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ABSTRACT

Recent results in value at risk analysis show that, for extremely heavy-tailed risks with unbounded

distribution support, diversification may increase value at risk, and that generally it is difficult to construct

an appropriate risk measure for such distributions. We further analyze the limitations of diversification for

heavy-tailed risks. We provide additional insight in two ways. First, we show that similar nondiversification

results are valid for a large class of risks with bounded support, as long as the risks are concentrated on

a sufficiently large interval. The required length of the support depends on the number of risks available

and on the degree of heavy-tailedness. Second, we relate the value at risk approach to more general risk

frameworks. We argue that in markets for risky assets where the number of assets is limited compared with

the (bounded) distribution support of the risks, unbounded heavy-tailed risks may provide a reasonable

approximation. We suggest that this type of analysis may have a role in explaining various types of market

failures in markets for assets with possibly large negative outcomes.
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1 Introduction

1.1 Background

Recent research has shown that, under general conditions, the stylized fact of portfolio diversification

always being preferable is reversed for extremely heavy-tailed risks, with infinite first moments and

unbounded distribution support. Ibragimov (2004a, b, 2005, 2007) developed a unified approach to

analyzing portfolio theory for such heavy-tailed risks and a number of other problems in economics

using new majorization theory for linear combinations of thick-tailed random variables (see Propo-

sition 1 in Subsection 3.1 of this paper). Specifically, for such distributions, the value at risk (VaR)

is a strictly increasing function in the degree of diversification.

Value at risk and the closely related safety-first principle are frequently used in models in eco-

nomics, finance and risk management, providing alternatives to the traditional expected utility

framework (see, e.g., the papers in Szegö, 2004, and Fabozzi, Focardi and Kolm, 2006, for a review

of properties of value at risk and other measures of risk and Roy’s, 1952, safety-first approaches

to portfolio selection). For extremely heavy-tailed distributions the expected utility framework is

not readily available, since it typically involves assumptions on the existence of moments for the

risks in consideration. The safety-first and VaR approaches to portfolio selection have thus, in many

regards, been the only ones available in the presence of extreme thick-tailedness.3

This has also meant that the relationship between traditional diversification results that are

based on expected utility and thin tails, and the non-diversification results that are based on VaR

and thick tails have been somewhat unclear. Specifically, one may ask whether non-diversification

3Several recent papers (see among others, Acerbi and Tasche, 2002, and Tasche, 2002) recommended to use the
expected shortfall as a coherent alternative to the value at risk (see Artzner, Delbaen, Eber and Heath, 1999, and
Szegö, 2004, for the definition of coherency for measures of risk and an overview of its implications). However, the
expected shortfall, which is defined as the average of the worst losses of a portfolio, requires existence of the first
moments of risks to be finite. It is not difficult to see that existence of means of the risks in considerations is also
required for finiteness of coherent spectral measures of risk (see Acerbi, 2002, and Cotter and Dowd, 2006) that
generalize the expected shortfall.
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strictly depends on the asymptotic behavior of the distributions far out in the tails. If this is the

case, the theoretical results may have few applications in a world in which distributions may have

bounded support. Furthermore, one may ask whether the VaR non-diversification results are due to

imperfections of VaR as a risk measure, and how they relate to expected utility based risk measures

and stochastic dominance. In this paper, we suggest that the non-diversification results may be

robust to such objections.

1.2 Main contributions of paper

The main results of this paper are provided in Theorems 1-4 and Table 1. First, we demonstrate

that the above VaR results continue to hold for a wide class of bounded risks4 concentrated on

a sufficiently large interval (Theorem 1). We also study how the length of distributional support

needed for our results to hold depends on the number of risks in the portfolio and the degree of

heavy-tailedness of the unbounded distributions.

Second, we relate our results to the expected utility framework. For risks with unbounded heavy-

tailed distributions, we provide a natural generalization of the second order stochastic dominance

concept, originally introduced in Rothschild and Stiglitz (1970). We provide a rigorous motivation

for that diversification increases risk for such distributions (Theorem 2). Furthermore, we relate

our results on bounded risks to the traditional results on diversification. With bounded supports,

diversification will always be preferable in an expected utility setting5, contrary to our value at risk

results. We show that the traditional results crucially depend on the tail properties of the expected

utility function and that if investors’ utility function at any point in the domain of large negative

outcomes becomes convex,6 then our non-diversification results may continue to hold (Theorem 3).

4We will, somewhat contradictory, refer to distributions of such risks as bounded heavy-tailed distributions as
opposed to the standard (unbounded) heavy-tailed distributions.

5As originally shown in a general setting in Samuelson (1967).
6Convexity of utility functions in the loss domain being one of the key foundations of Prospect theory (Kahneman

and Tversky, 1979). It also effectively arises if there is limited liability.
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This provides additional support for our view that the theory of unbounded heavy-tailed distributions

may provide a good approximation for markets with a limited number of bounded heavy-tailed risks.

Third, we provide numerical results that show when not to diversify (Table 1), depending on

the types of distributions, the length of distributional support and the number of risks at hand. In

the non-diversification region, the implications for asset pricing may be large. It will be difficult to

create risk sharing, idiosyncratic risk will matter, and risk premia may be high. We suggest that

this could explain puzzling properties of risky assets for which losses may be large, e.g., catastrophe

insurance. This is a natural future application of the results in this paper.

Fourth, we obtain extensions of the above results for a wide class of dependent risks. We show that

Theorem 1 continues to hold for convolutions of dependent risks with joint truncated α−symmetric

distributions and their analogues with non-identical marginals (Theorem 4).

1.3 Literature on heavy-tailedness in economics and finance

This paper belongs to a large stream of literature in economics and finance that have focused on

the analysis of thick-tailed phenomena. This stream of literature goes back to Mandelbrot (1963)

(see also Fama, 1965, and the papers in Mandelbrot, 1997), who pioneered the study of heavy-tailed

distributions with tails declining as x−α, α > 0, in these fields. If a model involves a r.v. X with

such thick-tailed distribution, then7

P
(
|X| > x

)
∼ x−α. (1)

It was documented in numerous studies that the time series encountered in many fields in economics

and finance are heavy-tailed, see the discussion in Loretan and Phillips (1994), Gabaix, Gopikrishnan,

Plerou and Stanley (2003), Rachev, Menn and Fabozzi (2005) and references therein. Specifically,

7Here and throughout the paper, f(x) ∼ g(x) means that 0 < c ≤ f(x)/g(x) ≤ C < ∞ for large x, for constants c
and C.
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Chapter 11 in Rachev, Menn and Fabozzi (2005) discusses and reviews the vast literature that

supports heavy-tailedness and the stable Paretian hypothesis (with 1 < α < 2) for equity and bond

return distributions. The following estimates of the tail parameters α for returns on various stocks

and stock indices were reported in the literature using different models and statistical techniques:

3 < α < 5 (Jansen and de Vries, 1991); 2 < α < 4 (Loretan and Phillips, 1994); 1.5 < α < 2

(McCulloch, 1996, 1997); 0.9 < α < 2 (Rachev and Mittnik, 2000); α ≈ 3 (Gabaix et al., 2003).

