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Recent advances in the generation, purification and cellular delivery of RNA have

enabled development of RNA-based therapeutics for a broad array of applications.

RNA therapeutics comprise a rapidly expanding category of drugs that will change

the standard of care for many diseases and actualize personalized medicine. These

drugs are cost effective, relatively simple to manufacture, and can target previously

undruggable pathways. It is a disruptive therapeutic technology, as small biotech

startups, as well as academic groups, can rapidly develop new and personalized RNA

constructs. In this review we discuss general concepts of different classes of RNA-

based therapeutics, including antisense oligonucleotides, aptamers, small interfering

RNAs, microRNAs, and messenger RNA. Furthermore, we provide an overview of the

RNA-based therapies that are currently being evaluated in clinical trials or have already

received regulatory approval. The challenges and advantages associated with use of

RNA-based drugs are also discussed along with various approaches for RNA delivery.

In addition, we introduce a new concept of hospital-based RNA therapeutics and share

our experience with establishing such a platform at Houston Methodist Hospital.

Keywords: RNA therapeutics, delivery of RNA therapeutics, hospital-based RNA therapeutics, messenger RNAs

(mRNAs), self-amplifying mRNA

INTRODUCTION

RNA Therapeutics comprise a rapidly expanding category of drugs that will speed solutions to
the clinic; will actualize personalized medicine; and will make the term “undruggable” obsolete.
The first RNA drugs have been approved, and many more are in development. We are in the
midst of a therapeutic revolution, the likes of which have not been seen since the advent of
recombinant protein technology almost 50 years ago in Silicon Valley. Accordingly, we will
review recent developments in RNA Therapeutics, and their promise to alter the landscape of the
pharmaceutical industry.

Conventional drug strategy relies on the ability of small molecule drugs to target active sites of
proteins so as to inhibit or alter their function. It is well known that only ∼1.5% of the human
genome encodes proteins (Ezkurdia et al., 2014). Furthermore, only 10–14% of proteins have active
binding sites that are “druggable” targets for small molecules (Hopkins and Groom, 2002). Thus the
“druggable” targets for small molecule therapies is limited. This limitation was addressed in part by
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the revolution of recombinant protein technology which had
its beginnings in Silicon Valley in the late 1970’s (Russo, 2003).
The development of genetic engineering by Stanley Cohen at
Stanford University and Herb Boyer at UCSF provided the
platform for generating recombinant proteins. Recombinant
protein technology has become a significant share of the
pharmaceutical market. In 2019, the FDA Center for Drug
Evaluation and Research (CDER) approved 48 new agents, of
which 10 were recombinant proteins, peptides or drug-antibody
conjugates (Mullard, 2020). The Center for Biologics Evaluation
and Research (CBER) is primarily responsible for evaluation
and approval of vaccines, allergenic products, blood and blood
products, plasma derivatives, cellular and gene therapy products.
In 2019, CBER approved 22 new applications, one of which
was a recombinant protein, three were attenuated virus vaccines,
and one was a DNA therapeutic, Zolgensma (FDA, 2019).
Recombinant proteins have limitations as drugs, particularly due
to size and stability issues (Antosova et al., 2009; Lam et al.,
2015). Furthermore, they must be properly folded and often
require post-translational modifications (Li et al., 2015) that
complicate the synthetic process. By contrast, nucleic-acid based
strategies avoid many of these limitations as they make use of
the translational machinery of the mammalian cell. Because DNA
therapeutics pre-dated RNA therapeutics, a brief discussion of
these nucleic-acid based cousins of RNA is useful for historical
and comparative purposes.

DNA THERAPEUTICS

DNA drugs generate therapeutic proteins when delivered to the
nuclei of the patient’s cells. DNA drugs may be delivered as
plasmids or integrated into a viral vector.

DNA Plasmids
DNA plasmids are high molecular weight, double-stranded (ds),
circular DNA molecules that encode a therapeutic protein. Such
proteins could replace defective or missing proteins in the patient
(Saraswat et al., 2009). DNA plasmids can be used in: (1) gene
therapy, (2) vaccination, and (3) cell therapy. The plasmid DNA
(pDNA) must penetrate the cytoplasmic and nuclear membranes
to gain access to the nucleus. In the nucleus, the pDNA is
transcribed into mRNA that encodes the desired protein in the
patient’s body. As an example, the pDNA drug VM202 is a 7377
base pair plasmid DNA gene therapy that encodes both isoforms
of human hepatocyte growth factor, HGF (Kessler et al., 2015;
ClinicalTrials.gov, 2020d). This drug is in a Phase III clinical
trial to assess its benefit in treating painful diabetic peripheral
neuropathy (DPN).

Viral Vectors
DNA-based drugs may be directed toward replacing defective or
missing protein(s) (Schmeer et al., 2017; Daley, 2019). However,
concerns regarding integration of foreign DNA into the host
chromosomes and disruption of normal gene function has led to
a search for non-integrating strategies. Adeno-Associated virus
(AAV) is a common viral vector for the delivery of DNA encoding

a therapeutic protein with minimal risk for integration. The AAV
is a small (25 nm) icosahedral human parvovirus that contains
a linear single-stranded DNA (4.7 kb). After removing key AAV
viral genes, the desired gene is inserted into the AAV DNA for
expression. The AAV vector delivers the desired gene to the target
cell, for example to restore normal protein function (Tratschin
et al., 1984; Naso et al., 2017). Alternatively, the AAV vector
can be utilized to deliver interference RNA to downregulate the
expression of a specific gene. Tomar et al. (2003) demonstrated
the use of AAV to express hairpin siRNA in HeLa S3 cells to
downregulate expression of caspase 8 and p53.

The Chinese food and drug regulatory agency approved the
first DNA therapy drug, Gendicine, in 2003 to treat head and neck
squamous cancer. Gendicine is an adenoviral vector encoding
the wild type (wt) p53 gene which restores the expression of
this tumor suppressor function to treat cancer (Zhang et al.,
2018). Approximately 60–80% of all cancers manifest a p53
deficiency. In 2012, Glybera became the first DNA therapy to
be approved in Europe. Glybera was an adeno-associated virus
(serotype 1) encoding the lipoprotein lipase (LPL) gene to reverse
LPL deficiency. This is a rare genetic disease that increases the
levels of fat in the blood and cause severe pancreatitis. Glybera
was not commercially successful and is no longer available
(Bryant et al., 2013). Luxturna is an AAV (serotype 2) therapy
encoding the RPE65 gene which received FDA approval in
December 2017 and European approval in 2018. It is indicated
for patients for RPE65-mediated inherited retinal dystrophy and
improves vision by restoring RPE65 protein levels (Maguire
et al., 2019). Zolgensma is an AAV vector-based gene therapy
that delivers a fully functional copy of the human SMN gene
into the target motor neuron cells. A one-time intravenous
administration results in expression of the SMN protein in a
child’s motor neurons, which improves muscle movement and
function and survival of children with spinal muscular atrophy,
SMA (Mahajan, 2019).

DNA-based vaccines encode specific antigen(s) to induce
a protective immune response (Daley, 2019). Imlygic is a
genetically modified therapy approved in United States, China,
Europe, and Australia to treat malignant tumors. In this DNA
therapy, the ICP34.5 gene is deleted to attenuate the natural
herpes simplex virus type 1, HSV-1, which diminishes infection
of normal tissues, but which enhances preferential tumor killing.
The drug inserts into tumor cells, replicating and expressing a
protein which evokes a cytotoxic immune response to the cancer
cells (Conry et al., 2018; Amgen, 2020). DNA-based vaccines
may also target infectious agents. For example, Innovio has
developed a DNA vaccine encoding the spike protein of SARS-
CoV-2 for intramuscular injection to induce immunity to the
virus (INOVIO, 2020). Theirs was the first DNA vaccine to enter
clinical trials for COVID-19. Other DNA vaccine developers
include Genexine Consortium; Osaka University with Takara
Bio, Anges & Cytiva; and Zydus Cadila Healthcare Limited
(CovidVax, 2020; Milkeninstitute, 2020).

DNA vectors can be used to generate novel cell therapies.
Typically, the therapeutic DNA is transfected into the cells
ex vivo to alter cell phenotype or function, and then these
cells are expanded and delivered into the patient (Daley, 2019).
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Kymriah is CD19-targeting CAR T cells immunotherapy to
treat leukemia, lymphoma, and pediatric cancer in a single
dose (approved in United States and Europe in 2017 and
2018 respectively). Enriched T cells from patient’s peripheral
blood mononuclear cells are transduced with a lentiviral vector
encoding a chimeric antigen receptor (CAR) against CD19.
Subsequently, the transduced T cells are expanded, formulated
into a suspension, and cryopreserved for later delivery (Zheng
et al., 2018; FDA, 2020). Yescarta is another CD19-targeting CAR
immunotherapy to treat large B cell lymphoma. Yescarta uses a
retroviral vector to insert the CD-19 specific CAR into T cells.
The anti-CD19 CAR T-cells are infused back into the patient’s
body to kill CD19-expressing target cells. This drug was approved
in the United States (2017) and Europe (2018) (Fala, 2018; Zheng
et al., 2018).

Strimvelis is a personalized DNA-based medicine approved
in Europe in 2016 to treat patients with a very rare
disease called Severe Combined Immunodeficiency due to
Adenosine Deaminase deficiency (ADA-SCID). Strimvelis uses
the patient’s own CD34+ cells generated from hematopoietic
stem cell (HSCs). The CD34+ cells are then transduced with a
gammaretrovirus vector carrying the gene for human adenosine
deaminase (ADA), then reinfused into the patient. These cells
home to the patient’s bone marrow where CD34+ cells replicate
and generate normal ADA protein to correct the deficiency
(South et al., 2018). Zyntelgo was approved in Europe in 2019 for
the treatment of beta-thalassemia. Zyntelgo comprises a lentiviral
vector to introduce the beta globin gene into autologous blood-
derived CD34+ cells ex vivo. The genetically modified cells
are then re-infused and home to the patient’s bone marrow to
generate red blood cells with normally functioning hemoglobin
(Schuessler-Lenz et al., 2020). A similar approach was taken
by investigators at St. Jude Children’s Research Hospital, to
treat severe combined immunodeficiency (SCID), also called
bubble boy disease. This rare- life-threatening disorder is caused
by mutations in the gene that encodes the common γ-chain
(IL2RG), which is shared by multiple cytokine receptors. This
protein is necessary for the development and function of
lymphocytes, so children with this disease lack normal immune
function. The St. Jude investigators used a lentiviral vector
to transfect autologous blood-derived CD34+ cells ex vivo
with the IL2RG gene, which cells are then re-infused (Stjude,
2020; St Jude Children’s Research Hospital, 2020). As described
below, this gene therapy is effective at restoring immune
function in SCID.

