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Abstract

■ Everyday vision requires robustness to a myriad of envi-
ronmental factors that degrade stimuli. Foreground clutter can
occlude objects of interest, and complex lighting and shadows
can decrease the contrast of items. How does the brain recognize
visual objects despite these low-quality inputs? On the basis of
predictions from a model of object recognition that contains
excitatory feedback, we hypothesized that recurrent processing
would promote robust recognition when objects were degraded
by strengthening bottom–up signals that were weakened be-
cause of occlusion and contrast reduction. To test this hypoth-
esis, we used backward masking to interrupt the processing of
partially occluded and contrast reduced images during a catego-
rization experiment. As predicted by the model, we found signif-
icant interactions between the mask and occlusion and the mask

and contrast, such that the recognition of heavily degraded stim-
uli was differentially impaired by masking. The model provided a
close fit of these results in an isomorphic version of the experi-
ment with identical stimuli. The model also provided an intuitive
explanation of the interactions between the mask and degrada-
tions, indicating that masking interfered specifically with the
extensive recurrent processing necessary to amplify and resolve
highly degraded inputs, whereas less degraded inputs did not
require much amplification and could be rapidly resolved, making
them less susceptible to masking. Together, the results of the
experiment and the accompanying model simulations illustrate
the limits of feedforward vision and suggest that object recogni-
tion is better characterized as a highly interactive, dynamic pro-
cess that depends on the coordination of multiple brain areas. ■

INTRODUCTION

The human visual system is perhaps the fastest, most accu-
rate object recognition system in the world. Research has
indicated that the brain can reliably differentiate between
complex visual categories in as little as 100–150 msec
(Liu, Agam,Madsen,&Kreiman, 2009; VanRullen&Thorpe,
2001; Thorpe, Fize, & Marlot, 1996; see also Johnson &
Olshausen, 2003, for a more conservative estimate). Much
of our understanding of how the brain is capable of such
robust recognition comes from a “standard” model of
object recognition, which posits that visual features are
extracted rapidly over a feedforward hierarchy of process-
ing stages corresponding to brain areas along the ventral
visual stream (VanRullen, 2007; Riesenhuber & Poggio, 1999;
see Serre, Kreiman, et al., 2007, for a review). Although this
feedforward model has accounted for a wide range of visual
findings—from detailed neural tunings (Cadieu et al., 2007;
Freedman, Riesenhuber, Poggio, & Miller, 2003) to overt
psychophysical measures (Serre, Oliva, & Poggio, 2007)—
it remains to be fully reconciled with anatomical data that
indicate nearly equal densities of forward and backward
projecting neurons throughout the visual pathways (Sporns
& Zwi, 2004; Felleman & Van Essen, 1991). Under a purely
feedforward viewof object recognition, feedbackmight play

a role in secondary, after-the-fact processes like feature-based
attention (Hochstein & Ahissar, 2002) or in the initial learn-
ing and development of the visual system, but it is not nec-
essary for core object recognition operations (DiCarlo,
Zoccolan, & Rust, 2012).
Single-cell recordings from neurons in the dorsal visual

stream, however, suggest a more primary role for recur-
rent feedback during vision. Neurons in early visual areas
(e.g., V1, V2, V3) receive top–down excitation from higher-
level areas (e.g., V5/MT), which has been shown to
strengthen the responses in the lower-level areas and
improve discriminability in figure-ground segregation tasks
(Hupe et al., 1998; Lamme, Super, & Spekreijse, 1998).
This strengthening dynamic is quite rapid, with latencies
as short as 10 msec after the first stimulus-driven responses
(Hupe, James, Girard, & Bullier, 2001), suggesting that if
a similar dynamic takes place within the ventral visual
stream, it might fit within the strict temporal constraints
of object recognition. Recently, a cortical model of object
recognition characterized by recurrent connections be-
tween hierarchically adjacent visual areas was shown to
exhibit increased robustness to a visual occlusion degrada-
tion on stimuli when compared with a class of purely feed-
forward models (OʼReilly, Wyatte, Herd, Mingus, & Jilk,
under review). Similarly, primate studies have indicated that
visual occlusion attenuates the responsiveness of neurons in
the inferotemporal cortex (IT) area, yet robust recognitionUniversity of Colorado Boulder
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performance remains intact (Nielsen, Logothetis, & Rainer,
2006; Kovacs, Vogels, & Orban, 1995). Motivated by these
findings, the present research asks whether the brainʼs
robustness to visual degradations such as occlusion stems
from the recurrent connectivity of the ventral visual
stream.
To demonstrate our hypothesis, we refer to the model