As discussed in, e.g., Lux (1996), Guillaume, Dacorogna, Dave et al. (1997) and Gabaix et

al. (2003), tail exponents are similar for financial and economic time series in different countries.

Some studies have indicated that the tail exponent is close to one or slightly less than one for

such financial time series as Bulgarian lev/US dollar exchange spot rates and increments of the

market time process for Deutsche Bank price record (see Rachev and Mittnik, 2000). As discussed

by Nešlehova, Embrechts and Chavez-Demoulin (2006), tail indices less than one are observed for

empirical loss distributions of a number of operational risks. Furthermore, Scherer, Harhoff and

Kukies (2000) and Silverberg and Verspagen (2004) report the tail indices α to be considerably less

than one for financial returns from technological innovations.

The fact that a number of economic and financial time series have tail exponents of approximately

equal to or less than one is important in the context of the results in this paper: as we demonstrate,

the conclusions of portfolio value at risk theory for truncations of risk distributions with the tail

exponents α < 1 with infinite means are the opposites of those for distributions with α > 1 for

which the first moment is finite.

1.4 Organization of paper

The paper is organized as follows: Section 2 contains notation and definitions of classes of heavy-

tailed distributions used throughout the paper. It also reviews their properties. In Section 3, we
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present the main results of the paper on the effects of diversification of bounded risks on portfolio

riskiness. We also relate our results to the expected utility/stochastic dominance framework and

provide tables for when it is optimal not to diversify. Section 4 discusses extensions of the results in

the paper to the case of dependence, including convolutions of truncated α-symmetric and spherical

distributions and models with common shocks. In Section 5, we make some concluding remarks.

2 Notation

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and μ ∈ R, we denote by Sα(σ, β, μ) the stable distribution

with the characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index

(skewness parameter) β and the location parameter μ. That is, Sα(σ, β, μ) is the distribution of a

r.v. X with the characteristic function

E(eixX) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp {iμx − σα|x|α(1 − iβsign(x)tan(πα/2))} , α �= 1,

exp {iμx − σ|x|(1 + (2/π)iβsign(x)ln|x|)} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0

and sign(x) = −1 otherwise. In what follows, we write X ∼ Sα(σ, β, μ), if the r.v. X has the stable

distribution Sα(σ, β, μ).

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable

distributions Sα(σ, β, μ). In particular, if X ∼ Sα(σ, β, μ), then its distribution satisfies power law

(1). This implies that the p−th absolute moments E|X|p of a r.v. X ∼ Sα(σ, β, μ), α ∈ (0, 2)

are finite if p < α and infinite otherwise. The symmetry index β characterizes the skewness of the

distribution. The stable distributions with β = 0 are symmetric about the location parameter μ.

The scale parameter σ is a generalization of the concept of standard deviation; it coincides with

the standard deviation in the special case of Gaussian distributions (α = 2). If Xi ∼ Sα(σ, β, μ),
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α ∈ (0, 2], are i.i.d. stable r.v.’s such that μ = 0 for α �= 1 and β = 0 for α = 1, then, for all ai ≥ 0,

i = 1, ..., n,

n∑
i=1

aiXi/
( n∑

i=1

aα
i

)1/α

∼ Sα(σ, β, μ). (2)

For 0 ≤ r < 1, we denote by CS(r) the class of distributions which are convolutions of symmetric

stable distributions Sα(σ, 0, 0) with indices of stability α ∈ (r, 1) and σ > 0. That is, CS(r) consists

of distributions of r.v.’s X for which, with some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are

independent r.v.’s such that Yi ∼ Sαi
(σi, 0, 0), αi ∈ (r, 1), σi > 0, i = 1, ..., k. The properties of stable

distributions discussed above imply that the p−th absolute moments E|X|p of a r.v. X ∼ CS(r),

r ∈ (0, 1), are finite if p < r. However, all the r.v.’s X ∼ CS(r), r ∈ (0, 1) have infinite means:

E|X| = ∞.

Throughout the paper, given two r.v.’s X and Y , we write X
d
= Y if the distributions of X

and Y are the same. In addition, I(·) stands for the indicator function. We define the a-truncated

version of a r.v.: Y (a) = X if |X| ≤ a, Y (a) = −a if X < −a and Y (a) = a if X > a. In other

words, Y (a) = a · sign(Xi) + XI(|X| ≤ a).8 We will also use the notation Xa instead of Y (a) for

the a-truncated version of X.

3 Main results: Limits of diversification

3.1 Non-diversification for risks with bounded support

Let 0 ≤ r < 1. Following the framework of Roy’s (1952) safety-first, given a r.v. (risk) Z, we are

interested in analyzing the probability P (Z > z) of going above a certain target or a disaster level

8This definition of truncation moves probability mass to the edges of the distributions. As follows from the
arguments the results in Section 3.1 continue to hold for the more commonly used truncations XI(|X | ≤ a) which
move probability mass to the center. However, this is not true for the results in Section 3.2.
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z > 0.9 Furthermore, given a loss probability q ∈ (0, 1/2) and a r.v. (risk) Z, we denote by V aRq[Z]

the value at risk (VaR) of Z at level q, that is, its (1 − q)−quantile.10

Throughout this section, X1, X2, ... is a sequence of i.i.d. risks with distributions from the class

CS(r). For a > 0, denote by Yi(a) the a-truncated versions of X ′
is. In what follows, R+ stands for

R+ = [0,∞). Let In = {w = (w1, ..., wn) ∈ Rn
+ :

n∑
i=1

wi = 1}. For w ∈ In, denote by Xw the return

on the portfolio of risks X1, ..., Xn with weights w: Xw =

n∑
i=1

wiXi. Similarly, in what follows, for

a > 0 and w ∈ In, Yw(a) stands for the return on the portfolio of bounded risks Y1(a), ..., Yn(a) with

weights w: Yw(a) =
n∑

i=1

wiYi(a). Evidently, the return on the portfolio of risks X1, ..., Xn with equal

weights w̃n =
(

1
n
, 1

n
, ..., 1

n

)
is given by the sample mean of X ′

is: Xw̃n =
1

n

n∑
i=1

Xi. Similarly, Yw̃n(a) is

the sample mean of the risks Yi(a): Yw̃n(a) =
1

n

n∑
i=1

Yi(a).

