.10) always allows β+

k < 0 by
(2.9). In numerical experiments with the CUTEr test problems, truncation (2.10)
gave better performance than the scheme suggested by Dai and Kou [4], and hence,
(2.10) was adopted in Version 4.0 of CG DESCENT in 2011.

Taking into account the lower bound, the preconditioned search direction is

dk+1 = −Pkgk+1 + β+
k dk.(2.11)

If θk = θ > 1/4 and the smallest and largest eigenvalues of Pk are uniformly bounded
away from 0 and∞, then the CG DESCENT family has a global convergence property
when implemented using the standard Wolfe line search. Dai and Yuan [5, 6] were the
first to show that the standard Wolfe line search is sufficient for the global convergence
of conjugate gradient methods.

In the preconditioned CG DESCENT family, we now observe a connection be-
tween (2.7)–(2.8) with θk = 1 and any quasi-Newton scheme.

Proposition 2.1. Let Hk+1 denote a symmetric, positive semidefinite quasi-
Newton approximation to the inverse Hessian at xk+1 that satisfies the standard secant
condition:

Hk+1yk = sk := xk+1 − xk = αkdk,(2.12)

where yk = gk+1−gk is the gradient change and αk is the stepsize in the direction dk

at iteration k. In the preconditioned CG DESCENT scheme using Pk = Hk+1 and
θk = 1, we have

βk = β+
k = 0.

Proof. Utilizing (2.8), (2.12), and the fact that θk = 1, it follows that

βk =
αkd

T
kgk+1

dT
kyk

− αkd
T
kyk

dT
kyk

dT
kgk+1

dT
kyk

= 0.

Moreover, by the sufficient descent condition (2.9), dkgk ≤ 0, and since Pk is sym-
metric and positive semidefinite, ηk ≤ 0. Hence, β+

k = βk = 0.

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2156 WILLIAM W. HAGER AND HONGCHAO ZHANG

Proposition 2.1 implies that the CG DESCENT scheme with θk = 1 and a quasi-
Newton preconditioner is equivalent to the quasi-Newton scheme itself.

Remark. In [4] Dai and Kou consider a family of conjugate gradient schemes
depending on a parameter τk, where βk is of the form

βk =
yT
kgk+1

dT
kyk

−
(
τk +

‖yk‖2
sTkyk

− sTkyk

‖sk‖2
)

sTkgk+1

dT
kyk

, sk = xk+1 − xk.(2.13)

They obtain this formula by taking a multiple of the memoryless BFGS direction of
Perry [22] and Shanno [24] and projecting into the manifold

{−gk+1 + sdk : s ∈ R}.

The parameter τk is a scaling parameter appearing in the memoryless BFGS scheme.
When the scaling parameter is τk = τBk := sTkyk/‖sk‖2, the formula (2.13) for βk

is the same as the CG DESCENT formula associated with θk = 1. Dai and Kou
provide numerical experiments showing that τk = τBk , or, equivalently, CG DESCENT
with θk = 1, performed generally better than several other members of the family
(2.13). Moreover, in Remark 2 of [4], the authors observe that for the range of scaling
suggested by Oren in his thesis [21],

τk = ν
‖yk‖2
sTkyk

+ (1 − ν)
sTkyk

‖sk‖2 , ν ∈ [0, 1],

the corresponding range of θk in CG DESCENT is

θk ∈
[
1, 2− (sTkyk)

2

‖sk‖2‖yk‖2
]
.

This suggests that an optimal range of θk in CG DESCENT lies in the interval [1, 2).
Motivated by Dai and Kou’s observations, Hager and Zhang evaluated performance
profiles for the CUTEr test problems and for different constant values of θk, inde-
pendent of k. It was observed that the best performance profile for CG DESCENT
was achieved by θk = 1 for this test set. Hence, CG DESCENT has used θk = 1 by
default since Version 4.0 in 2011.

3. Optimization in the subspace. Let m > 0 denote the number of vectors in
the memory of our limited memory conjugate gradient algorithm, and let Sk denote
the subspace spanned by the previous m search directions:

Sk = span{dk−1,dk−2, . . . ,dk−m}.

If gk is nearly contained in Sk, then we feel that the algorithm has lost its orthogonality
property and is returning to a previously explored subspace. In this case, we interrupt
the conjugate gradient iterations and consider the problem

min
z∈Sk

f(xk + z).(3.1)

If zk is a solution of this problem and xk+1 = xk+zk, then by the first-order optimality
conditions for (3.1), we have dTgk+1 = 0 for all d ∈ Sk. Hence, the solution to the
subspace problem will lead us to an iterate with an improved function value and to a
search direction that takes us out of the subspace.