CRISPR-Associated Protein 9
(CRISPR-Cas9)
Genome editing tools are used to add, remove or alter the
genetic material at particular locations in the genome. There are
several genome editingmethods, as typified by clustered regularly
interspaced short palindromic repeats and CRISPR-associated
protein 9, CRISPR-Cas9 (Jiang and Doudna, 2017). Ishino et al.
(1987) were first to discover the CRISPR DNA sequence. The
CRISPR-Cas9 is a component of the bacterial adaptive immune
system. In bacteria, two RNA molecules and the protein Cas9

bind to a foreign target. One of these molecules, called trans-
activating CRISPR RNA (tracrRNA), serves as a scaffold and
binds to Cas9, a DNA endonuclease. The other molecule, called
CRISPR RNA (crRNA), has sequence homology to the foreign
DNA (Jiang and Doudna, 2017; Karlgren et al., 2018; Zhan
et al., 2019) and ensures cleavage specificity. This native immune
defense has been modified for genome editing. In one version
of the modified CRISPR-Cas9 technology, both RNA molecules
are linked into a single guide RNA (sgRNA). The target DNA
sequence is followed by a protospacer adjacent motif (PAM),
also known as “NGG” sequence, which is a short (2–6 bp)
DNA sequence. Cas9 cleaves the target DNA sequence 3 bases
upstream of the PAM and creates a double-strand break. The
latter can be repaired by two mechanisms: non-homologous end
joining (NHEJ), and homology-directed repair (HDR). NHEJ
is an error-prone process that introduces small deletions or
insertions (indels) and disrupts the targeted locus (gene knock-
out). HDR is a more precise process where a short donor DNA
sequence is used for the double-stranded break repair (Jiang and
Doudna, 2017; Karlgren et al., 2018), facilitating a gene knock-in.

EDIT-101 (Editas Medicine) is an early stage clinical CRISPR
medicine to treat patients suffering from Leber Congenital
Amaurosis type 10 (LCA10). LCA10 is a genetic blindness
caused by an A to G point mutation within intron 26 in the
CEP290 gene involved in phototransduction. This mutation
results in a splicing defect to include a 128 bp cryptic exon
in CEP290 transcript, thereby leading to expression of non-
functional mutant protein. EDIT-101 is designed to deliver Staph.
aureus Cas9 and two CEP290-specific guide RNAs to target
cells by subretinal injection using an adeno-associated viral
vector. In EDIT-101, Cas9 is driven by photoreceptor cell-specific
promoter, rhodopsin kinase, and the resulting break in DNA
is repaired by NHEJ, resulting in normal CEP290 expression
and restoration of photoreceptor function (Maeder et al., 2019;
Research and Pipeline – Editas, 2020).

A few other CRISPR-Cas9-based drugs are also in clinical
trials now. For instance, CTX001, CTX110, CTX120, and
CTX130 from CRISPR Therapeutics (Pipeline – CRISPR, 2019c).
CTX001 is designed to treat both sickle cell disease and beta
thalassemia. It disrupts the erythroid lineage-specific enhancer
of the BCL11A gene in autologous blood stem cells and
thus increases production of γ-globin, a component of fetal
hemoglobin (HbF). The latter can serve as an alternative to the
patient’s defective adult hemoglobin (HbA), and its increased
level is observed in the patient’s blood cells after treatment
with CTX001(Hemoglobinopathies – CRISPR, 2019a). CTX 110,
CTX120, and CTX130 are being developed as immunotherapies,
which, respectively, create allogenic CAR-T cells against CD19 for
B-cell malignancies, BCMA for multiple myeloma, and CD70 for
both hematologic cancers (certain lymphomas) and solid tumors
(renal cell carcinoma) (Immuno-Oncology – CRISPR, 2019b).

All DNA-based drugs must penetrate two membranes, the
cytoplasmic and the nuclear membranes, to have their effect.
Because they enter the nucleus, DNA drugs raise safety concerns
due to potential integration into the host genome (Ledwith et al.,
2000). These limitations can be addressed by RNA therapeutics
which only need to reach the cell cytoplasm, and which
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represents no risk of chromosomal integration (Lundstrom,
2018a; Shin et al., 2018).

RNA THERAPEUTICS

The development of RNA drugs has largely focused on
two approaches: (1) antisense RNA (RNAi), where short
oligonucleotides recognize and hybridize to complementary
sequences in endogenous RNA transcripts and alter their
processing (Stephenson and Zamecnik, 1978; Shen and Corey,
2018); and (2) message RNA (mRNA), where mRNAs encoding
certain peptides or proteins elicit their transient expression in
the cytoplasm (for instance, to replace defective proteins or
present antigens for vaccination) (Wolff et al., 1990; Ulmer
and Geall, 2016). The development of RNA therapeutics
required that several major hurdles be overcome, specifically
the (1) rapid degradation of exogenous RNA by RNases that
are ubiquitous in the environment and tissues; (2) delivery
of negatively charged RNA across hydrophobic cytoplasmic
membrane; and (3) strong immunogenicity of exogenous
RNA that caused cell toxicity and impaired translation into
therapeutic proteins.

These hurdles have been substantially overcome with recent
advancements in RNA biology, bioinformatics, separation
science and nanotechnology thereby facilitating the recent rapid
development of RNA therapeutics. Advantages of RNA-based
drugs that are driving development include: (1) their ability to act
on targets that are otherwise “undruggable” for a small molecule
or a protein; (2) their rapid and cost effective development, by
comparison to that of small molecules or recombinant proteins;
(3) the ability to rapidly alter the sequence of themRNA construct
for personalized treatments or to adapt to an evolving pathogen.
Below, we review the different classes of RNA therapeutics
(see Figure 1), the challenges and advantages associated with
their use, and provide an overview of the therapeutics under
development as well as of those already available on the market
(see Table 1). In addition, we introduce a new concept of

hospital-based RNA therapeutics and share our experience with
establishing such a platform at Houston Methodist Hospital.

Antisense Oligonucleotide (ASO), Small
Interfering Rna (siRNA), and microRNA
as Therapeutics
Antisense oligonucleotides are short single-stranded DNA,
phosphorothioate DNA, RNA analogs, conformationally
restricted nucleosides (locked nucleic acids, LNA),
or morpholino phosphorodiamidate oligonucleotides
complementary to a certain region of RNA that they are meant
to target. The modifications in backbone, and sugar molecules
give antisense oligos more affinity and stability (Bennett and
Swayze, 2010). Zamecnick and Stephenson pioneered the field
of antisense oligonucleotides in late 1970s. They designed and
synthesized tridecamer deoxynucleotides complementary to
reiterated terminal sequences of Rous sarcoma virus (RSV)
at 3′ and 5′ ends. To test its function, RSV-infected chick
embryo fibroblasts (CSF) were transfected with the tridecamer
which hybridized to its complementary sequence in the target
RNA (RSV RNA), thereby inhibiting viral production and cell
transformation (Stephenson and Zamecnik, 1978).

There are two classes of ASOs: RNase H-dependent ASO
(Wu et al., 2004), and RNase H-independent (steric block)
ASO (Baker et al., 1997). The former is more commonly used
and is dependent on the endogenous RNase H enzyme that
hydrolyzes the RNA strand of an RNA/DNA duplex. The RNase
H-dependent ASOs are more efficient in knockdown of gene
expression than RNase H-independent ASOs (Larrouy et al.,
1992; Dean et al., 1994; Dias and Stein, 2002). Minshull and Hunt
(1986) were the first to demonstrate the RNase H-dependent ASO
mechanism in reticulocyte lysate. They added RNase H-treated
DNA-mRNA hybrid complexes directly to the reticulocyte lysate
for translation, and observed a loss of full length translation
products of the hybridized mRNA (Minshull and Hunt, 1986).
Giles et al. (1995) further demonstrated the RNase H-mediated
antisense effect in human leukemia cells by identifying the

FIGURE 1 | Schematic illustrating different classes of RNA therapeutics. ASO, antisense oligonucleotide; RNA, ribonucleic acid; RNAi, RNA interference; siRNA,

small interfering RNA; miRNA, microRNA; mRNA, messenger RNA; A, adenosine molecule; AAAAA, poly A tail.
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TABLE 1 | RNA therapeutics approved for clinical use or undergoing clinical trials.

Drug Type of RNA Company Route of delivery Condition/Disease Status

Nusinersen

(Spinraza)

ASO Ionis Intrathecal Spinal muscular atrophy FDA approval in 2016

Eteplirsen (Exondys 51) ASO Sarepta Intravenous Duchenne muscular

dystrophy

FDA approval in 2016

Inotersen (Tegsedi) ASO Ionis Subcutaneous Familial amyloid

polyneuropathy

FDA approval in 2018

Volanesorsen

(Waylivra)

ASO Ionis Subcutaneous Familial chylomicronemia

syndrome

EU approval in 2019

Patisiran

(Onpattro)

siRNA Alnylam Intravenous Polyneuropathy FDA approval in 2018

Givosiran

(Givlaari)

siRNA Alnylam Subcutaneous Acute hepatic porphyria FDA approval in 2019

Cobomarsen

(MRG-106)

miRNA miRagen (Viridian) Intravenous/subcutaneous Blood cancers Phase II

Remlarsen (MRG-201) miRNA miRagen

(Viridian)

Intradermal Keloids Phase II

MRG-110 miRNA miRagen

(Viridian)

Intradermal Tissue Repair Phase I

Pegaptanib (Macugen) Aptamer(RNA) Bausch + Lomb Intravitreal Macular Degeneration FDA approval in 2014

Emapticap pegol

(NOX-E36)

Aptamer(RNA) NOXXON Intravenous/Subcutaneous Diabetic nephropathy,

lung and pancreatic cancer

Phase II

Olaptesed pegol

(NOX-A12)