from OʼReilly et al. (under review; Figure 1) to illustrate
how recurrent connectivity can give rise to robust object
recognition. When recognizing a stimulus, feedback from
high-level visual areas like IT cortex can reinforce and
strengthen neural responses in lower-level extrastriate
areas. This strengthening dynamic is especially important
when a stimulus is degraded (by partial occlusion, con-
trast reduction, etc.), as the first visual responses will only
reflect the noisy partial information encoded by the fovea.
The now-strengthened responses in early visual areas pro-
vide further bottom–up support for the “hypothesis” con-
veyed by high-level areas, increasing the information
available to further downstream neurons involved in the
recognition decision. This latter point has been demon-
strated in single-cell recordings of IT neurons, which con-
tinue to convey new information not captured in their
initial spikes over the full time course of their responding
(Heller, Hertz, Kjaer, & Richmond, 1995; Rolls & Tovee,
1995; see also Perrett, Oram, & Ashbridge, 1998). On
the basis of these findings, we predicted that the mutual
reinforcement between the bottom–up, stimulus-driven
signals and top–down, conceptual signals would create
stable, reliable percept, preserving successful recognition
in the face of degradations like visual occlusion and reduced

contrast. We refer to this type of processing as “recurrent
processing” throughout this article.

To test the aforementioned predictions psychophysi-
cally, we needed a means to control the amount of influ-
ence from recurrent feedback during object recognition.
Backward masking has been suggested to selectively dis-
rupt feedback (see Di Lollo, Enns, & Rensink, 2000; Lamme
& Roelfsema, 2000, for reviews) and has been used in a
variety of experiments to dissociate the effects of feed-
forward and recurrent processing (e.g., Boehler, Schoenfeld,
Heinze, &Hopf, 2008; Fahrenfort, Scholte, & Lamme, 2007,
2008; Serre, Oliva, & Poggio, 2007; Lamme, Zipser, &
Spekreijse, 2002). In our experiment, volunteers categorized
visual object stimuli that were degraded by either an occlu-
sion manipulation or contrast reduction. If recurrent pro-
cessing does indeed promote robust recognition when
stimuli are degraded, categorization performance should
be substantially impaired when a mask follows a stimulus
that is heavily degraded (high occlusion or low contrast)
because the mask will disrupt the dynamics depicted in
Figure 1 from manifesting across brain areas. In contrast,
performance should remain intact when a mask follows a
relatively clear stimulus because the well-specified stimulus
will result in a stable representation that is already sufficient
for categorization. Consistent with these ideas, we found a
significant interaction between themask and occlusion and
the mask and contrast, such that the mask impaired the
categorization of heavily degraded stimuli more than clear
stimuli.

We expand upon our experimental results by using the
model from OʼReilly et al. (under review) to simulate an

Figure 1. Demonstration of recurrent processing during degraded object recognition. (A) The ventral visual stream consists of primary visual cortex
(V1), extrastriate cortex (V2, V4), and inferior temporal cortex (IT). Object recognition in the ventral stream is traditionally conceptualized as a
series of feedforward computations across these brain areas. When stimuli are degraded, the resulting bottom–up signals are weak and often noisy,
producing an ambiguous pattern of activation across the highest levels of the hierarchy (left). When signals between adjacent layers are propagated
recurrently, they reinforce each other despite the degraded bottom–up stimulus, ultimately resulting in a strong, stable, pattern of activation at the highest
level (right). Note that many of the IT units that were weakly active in the feedforward model have been correctly suppressed in the recurrent model
producing a representation that consists of a small number of strongly active units. (B) The initial feedforward responses in IT cortex contain some
information that can be used in the recognition decision, but they reflect the simultaneous activation of neurons shared across a large number of
categories, resulting in an overall ambiguous representation. This ambiguity is exacerbated when stimuli are underspecified, which happens with
degradations such as occlusion or contrast reduction. Recurrent processing, however, dynamically strengthens and suppresses ambiguous responses,
thus creating additional contrast between competing categories and reducing the overall ambiguity in the recognition decision.
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isomorphic version of the behavioral experiment with
identical stimuli. The model produced a close fit of the
experimental results as well as provided an intuitive expla-
nation of interactions between masking and degradations.
Specifically, backward masking interacted selectively with
the recurrent processing that was necessary to resolve the
identity of heavily degraded stimuli, whereas the identity
of relatively clear stimuli could be resolved relatively quickly
and thus were less susceptible to the effects of the mask.