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2157

We use two parameters η0 and η1 to implement the subspace process, where
0 < η0 < η1 < 1. If the condition

dist{gk,Sk} ≤ η0‖gk‖(3.2)

is satisfied, then we switch to the subspace problem (3.1). We continue to perform
iterations inside the subspace until the gradient becomes sufficiently orthogonal to
the subspace to satisfy the condition

dist{gk+1,Sk} ≥ η1‖gk+1‖.(3.3)

If Z is a matrix whose columns are an orthonormal basis for Sk, then these two
conditions can be expressed as

(1− η20)‖gk‖2 ≤ ‖gT
kZ‖2 and (1− η21)‖gk+1‖2 ≥ ‖gT

k+1Z‖2.(3.4)

The numerical results given in this paper are based on using a quasi-Newton
method to solve the subspace problem. According to Proposition 2.1, if the conjugate
gradient algorithm (2.7)–(2.8) with θk = 1 is preconditioned by the Hessian approx-
imation gotten from a quasi-Newton method, then β+

k = 0 and the resulting scheme
is the quasi-Newton method itself. Consequently, we can view the quasi-Newton it-
eration applied to the subspace problem as a special case of CG DESCENT with a
preconditioner of the form

Pk = ZP̂kZ
T,

where P̂k = Ĥk+1 and Ĥk+1 is the quasi-Newton matrix in the subspace. The search

direction d̂k+1 in the subspace is given by d̂k+1 = −Ĥk+1ĝk+1.

4. A quasi-Newton based preconditioner when departing subspace. In
this section we present a preconditioner that can be used when terminating the sub-
space problem and returning to the full space. Again, let P̂k denote the preconditioner
in the subspace; we think of P̂k as an approximation to the inverse Hessian in the
subspace. If Z denotes a matrix whose columns are an orthonormal basis for the
subspace Sk, then we consider the following preconditioner for the conjugate gradient
iteration (2.11):

Pk = ZP̂kZ
T + σkZZ

T
,(4.1)

where Z is a matrix whose columns are an orthonormal basis for the complement
of Sk, and σkI is the safe-guarded Barzilai-Borwein (BB) approximation [2] to the
inverse Hessian given by

σk = max

{
σmin,min

[
σmax,

sTkyk

yT
kyk

]}
, 0 < σmin ≤ σmax <∞.(4.2)

In other words, σk is the projection of sTkyk/y
T
kyk onto the interval [σmin, σmax].

Since P̂k is an approximation to the inverse Hessian in the subspace, we can think of
ZP̂kZ

T as the analogous approximation to the full Hessian restricted to the subspace.
Since there is no information concerning the Hessian outside the subspace, we use

a BB approximation σkZZ
T
in the complement of Sk. Since ZZ

T
= I − ZZT, the

preconditioned search direction dk+1 in (2.11) can be expressed as follows:

dk+1 = −Pkgk+1 + β+
k dk

= −ZP̂kZ
Tgk+1 − σk(I− ZZT)gk+1 + β+

k dk

= −Z(P̂k − σkI)ĝk+1 − σkgk+1 + β+
k dk.(4.3)

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2158 WILLIAM W. HAGER AND HONGCHAO ZHANG

Here ĝk+1 = ZTgk+1 is the gradient in the subspace. The first term in (4.3) is the
subspace contribution, while the remaining terms are a scaled conjugate gradient
direction.

In the case where θk = 1 and P̂k = Ĥk+1, a quasi-Newton matrix, we can express
βk in terms of easily computed subspace and full space quantities without explicitly
forming either Z or Z. Since Pk in (4.1) is the sum of two terms, βk in (2.8) is the

sum of two terms, a subspace term containing ZĤk+1Z
T and another term containing

ZZ
T
. We first show that the subspace term vanishes when θk = 1.
Since sk ∈ Sk, we have

sk = ZZTsk = Zŝk,(4.4)

where ŝk = ZTsk. By the quasi-Newton condition in the subspace, ŷT
k Ĥk+1 = ŝTk .

Consequently, we have

yT
kZHk+1Z

Tgk+1 = ŷT
kHk+1Z

Tgk+1 = ŝTkZ
Tgk+1 = sTkgk+1.(4.5)

In a similar fashion,

yT
kZHk+1Z

Tyk = sTkyk.(4.6)

Taking θk = 1, focusing on the ZĤk+1Z
T terms in βk, and exploiting the identities

(4.5) and (4.6) yields

yT
kZHk+1Z

Tgk+1

dT
kyk

− yT
kZHk+1Z

Tyk

dT
kyk

dT
kgk+1

dT
kyk

=
sTkgk+1

dT
kyk

− sTkyk

dT
kyk

dT
kgk+1

dT
kyk

= αk

(
dT
kgk+1

dT
kyk

− dT
kyk

dT
kyk

dT
kgk+1

dT
kyk

)
= 0.

Since the subspace term in βk vanishes, we are left with the complementary term:

βk = σk

(
yT
kZZ

T
gk+1

dT
kyk

− yT
kZZ

T
yk

dT
kyk

dT
kgk+1

dT
kyk

)

= σk

(
yT
k (I− ZZT)gk+1

dT
kyk

− yT
k (I− ZZT)yk

dT
kyk

dT
kgk+1

dT
kyk

)

= σk

(
yT
kgk+1 − ŷT

k ĝk+1

dT
kyk

−
[‖yk‖2 − ‖ŷk‖2

dT
kyk

]
dT
kgk+1

dT
kyk

)
.(4.7)

Hence, βk can be expressed in terms of easily computed quantities involving either
vectors in the subspace or in the full space.

