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The Limits of Extended Kalman
Filtering for Pulse Train Deinterleaving

Tanya Conroy and John B. Moore,Fellow, IEEE

Abstract—Some signals, such as in radar systems, communi-
cation systems, and neural systems, are transmitted as periodic
pulse trains. If more than one pulse train is transmitted over
the same communication channel, a challenge is to separate them
for source identification at the receiver. This is known aspulse
train deinterleavingand is clearly a fundamental problem in the
study of discrete-event systems. Frequently, the only relevant
information at the receiver is the time of arrival (TOA) data,
which is usually contaminated by jitter noise. Perhaps there are
also missing or overlapping pulses.

In this paper, we present an approach for deinterleaving
pulse trains and estimating their periods using an extended
Kalman filter (EKF). A naive application of EKF theory is not
attractive because of discontinuities in the signal model. Here, a
form of smoothing of the discontinuities is proposed so that the
EKF approach becomes attractive. The advantage of this EKF
approach is that it is less computationally expensive than most
previously proposed methods, which are of orderNNN2, whereNNN is
the number of pulses being processed. The computation required
here is of orderNNN . The method proposed appears to give useful
results for up to seven or so pulse trains, particularly when there
is somea priori information on the pulse frequencies, which can
be obtained using computations of orderN log NN log NN log N .

Index Terms—Deinterleaving, extended Kalman filtering.

I. INTRODUCTION

SOME SIGNALS are transmitted as periodic pulse trains.
Consider a situation where pulses from a number of differ-

ent sources are being transmitted over a single communication
channel. This leads to a series of pulse trains that are said
to be interleaved. The process ofpulse train deinterleaving
is separating these pulses into the original trains. In order
to do this, use is made of the fact that the different trains
have different characteristics, such as period of pulse emission,
phase, and pulse amplitude. Here, we restrict our attention to
the case where only time of arrival (TOA) data for the received
pulses is available or relevant. Deinterleaving is fundamentally
a difficult problem, even in the ideal case with no jitter noise,
missing or overlapping pulses, or period variations, but it
is important that there be some robustness in the nonideal
case. Pulse train deinterleaving is used in radar detection [1]
and could potentially be studied in the areas of computer
communications and neural systems.
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Previously proposed techniques for pulse train deinterleav-
ing include sequential search [2] and histogramming [2], [3].
These techniques work well when the interleaved signal is
received in low noise. Another approach is to formulate the
problem as a stochastic discrete-time dynamic linear model
[4]. Here, the deinterleaving methods used are forward dy-
namic programming with fixed look-ahead and a probabilistic
teacher.

A problem with all the above methods is that they are
computationally expensive, typically of order or higher,
where is the number of pulses being processed. Optimal
processing involves a full tree search, requiring computational
effort of order for pulse trains. One method uses
fast Fourier transform techniques to determine the number of
pulse trains present in an interleaved signal and estimate their
periods (their spectra) without actually deinterleaving them
[5]. The computation required here is of order .

In this paper, the signal model from [4] is modified by a
smoothing of its inherent discontinuities so that the deinter-
leaving task can be performed using the extended Kalman
filter with computational effort of order . It is assumed that
the pulse trains are periodic and that the number of sources
is finite and known. It is also desirable that the processing
exploit a priori information as from spectra determined in [5].

This paper is structured as follows. In Section II, the prob-
lem is formulated in terms of a state space signal model,
including a version with smooth nonlinearities. In Section III,
the extended Kalman filter is presented. In Section IV, simu-
lation examples are presented, and in Section V, some robust-
ness issues are examined.

II. SIGNAL MODEL—A PARAMETERIZATION

Consider periodic pulse train sources. Let and
denote, respectively, the period and initial phase of theth
source. The received interleaved signal consists of the super-
position of the pulse trains produced by these sources. Let

denote the times of arrival of consecutive
pulses. The problem is as follows.

Problem: Given the pulses and the number of
sources present , determine which source produced each
pulse and estimate the periods and phases of each
pulse train for .

This is a complex problem, as shown in Fig. 1. Here, pulses
from interleaved pulse trains are shown with no information
other than TOA data to identify their source. It is possible to
deinterleave the two source train by eye, but this task quickly
becomes impossible as more sources are added.
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Fig. 1. Interleaved pulse trains.

The signal can be described by a discrete-state, discrete-time
model where the index is pulse number and not time. That is,
the model updates not at some discrete-time period but with
each pulse received. We consider the model proposed in [4].