Aptamer(RNA) NOXXON Intravenous Brain cancer Phase I/II

BNT162b2 mRNA BioNTech and Pfizer Intramuscular COVID-19 FDA authorization for

emergency use in 2020

mRNA-1273 mRNA Moderna Intramuscular COVID-19 FDA authorization for

emergency use in 2020

CVnCoV mRNA CureVac Intramuscular COVID-19 Phase III

AZD8601 mRNA Moderna/Astrazeneca Epicardial Ischemic heart disease Phase II

mRNA-1647 mRNA Moderna Intramuscular Cytomegalovirus infection Phase II

P-BCMA-101 mRNA Poseida Intravenous Multiple myeloma Phase II

mRNA-4157 mRNA Moderna Intramuscular Cancer Phase II

mRNA-3704 mRNA Moderna Intravenous Methylmalonic aciduria Phase I/II

MRT5005 mRNA Translate Bio Inhalation Cystic Fibrosis Phase I/II

mRNA-2416 mRNA Moderna Intratumoral Solid tumors/

lymphoma/advanced

ovarian carcinoma

Phase I/II

BNT131 (SAR441000) mRNA BioNTech/

Sanofi/Genmab

Intratumoral Advanced melanoma Phase I/II

Descartes-08 mRNA Cartesian Intravenous Generalized myasthenia

gravis

Phase I/II

BNT122 mRNA BioNTech Intravenous Solid tumors Phase I/II

mRNA-2752 mRNA Moderna Intratumoral Solid tumors Phase I

MEDI1191 mRNA Moderna Intratumoral Solid tumors Phase I

mRNA-1944 mRNA Moderna Intravenous Chikungunya infection Phase I

CV8102 mRNA CureVac Intratumoral Solid tumors Phase I

ARCT-810 mRNA Arcturus Intravenously Urea disorder Phase I

CV7202 mRNA CureVac Intramuscular Rabies Phase I

mRNA-1893 mRNA Moderna Intramuscular Zika Phase I

CV9202 mRNA CureVac Intradermal Non-small cell lung cancer Phase I

mRNA-5671 mRNA Moderna Intravenous Cancer Phase I

BNT111 mRNA BioNTech Intravenous Advanced Melanoma Phase I

The table summarizes information available at ClinicalTrials.gov (https://clinicaltrials.gov/) as of January 26, 2021. ASO, antisense oligonucleotide; siRNA, small interfering

RNA; miRNA, microRNA; RNA, ribonucleic acid; mRNA, messenger RNA.
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RNase H-generated mRNA fragments with a reverse ligation-
mediated PCR method.

Steric block ASOs physically inhibit or prevent translation or
splicing, and can be engineered to either prevent polyadenylation
(Vickers et al., 2001), inhibit (Baker et al., 1997) or enhance
translation (Liang et al., 2016), or alter splicing (Hua et al., 2007).
For instance, Baker et al. (1997) designed RNase H-independent
2′-O-2-methoxyethyl ASOs that were complementary to the 5′

cap region of the intercellular adhesion molecule 1 (ICAM-
1) transcript in human umbilical vein endothelial cells. These
ASOs inhibited protein expression of the targeted transcript by
interfering with the formation of the 80S translation initiation
complex (Baker et al., 1997).

To date, three ASO drugs have received FDA approval: (1)
nusinersen (Ionis Pharmaceuticals) (Neil and Bisaccia, 2019);
(2) eteplirsen (Sarepta Therapeutics) (Lim et al., 2017); and
(3) inotersen (Ionis Pharmaceuticals and Akcea Therapeutics)
(Mathew and Wang, 2019). Nusinersen (FDA approval in
December 2016) is used to treat spinal muscular atrophy (SMA),
which is caused by deletions or mutations in the survival motor
neuron 1 (SMN1) gene. The mutated or deleted gene does
not produce enough SMN protein. SMN2, a homolog gene, is
different from SMN1 only in that it is spliced with exon 8,
rather than exon 7. This results in expression of small amount
of full length SMN protein. Nusinersen is a 2′-O-methoxyethyl-
phosphorothioate-modified drug that modulates splicing of
SMN2 so as to increase the transcript containing exon 7 (see
Figure 2, Rigo et al., 2012), and, therefore enhances production
of full length SMN protein (Wurster and Ludolph, 2018).

Eteplirsen (Exondys 51, FDA approval in September 2016) is
used to treat Duchenne muscular dystrophy (DMD). DMD is
caused by mutations in the DMD gene that result in a premature
stop codon and a non-functional dystrophin protein, with a
mutation in exon 51 being most frequent single exon mutation
(Bladen et al., 2015). Eteplirsen is 30-mer phosphomorpholidate
oligonucleotide that recognizes and hybridizes to exon 51 of
the DMD gene thereby modulating the pre-messenger RNA
splicing process to exclude exon 51 from the mature mRNA. This
restores the reading frame of the DMD gene and a shortened but
functional dystrophin protein is produced (Lim et al., 2017).

Inotersen (Tegsedi, FDA approval in October 2018) is used to
treat familial amyloid polyneuropathy caused by the mutation
in the transthyretin (TTR) gene. The mutated gene leads to
translation and accumulation of the abnormal TTR protein
in different organs, including heart, kidney, eyes, and nerves.
Tegsedi is a 20-mer chemically modified RNA molecule that
hybridizes to TTRmRNA, mimicking a DNA/RNA complex, and
thereby interferes with TTR protein production (Mathew and
Wang, 2019).

Volanesorsen (Ionis Pharmaceuticals) was recently approved
in Europe (Waylivra, EU conditional marketing authorization in
May 2019). This is an antisense oligonucleotide indicated
for treatment of familial chylomicronemia syndrome
(Paik and Duggan, 2019). It recognizes and hybridizes
to the complementary sequence in the 3′ untranslated
region of apolipoprotein CIII mRNA to increase its
degradation by RNase H1.

FIGURE 2 | Schematic illustrating the mode of action of an antisense drug to

treat spinal muscular atrophy. The antisense drugs reach nucleus, displace

hnRNP proteins and increase the synthesis of transcripts containing exon 7

and thereby generate full length SMN protein (Rigo et al., 2012). SMN, survival

of motor neuron; hnRNP, heterogeneous nuclear ribonucleoprotein;

pre-mRNA, precursor mRNA; mRNA, messenger RNA; RNA, ribonucleic acid.

Small interfering RNAs (siRNAs) are small non-coding RNA
duplexes that originate from precursor siRNAs. The latter are
either transcribed or artificially introduced and range from
30 bp to more than 100 bp. The precursor siRNA duplex
is processed by the endogenous Dicer enzyme into 20–30 bp
long siRNA with two base overhangs in the 3′ region, which
interacts with the endogenous RNA-induced silencing complex
(RISC) to elicit RNA interference (RNAi). The endonuclease
argonaute 2 (AGO2) component of the RISC cleaves the sense
strand, leaving intact the antisense strand, which guides the
active RISC to its target mRNA. Then AGO2 cleaves the
phosphodiester backbone of the target mRNA. The antisense
strand is usually fully complementary to the coding region of
the target mRNA, therefore siRNA knocks down one specific
target gene (Wittrup and Lieberman, 2015; Dana et al., 2017).
Fire et al. (1998) were first to demonstrate RNAi by blocking
the expression of unc-22, unc-54, fem1, and hlh-1 genes in
C. elegans. They showed that dsRNA are more effective than
ssRNA to artificially induce RNAi and destroy an mRNA
target (Fire et al., 1998; Lam et al., 2015). Patisiran (Onpattro,
Alnylam Pharmaceuticals, FDA approval in August 2018) was
the first marketed siRNA-based drug (see Figure 3, Kristen et al.,
2018). It is used to treat adult patients with polyneuropathy
caused by hereditary TTR-mediated amyloidosis. Patisiran is
a dsRNA that acts through RNAi and induces degradation of
mRNA encoding TTR (Kristen et al., 2018). Recently, another
siRNA drug, Givosiran (Givlaari, Alnylam Pharmaceuticals)
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FIGURE 3 | Schematic illustrating the mechanism of action of small interfering

RNA (siRNA) drug, patisiran. The drugs are encapsulated in lipid nanoparticles

and administered intravenously. After administration, the drugs finally reach

hepatocyte and released into the cytoplasm, where it is loaded onto the RISC.

The antisense strand hybridizes with target mRNA to suppress the production

of target protein (TTR) (Kristen et al., 2018). TTR, transthyretin; wt, wild type;

RISC, RNA-induced silencing complex; mRNA, messenger RNA; RNA,

ribonucleic acid.

received FDA approval in November 2019 (Alnylam, 2020b)
for the treatment of acute hepatic porphyria. The drug targets
aminolevulinate synthase 1 mRNA in liver, and reduces the levels
of disease-causing neurotoxic intermediates aminolevulinic acid
and porphobilinogen (Alnylam, 2020b; Givlaari, 2020).

Unlike siRNAs, microRNAs (miRNAs) are small non-coding
RNA molecules that regulate the expression of multiple mRNAs
by blocking translation or promoting degradation of the target
mRNAs. They were first discovered in C. elegans (Lee et al., 1993).
This class of non-coding RNAs are transcribed from genomic
DNA as primary miRNAs (pri-miRNAs). The latter adopt a
loop structure with interspersed mismatches and are cleaved
by Drosha to a 70–100 bp precursor miRNAs (pre-miRNAs),
before leaving the nucleus. Exportin 5 transports the pre-miRNAs
to the cytoplasm, where Dicer processes them into 18–25 bp
RNA duplexes with two base overhangs in the 3′ region. These
structures are now referred to as miRNAs. The miRNA is then
loaded into the RISC to form a miRISC complex. The miRNA
duplex unwinds to release the sense strand. The antisense strand
guides the miRISC. Hybridization usually occurs at 2–7 bases
of the 5′ end of miRNA and the 3′ UTR of the target mRNA.
The target mRNA is inhibited via translational repression,
degradation or cleavage (Lam et al., 2015; Lou et al., 2018; O’Brien
et al., 2018). The miRNA-based therapeutics could be categorized

