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The Limits of Extended Kalman
Filtering for Pulse Train Deinterleaving

Tanya Conroy and John B. Moor€egllow, IEEE

Abstract—Some signals, such as in radar systems, communi- Previously proposed techniques for pulse train deinterleav-
cation systems, and neural systems, are transmitted as periodic ing include sequential search [2] and histogramming [2], [3].
pulse trains. If more than one pulse train is transmitted over These techniques work well when the interleaved signal is
the same communication channel, a challenge is to separate them . . . .
for source identification at the receiver. This is known aspulse received in low noise. .Ano.ther apF?roaCh IS tQ formulate the
train deinterleavingand is clearly a fundamental problem in the Problem as a stochastic discrete-time dynamic linear model
study of discrete-event systems. Frequently, the only relevant [4]. Here, the deinterleaving methods used are forward dy-
information at the receiver is the time of arrival (TOA) data, npamic programming with fixed look-ahead and a probabilistic
which is usually contaminated by jitter noise. Perhaps there are teacher.

also missing or overlapping pulses. . .
In this paper, we present an approach for deinterleaving A problem with all the above methods is that they are

pulse trains and estimating their periods using an extended computationally expensive, typically of ordé¥? or higher,
Kalman filter (EKF). A naive application of EKF theory is not where N is the number of pulses being processed. Optimal
attractive because of discontinuities in the signal model. Here, a processing involves a full tree search, requiring computational
form of smoothing of the discontinuities is proposed so that the effort of order MY for M pulse trains. One method uses

EKF approach becomes attractive. The advantage of this EKF fast Fourier t f techni to det ine th b f
approach is that it is less computationally expensive than most ast Fourier transtorm tecnniques to determine the number o

previously proposed methods, which are of ordetVZ, where N is  Pulse trains present in an interleaved signal and estimate their

the number of pulses being processed. The computation required periods (their spectra) without actually deinterleaving them

here is of order N. The method proposed appears to give useful [5]. The computation required here is of ord&rlog N.

results for up to seven or so pulse trains, particularly when there In this paper, the signal model from [4] is modified by a

is somea priori information on the pulse frequencies, which can . L . L .

be obtained using computations of orderN log N. smo_othlng of its inherent d|scont|nl_1|t|es so that the deinter-
leaving task can be performed using the extended Kalman

Index Terms—Deinterleaving, extended Kalman filtering. filter with computational effort of ordeN. It is assumed that
the pulse trains are periodic and that the number of sources
|. INTRODUCTION is finite and known. It is also desirable that the processing

ME SIGNALS are transmitted as periodic pulse train§Xp|9'ta prlorl_lnformatlon as from spectra det_ermlned in [5].
This paper is structured as follows. In Section I, the prob-

onsider a situation where pulses from a number Ofdlffelrém is formulated in terms of a state space signal model,

ent sources are being transmitted over a single communication, . : . . . .
|n|(élud|ng a version with smooth nonlinearities. In Section lll,

channel. This leads to a series of pulse trains that are Sthe extended Kalman filter is presented. In Section IV, simu-

to be interleaved The process opulse train deinterleaving |_ . .

. . i I . lation examples are presented, and in Section V, some robust-
is separating these pulses into the original trains. In Ordr%ss issues are examined
to do this, use is made of the fact that the different trains '

have different characteristics, such as period of pulse emission,

phase, and pulse amplitude. Here, we restrict our attentionto ||, S;gNAL MODEL—A ;1 PARAMETERIZATION
the case where only time of arrival (TOA) data for the received ) . ) ) )
pulses is available or relevant. Deinterleaving is fundamentall ConsiderM! p_er|0d|c pulse t_raln Sources. L and tQ

a difficult problem, even in the ideal case with no jitter noiséj,)énOte’ respectively, the period and initial phase of e

missing or overlapping pulses, or period variations, but fource. The received inte_rleaved signal consists of the super-
is important that there be some robustness in the nonid@gition of the](;/[ pulse;ralr)s prodfuceq b?/ct)?\fese SOUrces. Let
case. Pulse train deinterleaving is used in radar detection [1] ty, .-+, ty denote the times of arriva consecutive

and could potentially be studied in the areas of comput Isezl Th.e p_roblerrr: 1S "’}S follows. dth ber of
communications and neural systems. Problem: Given the pulses,, ---, ty and the number o

sources presend/, determine which source produced each
pulse and estimate the perio@¥”) and phases.’ of each
. . . _gulse train fori = 1,2, ---, M.
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10 : . . : . - : . , The signal model (1) can be fleshed out as a nonlinear state
space model

8 source pulse train Tra1 = fr (QTk), Zo
8r O @ODOT@NO ©@MIOC I @ Do 0O @OTE JADOmOIdA000 b
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” 6 source pulse train where
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=z
3t . . Notice that this signal model has discontinuous nonlineari-

2 source pulse train ties fx(-), hx(-) and, thus, cannot be used without modification
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to derive an extended Kalman filter (EKF).