The problems faced by a holder of risks X1, ..., Xn or Y1(a), ..., Yn(a) consist in minimizing,

respectively, the disaster probabilities P
( n∑

i=1

wiXi > z
)

or P
( n∑

i=1

wiYi(a) > z
)

over the portfolio

weights w ∈ In. Let w[1] ≥ ... ≥ w[n] denote the components of w ∈ In in decreasing order.

Obviously, w[1] = 1 implies that w is a permutation of the vector (1, 0, ..., 0). E.g., according to the

following proposition, in such a case, obviously, the portfolio with weights w consists of only one

risk, and, thus, Xw̃n has the same distribution as X1 and Yw̃n(a) is distributed as Y1(a). In addition,

for w ∈ In, let (w(1), w(2)) =
(
max[0.5, w[1]], min[0.5, 1 − w[1]]

)
.

As shown in Ibragimov (2004a, b, 2005), the stylized facts that portfolio diversification is always

preferable are violated for a wide class of extremely heavy-tailed risks with unbounded distribution

support.11 In such a setting, diversification of a portfolio of the risks increases the probability of

9In what follows, we interpret the positive values of Z as a risk holder’s losses. This interpretation of losses follows
that in Embrechts, McNeil and Straumann (2002) and is in contrast to Artzner et al. (1999) who interpret negative
values of risks as losses.

10That is, in the case of an absolutely continuous risk Z, P (Z > V aRq[Z]) = q.
11The result given by Proposition 1 is a part of Corollary 5.3 in Ibragimov (2004a) and of Theorem 4.2 in Ibragimov

(2004b) since the vector w = (w1, w2, w3, ..., wn) is majorized by (that is, has less diverse or more nearly equal
components than) the vector (w(1), w(2), 0, ..., 0) which is, in turn, is majorized by the vector (1, 0, 0, ..., 0).
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going over a given disaster level.

Proposition 1 (Ibragimov, 2004a, b, 2005). Let w ∈ In be a vector of weights with w[1] �= 1.

Suppose that Xi, i = 1, ..., n, are i.i.d. risks such that Xi ∼ CS(r), for some r ∈ (0, 1), i = 1, ..., n.

Then, for all z > 0, P
(
Xw > z

)
> P

(
w(1)X1 + w(2)X2 > z

)
> P

(
X1 > z

)
.

Remark 1 Proposition 1 can be equivalently formulated as follows in the framework of the value

at risk analysis for financial portfolios. Let w ∈ In be a vector of weights with w[1] �= 1. Suppose

that Xi, i = 1, ..., n, are i.i.d. risks such that Xi ∼ CS(r), for some r ∈ (0, 1), i = 1, ..., n. Then,

for all loss probabilities q ∈ (0, 1/2), the return Xw on the portfolio of risks X1, ..., Xn with weights

w is strictly more risky (in terms of the value at risk) than the return w(1)X1 + w(2)X2 on the

portfolio of two risks X1 and X2 with weights w(1) and w(2). In turn, the return w(1)X1 + w(2)X2

is more risky (in terms of the value at risk) than the return X1 on the portfolio consisting of one

risk. In other words, for any value of the loss probability q ∈ (0, 1/2), the following inequalities hold:

V aRq[Xw] > V aRq[w
(1)X1 + w(2)X2] > V aRq[X1].

We now expand the analysis to risks with bounded support. A summary of the results we will

provide is given in Figure 1. The traditional situation with i.i.d. risks is according to line A in

the figure: diversification is always to be preferred, regardless of the number of risks. The other

extreme is D, when diversification never will be preferred, as analyzed in Ibragimov (2004a, b, 2005).

The intermediate cases are B and C, when diversification is suboptimal up to a certain number of

risks (similar to D), but becomes preferable when enough assets are available and/or investors are

VaR tolerant (similar to A). The following theorem is the analogue of Proposition 1 in the case of

bounded risks. The theorem shows that diversification continues to be disadvantageous for truncated

extremely heavy-tailed distributions. The results demonstrate, in particular, that for any number
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n

"Value" of portfolio
with n risks A. Traditional

1 10 100

B. Bounded, VaR tolerant

C. Bounded, VaR intolerant

D. Unbounded

Figure 1: Illustrative figure of value of diversification. A: Traditional situation (α > 1). The value increases
monotonically with the number of risks, n, and it is always preferable to add another risk to portfolio. B:
New situation (α < 1). Bounded heavy-tailed distributions with VaR tolerant investor. For portfolios
with few assets, value decreases with diversification. C: New situation (α < 1). Bounded heavy-tailed
distributions with VaR intolerant investor. For portfolios with few-medium assets, value decreases with
diversification. D: Situation in Ibragimov (2004a, b, 2005) (α < 1). Unbounded heavy-tailed distributions.
Value always decreases with diversification.

n ≥ 2 and any given disaster level z > 0, there exist n risks with finite support with the property

that a diversified portfolio is riskier than a portfolio consisting of only one risk.

In what follows, for z > 0 and w ∈ In, we denote by G(w, z) the difference

G(w, z) = P
(
w(1)X1 + w(2)X2 > z

)
− P

(
X1 > z

)
, (3)

which is positive if w[1] �= 1 since, by Proposition 1 applied to the portfolio of risks X1, X2 with

weights (w(1), w(2)), P
(
w(1)X1 + w(2)X2 > z

)
> P

(
X1 > z

)
if w(i) �= 1, i = 1, 2.

Theorem 1 Let n ≥ 2 and let w ∈ In be a portfolio of weights with w[1] �= 1. For any z > 0 and

all a >
(

E|X1|r(n−1)
2G(w,z)

)1/r

, the following inequality holds: P
(
Yw(a) > z

)
> P

(
Y1(a) > z

)
.