into two types: miRNAs mimics and miRNAs inhibitors. The
former are double-stranded RNAmolecules that mimic miRNAs,
while the latter are single-stranded RNA oligos designed to
interfere with miRNAs. Although there are no miRNA-based
drugs on the market as of today, some promising candidates are
currently in clinical trials. For instance, miRagen Therapeutics
(Viridian Therapeutics) is developing cobomarsen (MRG-106),
remlarsen (MRG-201), MRG-229 (miR-29 mimic; pre-clinical),
and MRG-110 (miR-92 inhibitor)(Pipeline – miRagen, 2019;
Pipeline – Viridian, 2021). Cobomarsen (MRG-106) is designed
to treat patients with blood cancers by reducing miR-155
levels (Pipeline – miRagen, 2019; Pipeline – Viridian, 2021).
Remlarsen (MRG-201) is designed to mimic miR-29 to treat
keloids (ClinicalTrials.gov, 2019; Hanna et al., 2019; Pipeline –
miRagen, 2019; Pipeline – Viridian, 2021), MRG-229 mimics
miR-29 to treat pathologic fibrosis (Hanna et al., 2019; Pipeline –
miRagen, 2019; Pipeline – Viridian, 2021), while MRG-110
inhibits miR-92 to accelerate tissue repair (Hanna et al., 2019;
Pipeline – miRagen, 2019; Pipeline – Viridian, 2021). InteRNA
Technologies has designed INT-1B3 to mimic tumor suppressor
miRNA in order to modulate the immunosuppressive tumor
microenvironment and treat solid cancers (Yahyanejad et al.,
2018; Businesswire, 2019). Regulus Therapeutics’ product RG-
012 inhibits miR-21 to treat Alport Syndrome (Regulus, 2019).
Besides RG-012, Regulus has several othermiRNA-based drugs in
the pipeline to treat ADPKD (miR-17), glioblastoma multiforme
(miR-10b), and others (Regulus, 2019). Miravirsen, which is
under development by Roche Innovation Center Copenhagen,
targets miR-122 and decreases viral load in patients with chronic
hepatitis C (van der Ree et al., 2016). Another candidate,
a TargomiR drug MesomiR-1 (EnGeneIC Limited) mimics
tumor suppressor miR-16 to treat patients with mesothelioma
(Reid et al., 2016). Overall, both siRNAs and miRNAs are
attractive candidates as therapeutic agents and may overcome
the major limitations of small molecule-based and protein-
based drugs.

Aptamers as Therapeutics
Aptamers are short single-stranded nucleic acids that can bind to
variety of targets, such as proteins, peptides, carbohydrates, and
other molecules, by virtue of the tertiary structure of the aptamer,
rather than its sequence. Aptamers were first described in 1990
independently by two groups, Ellington and Szostak (1990)
and Tuerk and Gold (1990), through systematic evolution of
ligand by exponential enrichment (SELEX) technique. Aptamers
are evolved from highly diverse nucleic acid pools to bind to
the targets with high specificity and affinity, and can serve as
agonists (Dollins et al., 2008; McNamara et al., 2008), antagonists
(Santulli-Marotto et al., 2003; Berezhnoy et al., 2012), bispecific
aptamers (Schrand et al., 2014, 2017), and even carriers for other
drugs (McNamara et al., 2006; Lozano et al., 2016).

Although aptamers hold promise as therapeutics, there is only
one FDA-approved aptamer-based drug on market. Pegaptanib
(Macugen, Bausch + Lomb Pharmaceutical Retina Portfolio,
FDA approval in December 2004) is a 27 base RNA aptamer
(see Figure 4 for predicted structure, Ng et al., 2006) selected
against vascular endothelial growth factor (VEGF) and is used
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FIGURE 4 | Schematic illustrating the sequence of pegaptanib with its secondary structure. PEG, polyethylene glycol; dT, deoxthymidine (Ng et al., 2006; Amadio

et al., 2016).

to treat age-related macular degeneration, a leading cause of
irreversible blindness worldwide (Ruckman et al., 1998). Many
other aptamer-based drugs are currently in clinical trials and have
been recently reviewed elsewhere (Kaur et al., 2018). Emapticap
pegol (NOXXON, 2020b; NOXXON Pharma), for instance, was
evolved to specifically bind and inhibit the pro-inflammatory
chemokine C-C motif-ligand 2 (CCL2) to treat diabetic
nephropathy as well as lung and pancreatic cancer (NOXXON,
2020b). Similarly, Olaptesed pegol (NOXXON, 2020a; NOXXON
Pharma) was evolved to target CXC chemokine ligand (CXCL12)
for clinical treatment of brain cancer (glioblastoma/glioma).
REG1 is an anticoagulation combination therapy that consists of
pegnivacogin, an RNA aptamer inhibitor of coagulation factor
IXa, and anivamersen, a complementary sequence to rapidly
reverse the anticoagulant effect of pegnivacogin (Lincoff et al.,
2016). The intent of this combination aptamer is that the
first will induce anticoagulation as needed, whereas the second
will reverse the anticoagulation as necessary to avoid excessive
bleeding. However, in a trial comparing the aptamer therapy
against the approved anticoagulant bivalirudin, in patients
undergoing percutaneous coronary artery intervention, REG1
did not provide any greater benefit, and had a greater frequency
of serious allergic reactions. However, the concept of having a
second aptamer to act as an antidote to the first, so as to treat
side effects or adverse reactions is an intriguing idea.

Aptamers have great potential to replace monoclonal
antibodies in therapeutic and diagnostic (Damase et al., 2018;
Bauer et al., 2019) applications because they can be produced
via chemical synthesis, are more cost-effective in manufacturing,
simpler to modify, and elicit little immunogenicity. However,
despite the fact that aptamers have many advantages over
antibodies, their clinical translation is challenging due to
suboptimal pharmacokinetic properties (highly sensitive to
nucleases, readily excreted by kidneys) and complexity of
selection techniques (a time consuming process with low success
rates) (Nimjee et al., 2017).

mRNA as Therapeutics
Messenger RNAs (mRNAs) serve as the intermediates between
the coding genomic DNA and the encoded proteins (Gilbert,

1986). Essentially, mRNAs are transient blueprints of genes that
are encoded in the genomic DNA. The mRNA transcripts of
these genes deliver the genetic information to the translational
machinery to generate the encoded proteins (Wolff et al., 1990;
Conry et al., 1995). Wolff et al. (1990) were amongst the first
to use exogenous mRNA to induce the expression of a protein
in vivo. They injected synthetic mRNA encoding luciferase,
chloramphenicol acetyltransferase, or beta-galactosidase into
mouse skeletal muscle and detected proteins translated from
these RNAs at the injection site. Importantly, the extent
of expression from RNA was comparable to that obtained
from injection of a DNA vector encoding the same proteins
(Wolff et al., 1990). Jirikowski et al. (1992) demonstrated the
therapeutic effect of mRNA in a rodent model of central
diabetes insipidus. Brattleboro rats have a genetic deficiency of
vasopressin. The investigators purified cytoplasmic mRNA from
wild-type rat hypothalamus, or synthesized mRNA that encodes
for vasopressin. Injection of either mRNA into the hypothalamus
of Brattleboro rats induced the synthesis of vasopressin and
transiently reversed diabetes insipidus (Jirikowski et al., 1992).

Synthetic or in vitro-translated mRNA is engineered to mimic
naturally occurring mRNA (Jirikowski et al., 1992; Conry et al.,
1995). It consists of a single-stranded open reading frame flanked
by untranslated regions, and has a 5′ cap for translation, and
a 3′ poly(A) tail for stability (Conry et al., 1995; Whisenand
et al., 2017; Shin et al., 2018). Exogenous mRNA is translated
into protein in the cytoplasm, and degrades within the cytoplasm
typically within minutes to hours, posing no risk of integration
into the genome. Figure 5 demonstrates systemically delivered
mRNA expressing hepatic protein (An et al., 2017). Development
and manufacturing of RNA therapeutics is relatively simple and a
more cost-effective process comparing to that for recombinant
proteins or small molecules. In addition, RNA sequences can
be easily modified allowing for personalization of RNA therapy.
There are several therapeutic modalities that utilize mRNA:
(1) replacement therapy, where mRNA is administered to the
patient to compensate for a defective gene/protein, or to supply
therapeutic proteins; (2) vaccination, where mRNA encoding
specific antigen(s) is administered to elicit protective immunity;
(3) cell therapy, where mRNA is transfected into the cells ex vivo
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FIGURE 5 | Schematic illustration of intravenous administration of mRNA encapsulated in lipid nanoparticles (LNP) to restore missing/defective protein in hepatic

cells (An et al., 2017). mRNA, messenger RNA; RNA, ribonucleic acid.

to alter cell phenotype or function, and then these cells are
delivered into the patient.

mRNA as Replacement Therapy

Currently, there are three major biopharmaceutical companies
that develop mRNA therapeutics: Moderna (Boston, MA,
United States), CureVac (Tubingen, Germany), and BioNTech
(Mainz, Germany). Together, they have a diverse portfolio of gene
therapy products in the pipeline, covering metabolic diseases,
heart diseases, and immunomodulators for applications in
immuno-oncology. For instance, Moderna’s AZD8601 is a naked
mRNA encoding vascular endothelial growth factor (VEGF-A)
that is intended to be delivered through epicardial injection
during coronary artery bypass surgery. The intent is to enhance
local angiogenesis, thereby reducing myocardial ischemia and
improving left ventricular systolic function (Carlsson et al.,
2018) in patients with ischemic heart disease. The efficacy of
this drug is being evaluated in a phase II trial conducted
by AstraZeneca. Another therapeutic candidate, mRNA-3704
(Moderna) encodes methylmalonyl-CoA mutase and is designed
to treat the deficiency of this enzyme that leads to methylmalonic
aciduria (Modernatx, 2021a). MRT5005 (Translate Bio) is being
developed to treat cystic fibrosis, an inherited disease caused by
a mutation in the cystic fibrosis transmembrane conductance
regulator (CFTR), a chloride channel. When it is disrupted
in the epithelium, there is an accumulation of thickened
mucous in different organs, including the pancreas and lungs.
MRT5005 encodes fully functional CFTR and is delivered to
lung epithelial cells through nebulization (TranslateBio, 2019).

Other therapeutics being developed by Moderna include mRNA-
2416, mRNA-2752, and MEDI1191, which are mRNA-based
immunomodulators. The mRNA-2416 encodes OX40 Ligand
(OX40L), which is a co-stimulatory membrane-bound protein
that enhances the expansion, function and survival of T cells
to mount an attack against cancer cells. When delivered
by intratumoral injection (solid tumors/lymphoma/advanced
ovarian carcinoma), cells in the tumor may express this ligand on
their surfaces, leading to a stronger T cell attack against the tumor
cells. Additionally, Moderna is investigating whether mRNA-
2416 has the potential to elicit an abscopal effect in metastatic
cancer, in which localized injection into a tumor, and cytolytic
release of tumor antigens, would generate a secondary immune
response and have an effect on metastases throughout the
body (Moderna, 2020). Another therapeutic candidate, mRNA-
2752, delivers OX40L into the tumors, as well as mRNAs
encoding immunostimulatory cytokines IL-23 and IL-36γ to
further promote T cell-mediated cytotoxicity. The mRNA drug
MEDI1191 is indicated for the solid tumors as well, and encodes
IL-12, one of the most potent cytokines in mediating antitumor
activity (Tugues et al., 2015).