(1)

where

pulse number;
state variable at ;
source indicator vector;
received signal at .

Here, is zero-mean white Gaussian noise (WGN) on the
received signal with known variance , which is termed the
jitter noise.

The state variable takes the form

(2)

where there are pulse train sources, is the period of
train , and is the time of arrival of the most recent pulse
in train at pulse number . Clearly, .

The source indicator vector , where
are unit column vectors in with the 1 in the th position,

indicates the source-generated pulse. If , then the th
source is active at theth pulse, and the value of for that
train is increased by the period of the train, whereas all others
remain constant. It is assumed in the first instance that only
one source is active when a pulse is received. This eliminates
the case when the sources are integer multiples, for example.

A key observation in this paper is that the source indicator
vector can be expressed in terms of the state as

(3)

where is the . This indicator
vector is discontinuous in .

The signal model (1) can be fleshed out as a nonlinear state
space model

where

(4)

Notice that this signal model has discontinuous nonlineari-
ties , and, thus, cannot be used without modification
to derive an extended Kalman filter (EKF).

A. A Smooth Approximation of , Denoted

In order to use an extended Kalman filter for deinterleaving,
we propose to approximate the source indicator vector function
given in (3) by a smooth function as

(5)

is simply a scaling of pulse time of arrival to the
order of the pulse train period for all . This is done
to avoid ill conditioning of as increases due to
increasing with , whereas remains constant. If this was
not done, then for high , would award the th
pulse to the train that was awarded theth pulse, with no
consideration given to the pulse train periods.

Notice that in (5)

for

where . That is, belongs to a simplex
denoted with vertices . We can think
of as being a vector of probabilities, with as the
probability of source being active. This interpretation makes
good sense when dealing with estimates of the states, which
are denoted , leading to estimates of or , which are
denoted , , which also belong to .

The source indicator vector from (5) for three sources
is illustrated in Fig. 2, which depicts the simplex with
vertices . Note that the axes are labeled according
to the notation used in (3). This illustrates the discontinuous
nature of . It can only take the three values that mark the
vertices of the simplex, whereas can take any value on the
simplex. Here, source 1 is active; therefore, lies closest
to .

The smoothed signal model is now

(6)



3328 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

Fig. 2. Illustration of source indicator vector and simplex�2.

where

(7)

Calculation of the Smoothing Coefficient: It is desirable
that the value of increase as the system states become better
known. That is, when there is high certainty about the states,
estimates should be placed toward the simplex vertex
indicated by ; therefore, should be large. This leads to an
empirical calculation of using the change in the estimated
periods over a set number of pulses.

To avoid ill conditioning, is constrained between fixed
lower and upper values. An equation foris set up in such
a way that when the estimated periods are fluctuating,is at
its lower value, and once the estimated periods have reached
their steady-state values,takes its upper value. This is done
by observing the variation in the periods over, say, 50 pulses.
If the maximum variation is of the order of five times the
known noise variance, i.e., , then steady state has been
reached. If the maximum variation is more than five times
above this [ ], then the periods are still fluctuating. An
intermediate value for is used when the maximum variation
is between these values.

III. T HE EXTENDED KALMAN FILTER

In order to construct an extended Kalman filter from the
smoothed signal model given in (6) denoted EKF(), lin-
earized versions of and (7) are needed. They are

(8)

The values of in are called the sensitivity
functions of . They are a measure of how much

varies with small changes in and
, respectively. This is similar for in .
Let us now define two cases for the EKF() deinterleaver.

Case 1 [EKF( )] is where ; therefore, (3).
Case 2 is where is allowed to take a range of values, and
is defined in (5). Case 1 is not appropriate for use in an EKF
deinterleaver as is discontinuous and, therefore, cannot be
linearized, except by ignoring aspects of the discontinuities,
that is, by assuming that does not vary with or or,
equivalently, setting and to zero.

For case 2, the equations for the sensitivity functions of
are

diag

(9)

where , and the equations for the sensitivity
functions of are

(10)

where .
The introduction of in (9b) and (10b) is an approxima-

tion to remove a discontinuity introduced in the normalization
procedure from (5). The exact equation for is

if
otherwise.

(11)

Since from (5), varies between
zero and some number in the order of the train period.
Therefore, no longer takes exactly the values of zero
or but varies so that the discontinuity is smoothed.
This is similar for . Since the sensitivity terms are only
used to give a feel for what is occurring (see below), this
approximation is acceptable.