Proof. We have P
(
Xw > z

)
≤ P

(
Yw(a) ≥ Xw > z

)
+ P

(
Xw > z, Xw > Yw(a)

)
≤

P
(
Yw(a) > z

)
+P

(
Xw > Yw(a)

)
≤ P

(
Yw(a) > z

)
+P

(
Xi > a for at least one i ∈ {1, 2, ..., n}

)
≤
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P
(
Yw(a) > z

)
+

∑n
i=1 P

(
Xi > a

)
= P

(
Yw(a) > z

)
+ nP

(
X1 > a

)
. From Proposition 1 it

follows that P
(
Xw > z

)
> P

(
w(1)X1 + w(2)X2 > z

)
= P (X1 > z) + G(w, z) = P

(
X1 > a

)
+

P
(
Y1(a) > z

)
+ G(w, z). The above relations imply that the following inequalities hold:

P
(
Yw(a) > z

)
− P

(
Y1(a) > z

)
> G(w, z) − (n − 1)P

(
X1 > a

)
. (4)

Since, under the assumptions of the theorem, E|X1|r < ∞, by Chebyshev’s inequality we get P
(
X1 >

a
)

= 1
2
P

(
|X1| > a

)
≤ E|X1|r

2ar . Consequently, under the conditions of the theorem, the right-hand

side of (4) is positive. �

Remark 2 From Proposition 1 it follows that value at risk is not subadditive and, thus, its coherency

in the sense of Artzner et al. (1999) (see also the papers in Szegö, 2004) is always violated in the

class of extremely heavy-tailed risks with infinite first moments. Theorem 1 implies that VaR may

also be non-coherent in the world of risks with bounded distributional support.

Remark 3 We note that in the case of a portfolio with equal weights w̃n =
(

1
n
, 1

n
, ..., 1

n

)
, one has

(w(1), w(2)) =
(

1
2
, 1

2

)
and, thus, (3) becomes G(w̃n, z) = H(z) = P

(
X1+X2

2
> z

)
− P

(
X1 > z

)
.

This means that the length of the distributional support in Theorem 1 can be taken to be same for

all the portfolios with equal weights w̃n. This holds, obviously, for the whole class of the portfolios

w such that w[1] < 1/2. Furthermore, a similar result holds as well for the class of portfolios w

such that w[1] < 1 − ε (and, thus, wi < 1 − ε for all i), where 0 < ε < 1/2. As follows from the

proof of Theorem 1, for all such portfolios w, the theorem holds for a >
(

E|X1|r(n−1)

2G̃(ε,z)

)1/r

, where

G̃(ε, z) = P
(
(1 − ε)X1 + εX2 > z

)
< G(w, z). Similar to Proposition 1, the last inequality follows

from Corollary 5.3 in Ibragimov (2004a) and Theorem 4.2 in Ibragimov (2004b) since any vector w

with w[1] < 1 − ε is majorized by (that is, has less diverse or more nearly equal components than)
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the vector (1 − ε, ε, 0, ..., 0).

Remark 4 From the proof of Theorem 1 it follows that, in the case of portfolios with equal weights

w̃n =
(

1
n
, 1

n
, ..., 1

n

)
, n > 2, the length of the interval of truncation a can be reduced to a smaller

value. In such a case, the theorem holds under the restriction a >
(

E|X1|r(n−1)
2Fn(z)

)1/r

, where Fn(z) =

P
(Pn

i=1 Xi

n
> z

)
− P

(
X1 > z

)
. Note that, by Proposition 1, Fn(z) > H(z) = G(w̃n, z) for n ≥ 3.

Remark 5 Theorem 1 does not hold uniformly for portfolios arbitrarily close to an undiversified

portfolio. Thus, for any a and any number of stocks, n, it may be preferable to diversify “slightly.”

An asymptotic analysis shows that the required support, a, to ensure that diversification into w =

(ε, 1 − ε) is not preferred, grows as a ∼ ε−1/r. Therefore, when ε approaches zero, the length of the

distributional support a becomes unbounded.

Remark 6 Theorem 1 shows that, for a specific loss probability q ∈ (0, 1/2), there exists a suffi-

ciently large a such that the value at risk V aRq

[
Yw(a)

]
of the return Yw(a) at level q is greater than

the value at risk V aRq

[
Y1(a)

]
of the return Y1(a) at the same level: V aRq

[
Yw(a)

]
> V aRq[Y1(a)].

The last inequality between the returns Yw(a) and Y1(a) holds for the particular fixed loss probability

q. In the comparisons of the values at risks V aRq

[
Yw(a)

]
and V aRq[Y1(a)], the length of the interval

needed for the reversals of the stylized facts on the portfolio diversification depends on q. This is

a crucial difference compared with Proposition 1 and Remark 1, where the inequalities hold for all

z > 0 and all q ∈ (0, 1/2).

3.2 Non-diversification and risk rankings

In this section we relate the VaR approach to the expected utility framework, both for unbounded and

bounded heavy-tailed risks. As noted in the introduction, with extremely heavy-tailed distributions,
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a direct expected utility approach does not work as integrals may not be defined. In what follows,

we argue that with natural generalizations of the concepts of expected utility and risk, the same type

of risk rankings can be applied for a wide class of symmetric heavy-tailed distributions. It allows

us to conclude that for such distributions, diversified portfolios are dominated by undiversified ones

from a stochastic dominance perspective. In other words, the monotone decrease of the line D in

Figure 1 holds from a general risk perspective.

We work with r.v.’s X and Y , with c.d.f.’s FX and FY respectively and, as before, denote their

a-truncated versions by Xa and Y a.12 The corresponding c.d.f.’s are denoted by F a
X and F a

Y . We

will also denote their p.d.f.’s by fX and fY . Following Ingersoll (1987), we define a simple mean

preserving spread (MPS) of a c.d.f., F , with corresponding p.d.f., f , by adding to f a function

ϕ(x) satisfying ϕ(x) = α, c < x < c + t; ϕ(x) = −α, c′ < x < c′ + t; ϕ(x) = −β, d < x < d + t;

ϕ(x) = β, d′ < x < d′ + t; and ϕ(x) = 0 otherwise, where α(c′ − c) = β(d′ − d), α > 0, β > 0,

t > 0, c + t < c′ < d − t, and d + t < d′. If f(x) + ϕ(x) ≥ 0 for all x, then the function

G(x) = F (x) +
∫ x

−∞ ϕ(s)ds is a simple mean preserving spread of F . For any c.d.f., F , we define

MF , the set of c.d.f.’s obtainable by a finite number of simple MPS’s on F .

We equip the space of distributions with the Lévy metric d(FX , FY ) = inf{ε : FX(x − ε) − ε ≤

FY (x) ≤ FY (x + ε) + ε for all x}. This makes it a complete metric space with the topology of weak

convergence.13 For the MPS condition, we will use the closure of MF , MF , and say that if G ∈ MF

then G can be obtained by a sequence of MPS’s on F , or simply that G is an MPS of F . We note

that if X and Y are symmetric r.v.’s and Y ∈ MFX
then Y can be obtained from X by a finite

sequence of pairs of simple MPS’s with symmetric ϕ′s.