) . . . A. A Smooth Approximation of (), DenotedX} (x1.)
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Pulse times In order to use an extended Kalman filter for deinterleaving,
we propose to approximate the source indicator vector function
given in (3) by a smooth function as

0 . L L

Fig. 1. Interleaved pulse trains.

1 M
The signal can be described by a discrete-state, discrete-time Xp=UX00 - (XM
model where the index is pulse number and not time. That is, 4 (ED 4 7y=n
. . . . Nt k k
the model updates not at some discrete-time period but with (Xp)' = Z(E(j) n T(j))_u
each pulse received. We consider the model proposed in [4]. A k
J
I 0 F0) (8 gD
Tpt1 = [Xsiag I:|37ka xo i =t i () ()
Y1 =[Xp Xj Jon 4+ wi D 9 is simply a scaling of pulse time of arrivaf” to the
where order of the pulse train perioxT,EZ) for all k. This is done
i pulse number; to avoid ill conditioning of X;' as k increases due tmg)
x;,  State variable ak; increasing withk, whereasr,ff) remains constant. If this was
X, source indicator vector; not done, then for highk, X' would award the(k + 1)th
yr  received signal ak. pulse to the train that was awarded thth pulse, with no

Here, w;, is zero-mean white Gaussian noise (WGN) on tHePnsideration given to the pulse train periods.
received signal with known varianee?, which is termed the ~ Notice that in (5)

jitter noise lim X} =X
The state variable takes the form p=eo ‘
VXE =1, (XY >0 for i=1,2,---, M
= [T,ﬁl), . T£A4)7 tff), . téj\l)] @) k k | |
‘ wherel’ =[1, 1, ---, 1]. That is, X}’ belongs to a simplex
where there aré/ pulse train sourceérk”) is the period of denotedA™~* with verticesey, es, -+, ep. We can think
train i, andt{" is the time of arrival of the most recent pulséf X as being a vector of probabilities, with¥’)’ as the
in train i at pulse numbek. Clearly, t;j) < yn. probability of source bemg agtlve. '!'hls interpretation make;
The source indicator vectoty, € {ei, s, -- -, enr}, where good sense when dealing with estimates of the states, which

e; are unit column vectors i®Y with the 1 in theith position, &€ deno:[ed;i,uleadlng to estimates ka}\f_rlX .» which are
indicates the source-generated puiséf X;. = ¢;, then theith ~ denotedX,, .Xj', which also belong tad™ .

source is active at theth pulse, and the value af” for that _ The source indicator vector from (5) for thregz sources
train is increased by the period of the train, whereas all othdfsillustrated in Fig. 2, which depicts the simplek® with

remain constant. It is assumed in the first instance that orf i

9rtlce5(zl, e2, e3. Note that the axes are labeled according
one source is active when a pulse is received. This eliminaf@sthe notation used in (3). This illustrates the discontinuous
the case when the sources are integer multiples, for exampl@ture ofXs. It can only take the three values that mark the
A key observation in this paper is that the source indicat§frtices of the simplex, whered§ can take any value on the
vector X, can be expressed in terms of the state as ts(;m)?lex. I:ere, source 1 is active; therefofg)’ lies closest
k = €1.
Xi(xr) = e 3 The smoothed signal model is now

wheres* is thearg min;{- - -, (T,Ei)+t§f)), ---}. This indicator zr41 = fi (z1), 7o
vector is discontinuous imy. Yr+1 = hj (xr) + wi (6)
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AS3 (X4 (zx) X1'(x)] varies with small changes iff}, and

ti, respectively. This is similar fo6%.,.,, in F}'.