The expression (2.10) for β+
k also can be simplified. The inverse of the precondi-

tioner Pk in (4.1) is

P−1
k = ZĤ−1

k+1Z
T + σ−1

k ZZ
T
.

Since dk ∈ Sk, it follows that ZT
dk = 0 and

dT
kP

−1
k dk = dT

k (ZH
−1
k+1Z

T)dk =
sTk (ZH

−1
k+1Z

T)sk

α2
k

=
ŝTkH

−1
k+1ŝk

α2
k

=
ŝTk ŷk

α2
k

.(4.8)

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2159

We utilize (4.4) to obtain

sTkyk = (ZZTsk)
Tyk = (ZTsk)

TZTyk = ŝTk ŷk.(4.9)

Combining (4.8) and (4.9) yields

dT
kP

−1
k dk =

sTkyk

α2
k

=
dT
kyk

αk
.

Hence, we have

β+
k = max{βk, ηk}, ηk = η

(
dT
kgk

dT
kP

−1
k dk

)
= η

(
sTkgk

dT
kyk

)
,(4.10)

where βk is given in (4.7).

5. Overview of the limited memory algorithm. Our proposed limited mem-
ory conjugate gradient algorithm has three parts:

1. Standard conjugate gradient iteration. Perform the conjugate gradient al-
gorithm (2.11) with Pk = I as long as dist{gk,Sk} > η0‖gk‖. When the
subspace condition dist{gk,Sk} ≤ η0‖gk‖ is satisfied, branch to the subspace
iteration.

2. Subspace iteration. Solve the subspace problem (3.1) by CG DESCENT with

preconditioner Pk = ZP̂kZ
T, where Z is a matrix whose columns are an

orthonormal basis for the subspace Sk and P̂k is a preconditioner in the
subspace. Stop at the first iteration where dist{gk,Sk} ≥ η1‖gk‖, and then
branch to the preconditioning step.

3. Preconditioning step. When the subspace iteration terminates and we return
to the full space standard conjugate gradient iteration, we have found that the
convergence can be accelerated by performing a single preconditioned itera-
tion. In the special case P̂k = Ĥk+1, where Ĥk+1 is a quasi-Newton matrix,
an appropriate preconditioned step corresponds to the search direction (4.3),
where σk is given by the BB formula (4.2), Z is a matrix whose columns are
an orthonormal basis for the subspace Sk, and β+

k is given by (4.10). After
completing the preconditioning iteration, return to the standard conjugate
gradient iteration (step 1).

Potentially three different preconditioners could arise during the limited memory
conjugate gradient algorithm corresponding to the three parts of the algorithm:

1. Pk = I.
2. Pk = ZP̂kZ

T, where P̂k is the subspace preconditioner and Z is a matrix
whose columns are an orthonormal basis for the subspace Sk.

3. Pk = ZP̂kZ
T+ σkZZ

T
, where Z is a matrix whose columns are an orthonor-

mal basis for the complement of Sk and σkI is the safe-guarded BB approxi-
mation [2] to the inverse Hessian given by (4.2).

6. Convergence analysis. As mentioned in the introduction, it is well known
[17] that the conjugate gradient algorithm with an exact line search should reach
the minimum of a strongly convex quadratic in at most n iterations, and in each
iteration, the gradient is orthogonal to the space spanned by the previous search
directions. Hence, for an exact line search and for any value of the memory m,

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2160 WILLIAM W. HAGER AND HONGCHAO ZHANG

the subspace condition (3.2) is never satisfied in theory (since dist{gk,Sk} = 1 and
η0 < 1). Consequently, the limited memory conjugate gradient algorithm of section 5
reduces to the standard linear conjugate gradient method. And hence it reaches the
global minimum of a strongly convex quadratic in at most n iterations. We summarize
this as follows.

Proposition 6.1. If f is a strongly convex quadratic, then the limited memory
conjugate gradient algorithm of section 5 reaches the global minimum in at most n
iterations when implemented with an exact line search.

Next, we consider the convergence of the preconditioned conjugate gradient scheme
given by (2.8), (2.10), and (2.11) for a more general nonlinear function. In [13] we
give a convergence result in the case that Pk = I for each k. With small modifi-
cations in the assumptions and the analysis, we obtain the following result for the
preconditioned algorithm.

Theorem 6.2. Suppose that the preconditioned conjugate gradient algorithm
given by (2.8), (2.10), and (2.11) satisfies the following conditions:

(C1) θk = θ > 1/4, where θk appears in (2.8).
(C2) The line search satisfies the standard Wolfe conditions, that is,

f(xk + αkdk)− f(xk) ≤ δαkg
T
kdk and gT

k+1dk ≥ σgT
kdk,

where 0 < δ ≤ σ < 1.
(C3) The level set

L = {x ∈ R
n : f(x) ≤ f(x0)}

is bounded, and ∇f is Lipschitz continuous on L.
(C4) The preconditioner Pk satisfies the conditions

‖Pk‖ ≤ γ0, gT
k+1Pkgk+1 ≥ γ1‖gk+1‖2, and dT

kP
−1
k dk ≥ γ2‖dk‖2

for all k, where γ0, γ1, and γ2 are positive constants.
Then either gk = 0 for some k, or

lim inf
k→∞

‖gk‖ = 0.