Rothschild and Stiglitz (1970) introduce four equivalent definitions of risk dominance, one of

12As we relate to the expected utility framework, we use the convention that negative valuers of X and Y are losses
in this section.

13See Lukacs (1975).
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which is directly related to expected utility theory. The following four conditions B1-B4 are equiv-

alent for two r.v.’s X and Y with bounded support in [−a, a] and c.d.f.’s FX and FY such that

EX = EY ,14 defining a partial – second order stochastic dominance – ordering over risks and their

c.d.f.’s, X 	 Y and FX 	 FY .

• B1: FY can be obtained by a sequence of mean-preserving spreads (MPS) of FX .

• B2: For all t ∈ (a, b),

∫ t

a

FX(x)dx ≤
∫ t

a

FY (x)dx.

• B3: For all concave utility functions, u : [−a, a] → R: Eu(X) ≥ Eu(Y ).

• B4: Y
d
= X + U , where U is a r.v. on [−a, a] such that E(U |X) = 0.

Next, following Birnbaum (1948), we define X to be more peaked about 0 than Y if P (|X| > x) ≤

P (|Y | > x) for all x ≥ 0. The VaR results in Ibragimov (2004a, b, 2005) provided by Proposition 1

can also be cast in peakedness terminology: For any r < 1 and all i.i.d. risks Xi ∼ CS(r), i = 1, ..., n,

the r.v. X1 is more peaked about the origin than the return Xw on the portfolio of Xi’s with weights

w ∈ In such that w[1] �= 1.

For symmetric distributions with finite absolute first moments and, in particular, for bounded

symmetric distributions, peakedness implies second order stochastic dominance, as the following

Lemma 1 demonstrates. Let X and Y be two symmetric risks with the same distribution support

[−a, a] ⊆ R.15 In the case a = ∞, we assume that E|X| < ∞ and E|Y | < ∞.

Lemma 1 Under the above assumptions, if X is more peaked about 0 than Y , then FX and FY

satisfy condition B2 (and, thus, in the bounded case conditions B1, B3 and B4).

Proof. See Ibragimov and Walden (2006). �
14Equivalently,

∫ a

−a xdFX(x) =
∫ a

−a xdFY (x).
15The value of a can be infinity so that [−a, a] can be the whole real line: [−a, a] = R.
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Consequently, for symmetric r.v.’s with finite first absolute moments and, thus, for symmetric

bounded r.v.’s, peakedness provides a ranking of risks that is at least as informative as second order

stochastic dominance.

We next turn to unbounded symmetric distributions for which the first absolute moments do

not exist. Specifically, we study extremely heavy-tailed symmetric distributions and without loss

of generality, we assume that the point of symmetry is the origin. We therefore look at the class

of distributions CS(r), 0 < r < 1. Ideally, we would like to generalize the equivalence of B1–B4 to

distributions in CS(r) with r ∈ (0, 1). This would provide an unambiguous risk ranking. However,

the picture becomes more complicated with unbounded heavy-tailed risks.

It is evident that, given two symmetric r.v.’s X and Y on R, X is more peaked than Y if and

only if, for any a > 0, the truncated version Xa of X is more peaked than the truncated version Y a

of Y . From Lemma 1 we get, therefore, that if X is more peaked than Y , then, for any a > 0, the

c.d.f.’s FXa and FY a of the truncated versions Xa and Y a of the r.v.’s satisfy conditions B1, B2, B3

and B4.

Below, for a r.v. W , we denote by σ(W ) the σ−algebra spanned by it. In addition, P (·|W )

denotes the σ(W )−conditional probabilities. Given two symmetric r.v.’s X and Y with c.d.f.’s FX

and FY , we consider the following conditions.

• B0’: FX is more peaked about the origin than FY (Peakedness condition).

• B1’: FY ∈ MFX
(MPS condition).

• B2’: There is an a0 such that for all a > a0: F a
X and F a

Y satisfies B2 (Strong integral condition).

• B2”: (Weak integral condition)16 : For all ε > 0, there exists a > 0 and a c.d.f. F̃ ε : [−a, a] →
16Clearly, (5) implies that |ξ(x)| ≤ 1 (a.s.) and

∫ t

−a
ξ(x)dx ≤ ε for all t. Thus, the weak integral condition allows

for “approximate” MPS’s on bounded sets in the sense that F a
Y is the sum of an MPS (F ε), a term which is “small”

in integration (ξ) and a term which is small in maximum norm (s). Moreover, if FX and FY are absolute continuous,
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[0, 1], such that

1. For all t ∈ (−a, a):
∫ t

−a
F a

X(x)dx ≤ ∫ t

−a
F̃ ε(x)dx.

2. F a
Y = F̃ ε + ξ + s, where ξ is an antisymmetric17 function satisfying

FY (x − ε) − FY (x) ≤ ξ(x) ≤ FY (x + ε) − FY (x), for all x (5)

and s is an antisymmetric function with
∣∣∣s(x)

∣∣∣ ≤ ε for (almost) all x.

3. When ε → 0, a → ∞.

• B3’: There is an a0 such that for all a > a0 for all concave u: Eu(Xa) ≥ Eu(Y a) (Expected

utility condition).

• B4’: There is an a0 such that for all a > a0, Y a d
= Xa + Za, where Za is a σ(Xa)-measurable

r.v. such that E(Za|Xa) = 0 (a.s.) (Fair game condition).

• B4”: Y
d
= sign(Y )

[|X| + Z
] d

= X + sign(X)Z, where Z ≥ 0 (a.s.) (Conditional absolute

symmetry condition).18

Theorem 2 For distributions symmetric about the origin: 1. B0’ is equivalent to B4”, 2. B0’

implies B2’, 3. B2’ is equivalent to B3’ and B4’ 4. B2’ implies B2” and 5. B1’ is equivalent to B2”.

Proof. See Ibragimov and Walden (2006). �

For portfolios of risks in CS(r), an undiversified portfolio is more peaked about the origin than

any diversified portfolio. Thus, an undiversified portfolio also dominates diversified portfolios in the

then one can choose ξ = 0. This is the case as |FY (x + ν) − FY (x)| ≤ C|ν| for all |ν| and therefore the condition will
be satisfied with ξ = 0 and |s(x)| ≤ ε̃ = (C + 1)ε.

17That is, f(−x) = −f(x) for all x.
18For condition B4”, we restrict our attention to absolutely continuous distributions. However, complete analogues

of the results below hold as well in the discrete case.
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sense of B1’, B2’, B2”, B3’, B4’ and B4”. Therefore, the results in Ibragimov (2004a, b, 2005) on

diversification always being nonpreferable are also true in each of these senses. This concludes our

analysis of the limits of diversification for unbounded heavy-tailed risks.