1 Let us now define two cases for the EKir(deinterleaver.
Case 1 [EKF€0)] is wherepu = oo; therefore, X = X, (3).
Case 2 is wherg is allowed to take a range of values, akigf
is defined in (5). Case 1 is not appropriate for use in an EKF
deinterleaver as(;, is discontinuous and, therefore, cannot be

Xt n? linearized, except by ignoring aspects of the discontinuities,

that is, by assuming thaX;, does not vary withl}, or ¢ or,

equivalently, settingS;iT/t and SﬁIT/t to zero.
For case 2, the equations for the sensitivity functiong’pf
0 > e are
1
S%T =
)\ — Dy— )\ —
1 pAR) DA = ()
diag ! . T
!
eo Z(A;C))—#‘|
§
Fig. 2. lllustration of source indicator vector and simplax.
S = SR ®
where .
/ 0 where A = £% 4 T{) and the equations for the sensitivity
H(zy) = |:X;€Ldiag($k) I:|$k functions of H} are
hi(aw) =X () X3 (@n)]a ()

Calculation of the Smoothing Coefficigmt It is desirable Sgr(? _ Z _N(Al(f))f(”l)(Al(f))f”(tg) +TIEJ))
that the value of: increase as the system states become better
known. That is, when there is high certainty about the states,
estimatesX,ﬁ should be placed toward the simplex vertex ‘ ‘ ‘
indicated by.X;; therefore,. should be large. This leads to an (A= (D o)y
empirical calculation ofs using the change in the estimated + Z(A(z))_u
periods over a set number of pulses. k

To avoid ill conditioning, . is constrained between fixed
lower and upper values. An equation feris set up in such
a way that when the estimated periods are fluctuating, at (@) _ :(a) (a)
; ) : where A, = ;" + 1.
its lower value, and once the estimated periods have reache he i : (3) . .

e introduction oft;” in (9b) and (10b) is an approxima-

their steady-state valueg,takes its upper value. This is done, N di tinuity introduced in th lizati
by observing the variation in the periods over, say, 50 pulsé@n 0 remove a discontinuity infroduced in e normalization

If the maximum variation is of the order of five times thefocedure from (5). The exact equation fBf," " is
known noise variance, i.e30(o2), then steady state has been (i) SED it ¢ £ min (£97)
reached. If the maximum variation is more than five times Shr :{ L g Ik
above this 250(o2)], then the periods are still fluctuating. An
intermediate value fop is used when the maximum variation Sincefgf) = tff) - minj(t;j)) from (5), Eff) varies between

J

§
S =Syt (10)

. (11)
0, otherwise.

is between these values. zero and some number in the order of the train period.
Therefore,5""" ") no longer takes exactly the values of zero
lll. THE EXTENDED KALMAN FILTER or S;i(T’ ") put varies so that the discontinuity is smoothed.

In order to construct an extended Kalman filter from th&his is similar for %' Since the sensitivity terms are only
smoothed signal model given in (6) denoted EKF(lin- used to give a feel for what is occurring (see below), this
earized versions of} and ), (7) are needed. They are approximation is acceptable.

The sensitivity terms are approximately of the orderxgf,

Pl = Xudiagl gh g OS” except when a train is about to produce a pulse. Then, the
k TORr L SR sensitivity termsS‘;iT/t become so large that they swamp the
! !

Hi =X+ 5y X+ 5] (8) other terms inf}* while Sff{Tﬁ goes negative. It is important

that this information be reflected i#}" and H}' but not

hdominate the other terms. For this reasSQT/t and SﬁIT/t,

The values ofSy, ., in Hj are called the sensitivity

functions of HJ'. They are a measure of how muc
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although included in the calculations fdr{’ and HY, are TABLE | .
limited in magnitude. CoMPARISON OF THEEKF(11) DEINTERLEAVERS WITH Ty WITHIN 10% oF T
RP | Number of sources deinterleaved
. . . Case 1 Case 2
A. The Riccati Equation 5 >7 >9
The Riccati equation for the extended Kalman filter is 3 7 9
4 6 9
! —1
K, = Pyji—1 Hy (H} Pyji—1 Hy + Ry.) (5; g ;
! !
Py = (Pu—r — KPHY P ) B + Qe (12) 7 None 8
8 None 7
where 9 None 7
K Kalman gain; 10 Eone g
. : . 15 one
Py./.—1 error covariance at, given measurements fo- 1; 90 None 6

Ry covariance of the noise on the measurement;
Qr covariance of the noise caused by smoothing.

The initialization here is provided by, _; = F. TABLE I .
CoMPARISON OF THEEKF(i1) DEINTERLEAVERS WITH Ty = Tp

Now
RP | Number of sources deinterleaved
X X |1k Case 1 Case 2
=T ¢ e

Ry, _[Tk tk] |:E E:| |:tk:| + 73 9 >9 59

_ rpdiag diag m 3-9 9 9

Qu =T, (X).™ + ¢, 1 (13) 10 6 7

di 15 2 6

wheres = x99 _ xryw 20 None 6

The constants), andg,, are added to the lower bound noise
covariance equations to represent model errors and, theref(f)cr)
to enhance robustness. For the case 2 EKFEginterleaver,
they are tied to the value q@f and, hence, the certainty in th
system. Asy increasesyy, i decrease. See Section II-Al
for a description of the calculation ofi. For the case 1 RP =
EKF(x0) deinterleaver withy, = oo, 74, ¢). are constant, and
X,Z“ag = X; X} ; therefore,R;, and @;, are constant.

fin the interleaved signal, the ratio of periodsk) for that
esignal is defined as

min(7W .. T

where RP must be greater than or equal to 1.