Proof. Conditions (C1)–(C3) appeared in the original convergence proof [13,
Thm. 3.2] for the unconditioned algorithm. The modifications needed to account for
the preconditioner Pk are relatively minor. In particular, the descent condition

dT
kgk ≤ −

(
1− 1

4θ

)
‖gk‖2

is replaced by

dT
kgk ≤ −

(
1− 1

4θ

)
gT
kPkgk ≤ −γ1

(
1− 1

4θ

)
‖gk‖2,

where γ1 appears in (C4). The denominator dT
kP

−1
k dk of ηk in (2.10) is bounded from

below by γ2‖dk‖2, which leads to the lower bound

ηk ≥ η

(
dT
kgk

γ2‖dk‖2
)D

ow
nl

oa
de

d
12

/0
2/

13
 to

 1
30

.3
9.

16
8.

16
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2161

since dT
kgk ≤ 0. Finally, during the proof of [13, Thm. 3.2], we bound ‖gk‖ due

to fact that the level set L is bounded and ∇f is Lipschitz continuous. For the
preconditioned scheme, the product Pkgk plays the role of gk and the analogous
bound is ‖Pkgk‖ ≤ ‖Pk‖‖gk‖ ≤ γ0‖gk‖ (by (C4)), where ‖gk‖ is again bounded due
to fact that the level set L is bounded and ∇f is Lipschitz continuous.

Next, let us suppose that the CG DESCENT algorithm is implemented using the
framework of section 5, where Pk is expressed further in terms of a subspace matrix
P̂k and a matrix Z with orthonormal columns that forms a basis for the subspace Sk:
Pk = ZP̂kZ

T.
Theorem 6.3. Suppose that the preconditioned conjugate gradient algorithm

given by (2.8), (2.10), and (2.11) satisfies (C1)–(C3). Moreover, suppose that the

subspace preconditioner P̂k has the following properties:
(Ĉ4) There are positive constants γ̂0, γ̂1, and γ̂2 such that for all k, we have

‖P̂k‖ ≤ γ̂0, ĝT
k+1P̂kĝk+1 ≥ γ̂1‖ĝk+1‖2, and d̂T

k P̂
−1
k d̂k ≥ γ̂2‖d̂k‖2.

Then either gk = 0 for some k, or

lim inf
k→∞

‖gk‖ = 0.

Proof. We show that condition (C4) of Theorem 6.2 is satisfied. According to
section 5, there are three different choices for Pk to consider. If Pk = I, then (C4)
holds trivially.

If Pk = ZP̂kZ
T, where P̂k is the subspace preconditioner and Z is a matrix whose

columns are an orthonormal basis for the subspace Sk, then by (Ĉ4), we have

‖Pk‖ = ‖ZP̂kZ
T‖ = ‖P̂k‖ ≤ γ̂0,

and

gT
k+1Pkgk+1 = gT

k+1ZP̂kZ
Tgk+1 = ĝT

k+1P̂kĝk+1 ≥ γ̂1‖ĝk+1‖2.(6.1)

Moreover, since the search direction dk+1 is computed by the subspace iteration in
section 5, it follows from (3.4) that

‖ĝk+1‖2 ≥ (1− η21)‖gk+1‖2.(6.2)

We combine (6.1) and (6.2) to obtain

gT
k+1Pkgk+1 ≥ γ̂1(1− η21)‖gk+1‖2.

Finally,

dT
kP

−1
k dk = dT

kZP̂
−1
k ZTdk = d̂T

k P̂
−1
k d̂k ≥ γ̂2‖d̂k‖2 = γ̂2‖dk‖2

since dk ∈ Sk. Hence, the preconditioner Pk = ZP̂kZ
T satisfies the conditions of

(C4).

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2162 WILLIAM W. HAGER AND HONGCHAO ZHANG

For the preconditioner Pk = ZP̂kZ
T + σkZZ

T
, we have

‖Pk‖ = ‖ZP̂kZ
T + σkZZ

T‖ ≤ ‖P̂k‖+ σmax ≤ γ̂0 + σmax.

For the preconditioning step of section 5, we have

(1− η21)‖gk+1‖2 ≥ ‖gT
k+1Z‖2

since the condition for exiting the subspace was fulfilled. By (Ĉ4), it follows that

gT
k+1Pkgk+1 = gT

k+1(ZP̂kZ
T + σkZZ

T
)gk+1

≥ γ̂1‖ZTgk+1‖2 + σk‖ZT
gk+1‖2

≥ min{γ̂1, σmin}‖gk+1‖2.