We next compare the VaR results for bounded distributions with the traditional results on

diversification. The results in the previous section show that diversification is suboptimal for a

large class of distributions with bounded support when value at risk is used as portfolio benchmark

measure. This is contrary to the standard view that diversification is always to be preferred. For

the case with unbounded risks it can be attributed to the non-existing moments of distributions

in CS(r). However, the distributions in Theorem 1 have bounded (but large) support and finite

moments of all orders exist. We therefore analyze what drives the differences compared with the

traditional results on diversification.

There are two main motivations for diversification in traditional portfolio theory. The first

approach uses the law of large numbers (LLN). The second approach uses expected utility/stochastic

dominance.19 For the first approach, the law of large numbers implies that, for all ε, ε1 > 0, P
(∣∣∣Zn−

μ
∣∣∣ > ε

)
= P

(∣∣∣Pn
i=1 Zi

n
− μ

∣∣∣ > ε
)

< ε1 if n > N(ε1) > 0 and the risks Z1, Z2, ... are i.i.d. r.v.’s with

EZ1 = μ, and Zn = n−1
∑n

i=1 Zi. Thus, as n becomes large, all risk disappears and the diversified

portfolio will be preferred. This type of argument has strong asset pricing implications, as shown

in the celebrated arbitrage pricing theory (Ross, 1976), which analyzes the case when n becomes

unbounded. Our approach differs from the LLN approach, in that we asymptotically increase the

distributional support, a, as the number of assets, n, increases. This leads to the break-down of

the rule. Practically speaking, we assume that the effective distributional support of Zi is relatively

large compared to the number of assets where large is defined by in Theorem 1.

The second motivation for diversification is based on expected utility. Samuelson (1967) showed

19We view Markowitz’ (1952) mean-variance approach as a special case of the latter.
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that any investor with a strictly concave utility function will uniformly diversify among i.i.d. risks

with finite second moments, i.e., will choose the portfolio with equal weights and the return Zn

among all portfolios. As our previous discussion shows, this breaks down for unbounded extremely

heavy-tailed distributions, but it must hold in all situations with bounded support. In light of

condition B3, the result in Samuelson (1967) implies that Zn second order stochastically dominates

the distributions of all other portfolios.

Why does the expected utility approach favor diversification for any a, even though, as follows

from Theorem 1 and Remark 6, for a specific loss probability, q ∈ (0, 1/2), a can always be cho-

sen large enough so that the diversified portfolio has higher value at risk than the undiversified

portfolio: V aRq(Y n(a)) > V aRq(Y1(a))? The reason is that regardless of a, there will always be

a region further out in the probability tail where the inequality is reversed: for some q̃ >> q,

V aRq̃(Y n(a)) < V aRq̃(Y1(a)). This is contrary to the case when a = ∞ in which no such reversal

takes place. Thus, the expected utility argument in favor of diversification with truncated heavy-

tailed distributions depends fundamentally on the behavior of the utility function in the domain of

extreme negative outcomes. Therefore, under the assumption of strict risk aversion for arbitrary

large negative outcomes, the VaR measure is “wrong” regardless of the distributional support, a.

However, there are several situations where assuming concavity over all outcomes may be a

stretch. First, experimental results leading to Prospect theory have shown that decision makers’

utility functions may be convex in the domain of losses (Kahneman and Tversky, 1979). Second,

limited liability introduces an option-like payoff structure, as do several agency problems (see e.g.

Stiglitz, 1974, Jensen and Meckling, 1976, Stiglitz and Weiss, 1981, and Gollier, Koehl and Rochet,

1997). This may lead to the expected utility function being effectively convex, with respect to the

original distribution. Thus, any of these effects make the assumption on strict concavity of expected

utility over the whole real line implausible. In situations where concavity may only be assumed
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over a bounded domain of outcomes arguments based on asymptotes of the utility function are as

dubious as arguments based on asymptotic behavior of the tails of probability distributions.

We use the following notation. An increasing, strictly concave function: u : R → R will be called

admissible. For any t > 0, a continuous function v : R → R is called a t-convex regularization of an

admissible function u, if v(x) = u(x) for x ≥ −t, v is increasing and twice continuously differentiable

on (−∞,−t), and u(−t) − lims→∞ v(−s) ≤ 1/t. For a large t, a t-convex regularization is thus a

way of introducing a region of convexity far out in the negative domain of the utility function, while

keeping the assumption of strictly positive marginal utility. As in the previous section, for r < 1,

and n i.i.d. risks, Xi ∼ CS(r), we consider the truncated r.v.’s Yi(a), i = 1, . . . , n and the diversified

portfolio with equal weights w̃n =
(

1
n
, 1

n
, ..., 1

n

)
and the return Y n(a) =

1

n

n∑
i=1

Yi(a).

Theorem 3 Let n ≥ 2. Then there exists a t0, such that for any t ≥ t0, there is an admissible

utility function u, and a > 0, such that any investor with utility function, v, where v is a t-convex

regularization of u, will have Ev
(
Y1(a)

)
> Ev

(
Y n(a)

)
.

Proof. See Ibragimov and Walden (2006). �

In light of this discussion, it is clear that in situations with many assets, or when we can assume

that investors’ utilities are strictly concave in the whole (efficient) support of distributional outcomes,

we expect classical diversification results to hold whenever risks are bounded. However, in situations

when the number of risks is not large compared with the number of assets, as defined in Theorem 1

and if utility is non-concave in the domain of large negative outcomes, then nondiversification may

be optimal even with bounded risks.
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3.3 When not to diversify

In this section, we further study the implications of Theorem 1, by analyzing under which conditions

it will not be optimal to diversify. Consider i.i.d. symmetric stable risks X1, X2, ..., Xn ∼ Sα(σ, 0, 0)

with α ∈ (r, 1) and σ > 0.20 We first study the case with two risks, n = 2. From Zolotarev

(1986, the argument for Property 2.5 on p. 63), we have E|X|r ≤ 2σrΓ
(
1− r

α

)
Γ(r) sin

(
π
2
r
)
, where

Γ(x) =

∫ ∞

0

e−ttx−1dt is the Gamma function. In addition, using the asymptotic expansions for stable

cdf’s given by Theorem 2.4.2 in Zolotarev (1986), we get G(w, z) > 1
απ

Γ(α+1) sin
(

πα
2

)
σα

zα

(
(w(1))α +

(w(2))α − 1
)
− 1

απ
Γ(2α+1)

4
sin(πα)

σ2α
[
(w(1))α+(w(2))α

]2

z2α . Using the above inequalities, we obtain that

Theorem 1 holds with the following easy to compute estimate for the length of the distribution

support:

ã =
zα/r(απ)1/rσ(r−α)/r

(
Γ
(
1 − r

α

)
Γ(r) sin

(
π
2
r
))1/r

(n − 1)1/r

[
Γ(α + 1) sin

(
πα
2

)(
(w(1))α + (w(2))α − 1

)
− Γ(2α+1)

4
sin(πα)

σα
(
(w(1))α+(w(2))α

)2

zα

]1/r
. (6)

Thus, ã as a function of w(1) provides a sufficient condition for diversification into (w1, w2) not being

preferred to holding one asset.