Together, the results of the experiment and modeling
illustrate the limits of feedforward processing during ob-
ject recognition. Under idealized viewing conditions, visual
processing proceeds rapidly in a relatively straightforward
manner through the visual pathways without much influ-
ence from recurrent feedback. However, when stimuli
are less well specified—as is often the case with real-world
inputs that contain various environmental factors like oc-
clusion, diffuse lighting, and complex shadows—object
recognition depends heavily on the extensive recurrent
connectivity of the visual pathways to strengthen object
representations and preserve recognition. Overall, our
results are consistent with the burgeoning view that vision
and object recognition are highly interactive processes gov-
erned by moment-to-moment neural dynamics between
recurrently connected brain areas (e.g., Roland, 2010; Spivey,
2007; Bar, Kassam, Ghuman, Boshyan, & Schmidt, 2006).

METHODS

A total of 19 volunteers from the University of Colorado
at Boulder participated in the experiment as part of their
introductory psychology course credit (11 men, 8 women;
mean age= 18.9 years). All participants reported normal or
corrected-to-normal vision and gave informed consent
before the experiment in accordance with the human sub-
jects policy at the University of Colorado.

Experimental Stimuli

During the experiment, participants were required to catego-
rize images from six real-world occurring object categories:
cannon, car, fish, gun, key, and trumpet (Figure 2). The
specific categories used in the experiment were chosen
because of their sharing a horizontal axis of canonical
orientation, preventing participants from using coarse
orientation information as a cue for category membership.
The images themselves were taken from the CU3D-100
data set (http://cu3d.colorado.edu), which consists of
three-dimensional object model exemplars that are ren-
dered to 320 × 320 bitmap images with variations in view
and lighting (±20° in-depth rotations including a random
180° left–right flip along the horizontal axis and overhead
lighting positioned uniformly randomly along an 80° over-
head arc). The images were processed with the SHINE
toolbox (Willenbockel et al., 2010) to convert their color-
space to grayscale and to normalize luminance across
categories.

Seven different exemplars from each category were
used during the full experimental session. Before begin-
ning the actual experiment, participants were shown two
images of two exemplars from each category (24 total
images) to become familiar with the basic visual structure
of the experimental images. Twenty images of the remain-
ing five exemplars from each category were used during
the experiment itself (600 total images). During the famil-
iarization phase, subjects were informed that the specific
images they were viewing would not be used in the experi-
ment itself. The familiarization phase was self-paced, but
participants never took longer than 1 min in practice to
examine the 24 images.
Occlusion was manipulated by constructing a filter that

constituted a circle with a radius of 5% of the image size
whose edges were softened with a Gaussian. The size of
this filter was 96 × 96 pixels. The filter was applied to
the image at random locations by taking a weighted aver-
age between the background gray intensity of the image
and the pixel intensities at the location of application.
Two levels of occlusion were used in the experiment. Con-
trol trials were characterized by a small amount of occlu-
sion, during which the filter was applied 29 times to the
image. During high occlusion trials, the filter was applied
73 times. In both cases, application of the filter was an itera-
tive process such that the filter could be applied to the
same location more than once.
Contrast was independently manipulated to determine

whether it benefited from the putative benefits of recur-
rent processing in the same manner as occlusion. Control
trials held the image at its original, full contrast, whereas
during low contrast trials, the imageʼs contrast was scaled
25% of its original range. Contrast reduction occurred
before the occlusion manipulation was applied, and the
background gray level was held constant during the entire
image manipulation process.
Pattern masks were constructed by sampling patches