BioNTech, in collaboration with Sanofi, is evaluating
an mRNA-based intratumoral immunomodulator BNT131
(SAR441000) as a monotherapy in patients with advanced
melanoma. This immunomodulator is a combination of IL-12sc,
IL-15sushi, IFNα, and GM-CSFmRNAs, increased concentration
of which in the local tumor microenvironment may promote
natural killer cell activation and induce cytotoxic T-cell responses,
resulting in an immune-mediated destruction of tumor cells
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(National Cancer Institute, 2011; Pipeline – BioNTech, 2021).
The mRNA drug CV8102 from CureVac is a TLR7/8/RIG1
agonist designed to induce a systemic immune response to
the injected primary tumor as well as distant metastases of
some solid tumors. This agent is targeted against advanced
melanoma, cutaneous squamous cell carcinoma, and squamous
cell carcinoma of head and neck (Pipeline – CureVac, 2020).

Although the aforementioned pharmaceutical companies
were pioneers in commercialization of mRNA therapeutics, there
are many other research groups and biotech start-ups worldwide
entering the field. For instance, Connolly et al. (2018) have
proposed mRNA-based therapy for α-1-antitrypsin deficiency.
This genetic disorder is characterized by destruction of lung
tissue by neutrophil elastase due to lack of its natural inhibitor α-
1-antitrypsin and by liver damage due to deposition of defective
α-1-antitrypsin. The latter is normally produced by the liver to be
transported to the lungs, and is encoded by the SERPINA1 gene,
a mutation in which leads to defects in transport and activity.
Human SERPINA1-encoding mRNA systemically delivered to
wild-type mice resulted in target protein expression in both liver
and lungs (Connolly et al., 2018).

Cao et al. (2019) recently developed an mRNA drug for
citrin deficiency. This disorder is caused by a mutation in
the SLC25A13 gene, which encodes citrin, a mitochondrial
membrane transport protein involved in the urea cycle. Citrin
deficiency leads to hyperammonemia and neuropsychiatric
disturbances. Intravenous administration of a human citrin-
encoding mRNA in SLC25A13-knockout mice reduced hepatic
citrulline and blood ammonia levels following an oral sucrose
challenge, and reduced sucrose aversion, a hallmark of citrin
deficiency (Cao et al., 2019). Another mRNA drug for a disorder
of the urea cycle is being developed by Arcturus Therapeutics.
Their mRNA-based therapeutic ARCT-810 encodes ornithine
transcarbamylase (OTC) to treat the genetic deficiency of this
enzyme and is now in early clinical trials (ClinicalTrials.gov,
2020b). Zhu et al. (2019) reported encouraging data from
preclinical studies of an mRNA therapy for Fabry disease. The
latter is caused by mutations in the GLA gene that encodes
enzyme α-galactosidase, required for utilization of glycolipids.
In Fabry disease, glycolipid derivates (globotriaosylceramide,
globotriaosylsphingosine) accumulate over time in multiple
tissues leading to range of clinical symptoms. A single dose of
GLA mRNA intravenously administered in GLA-deficient mice
significantly reduced accumulation of globotriaosylsphingosine
in plasma and tissues. Of note, this beneficial effect of
mRNA was observed for up to 6 weeks after administration
(Zhu et al., 2019).

mRNA Vaccines

mRNAs encoding antigens and/or adjuvants can be used
as vaccines to evoke protective immunity against infectious
diseases (prophylactic vaccines), or to harness the immune
system to fight cancer (therapeutic vaccines). The COVID-19
pandemic has showcased the utility and advantages of RNA
technology for vaccination, as out of all COVID-19 vaccines
under development, the first two to have received emergency
use authorization by the FDA were RNA-based. The first
authorized vaccine was developed by BioNTech in collaboration

with Pfizer. Initial clinical trials conducted in Germany helped
to identify two leading vaccine candidates, BNT162b1 and
BNT162b2, which were then tested further in the US (Walsh
et al., 2020a,b). BNT162b1 encodes secreted trimerized receptor
binding domain of spike protein, whereas BNT162b2 encodes
membrane-anchored full length spike protein modified by
two proline mutations to stabilize the prefusion conformation.
Both RNA candidates incorporate 1-methyl-pseudouridine,
which dampens innate immune sensing and increases mRNA
translation in vivo (Karikó et al., 2008) and are formulated in
the lipid nanoparticles (refer to Delivery of RNA therapeutics
section below for details). The safety and immunogenicity data
of these two vaccine candidates in younger and older adults
supported advancement of BNT162b2 into subsequent trials
(Mulligan et al., 2020). A large Phase III clinical trial revealed
extraordinarily high efficacy (with vaccination preventing about
90% of symptomatic infections) with excellent safety, leading
to emergency use authorization by the FDA on December 11,
2020 (FDA, 2021b).

The Moderna RNA vaccine against COVID-19 received
emergency use authorization shortly thereafter (December 18,
2020) (FDA, 2021a), based on a large Phase III trial showing
at least equal efficacy and safety as BNT162b2. Similarly
to BNT162b2, this vaccine encodes stabilized SARS-CoV-2
spike immunogen, and like the BNT mRNA, is delivered
intramuscularly as a lipid nanoparticle-encapsulated mRNA
(Corbett et al., 2020; Jackson et al., 2020). The development
timeline of both vaccines was unprecedented. It was reported
that it took merely 2 days after the SARS-CoV-2 genome
sequence by Chinese scientists in January 2020 (Novel 2019
Coronavirus Genome, 2020; Wang et al., 2020, p. 2), to select
the appropriate sequence for the Moderna vaccine candidate,
25 days tomanufacture the first clinical batch ofmRNA-1273, and
another 35 days to dose the first participant (Jackson et al., 2020;
Modernatx, 2021b). Other biotech companies are developing
mRNA-based vaccines to address the COVID-19 pandemic. For
instance, at the time of this writing, CureVac has initiated a Phase
3 clinical trial of its SARS-CoV-2 vaccine candidate CVnCoV
(Pipeline – CureVac, 2020).

The biotechnology response to the COVID-19 pandemic has
highlighted the speed and flexibility of mRNA vaccines (Vogel
and Sarver, 1995), and reveals mRNA therapeutics to be a
powerful tool to address epidemic outbreaks caused by newly
emerging viruses. The relative simplicity of the development
process and flexibility of the manufacturing platform can
markedly accelerate clinical development (Liu, 2019). As such,
mRNA-based vaccine technology has attracted a lot of attention
during the COVID-19 pandemic (Le et al., 2020; Lurie et al.,
2020). Unlike viral vector-based vaccines, mRNA vaccines are
not confounded by pre-existing immunity against the vector (Ura
et al., 2014; Condit et al., 2016). They also do not need to enter the
nucleus for translation, unlike plasmidDNA vaccines that require
nuclear localization to elicit their protective effects (Ulmer et al.,
1993; Ledwith et al., 2000).

RNA vaccines can activate both cell-mediated and humoral
immunity. For instance, Martinon et al. (1993) demonstrated
induction of anti-influenza cytotoxic T lymphocytes in vivo
by immunizing animals with subcutaneous injection of
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liposome-encapsulatedmRNA, which encoded the nucleoprotein
of the influenza virus. Petsch et al. (2012) evaluated effects of
a multi-valent mRNA vaccine (hemagglutinin, neuraminidase,
and nucleoprotein) against influenza A H1N1, H3N2, and
H5N1 strains in mice, ferrets, and pigs. This intradermally
injected mRNA vaccine induced antigen-specific neutralizing
antibodies and protected the animals from influenza A virus
(Petsch et al., 2012). Similarly, the intramuscularly administered
vaccines against avian influenza A viruses H10N8 and H7N9
have been shown to be safe and immunogenic in first-in-man
trials conducted by Moderna (Feldman et al., 2019). Moderna
is currently evaluating vaccine candidates for other infectious
respiratory diseases: respiratory syncytial virus (mRNA-
1172, mRNA-1777) and metapneumovirus/parainfluenza 3
(mRNA-1653).

The protective effects of mRNA vaccines have been also
proven useful beyond respiratory pathogens. For example,
Schnee et al. (2016) demonstrated the potency of mRNA vaccines
against rabies in rodents and pigs. This vaccine against a viral
glycoprotein induced antigen-specific immune responses in vivo
(Schnee et al., 2016). Notably, specific CD4+ T cells induced
by the mRNA vaccine were higher than those induced by
a licensed vaccine, and the titers of neutralizing antibody in
mice remained stable for the entire observation period (up
to 1 year). The safety, reactogenicity and immune response
of this vaccine is currently being evaluated in a phase I trial
conducted by CureVac (CV7202) (ClinicalTrials.gov, 2020c).
Pardi et al. (2017) proposed a bi-valent modified mRNA vaccine
that encodes pre-membrane and envelope glycoproteins of a
Zika virus strain responsible for the outbreak in 2013. A single
dose of this vaccine, encapsulated in lipid nanoparticles and
delivered intradermally, was sufficient to protect mice against
viral challenges at 2 weeks or 5 months after vaccination, and
non-human primates at 5 weeks after vaccination (Pardi et al.,
2017). Utilizing the same antigens, Moderna has been developing
a non-modified encapsulated mRNA-1893 vaccine against Zika,
which received fast track FDA designation and is currently
in phase I trials (ClinicalTrials.gov, 2020f) to assess its safety,
tolerability and immunogenicity. Importantly, mRNA-1893 had
prevented congenital transmission of the virus in mouse models
of congenital infection (Jagger et al., 2019). John et al. designed
a cytomegalovirus (CMV) vaccine to prevent CMV infection
and/or disease during pregnancy and in transplant patients. The
vaccine consists of six modified mRNA constructs encoding
CMV glycoproteins and pentameric complex and is delivered
intramuscularly in lipid nanoparticles. Its single dose elicited
robust immune response in mice and non-human primates (John
et al., 2018), and is currently in clinical trials (mRNA-1647)
sponsored by Moderna (ModernaTX Inc, 2019a).