In a similar manner, we have

dT
kP

−1
k dk = dT

k (ZP̂
−1
k ZT + σ−1

k ZZ
T
)dk

≥ γ̂2‖ZTdk‖2 + σ−1
k ‖Z

T
dk‖2

≥ min{γ̂2, 1/σmax}‖dk‖2.

Hence, all the preconditioners in section 5 satisfy (C4), and the proof is com-
plete.

We now remove the assumption (Ĉ4) by introducing a strong convexity assump-
tion and assuming that the subspace preconditioner is gotten by applying the L-BFGS
algorithm [16, 20] to the subspace problem.

Corollary 6.4. Suppose that the preconditioned conjugate gradient algorithm
given by (2.8), (2.10), and (2.11) satisfies C1 and C2 and that objective function f is
twice continuously differentiable and strongly convex. If the subspace preconditioner is
implemented by applying the L-BFGS algorithm, as described in [16], with a starting
matrix in the L-BFGS update whose eigenvalues lie on an interval [a, b] ⊂ (0,∞),
then either gk = 0 for some k, or

lim inf
k→∞

‖gk‖ = 0.

Proof. Since f is strongly convex and twice continuously differentiable, (C3) is
satisfied. Let Zk denote a matrix whose columns are an orthonormal basis for the sub-
space at iteration k. Since f is strongly convex, the subspace Hessian ZT

k∇2f(x)Zk is
positive definite with largest and smallest eigenvalues between the largest and smallest
eigenvalues of ∇2f(x). In [16, Thm. 7.1], the authors show that for a strongly convex
objective function, the eigenvalues of the L-BFGS matrices are uniformly bounded
away from 0 and +∞. Hence, (Ĉ4) is satisfied, and Theorem 6.3 completes the
proof.

Using the techniques of [13, Thm. 2.2], the conclusion of Corollary 6.4 can be
strengthened to limk→∞ gk = 0.

7. Implementation details. Our strategies for implementing a standard Wolfe
line search are given in [13, 14]. We solve the subspace problem (3.1) by the scaled
L-BFGS method using a standard implementation [16, 19], which is stated below for
completeness.

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2163

Limited memory BFGS (L-BFGS).

d = −ĝk

for j = k − 1, k − 2, . . . , k −m
αj ← ρj ŝ

T
j d, ρj = 1/ŷT

j ŝj
d ← d− αj ŷj

end
d← (ŝTk−1ŷk−1/ŷ

T
k−1ŷk−1)d

for j = k −m, k −m+ 1, . . . , k − 1
β ← ρjŷ

T
j d

d ← d+ ŝj(αj − β)
end
d̂k ← d

The variables with hats here pertain to the subspace; by the chain rule, the relation
between a gradient ĝ in the subspace and the corresponding gradient g in the full space
is ĝ = ZTg, where the columns of Z form an orthonormal basis for the subspace. The
cost of the L-BFGS update is O(m2) since the subspace vectors have length m, the
dot products and the saxpy operations involve O(m) flops, and the j index has m
values. Hence, when m is much smaller than n, the linear algebra overhead associated
with the L-BFGS iteration can be much less than the cost of evaluating a gradient
in R

n or updating the iterate xk in R
n. After computing a subspace search direction

d̂k, we perform a Wolfe linesearch, as in [13, 14], to obtain the new iterate

xk+1 = xk + αkdk = xk + αkZd̂k.

To help reduce the linear algebra overhead in implementing the subspace tech-
niques, we use the implicit factorization techniques proposed by Siegel [25] and by Gill
and Leonard [10, 11]. The implicit factorization techniques are based on the following
idea: Let S denote a matrix whose columns are a basis for the subspace. The columns
of S will be formed from the previous search directions. Suppose that S = ZR is the
factorization of S into the product of an n by m matrix Z with orthonormal columns
and an m by m upper triangular matrix R with positive diagonal entries (for example,
see Golub and Van Loan [12] or Trefethen [26]). Since Z = SR−1, any occurrence of
Z can be replaced by SR−1. For example, to compute an expression such as Zy, we
solve Rz = y for z and then

Zy = (SR−1)y = S(R−1y) = Sz.

We now observe that the implicit algorithm where Z is replaced by SR−1 is more
efficient than the explicit algorithm where Z is stored and updated in each iteration.
Before we enter the subspace, S changes in each iteration as we add a new column
(new search direction) until the memory is full, and then after adding the new column,
an old column (old search direction) will be deleted. If a new column is added to S
and an old column is deleted from S, then the update of Z takes about 10mn flops
(4mn flops to add the new column to Z through a Gram–Schmidt process, and 6mn
flops to remove the column from Z using a series of plane rotations [1]). On the other
hand, the update of R can be done in about 3m2 flops by a series of plane rotations.
Hence, if m is much smaller than n, it is much more efficient to store S and update
R rather than update Z.