B. The State Update Equations

. , A. Comparison of Cases 1 and 2 EKF Deinterleavers
The update equations for the extended Kalman filter are b

As stated in Section Ill, for the case 1 deinterleaver
T = Tngp—1 + K ka1 — ha(@ra—1)] EKF(x0), it is assumed thak}" and H}' (8) have no sensitivity
Ergryn = fo(Ern) (14) function_s. This_ leads to simpler calculations. In this sectior_1, a
comparison will be made between the extended Kalman filter
wherei; 1y, is the filtered estimate ofy11, yi+1 is the input  deinterleaver using(;, (case 1) and\;’ (case 2).
to the filter, f,, and h;, are defined in (4) and(’ is defined Tables | and Il show the results obtained with different
in (12). The initialization here is provided byy,_; = o, initial conditions using the cases 1 and 2 EK}-(einterleaver.
where #, = [Tp'%']'. Comparison of these results show that the case 2 EKF(
For both cases 1 and 2 deinterleavers, notice that the upddféterleaver is the better of the two. The results are similar
equations work withfy, i, rather than the smoothed versiondOr low EP, but the effectiveness of the case 1 EKF(
FI, bl That is, there is no need to work with a model witfleinterleaver falls off rapidly asil’ increases beyond a

smooth nonlinearities except for the calculation/6f. threshold. Fo_r a 10% uncertainty in the periods, the case
1 EKF(x) deinterleaver never works as well as the case 2

EKF(i:) deinterleaver. When the periods are known exactly,
IV. SOME EXAMPLES the threshold is al P of 9. With any initial conditions for the
In this and the following section, results obtained usingyain periods, there comes a point above the threshold where
computer generated pulse trains are examined. The trains hénecase 1 EKF) deinterleaver ceases to work, being unable
randomly generated periods and phases, with the initial putsedeinterleave even a two source pulse train.
from each train falling within one period of time zero. Here, The Effect of Initial Conditions:The results shown in
it is assumed that there is no noise present on the EKF(Table | were generated with the same initial conditions for
input signal. The effect of noise and other robustness issuesth EKF({:) deinterleavers. It is assumed that the periods of
are examined in Section V. the trains are known to within 10% (e.g., by ord€rlog N
For the following discussion, the concept of thatio of spectral studies as in [5]) and that the first pulse in each train
periodsis needed. For any set dff pulse train sources thatlies within one period of time zero. The initialization for the
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error covariance reflects this. T
(TO(Z))Q/]_()() 0 09 B ~ Estimate of T®
0 (T2 /10 0

Even with these constraints on the initial conditions for period >
and phase, it is found that both cases 1 and 2 deinterleaverss
are sensitive to the initial conditions chosen. For this reason,s
bank of ten deinterleavers is considered with random phases,®
and the one leading to the least average prediction errgy,,|
squared is selected. For this deinterleaving method to retagn
its computational advantage over other methods of ofd&r o4
the number of filters in the bank should be much less tNan

As can be seen from Tables | and Il, it becomes increasingly°'3"
difficult to deinterleave the signals as the number of sources,,!

Py =

sl

or RP increase. This is because the set of possible initial Estimate of 7!
phases increase rapidly with the number of sourdeas well 01— 6500 20 w0 160 180 200
as with RP since phase has been defined as being linked to Pulse number, k

period. As this set increases, it contains more local minima  Parameters: T = [0.1340, 0.8858] tg = [0.0701, 0.1692]

that the EKF() deinterleavers tend toward but does not lead !nitial estimates: Tg = [0.1474,0.9744] £, = [0.0137, 0.1283]

to the correct deinterleaving of the pulse trains. Therefore, @g. 3. Evolution of periods, case 2 EKEYdeinterleaver, two source input.
the number of pulse trains increases, the choice of initial phase

becomes more important. However, the EKF{einterleavers | del bl h h diff levels of noi
are not only convergent locally in the phase space; thereforddNa! model. Ta e Il shows ow di erent leve S of noise
ect the case 2 deinterleaver with known pulse train periods.

regardless of the number of sources present or the value& ; ) X
RP, the initial estimate fof, does not necessarily need to bér € eror given 1S the percentage of pulses.asygned to an
close toty. Therefore, the assumption thgtfalls within one Incorrect _traln after a Iqu on the pulse train periods has
period of time zero that is made for choosifagdoes not need be_en achleved_. The maximum number of sources successfully
to be correct for the pulse trains to be deinterleaved. deinterleaved is also given in each case.