The sensitivity terms are approximately of the order of,
except when a train is about to produce a pulse. Then, the
sensitivity terms become so large that they swamp the
other terms in while goes negative. It is important
that this information be reflected in and but not
dominate the other terms. For this reason, and ,
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although included in the calculations for and , are
limited in magnitude.

A. The Riccati Equation

The Riccati equation for the extended Kalman filter is

(12)

where

Kalman gain;
error covariance at, given measurements to ;
covariance of the noise on the measurement;
covariance of the noise caused by smoothing.

The initialization here is provided by .
Now

(13)

where
diag

.
The constants and are added to the lower bound noise

covariance equations to represent model errors and, therefore,
to enhance robustness. For the case 2 EKF() deinterleaver,
they are tied to the value of and, hence, the certainty in the
system. As increases, , decrease. See Section II-A1
for a description of the calculation of . For the case 1
EKF( ) deinterleaver with , , are constant, and

; therefore, and are constant.

B. The State Update Equations

The update equations for the extended Kalman filter are

(14)

where is the filtered estimate of , is the input
to the filter, and are defined in (4) and is defined
in (12). The initialization here is provided by ,
where .

For both cases 1 and 2 deinterleavers, notice that the update
equations work with , rather than the smoothed versions

, . That is, there is no need to work with a model with
smooth nonlinearities except for the calculation of .

IV. SOME EXAMPLES

In this and the following section, results obtained using
computer generated pulse trains are examined. The trains have
randomly generated periods and phases, with the initial pulse
from each train falling within one period of time zero. Here,
it is assumed that there is no noise present on the EKF()
input signal. The effect of noise and other robustness issues
are examined in Section V.

For the following discussion, the concept of theratio of
periods is needed. For any set of pulse train sources that

TABLE I
COMPARISON OF THEEKF(�) DEINTERLEAVERS WITH T̂0 WITHIN 10% OF T0

TABLE II
COMPARISON OF THEEKF(�) DEINTERLEAVERS WITH T̂0 = T0

form the interleaved signal, the ratio of periods () for that
signal is defined as

where must be greater than or equal to 1.

A. Comparison of Cases 1 and 2 EKF Deinterleavers

As stated in Section III, for the case 1 deinterleaver
EKF( ), it is assumed that and (8) have no sensitivity
functions. This leads to simpler calculations. In this section, a
comparison will be made between the extended Kalman filter
deinterleaver using (case 1) and (case 2).

Tables I and II show the results obtained with different
initial conditions using the cases 1 and 2 EKF() deinterleaver.
Comparison of these results show that the case 2 EKF()
deinterleaver is the better of the two. The results are similar
for low , but the effectiveness of the case 1 EKF()
deinterleaver falls off rapidly as increases beyond a
threshold. For a 10% uncertainty in the periods, the case
1 EKF( ) deinterleaver never works as well as the case 2
EKF( ) deinterleaver. When the periods are known exactly,
the threshold is an of 9. With any initial conditions for the
train periods, there comes a point above the threshold where
the case 1 EKF( ) deinterleaver ceases to work, being unable
to deinterleave even a two source pulse train.

The Effect of Initial Conditions:The results shown in
Table I were generated with the same initial conditions for
both EKF( ) deinterleavers. It is assumed that the periods of
the trains are known to within 10% (e.g., by order
spectral studies as in [5]) and that the first pulse in each train
lies within one period of time zero. The initialization for the
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error covariance reflects this.

Even with these constraints on the initial conditions for period
and phase, it is found that both cases 1 and 2 deinterleavers
are sensitive to the initial conditions chosen. For this reason, a
bank of ten deinterleavers is considered with random phases,
and the one leading to the least average prediction error
squared is selected. For this deinterleaving method to retain
its computational advantage over other methods of order,
the number of filters in the bank should be much less than.

As can be seen from Tables I and II, it becomes increasingly
difficult to deinterleave the signals as the number of sources
or increase. This is because the set of possible initial
phases increase rapidly with the number of sourcesas well
as with since phase has been defined as being linked to
period. As this set increases, it contains more local minima
that the EKF( ) deinterleavers tend toward but does not lead
to the correct deinterleaving of the pulse trains. Therefore, as
the number of pulse trains increases, the choice of initial phase
becomes more important. However, the EKF() deinterleavers
are not only convergent locally in the phase space; therefore,
regardless of the number of sources present or the value of

, the initial estimate for does not necessarily need to be
close to . Therefore, the assumption that falls within one
period of time zero that is made for choosingdoes not need
to be correct for the pulse trains to be deinterleaved.