In Figure 2, we plot the relationship between ã and w(1) for different value at risk and σ = 1.

We see that the bound is fairly constant for w(1), except close to 1 (corresponding to an almost

undiversified portfolio) where it rapidly grows. Also, clearly a larger bound is needed for a smaller

q (that is, for larger z = V aRq(X1)). This comes as no surprise, as a smaller q implies that the VaR

inequality must hold further out in the tail.

We next generalize to arbitrary n ≥ 2, and σ, keeping β = 0 and fixing α = 0.85. We study when

holding one risk dominates uniform diversification, i.e., we study a as a function of n and value at

20Generalizations of the analysis in the case of skewed stable risks Xi ∼ Sα(σ, β, 0) can be obtained in a similar
way and are presented in Ibragimov and Walden (2006).

20



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.5

1

1.5

2

2.5

3
x 10

7

w(1)

a

Figure 2: Relationship between distributional support, ã, and level of diversification, w(1), for VaR centiles
q = 0.01 (below) and q = 0.001 (above). Parameters: n = 2, σ = 1, β = 0.

risk, a(n, z) where value at risk is z = V aRq(X1), such that Theorem 1 is satisfied for portfolios with

equal weights. We normalize to A(n, q) = a(n, V aRq(X1))/V aRq(X1), i.e., for a given percentile, q,

the required a as a fraction of the value at risk for the untruncated distribution. This normalization

is natural as, given the VaR chosen, it is the number of times this level that is the worst possible

outcome. The advantage of this normalization is that it is scale free: it holds for arbitrary σ.21 We

use the exact formula in (6). For α = 0.85, the results are shown in Table 1. A general conclusion

n 2 5 8 11 14 17 20 23 26 29 32 35
q
0.1 2,288 4,404 6,371 8,279 10,158 12,018 13,868 15,710 17,549 19,385 21,221 23,056
0.05 2,226 4,222 6,056 7,821 09,547 11,248 12,933 14,604 16,267 17,922 19,572 21,218
0.02 2,419 4,560 6,516 8,394 10,225 12,027 13,807 15,571 17,322 19,064 20,799 22,526
0.01 2,672 5,028 7,179 9,240 11,251 13,226 15,178 17,111 19,030 20,938 22,837 24,728
0.005 2,934 5,517 7,874 10,133 12,335 14,499 16,636 18,752 20,853 22,941 25,019 27,088
0.025 3,254 6,118 8,730 11,232 13,671 16,068 18,435 20,779 23,106 25,418 27,719 30,010
0.001 3,691 6,938 9,899 12,736 15,500 18,217 20,899 23,556 26,192 28,813 31,420 34,017
0.0005 4,133 7,768 11,080 14,260 17,355 20,396 23,399 26,373 29,325 32,258 35,177 38,083

Table 1: Threshold for A = a/V aRq(X1), above which diversification is sub-optimal as a function of q and
number of risks, n. α = 0.85, β = 0.

is that the worst case scenario must be a lot worse than the V aR level chosen, for diversification

to be inferior. For example, with a value at risk corresponding to q = 1%, the worst case scenario

21Therefore, it also holds for arbitrary time scales, T , according to our previous discussion.
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must be almost 2,700 times V aRq for diversification into two assets to be clearly inferior, and the

factor increases almost linearly in the number of assets. This might be taken as an indication that

the types of limits of diversification discussed in this paper only arises in quite extreme situations,

even when distributional support is bounded. We caution against this conclusion for two reasons.

First, Theorem 1 only gives a sufficient condition for diversification to be suboptimal and, in fact,

uses rough bounds (Chebyshev’s inequality for the marginal distributions). The true value of A may

therefore be considerably smaller. Second, so far, we have for tractability only studied the strongest

case for diversification, namely the case with i.i.d. risks. As shown in Section 4, diversification

also breaks for a wide class of bounded risks that exhibit dependence. The length of distributional

support required for diversification failure may therefore be considerably smaller.

4 Generalizations to dependence and non-identical distri-

butions

Our results continue to hold for wide classes of bounded dependent and non-identically distributed

risks. More precisely, the results continue to hold for convolutions of r.v.’s with joint truncated

α−symmetric and spherical distributions and their non-identically distributed versions as well as for

a wide class of models with common shocks.

Following Cambanis, Keener and Simons (1983), an n−dimensional distribution is called α-

symmetric if its characteristic function (c.f.) can be written as φ((
∑n

i=1 |ti|α)1/α), where φ : R+ → R

is a continuous function (with φ(0) = 1) and α > 0. The number α is called the index and the

function φ is called the c.f. generator of the α−symmetric distribution. The class of α−symmetric

distributions contains, as a subclass, spherical distributions corresponding to the case α = 2 (see

Fang, Kotz and Ng, 1990, p. 184). Spherical distributions, in turn, include such examples as Kotz

type, multinormal, multivariate t and multivariate spherically symmetric α−stable distributions
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(Fang, Kotz and Ng, 1990, Ch. 3). Spherically symmetric stable distributions have characteristic

functions exp
[ − λ

(∑n
i=1 t2i

)γ/2]
, 0 < γ ≤ 2, and are, thus, examples of α−symmetric distributions

with α = 2 and the c.f. generator φ(x) = exp(−xγ).

For any 0 < α ≤ 2, the class of α−symmetric distributions includes distributions of risks

Q1, ..., Qn that have the common factor representation

(Q1, ..., Qn) = (ZY1, ..., ZYn), (7)

where Yi ∼ Sα(σ, 0, 0) are i.i.d. symmetric stable r.v.’s with σ > 0 and the index of stability α and

Z ≥ 0 is a nonnegative r.v. independent of Y ′
i s (see Bretagnolle, Dacuhna-Castelle and Krivine,

1966, and Fang, Kotz and Ng, 1990, p. 197). In the case Z = 1 (a.s.), model (7) represents vectors

with i.i.d. symmetric stable components that have c.f.’s exp
[ − λ

∑n
i=1 |ti|α

]
which are particular

cases of c.f.’s of α−symmetric distributions with the generator φ(x) = exp(−λxα).