In addition to mounting active immunity, mRNA can be also
used for passive immunization. A drug candidate mRNA-1944
(Moderna) is a great example of mRNA therapeutics encoding
human monoclonal neutralizing antibodies (mAb). This drug
is designed to provide passive protection against chikungunya
infection. The ultrapotent antibodies were isolated from the B
cells of a survivor of natural infection, and their sequences
were encoded into mRNA molecules, encapsulated in lipid

nanoparticles and delivered by infusion into mice. After mRNA
delivery, one human mAb, CHKV-24, was found to be expressed
at immunologically relevant levels, and its protective capacity
was evaluated in mouse models of chikungunya. Treatment with
CHKV-24mRNA reduced viremia to undetectable levels at 2 days
after inoculation and protected mice from mortality. Further
studies with non-human primates also demonstrated a long-
lasting immunogenic effects of the drug (Kose et al., 2019).
Overall, the pre-clinical data encouraged a first-in-man trial
(ModernaTX Inc, 2019b).

Another interesting RNA-based approach to vaccination is
that with self-amplifying RNA vaccines. The backbone sequence
for the latter is adapted from an alphavirus, a positive-sense
single-stranded RNA virus with high capacity for replication
(Lundstrom, 2018b; Vogel et al., 2018). Such mRNA vaccine
contains an antigen-encoding sequence and viral RNA dependent
RNA polymerase-encoding sequence along with other elements
required for replication (Hyde et al., 2015). The advantage of
the self-replicating approach is that significantly higher amount
of antigen can be expressed with lower doses of mRNA (Vogel
et al., 2018). Both types of RNA vaccines degrade after transient
expression; however, the self-replicating RNA achieves longer
term expression of the antigen (Ulmer and Geall, 2016). Figure 6
demonstrates the mode of action of conventional and self-
amplifying mRNA vaccines (Kowalski et al., 2019). Harvey et al.
(2003) were among the first to demonstrate the ability of self-
amplifying mRNA vaccines to elicit antigen-specific immunity.
They constructed vaccine vectors based on replicon RNA of the
Australian flavivirus Kunjin that encoded HIV-1 Gag antigen and
delivered them intramuscularly as either naked RNA or in the
form of virus-like particles in BALB/c mice. Such immunization
induced both Gag-specific antibody and protective Gag-specific
CD8+ T-cell responses (Anraku et al., 2002; Harvey et al., 2003).
Similarly, Moyo et al. (2018) engineered a vaccine against HIV-
1 using an RNA replicon derived from Semliki Forest virus,
which encoded 6 highly conserved regions of HIV-1 proteins.
The self-replication approach was also used by McKay et al.
(2020) (Imperial College London) to develop another mRNA
COVID-19 vaccine which encodes the pre-fusion stabilized
SARS-CoV-2 spike protein, which vaccine has now entered
a phase I trial.

There are multiple RNA cancer vaccines in clinical trials
such as CV9202 (CureVac), which is a self-adjuvating RNA
vaccine targeting six antigens commonly expressed in non-
small cell lung cancer (Sebastian et al., 2014). The mRNA-5671
(Moderna) targets KRAS and is being currently evaluated in
patients with KRAS-mutant advanced or metastatic non-small
cell lung cancer, colorectal cancer, or pancreatic adenocarcinoma
(ClinicalTrials.gov, 2020e). The mRNA-4157 is another cancer
vaccine from Moderna, but, unlike mRNA-5671, it is an
individualized therapeutic vaccine against melanoma. In this
approach, genetic sequencing and bioinformatic analysis is
performed on a patient’s tumor to identify 20 patient-specific
neoantigen epitopes which are encoded by an mRNA construct
manufactured for a single patient (National Cancer Institute,
2011; ClinicalTrials.gov, 2020a; van Dülmen and Rentmeister,
2020). Another example of the individualized cancer vaccine
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FIGURE 6 | Schematic showing the mechanism of action of conventional (BioNTech and Moderna COVID-19 vaccines) and self-amplifying mRNA vaccines. The

mRNA vaccine is translated into protein, processed by antigen presenting cells, and subsequently activates immune responses. nsP, non-structural protein; Cap,

N7-methylated guanosine structure covalently joined to the first nucleotide of the mRNA through a reverse 5′ to 5′ triphosphate linkage (Kowalski et al., 2019;

Dolgin, 2021); A, adenosine molecule; (A)n, poly-A tail; UTR, untranslated region.

in clinical trials is BNT122 (phase II) from BioNTech, which
is designed for locally advanced or metastatic solid tumors
(including melanoma, non-small cell lung cancer, bladder cancer,
and others). BioNTech has many other anti-cancer vaccines
in their pipeline, with the following ones having reached
clinical studies: BNT111 for advanced melanoma; BNT112
for metastatic castration-resistant prostate cancer and high-
risk localized prostate cancer; BNT113 against HPV16-derived
oncoproteins E6 and E7 found in HPV16-positive solid cancers,
such as head and neck squamous cell carcinoma; BNT114 for
triple negative breast cancer; and BNT115 for ovarian cancer
(Pipeline – BioNTech, 2021).

mRNA-Enhanced Cell Therapies

Cell therapy may be enhanced by mRNA. The cells may be
obtained from the patient or the cell bank. Subsequently, they
are therapeutically modified ex vivo with mRNA encoding
the desired proteins (such as CARs, reprogramming or
transdifferentiation factors, telomerase, etc.). Then the mRNA-
enhanced cells are re-infused into the patient to treat the
disease (see Figure 7, Bertoletti and Tan, 2020). Currently,
there are several cell-based therapies that have reached
clinical trials and employ mRNA. For example, TriMix-based
immunotherapy (ECI-006) is a combination of mRNAs encoding
DC-activating molecules (CD40L, CD70, and caTLR4) and

FIGURE 7 | Schematic illustrations of the use of mRNA in engineering cells ex vivo. T cells derived from peripheral blood of patients suffering from disease are

modified ex vivo with mRNA expressing the chimeric antigen receptor (CAR) and then modified cells are reinfused into the patient (Bertoletti and Tan, 2020). mRNA,

messenger RNA; RNA, ribonucleic acid.
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melanoma-specific tumor-associated antigens (tyrosinase, gp100,
MAGE-A3, MAGE-C2, and PRAME) (Arance Fernandez et al.,
2019, p. 011) that are transfected into autologous DCs ex vivo.
This therapy has demonstrated significant clinical activity
in combination with ipilimumab without increasing regimen
toxicity in metastatic melanoma (De Keersmaecker et al., 2020).
MCY-M11 (MaxCyte) is an autologous CAR-T cell therapy
for mesothelin-expressing solid tumors. The peripheral blood
lymphocytes from a single leukapheresis are transfected with
anti-human mesothelin mRNA CAR and cryopreserved as
multiple cell aliquots for repeat administrations (Hung et al.,
2018). Descartes (Cartesian Therapeutics) is an autologous cell
therapy, where anti-BCMA CAR T-cells are engineered ex vivo
by transient expression of mRNA, to treat myasthenia gravis
and relapsed/refractory multiple myeloma (SparkCures, 2020).
Although mRNA in aforementioned therapies is used to achieve
transient expression of proteins, it can also be designed to serve as
a gene editing tool to achieve stable expression of target proteins.

It is also possible to combine mRNA and DNA into a
therapeutic. In one approach, a transposon system is used to
genetically modify cells for therapy. This system consists of
a DNA plasmid which encodes a gene of interest flanked by
a mirrored set of inverted repeats (transposon), together with
mRNA encoding the transposase enzyme. The plasmid DNA
encoding the transposon is co-delivered along with the mRNA
transposase enzyme in a single electroporation reaction. The
transposase that is translated from the mRNA then binds to the
inverted repeats and cuts the DNA, to release the transposon.
After that, the transposon binds a strand of genomic DNA with a
TA dinucleotide, where the transposase creates a double-stranded

break, allowing the transposon to integrate (Singh et al., 2014).
Using this approach, Poseida Therapeutics has developed a
cell therapy for multiple myeloma, P-BCMA-101, which is
now in clinical trials. The company’s proprietary mRNA-based
transposon system is used to integrate a transposon encoding the
anti-BCMA CAR into resting T cells (Singh et al., 2014, p. 19;
Ostertag, 2018).

DELIVERY OF RNA THERAPEUTICS

Targeted delivery is a major hurdle for effective RNA
Therapeutics, a hurdle that must be overcome to broaden
the application of clinical translation of this type of therapeutic.
Because mRNA is inherently unstable it requires delivery vehicles
that will protect the cargo from RNAase degradation. There is a
need for novel delivery vehicles that will deliver the RNA drug
to the site of therapeutic action facilitating the entry of the RNA
drug into the cytoplasm where it may exert its effect. In the
following paragraphs we provide a brief review of the advances
made in RNA delivery vehicles.

Lipid-Based Nanoparticles
Liposomes are formed when materials containing polar head
groups and non-polar tails (phospholipids) are dispersed in
aqueous phase. They are spherical vesicles consisting of at least
one phospholipid bilayer enclosing an aqueous core. They are
a flexible drug delivery particle which may have various surface
modifications (see Figure 8, Sushnitha et al., 2020; Zinger et al.,
2020) capable of delivering a variety of therapeutic payloads

FIGURE 8 | Lipid based nanoparticles accommodate a variety of therapeutic payloads including hydrophobic and hydrophilic small molecules, genetic materials,

and proteins. One of the advantages of this platform is its ability to functionalize the surface with various proteins that can serve to target and localize nanoparticles

over specific targets, imaging probes or covalent modification (Sushnitha et al., 2020; Zinger et al., 2020).
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(Torchilin, 2005). Most notably amongst these application
is Doxil [Barenholz (Chezy), 2012] a liposome encapsulated
formulation of doxorubicin for the treatment of cancer, that
reduces heart toxicity related to the drug. This breakthrough
treatment demonstrated the efficacy of the use of nanoparticles
to change the biodistribution of drug and increase its safety.

Liposomes have an inherent advantage in that they mimic
cell membrane composition and can encapsulate mRNA when
combined with cationic lipids. Positively charged lipids can
electrostatically interact with negatively charged mRNA to
form complexes of RNA and liposomes. In this way, RNA is
encapsulated within liposomes. Cationic lipids such as, DOTMA
(1,2-di-O-octadecenyl-3-trimethylammonium-propane) and
DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) readily
form complexes with negatively charged RNA. The use
of cholesterol modified lipid makes the resulting complex
more stable and improves transfection. Hattori et al. (2015)
demonstrated the use of cationic cholesterol modified liposome
to deliver siRNA into mouse liver. Subsequently, Kranz et al.
(2016) demonstrated the use of liposomes for intravenous
delivery of mRNA vaccines encoding four tumor antigens
NY-ESO-1, MAGE-A3, tyrosinase and TPTE targeting dendritic
cells (DCs) in patients with advanced malignant melanoma,
effectively expressing the antigens in spleen cells. However, the
liposome delivery systems have flaws; (1) liposomes are less
stable, and may fuse or leak RNA resulting in low efficiency of
delivery; (2) they entrap less RNA; (3) they can be harmful if
oxidized; and (4) are not consistent in size. The heterogeneity of
the particles increases batch to batch variability (Laouini et al.,
2012; Sercombe et al., 2015; Shin et al., 2018).