When noa priori knowledge of the pulse train periods is
assumed, the set of possible initial conditions that a filter bank
must scan becomes much larger. A random generation of pe-
riods could be employed; however, the EKF() deinterleavers
are effective (convergent) only locally in the period space.
Table I therefore shows the performance of both deinterleavers
when there is no knowledge of the periods, assuming that there
can be up to randomized deinterleavers used.

B. The Case 2 EKF() Deinterleaver

As the case 2 EKF() deinterleaver is the best of the two
presented, we will concentrate on it for the rest of the paper.
Figs. 3 and 4 show the successful deinterleaving of pulse trains
by this deinterleaver. Fig. 3 is an example of period estimation
with a two-source input. It should be noted that the EKF()
takes longer to lock onto the pulse train with the highest period.
This is due to less pulses from this train being present in the
input signal.

Fig. 4 is an example of period estimation with an eight-
source input.

V. ROBUSTNESSISSUES

In this section, only the results from the case 2 EKF()
deinterleaver are examined.

A. Jitter Noise

Noise is present in all real-world situations, so for this
method of pulse train deinterleaving to be useful, it must be
robust to the effects of noise. Such noise is included in our

Fig. 3. Evolution of periods, case 2 EKF(�) deinterleaver, two source input.

signal model. Table III shows how different levels of noise
effect the case 2 deinterleaver with known pulse train periods.
The error given is the percentage of pulses assigned to an
incorrect train after a lock on the pulse train periods has
been achieved. The maximum number of sources successfully
deinterleaved is also given in each case.

As the noise increases, the number of sources successfully
deinterleaved decreases, and the number of errors increases.
It should be noted that in a set of pulse trains, the EKF()
deinterleaver makes the most errors in the estimate of the
train with the lowest period. This is because the pulses in
this train come closest together and are therefore more easily
disrupted by noise. In addition, when the periods of two trains
are similar, noise can cause pulse train skipping; the pulse
train estimates swap pulse train sources. This occurs when the
periods differ by approximately the noise variance.

B. Missing Pulses

Table IV shows the effect of a percentage of pulses being
removed from the input to the EKF() deinterleaver. Of
course, such missing pulses were not incorporated into the
signal model so there is noa priori expectation of such by the
EKF( ). The same trains are used as in Section V-A. Here,
there is no noise present on the EKF input, and each pulse
in the input is given a 1, 5, or 10% probability of not being
present.

The EKF( ) deinterleaver is not robust to missing pulses.
A dropoff in effectiveness is apparent with even 1% of pulses
missing. It is also possible for the EKF() deinterleaver to
lose its lock on the pulse trains once it has been established.
This occurs if there are a lot of pulses in the same region that
are missing. With no missing pulses, this phenomenon is only
observed under high noise conditions.

To cope with missing pulses, clearly, a modification of
the present algorithm, such as in [4], is necessary. There, a
comparison of the prediction errors is made, both assuming
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Fig. 4. Evolution of periods, case 2 EKF(�) deinterleaver, eight source input.

TABLE III
EFFECT OF NOISE ON THE CASE 2 EKF(�) DEINTERLEAVER

TABLE IV
EFFECT OFMISSING PULSES ON THECASE 2 EKF(�) DEINTERLEAVER

that there is no missing pulse and assuming there is. Such an
approach adapted to the EKF() setting is beyond the scope
of this paper.

VI. CONCLUSION

The most important aspect of the method for pulse train
deinterleaving presented here is its computational efficiency.
The use of an extended Kalman filter allows computations of
order , rather than , which is typical for other deinterleav-
ing methods: is the number of pulses to be processed. It is
advantageous to use information about the pulse train periods
that can be obtained using computations of order
[5]. The EKF( ) deinterleaving method can therefore use a
bank of much less than deinterleavers with different initial

conditions and still be more efficient than other methods. This
decreases the sensitivity to initial conditions observed in a
single EKF( ) deinterleaver.

The EKF( ) deinterleaver is robust to noisy pulse time of
arrival data but not to missing pulses. It is possible that a
modification to this method needing more computational effort
could improve its response when missing pulses are present.
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