Suppose that at iteration k, we enter the subpace. In order to perform the
L-BFGS iteration given above, we need both ŝj and ŷj for k − m ≤ j ≤ k − 1.
Note the columns of the upper triangular matrix R that is computed when iterates

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2164 WILLIAM W. HAGER AND HONGCHAO ZHANG

are outside the subspace are precisely the vectors ŝj for k − m ≤ j ≤ k − 1. In
order to test the subspace condition (3.2), we need to compute ĝk in each iteration.
Hence, it is relatively cheap to also form and update the m-component vectors ŷj for
k −m ≤ j ≤ k − 1; consequently, when the iterates enter the subspace, both ŝj and
ŷj for k−m ≤ j ≤ k− 1 are available. Also, when performing the L-BFGS iteration,
we can exploit the sparsity of these vectors since nearly half the components are zero
when we first enter the subspace. More precisely, for k −m ≤ j ≤ k − 1, ŝj has a
triangular structure, while ŷj has an upper Hessenberg structure except for ŷj−m,
which could be dense.

When we are inside the subspace, the most costly operations are the computations
of

Zd̂k = SR−1d̂k and ĝk = ZTgk = R−TSTgk.

The first operation occurs when we map the subspace search direction to the full
space, and the second operation occurs when we map the full space gradient into the
subspace. Each of these operations involve about 2mn flops, assuming m is much
smaller than n, when we multiply S from the right or from the left by a vector. This
is the same as the cost of multiplying Z by a vector from the left or the right.

8. Numerical results. A new version of the CG DESCENT algorithm has been
developed, Version 6.0, that implements the limited memory techniques developed in
this paper. We refer to this limited memory conjugate gradient algorithm as L-
CG DESCENT. This code can be downloaded from the following web sites:

www.math.ufl.edu/∼hager or www.math.lsu.edu/∼hozhang.
We compare the performance of L-CG DESCENT to both L-BFGS [16, 20] and to
CG DESCENT Version 5.3. All three algorithms, L-CG DESCENT, L-BFGS, and
CG DESCENT Version 5.3, correspond to different parameter settings in Version
6.0 of CG DESCENT. When the memory is zero, CG DESCENT 6.0 reduces to
CG DESCENT 5.3 (except for minor changes to the default parameter values). Set-
ting the LBFGS parameter in CG DESCENT 6.0 to TRUE yields L-BFGS. Hence,
all three algorithms employ the same CG DESCENT line search developed in [13, 14].
This line search performs better than the line search [18] used in the L-BFGS For-
tran code on Jorge Nocedal’s web page. For example, the line search in the Fortran
code fails in 33 of the 145 test problems used in this paper, while the version of L-
BFGS contained in CG DESCENT solves all 145 test problems but one. Hence, the
L-BFGS performance shown in this paper should be better than the performance of
the L-BFGS Fortran code.

On the web site given above, we have posted the performance results of the
algorithms for the test set consisting of the 145 unconstrained problems in CUTEr
[3] that could be solved with the sup-norm convergence tolerance ‖gk‖∞ ≤ 10−6. We
used the default dimensions provided with each of the problems. The remaining 15
unconstrained problems in CUTEr for which this particular convergence tolerance was
not achieved were simply skipped. The names of the omitted problems are provided
on the web site above.

In the performance profiles comparing L-CG DESCENT and L-BFGS, we restrict
the problem dimension to be at least 50; 79 out of the 145 problems satisfy this
constraint. The minimum problem dimension is 50, the maximum dimension is 10,000,
and the mean dimension is 3783. The reason for adding this constraint to the problem
dimension is that L-CG DESCENT reduces to L-BFGS for the smaller problems and

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2165

1 2 4 8
0.4

0.5

0.6

0.7

0.8

0.9

1
Time

τ

P

L−CG_DESCENT
L−BFGS

1 2 4 8
0.5

0.6

0.7

0.8

0.9

1
Iterations

τ

P

L−CG_DESCENT
L−BFGS

Fig. 8.1. Performance profiles for L-CG DESCENT and L-BFGS based on time (left) and
number of gradient iterations (right).

the performance for these small problems is identical. In the analysis, we eliminate
these small problems where the performance is identical. In our experiments, we
took m = 11 for the memory in both L-CG DESCENT and L-BFGS since this value
seemed to give the best performance for both methods. This amounts to storing the
11 previous sk in L-CG DESCENT, and the 11 previous sk and yk in L-BFGS. Hence,
the memory requirement for L-BFGS is double that of L-CG DESCENT.

The experiments were performed on a Dell Precision T7500 with 96 GB memory
and dual six core Intel Xeon Processors (3.46 GZ). Only one core was used for the
experiments. Note that CG DESCENT 6.0 includes a BLAS interface that can exploit
additional cores, which could be beneficial for really large problems; however, the
BLAS interface was turned off for the experiments.

In Figure 8.1, we show performance profiles [7] based on CPU time and number
of iterations. The vertical axis gives the fraction P of problems for which any given
method is within a factor τ of the best performance. In the CPU time performance
profile plot, the top curve is the method that solved the most problems in a time that
was within a factor τ of the best time. The percentage of the test problems for which
a method is fastest is given on the left axis of the plot. The right side of the plot
gives the percentage of the test problems that were successfully solved by each of the
methods. In essence, the right side is a measure of an algorithm’s robustness. Here,
the number of iterations for the limited memory conjugate gradient algorithm is the
total number of iterations both inside and outside the subspace.