Some of the aforementioned hurdles have been addressed
with advances in the surface modifications of liposomes.
Lipid nanoparticles (LNP) made of cationic and other lipids,

cholesterol, and polyethylene glycol (PEG) with a hydrophilic
inner core retain the capacity to carry anionic RNA, protect
it from degradation and prolong its circulation. An example
of the efficacy of the LNP platform is patisiran (Onpattro,
Alnylam Pharmaceuticals, FDA approval August 2018), the
siRNA-based therapeutic against hereditary transthyretin-
mediated amyloidosis discussed above. In patisiran, the dsRNA
is encapsulated inside four lipid excipients (Kristen et al., 2018):
DSPC [1,2-distearoyl-sn-glycero-3-phosphocholine], cholesterol
(DLin-MC3-DMA) [(6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,
31-tetraen-19-yl-4-(dimethylamino) butanoate] and
PEG2000-C-DMG [α-(3′-{[1,2-di(myristyloxy)proponoxy]
carbonyl-amino}propyl)-ω-methoxy, polyoxyethylene] (Zhang
et al., 2020). The PEG functionalization is crucial for this
platform as it allows enough circulation time for the drug to be
localized in the liver.

Another example is PEG-liposome mRNA vaccines developed
by BioNTech and Moderna for the treatment of COVID-19. As
described above, these vaccines encode the prefusion-stabilized
SARS-CoV-2 spike protein. Minor concerns have been raised
as the proprietary lipid is cleared slowly from target tissues
and studies are ongoing if accumulation of this lipid could
represent a safety concern. The promising results have been
seen in non-human primates and human, and, at the time
of the writing of this manuscript, this formulation has been
approved by FDA for emergency use. Another concern was
raised by the rare anaphylactic reactions to the RNA vaccines,
which have been attributed to the PEG component of the LNPs
(Castells and Phillips, 2021).

Beyond PEG-functionalized liposomes, more sophisticated
surface modalities have emerged to create “biomimetic”
nanoparticles that functionalized membrane proteins on the
surface of nanoparticles (see Figure 9). We have generated

FIGURE 9 | Biomimetic Nanoparticles – “Leukosome” Technology. Biomimetic nanoparticles developed by Molinaro et al. (2016) “Leukosomes.” The composition of

these particles consists of a liposome together with proteins derived from leukocytes. These particles preferentially adhere to activated endothelium at sites of

inflammation, and have intrinsic anti-inflammatory properties.
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“leukosomes” by incorporating leukocyte membrane proteins
into the surface of liposomes (Molinaro et al., 2016). These
particles have the virtue of localizing at sites of inflammation,
binding to the activated endothelium via endothelial adhesion
molecules such as LFA-1 and CD-45 (Molinaro et al., 2016).
Furthermore, this biomimetic platform has shown intrinsic anti-
inflammatory effects upon endothelium through its interaction
withmacrophages. In a lipopolysaccharide (LPS) inducedmurine
model of sepsis, administration of biomimetic nanoparticles
derived from macrophages decreased pro-inflammatory genes
(IL-6, IL-1b, and TNF-α), and increased anti-inflammatory
genes (IL-10 and TGF-β) (Molinaro et al., 2019). The intrinsic
anti-inflammatory effects of these biomimetic leukosomes
have been demonstrated in other disease models including
inflammatory bowel disease (IBD) (Corbo et al., 2017),
atherosclerosis (Martinez et al., 2018; Boada et al., 2020), and
cancer (Martinez et al., 2018). Most recently, we have shown
the capability of leukosomes to home to sites of vascular
inflammation in the apo E deficient hypercholesterolemic
mouse. In this model, the elevated levels of cholesterol cause the
accumulation of lipid and macrophages in the aorta. Leukosomes
were more efficient than standard LNPs at delivering rapamycin
to the aorta, where the rapamycin inhibited macrophage
proliferation and generation of inflammatory cytokines (Boada
et al., 2020). While significant work remains to be done testing
the efficacy of this platform in larger animal models, there is
great promise for biomimetic nanoparticles to create new mRNA
therapeutics that has the potential to selectively target all the
inflammatory-based conditions.

Polymer Nanomaterials
Polymer nanomaterials normally refer to synthetic compounds
made of a handful of base units that come together to form
complex structures. These materials usually include synthetic
polymers such as PLGA [ploy(lactic-co-glycolic acid)], PLA
(polylactic acid), chitosan, gelatin, polycaprolactone, and poly-
alkyl-cyanoacrylates. These materials have the virtue of a long
shelf life; the ability to encapsulate hydrophilic and hydrophobic
compounds and proteins; and the capability for tuned delivery
of therapeutic compounds (Devulapally et al., 2016; Amini et al.,
2017). The flexibility inherent in polymeric nanomaterials is
due to the fact that small chemical modifications of the basic
polymeric units permits exquisite control over release profile.
Polymers can be synthesized to create injectable nanoparticles
that can be delivered as intravenous injections or administered
as intramuscular, subdermal or intraperitoneal drug depots that
degrade over a period of months or weeks (Molina et al., 2015).

The ease of encapsulation extends to nucleic acids. Cationic
hydrophilic polymers with hydrophobic modification can self-
assemble in aqueous phase to encapsulate RNA. An example of
this was employed by Zhao et al. (2016), who developed cationic
polyethyleneimine-stearic acid (PSA) copolymer to deliver HIV-1
gag encoding mRNA to dendritic cells (DC2.4 cells) and BALB/c
mice. The optimum mass ratio of PSA: mRNA was 4:1, as
assessed by transfection efficiency. They injected 6–8 weeks old
female mice (BALB/c) subcutaneously with HIV-1 gag mRNA
encapsulated in PSA and detected levels of anti-HIV-1 gag

specific antibodies. They also demonstrated HIV gag specific
CD8+ and CD4+ T cell responses after immunization with
PSA/mRNA vaccine (Zhao et al., 2016). McCullough et al. (2014)
used chitosan nanoparticles to deliver self-amplifying replicon
RNA encoding influenza virus hemagglutinin and nucleoprotein
to dendritic cells in mice and rabbit (McCullough et al., 2014).
Andreozzi et al. (2017) explored the pH sensitivity of their
nucleic acids carrier to trigger endosomal delivery and found
that the carrier is stable at narrow pH range (7–9). They
used poly(allylamine) phosphate supramolecular nanocarriers to
deliver green fluorescence protein (GFP) siRNA in A549 cells to
effectively silence the expression of GFP protein.

Consideration must also be given to the intrinsic tendency
of polymers to induce inflammation within the immediate
microenvironment, due either to lack of degradation such as
in the case of PLA or through byproducts. In the case of
PLGA, degradation into its basic monomers, lactic acid and
glycolic acid leads to a decrease in pH at sites of degradation,
promoting inflammation (Kumari et al., 2010). This is not an
insurmountable problem. One popular and practical solution
has been the use of lipid-polymer hybrids pioneered by Zhang
et al. (2008). This type of material, a nanoparticle with a lipid
surface and a polymer core, combines the best of both worlds
and provides an exquisite control over release profile from its
polymer core and lipid surface that better resembles the cell
membrane, with possibility for modification that can further
enhance targeting toward diseased tissues. Application of this
material to deliver RNA therapeutics is promising based on pre-
clinical results with xenograft tumors (Shi et al., 2011). The
combination of lipid and polymer permits combination therapy.
In a landmark study, (Desai et al., 2013) delivered anti-TNFα
siRNA (siTNFα) together with capsaicin, in a psoriatic plaque
murine model. Their polymer nanoparticle was able to penetrate
the cutaneous barrier to deliver the therapeutic interference
RNA. Given these pre-clinical results the use of polymer-based
materials is extremely promising for delivery of RNA therapeutics
(Hadinoto et al., 2013).

Silica Nanoparticles
Mesoporous silica nanoparticles (MSNPs) have gained more
attention for their therapeutic applications. The nanoparticles
consist of an amorphous silica (silicon dioxide) matrix with
ordered porosity in the mesoporous range. The peculiar feature
of this nanoparticle includes large surface areas with large
pore volumes, ease of modification, and established silanol
chemistry. The surface of the nanoparticles can be modified
by positively charged moieties to transport negatively charged
RNA. The MSNPs pore sizes are tunable with a broad range
and can be quite uniform. The particles have high loading
capacity for nucleic acids and efficient delivery. RNA can be
loaded inside pores for their transport and the surface can be
modified with cancer specific ligands and antibodies to deliver
the RNA to the target site. Particle aggregation is a hurdle that
must be overcome so that the product is safe for injection.
Aggregation can cause thrombosis or induce tissue injury.
However, PEGylation of the surface of the nanoparticles greatly
decreases aggregation and tissue damage. These nanoparticles
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degrade into non-toxic products and are safely excreted (Möller
et al., 2016; Paris and Vallet-Regí, 2020). Meka et al. (2016)
developed the MSNPs with large pore and bicontinuous cubic
mesostructure to deliver siRNA in human colon cancer cells
(HCT116). They demonstrated the high efficiency of the silica
particles in drug delivery and suppression of the tumor proteins
in their work (Meka et al., 2016). Lee et al. (2018) developed
hybrid particles with a positive charge structure with large pores
to load anionic siRNA drug (knockdown B cell lymphoma 2,
Bcl-2) and a negatively charged structure with small pores to
load the anticancer drug, doxorubicin. They used their hybrid
particles to deliver siRNA and doxorubicin to HeLa cells. Their
work demonstrated the flexibility of this platform to provide dual
pore hybrid silica nanoparticles to treat cancer with combination
of both genetic and chemotherapeutic drugs simultaneously
(Lee et al., 2018).