The dependence structures considered in this section include, among others, convolutions of

models (7). That is, the dependence structures cover vectors (X1, ..., Xn) which are sums of i.i.d.

random vectors (ZjV1j, ..., ZjVnj), j = 1, ..., k, where Vij ∼ Sαj
(σj , 0, 0), i = 1, ..., n, j = 1, ..., k, and

Zj are positive absolutely continuous r.v.’s independent of Vij :

(X1, ..., Xn) =

k∑
j=1

(ZjV1j , ..., ZjVnj). (8)

Although the dependence structure in model (7) alone is restrictive, convolutions (8) of such vectors

provide a natural framework for modeling of random environments with different multiple common

shocks Zj, such as macroeconomic or political ones, that affect all risks Xi (see Andrews, 2005).

Moreover, convolutions (8) of common factor models (7) can be viewed as generalized multi-factor

models, with factors Zj that have random factor sensitivities, Vkj. The results in this section thus

have direct implications for multi-factor modeling of financial or insurance variables, including the
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returns on stocks and bonds, and general credit risk.

Convolutions of α−symmetric distributions are symmetric and unimodal. These convolutions

also exhibit both heavy-tailedness in marginals and dependence among them. It is not difficult

to show that convolutions of α−symmetric distributions with α < 1 have extremely heavy-tailed

marginals with infinite means.22 On the other hand, convolutions of α−symmetric distributions

with 1 < α ≤ 2, and, in particular, convolutions of models (7) with 1 < α ≤ 2, can have marginals

with power moments finite up to a certain positive order (or finite exponential moments) depending

on the choice of the r.v.’s Z. For instance, convolutions of models (7) with 1 < α < 2 and E|Z| < ∞

have finite means but infinite variances, however, marginals of such convolutions have infinite means

if the r.v.’s Z satisfy E|Z| = ∞. Moments E|ZYi|p, p > 0, of marginals in models (7) with α = 2

(that correspond to Gaussian r.v.’s Yi) are finite if and only if E|Z|p < ∞. In particular, all marginal

power moments in models (7) with α = 2 are finite if E|Z|p < ∞ for all p > 0. Similarly, marginals

of spherically symmetric (that is, 2-symmetric) distributions range from extremely heavy-tailed to

extreme lighted-tailed ones. For example, marginal moments of spherically symmetric α−stable

distributions with c.f.’s exp
[− λ

(∑n
i=1 t2i

)γ/2]
, 0 < γ < 2, are finite if and only if their order is less

than γ. Marginal moments of a multivariate t−distribution with k degrees of freedom which is a

an example of a spherical distribution are finite if and only the order of the moments is less than

k. These distributions provide one of now well-established approaches to modeling heavy-tailedness

phenomena with moments up to some order (see Praetz, 1972, Blattberg and Gonedes, 1974, and

Glasserman, Heidelberger and Shahabuddin, 2002).

Let Φ denote the class of c.f. generators φ such that φ(0) = 1, limt→∞ φ(t) = 0, and the function

φ′(t) is concave. We have

22This is true because if one assumes that r.v.’s X1, ..., Xn, n ≥ 2, have an α−symmetric distribution with α < 1
and that E|Xi| < ∞, i = 1, ..., n, then, by the triangle inequality, E|X1 + ... + Xn| ≤ E|X1| + ... + E|Xn| = nE|X1|.
The latter, however, cannot hold since, according to (2), (X1 + ... + Xn) ∼ n1/αX1 and, thus, under the above
assumptions, E|X1 + ... + Xn| > nE|X1|. Similarly, one can show that α−symmetric distributions with α < r have
infinite marginal moments of order r.
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Theorem 4 Theorem 1 continues to hold if any of the following is satisfied:

• The vector of r.v.’s (X1, ..., Xn) entering its assumptions is a sum of i.i.d. random vectors

(V1j , ..., Vnj), j = 1, ..., k, where (V1j, ..., Vnj) has an absolutely continuous α−symmetric dis-

tribution with the c.f. generator φj ∈ Φ and the index αj ∈ (0, 1);

• The vector of r.v.’s entering the assumptions of the results is a sum of i.i.d. random vectors

(ZjV1j , ..., ZjVnj), j = 1, ..., k, where Vij ∼ Sαj
(σj , 0, 0), i = 1, ..., n, j = 1, ..., k, with σj > 0

and αj ∈ (0, 1) and Zj are positive absolutely continuous r.v.’s independent of Vij.

Proof. See Ibragimov and Walden (2006). �

Theorem 4 provides a precise formulation of the extensions of the results in Subsection 3.1 to the

dependent case. In particular, Theorem 1 continues to hold for convolutions of truncated analogues

of models (7) with common shocks affecting all thick-tailed risks Yi with tail indices α < 1.

The generalization to non-identical distributions, is straightforward. Let σ1, ..., σn ≥ 0 be scale

parameters and let Xi ∼ Sα(σi, β, 0), α ∈ (0, 2], be independent non-identically distributed stable

risks. Using the arguments in this paper together with the fact that, according to the results in

Ibragimov (2004a, b, 2005), Proposition 1 holds for risks X1, ..., Xn if σn ≥ ... ≥ σ1 ≥ 0, we obtain

that Theorem 1 also holds under these assumptions.

5 Concluding remarks

We have analyzed the limits of diversification for bounded risks with heavy tails in their support.

The key parameters for our analysis are the number of risks available, the thickness of the tails and

the support of the distributions. If the effective support is large compared with the number of risks,

nondiversification may be optimal. The theory can be related to the expected utility model. We
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show that if there is a point arbitrary far out in the domain of losses beyond which the utility function

is not concave, then nondiversification may be optimal also from an expected utility perspective.

Our results suggest that the distributional assumption of unbounded heavy tails may be treated

as an appropriate approximation in some situations even though the distributional support may

be bounded. In many real world applications, distributions may be bounded, the expected utility

specification of investor behavior only makes sense over reasonable domains and the number of assets

is finite. Which approximation is most appropriate must then depend on the situation at hand.

Our analysis may have implications for several under-diversification puzzles in financial markets

and insurance markets (see e.g., Blume and Friend, 1975, Barber and Odean, 2000, and Froot, 2001,

for examples of such puzzles). For example, our analysis can be used to explain low levels of rein-

surance among insurance providers in markets for catastrophe reinsurance, as shown in Ibragimov,

Jaffee and Walden (2006).
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