In Figure 8.2, we show the performance of L-CG DESCENT and L-BFGS based
on number of function and gradient evaluations. Comparing Figures 8.1 and 8.2, we
see that the limited memory conjugate gradient algorithm is faster then the limited
memory BFGS algorithm on this test set, while the number of iterations, function
evaluations, and gradient evaluations are comparable for the two algorithms.

In Figures 8.3 and 8.4, we give performance profiles comparing CG DESCENT
Version 5.3 and L-CG DESCENT (labeled CG DESCENT 6.0 in the figures). These
experiments correspond to running Version 6.0 twice, with memory = 11 and mem-
ory = 0. When the memory is zero in CG DESCENT 6.0, the code reduces to
CG DESCENT 5.3 (except for minor changes in default parameters). The per-
formance profiles correspond to all 145 test problems. The plots indicate that L-
CG DESCENT typically performs substantially better than the memory-free version.

Whenever n ≤ m, the L-CG DESCENT algorithm theoretically reduces to L-
BFGS. Hence, when n ≤ m, the code automatically uses the L-BFGS search direc-

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2166 WILLIAM W. HAGER AND HONGCHAO ZHANG

1 2 4 8
0.5

0.6

0.7

0.8

0.9

1
Function Evaluations

τ

P

L−CG_DESCENT
L−BFGS

1 2 4 8
0.5

0.6

0.7

0.8

0.9

1
Gradient Evaluations

τ

P

L−CG_DESCENT
L−BFGS

Fig. 8.2. Performance profiles for L-CG DESCENT and L-BFGS based on number of function
evaluations (left) and number of gradient evaluations (right).

1 2 4 8
0.7

0.75

0.8

0.85

0.9

0.95

1
Time

τ

P

CG_DESCENT 6.0
CG_DESCENT 5.3

1 2 4 8
0.4

0.5

0.6

0.7

0.8

0.9

1
Iterations

τ

P

CG_DESCENT 6.0
CG_DESCENT 5.3

Fig. 8.3. Performance profiles for L-CG DESCENT (Version 6.0) and CG DESCENT Ver-
sion 5.3 based on CPU time (left) and number of iterations (right).

1 2 4 8
0.5

0.6

0.7

0.8

0.9

1
Function Evaluations

τ

P

CG_DESCENT 6.0
CG_DESCENT 5.3

1 2 4 8
0.5

0.6

0.7

0.8

0.9

1
Gradient Evaluations

τ

P

CG_DESCENT 6.0
CG_DESCENT 5.3

Fig. 8.4. Performance profiles for L-CG DESCENT (Version 6.0) and CG DESCENT Ver-
sion 5.3 based on number of function evaluations (left) and number of gradient evaluations (right).

tions. This led to a tremendous improvement in the performance on the PALMER
test problems discussed in the section 1. For example, the number of iterations used
by Version 5.3 for PALMER1C was 126,827, while the number of iterations used by
L-CG DESCENT was 11. In the problems with n > m, there were 31 cases where
L-CG DESCENT solved at least one subspace problem. For 19 problems, exactly 1
subspace problem was solved, for 3 problems, 2 subspace problems were solved, and
for 9 problems, 5 or more subspace problems were solved. The iterations and running

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LIMITED MEMORY CONJUGATE GRADIENT METHOD 2167

Table 8.1

Comparison between CG DESCENT Version 5.3 (no memory) and L-CG DESCENT (with
memory). “# Sub” denotes the number of subspace problems that were solved, “#Sub Iter” denotes
the number of subspace iterations, and “Tot Iter” denotes the total number of iterations.

Problem ———— L-CG DESCENT ———— — Version 5.3 —
Name # Sub # Sub Iter Tot Iter CPU (s) Tot Iter CPU (s)

BDQRTIC 9 51 136 0.155 761 0.597
ERRINROS 18 130 380 0.003 637 0.004
EXTROSNB 74 750 3808 0.323 6879 0.494

NCB20B 187 756 2935 50.365 4595 78.554
NCB20 273 1294 4437 54.876 391 4.783

NONDQUAR 104 787 1942 0.701 2059 0.640
PARKCH 32 368 700 34.130 1597 42.758

PENALTY3 5 33 99 0.814 117 0.860
TOINTPSP 7 56 143 0.001 136 0.000

time for these 9 problems are shown in Table 8.1. In 5 out of these 9 problems, the
limited memory code gave significantly better performance than Version 5.3. In 3
problems, there were almost no difference in the codes, while in 1 problem, NCB20,
Version 5.3 was much faster. This particular problem is very unstable with respect
to the stepsize in an initial iteration. For a small modification in the initial stepsize,
the iterates take a much slower path to the optimum and the CPU time can increase
by a factor of 10.