Carbon and Gold Nanomaterials
Gold nanoparticles, quantum dots, nanographene oxide, carbon
nanotubes are each synthesized nanostructures that have the
capacity to harbor RNA, protecting it from degradation and
delivering it to the targeted disease site. Zheng et al. (2012)
used gold nanoparticles for topical application of therapeutic
nucleic acids (siRNA, knockdown EGFR) in mouse and human
skin (Zheng et al., 2012). Li et al. (2011) used quantum dots-
siRNA complexes to suppress a target gene (HPV18 E6 gene)
in HeLa cells. Yang et al. (2014) utilized nanographene oxide
modified with gadolinium(Gd-NGO) to deliver a small molecule
anti-cancer drug, epirubicin together with Let-7g miRNA (tumor
suppressors, decrease expression of the Ras oncogene family) to
image and treat glioblastoma in mice (Yang et al., 2014). Kam
et al. (2005) observed that functionalized carbon nanotubes could
deliver siRNA against lamin A/C to suppress the expression of
this protein in HeLa cells.

N-Acetylgalactosamine (GalNAc)
GalNAc is a trivalent ligand that binds to asialoglycoprotein
(ASGPR) receptors in hepatocytes. Clinical studies suggest that
GalNAc conjugated siRNAs are very efficient to knockdown gene
expression in the liver. Zimmermann et al. (2017) performed
the first clinical trial of GalNAc conjugated siRNA drugs
(Revisuran) to treat transthyretin-mediated amyloidosis (ATTR)
(Zimmermann et al., 2017). However, an imbalance in deaths
of the Revisuran siRNA treated patients in phase III clinical
trials terminated the study of this drug. Givosiran (Givlaari,
developed by Alnylam Pharmaceuticals) is the world’s first ever
GalNAc conjugated siRNA drug approved by FDA (November,
2019) (Alnylam, 2020b). As discussed above, Givosiran is used
to prevent acute attacks of hepatic porphyria by silencing the
expression of aminolevulinate synthase 1 mRNA in liver. This
has the effect of reducing neurotoxic levels of aminolevulinic
acid and porphobilinogen that can induce seizures, paralysis,
respiratory failure, neurological damage and death (Balwani
et al., 2020; Nature Biotechnology, 2020). There are few
more GalNAc conjugated siRNA drugs (Fitusuran, Lumasiran,
Vutrisiran, and Inclisiran) in Phase 3 clinical trials from Alnylam
Pharmaceuticals (Alnylam, 2020a).

HOSPITAL-BASED RNA THERAPEUTICS

We are witnessing the dawn of a new era of biopharmacotherapy.
The promise of mRNA therapeutics has galvanized the
pharmaceutical companies and investment sector, as evidenced
by the current market caps of Biontech ($22.4B), Curevac
($18.6B), and Moderna ($52B), as well as the rapid proliferation
of biotech start-ups in this field (FierceBiotech, 2020). Each of the
three major companies has dozens of new mRNA therapeutics
under development, some of which have been mentioned in this
review. Inherent advantages of mRNA therapeutics have spurred
this unprecedented investment. High-purity RNA constructs can
be generated much faster than traditional small molecule drugs
or recombinant proteins, and at lower costs; the manufacturing
process is adaptable to any RNA sequence allowing for
personalized RNA therapeutics; moreover, RNA has a superior
safety profile and simpler regulatory roadmap compared to DNA-
based gene therapy because it doesn’t integrate into the host
genome (Sahin et al., 2014; Karikó, 2019). The rapid growth of
mRNA therapeutics has been made possible by recent advances
which have overcome key obstacles such as innate immune
activation, RNA stability, and delivery.

Notably, mRNA therapeutics are a disruptive therapeutic
technology, as small biotech startups, as well as academic groups,
can rapidly develop new and personalized mRNA constructs.
Our group has long-standing expertise in designing and
manufacturing RNA therapeutics for the scientific community.
Initially we were funded by the NHLBI to serve as an mRNA
core for stem cell investigators in the Progenitor Cell Biology
Consortium. Subsequently, the Cancer Prevention and Research
Institute of Texas funded us to address an unmet need for
cancer researchers in Texas who use mRNA as a research tool
or a therapeutic. The demand for our services has increased
substantially within the last 5 years, while we strengthened
our expertise through extensive collaboration with cancer
biologists, immunologists, RNA biologists, bioinformaticians,
and nanomedicine scientists. During this time we established
our hospital-based cGMP-compliant manufacturing capability
and quality control methods (see Figure 10). We licensed
our proprietary processes to VGXI Inc, a local company with
large-batch manufacturing capabilities for DNA-based gene
therapies. With this collaboration, we built a seamless transition
for academic groups and small companies to go from pre-
clinical development and first-in-man clinical trials supported
by our hospital-based program, to late-stage clinical trials and
commercialization supported by our industry partner VGXI, Inc.

During these years we learned that many small biotech
companies and academic groups, who have innovative ideas for
disruptive RNA therapeutics, lack key competencies to reach the
clinic, such as manufacturing capabilities, delivery technologies,
or regulatory expertise, while our group has been operating
in the environment established to accelerate novel therapeutics
from conception to the clinic. Houston Methodist Research
Institute is adjacent to the Houston Methodist Hospital, which
is ranked by US News and World Report as the No. 1 hospital
in Texas. The Institute was established with the focus on
clinical translation. As such, the Institute has the infrastructure
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FIGURE 10 | Hospital-based RNA therapeutics (TX) program in Houston Methodist. CMO, contract manufacturing organization; GLP, good laboratory practice;

cGMP, current good manufacturing practice.

necessary to support pre-clinical and clinical development
of novel therapeutics. We have clean rooms and calibrated
equipment for cGMP manufacturing of RNA constructs, as well
as the equipment to synthesize and analyze lipid nanoparticles
for RNA encapsulation. We have an Office of Translational
Production and Quality that provides guidance and quality
oversight for manufacturing, QC testing and release. In addition,
our Office of Regulatory Affairs assists with regulatory roadmaps
and translational research planning. Our Comparative Medicine
Program supports GLP animal studies for IND applications,
while our Cockrell Clinical Trial Center designs and implements
first-in-man clinical trials. This infrastructure has facilitated our
development of the first fully integrated hospital-based RNA
therapeutics program.

Our RNA core is the central pillar, as the RNA core
team develops new constructs and manufactures research or
clinical grade RNA. The RNA core is complemented by RNA
biologists, bioinformaticians, and nanomedicine experts. This
program offers a single entry point with consultation to
ensure a seamless transition between development stages. This

system facilitates the development of RNA therapeutics by
academic groups and small biotechs and dramatically shortens
the time “from bench to bedside.” Furthermore, it promotes
collaboration between our RNA faculty and clinician-scientists
at the hospital to identify unmet clinical needs and develop
mRNA-based solutions.

The success of hospital-based programs to generate novel
nucleic acid drugs has already been demonstrated. For instance,
the investment of Nationwide Children’s hospital into cGMP
facilities and a critical mass of gene therapy experts led to the
creation of transformative gene therapies for lethal childhood
diseases: SMA (onasemnogene abeparvovec xioi; Zolgensma,
reviewed in DNA therapies) and DMD (golodirsen; Vyondys 53).
Golodirsen is a phosphorodiamidate morpholino oligomer that
hybridizes to exon 53 of dystrophin pre-mRNA, and restores
the mRNA reading frame in patients with confirmed DMD
mutations amenable to exon 53 skipping (Frank et al., 2020).
Besides golodirsen, the group is currently evaluating another
treatment for DMD – a gene transfer of micro-dystrophin
delivered by recombinant AAV and driven by a skeletal
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and cardiac muscle-specific promoter with enhanced cardiac
expression (Mendell et al., 2020).

Another example of a successful hospital-based gene therapy
program is that of St. Jude Children’s Research Hospital. As
described above, they developed and generated material in
house for first-in-man studies of a lentiviral gene therapy
for X-linked SCID. Their lentiviral vector encoding IL2RG
was designed to include insulators to block activation of
genes adjacent to where IL2RG is inserted into the patients’
DNA. The goal was to prevent the gene therapy from
inadvertently causing leukemia by switching on an oncogene
in the patient’s blood stem cells. Vector production and gene
therapy treatment were streamlined using a stable producer
cell line and cryopreservation. Combined with low-exposure,
targeted busulfan conditioning in infants with newly diagnosed
SCID-X1, the therapy had only low-grade adverse effects
and resulted in multilineage engraftment of transduced cells,
reconstitution of functional T cells and B cells, and normalization
of NK-cell counts during a median follow-up of 16 months
(Mamcarz et al., 2019).

In addition to accelerating clinical translation of novel
therapeutics, hospital-based programs facilitate development
and implementation of personalized medicines, when relatively
small quantities of a drug are required in treating a single
patient. While manufacturing of the drug at such scale
is rarely financially justified for a big pharma, it is quite
reasonable for a hospital, can be done within a hospital’s
cGMP facilities and then quickly delivered to the patient.
An outstanding example of patient-customized treatment was
recently demonstrated by Boston Children’s Hospital. In patient
presenting with symptoms diagnostic of Batten’s disease, genetic
testing for known mutations were not observed. Whole-genome
sequencing revealed a previously unknown insertion that altered
splicing of the MFSD8 gene and led to premature translational
termination. Knowing this, the investigators designed a 22-mer
ASO, milasen, with the same backbone and sugar chemistry
modifications as nusinersen (reviewed in ASO section) to correct
the misplicing and restore MFSD8 expression. Soon after pre-
clinical studies to confirm efficacy and assess toxicity studies, the
drug was administered to the patient with clinical improvement
observed (Kim et al., 2019). Notably, the first injection of
milasen was done within 1 year after first contact with the

patient, a testament to the speed of this hospital-based gene
therapy platform.

CONCLUSION AND FUTURE
PERSPECTIVES

RNA Therapeutics is a rapidly emerging field of biotherapeutics.
These therapies are based upon powerful and versatile platform
which has nearly unlimited capacity to address unmet clinical
needs. RNA Therapeutics are destined to change the standard
of care for many diseases. The number of RNA drugs under
development, and in clinical trials, is growing rapidly. The
rapid growth of RNA therapeutics has been due to solving the
problems of stability, delivery and immunogenicity. Whereas
there is room for further improvement and innovation in
each of these areas, the solutions have advanced to the point
that RNA Therapeutics are now feasible. Although several
dominating players in the RNA biopharma sector have emerged,
new small biotech startups as well as academic groups with
transformative ideas are propagating. In addition, hospital-
based RNA therapeutics programs will facilitate RNA-based
drug development and accelerate translation of transformative
therapies from lab bench to patient’s bedside.
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