When noa priori knowledge of the pulse train periods is
assumed, the set of possible initial conditions that a filter baﬂ
must scan becomes much larger. A random generation of
riods could be employed; however, the EKl-@einterleavers

As the noise increases, the number of sources successfully
Einterleaved decreases, and the number of errors increases.
should be noted that in a set of pulse trains, the BERF(
deinterleaver makes the most errors in the estimate of the

are effective (convergent) only locally in the period spacd@in With the I0\|Nest perlod.h This clis becre]xusef the pulses ”]
Table | therefore shows the performance of both deinterleav&fsS train come closest together and are therefore more easily

when there is no knowledge of the periods, assuming that th&fgruPted by noise. In addition, when the periods of two trains
can be up taV randomized deinterleavers used are similar, noise can cause pulse train skipping; the pulse
' train estimates swap pulse train sources. This occurs when the

B. The Case 2 EKF{) Deinterleaver periods differ by approximately the noise variance.

As the case 2 EKR{) deinterleaver is the best of the two
presented, we will concentrate on it for the rest of the paper.
Figs. 3 and 4 show the successful deinterleaving of pulse traingfable IV shows the effect of a percentage of pulses being
by this deinterleaver. Fig. 3 is an example of period estimatié@moved from the input to the EKE] deinterleaver. Of
with a two-source input. It should be noted that the EMF( course, such missing pulses were not incorporated into the
takes longer to lock onto the pulse train with the highest periogignal model so there is reopriori expectation of such by the
This is due to less pulses from this train being present in thKF(). The same trains are used as in Section V-A. Here,

Missing Pulses

input signal. there is no noise present on the EKF input, and each pulse
Fig. 4 is an example of period estimation with an eighin the input is given a 1, 5, or 10% probability of not being
source input. present.
The EKF(:) deinterleaver is not robust to missing pulses.
V. ROBUSTNESSI|SSUES A dropoff in effectiveness is apparent with even 1% of pulses

. . missing. It is also possible for the EKE) deinterleaver to
I_n this section, only _the results from the case 2 EXF( lose its lock on the pulse trains once it has been established.
deinterleaver are examined. This occurs if there are a lot of pulses in the same region that
) . are missing. With no missing pulses, this phenomenon is only
A. Jitter Noise observed under high noise conditions.
Noise is present in all real-world situations, so for this To cope with missing pulses, clearly, a modification of
method of pulse train deinterleaving to be useful, it must lbe present algorithm, such as in [4], is necessary. There, a
robust to the effects of noise. Such noise is included in ooomparison of the prediction errors is made, both assuming
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Parameters: 73 = [0.1340, 0.3644, 0.3769,0.4736,0.5377,0.7099, 0.7332, 0.8858],
4 =1[0.0706,0.0159,0.3198,0.4201, 0.0677,0.1255, 0.2343,0.0773]
Initial estimates:
Té = [0.1474,0.4009,0.4146,0.5210, 0.5915,0.7809, 0.8065, 0.9744],
(1 = [0.1356, 0.3467,0.1769,0.1337,0.1930, 0.3089, 0.1706, 0.7894)

Fig. 4. Evolution of periods, case 2 EKF(deinterleaver, eight source input.

TABLE I
ErFrFeCT OF NoISE ON THE CASE 2 EKF(i1) DEINTERLEAVER

Noise | Number of sources (% error)
o2 RP3 RP7
0.001 | 8 (1.5%) 7 (2.1%)
0.01 | 8(9.6%) | 7(12.5%)
0.02 7 (14.6%) 6 (18.2%)
TABLE IV

EFFECT OF MISSING PuLSES ON THE CASE 2 EKF(i) DEINTERLEAVER

Missing pulses | Number of sources
RP3 RP7
1% 6 6
5% 2 3
10% 2 2

that there is no missing pulse and assuming there is. Such
approach adapted to the EKF(setting is beyond the scope
of this paper.

VI. CONCLUSION

conditions and still be more efficient than other methods. This
decreases the sensitivity to initial conditions observed in a
single EKF{:) deinterleaver.

The EKF(:) deinterleaver is robust to noisy pulse time of
arrival data but not to missing pulses. It is possible that a
modification to this method needing more computational effort
could improve its response when missing pulses are present.
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