9. Conclusions. A new limited memory conjugate gradient algorithm has been
introduced and analyzed. It was implemented within the framework of the conjugate
gradient algorithm [13, 14, 15] CG DESCENT. Unlike previous limited memory al-
gorithms [10, 11, 16, 20], the memory is mostly used to monitor convergence, and
the memory is only used to compute the search direction when the gradient vectors
lose orthogonality. When the loss of orthogonality is detected, a subspace problem is
solved to restore orthogonality. If the subspace problem is solved by a preconditioned
version of the CG DESCENT algorithm and the preconditioning matrices possess
the properties stated in (Ĉ4), then the iterates possess the same global convergence
property established previously for the CG DESCENT algorithm.

In [14] it was observed that the memoryless version of CG DESCENT was faster
than L-BFGS, but L-BFGS had better performance relative to the number of itera-
tions, function evaluations, and gradient evaluations. As seen in Figures 8.1 and 8.2,
L-CG DESCENT is able to match L-BFGS with respect to the number of iterations,
function evaluations, and gradient evaluations. It is faster than L-BFGS due to the
reduced amount of linear algebra within each iteration. In L-CG DESCENT, each
iteration where orthogonality is monitored requires on the order of 4mn flops at most
since we need to multiply both a gradient and a search direction by the vectors in
memory. In theory, this can be reduced to 2mn flops by exploiting the known re-
lationship between the gradient, the new search direction, and the previous search
direction in the conjugate gradient method. And if the orthogonality is preserved for
enough iterations, then we turn off the orthogonality test for a number of iterations.
On the other hand, the L-BFGS algorithm (section 7) involves about 8mn flops in
each iteration. Hence, L-CG DESCENT is able to monitor orthogonality relatively
cheaply, and the memory is only used when necessary. The algorithm is able to match
L-BFGS with respect to the number of iterations, function evaluations, and gradient
evaluations, while reducing CPU time by performing fewer operations on the memory
in each iteration.

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2168 WILLIAM W. HAGER AND HONGCHAO ZHANG

REFERENCES

[1] R. H. Bartels, G. H. Golub, and M. A. Saunders, Numerical techniques in mathematical
programming, in Nonlinear Programming, J. B. Rosen, O. L. Mangasarian, and K. Ritter,
eds., Academic Press, New York, 1970, pp. 123–176.

[2] J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal.,
8 (1988), pp. 141–148.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: Constrained and
unconstrained testing environments, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[4] Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property
and an improved Wolfe line search, SIAM J. Optim., 23 (2013), pp. 296–320.

[5] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global conver-
gence property, SIAM J. Optim., 10 (1999), pp. 177–182.

[6] Y. H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res., 103 (2001), pp. 33–47.

[7] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

[8] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7
(1964), pp. 149–154.

[9] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods
for optimization, SIAM J. Optim., 2 (1992), pp. 21–42.

[10] P. E. Gill and M. W. Leonard, Reduced-Hessian quasi-Newton methods for unconstrained
optimization, SIAM J. Optim., 12 (2001), pp. 209–237.

[11] P. E. Gill and M. W. Leonard, Limited memory reduced-Hessian methods for large-scale
unconstrained optimization, SIAM J. Optim., 14 (2003), pp. 380–401.

[12] G. H. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[13] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and
an efficient line search, SIAM J. Optim., 16 (2005), pp. 170–192.

[14] W. W. Hager and H. Zhang, Algorithm 851: CG DESCENT, a conjugate gradient method
with guaranteed descent, ACM Trans. Math. Software, 32 (2006), pp. 113–137.

[15] W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific J.
Optim., 2 (2006), pp. 35–58.

[16] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Program., 45 (1989), pp. 503–528.

[17] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer, Berlin, 2008.
[18] J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease,

ACM Trans. Math. Software, 20 (1994), pp. 286–307.
[19] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.
[20] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980),

pp. 773–782.
[21] S. S. Oren, Self-scaling Variable Metric Algorithms for Unconstrained Minimization, Ph.D.

thesis, Department of Engineering Economic Systems, Stanford University, Stanford, CA,
1972.

[22] J. M. Perry, A Class of Conjugate Gradient Algorithms with a Two Step Variable Metric
Memory, Technical report 269, Center for Mathematical Studies in Economics and Man-
agement Science, Northwestern University, Evanston, IL, 1977.

[23] M. J. D. Powell, Convergence properties of algorithms for nonlinear optimization, SIAM
Rev., 28 (1986), pp. 487–500.

[24] D. F. Shanno, On the convergence of a new conjugate gradient algorithm, SIAM J. Numer.
Anal., 15 (1978), pp. 1247–1257.

[25] D. Siegel, Modifying the BFGS update by a new column scaling technique, Math. Program.,
66 (1993), pp. 48–78.

[26] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[27] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226–235.
[28] P. Wolfe, Convergence conditions for ascent methods II: Some corrections, SIAM Rev., 13

(1971), pp. 185–188.

D
ow

nl
oa

de
d

12
/0

2/
13

 to
 1

30
.3

9.
16

8.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