of the original object images and assembling them into
a new 320 × 320 image. The size of the sampled patch
varied between 16 × 16 and 64 × 64 pixels and was ran-
domly sampled from a region surrounding the bounding
box of the object in each image. The resulting image
patches were placed at random into a new image with
the same background gray level as the original object
images. Like the occlusion algorithm, the patches were
placed into the new image in an iterative manner and
were allowed to overlap. A total of 416 samples were
taken across the 600 source images. A total of 600 masks
were pregenerated for use in the experiment.
Examples of the experimental stimuli are depicted in

Figure 2A–C.

Experimental Procedure

During the experiment, volunteers were seated approxi-
mately 45 cm from a Gamma-corrected CRT monitor run-
ning at a resolution of 1024 × 768 at 120 Hz. Under this
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configuration, stimuli subtended approximately 16° of visual
angle on the display. The Psychophysics Toolbox Version 3
(Brainard, 1997; Pelli, 1997) was used to synchronize the
display of stimuli with the monitorʼs refresh interval.
The experiment contained eight trial types, reflecting the

full factorial crossing of the variables: 2 levels of Occlusion
(low, high) × 2 levels of Masking (masked, unmasked) ×
2 levels Contrast (low, high). On each trial, the participant
was presented with a fixation cross for 300 msec, followed
by the degraded object stimulus. On unmasked trials, the
object stimulus remained visible for 100 msec. On masked
trials, the object stimulus was replaced after 100 msec by
a randomly selected mask, which remained visible for an
additional 100 msec. Participants were then presented with
a response screen that contained the six category names.
Subjectsʼ responses were collected via a QWERTY keyboard
using the S, D, F, J, K, and L keys. The arrangement of the
category names on the response screen was isomorphic
with the placement of participantsʼ fingers on the keyboard
to facilitate their responding without having to explicitly
recall the key associated with their response. Subjects were

required to respondwithin 5000msec. The response screen
remained visible until the subject responded. The ordering
of events within a single trial is depicted in Figure 2D.

All trial types were intermixed and presented randomly in
blocks of 50 trials. The experiment consisted of 1000 total
trials. Of the 600 images that were selected from the CU3D-
100 data set for the experiment, 400 were repeated exactly
once (random per participant). However, the occlusion
manipulation was applied in an on-line fashion before each
trial was presented, ensuring that no two degraded stimuli
were ever likely to be the same. Participants were given
feedback after each trial regarding whether their response
was correct or incorrect.

RESULTS

Statistical Analysis

A total of three volunteers were excluded from statisti-
cal analysis—two for accuracy levels that were far below
1.5 times the interquartile range of the data across

Figure 2. Experimental stimuli
and trial schematic. (A) One
exemplar from each of the
six categories used in the
experiment. From left to right,
top to bottom: cannon, car,
fish, gun, key, and trumpet.
(B) The five exemplars from
the key category used in the
experiment (top) and five
instances of a single exemplar
with variations in view and
lighting (bottom). (C) The
effects of the degradation
manipulations used in the
experiment. “Control” trials
contained a low amount of
occlusion and were presented
at full contrast. “High occlusion”
trials contained a high amount
of occlusion and were
presented at full contrast,
whereas “Low contrast” trials
contained a low amount of
occlusion and were presented
at 25% contrast. Pattern masks
were constructed from patches
of the original images. (D) Trials
consisted of a 300-msec fixation
cross, followed by a 100-msec
stimulus. On trials that
contained a mask, the mask
was presented directly after
the 100-msec stimulus and
remained onscreen for an
additional 100 msec. All trials
were followed by a response
screen that contained the
names of the six categories
and remained onscreen until
the subject responded (or for
a maximum of 5000 msec).
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conditions and one for failing to complete the full experi-
ment. The remaining 16 volunteers were included in the
final analysis.

We were interested in the effect of the mask across
three key trial types: low occlusion under high contrast,
high occlusion under high contrast, and low occlusion
under low contrast (denoted as “Control,” “Occlusion,”
and “Contrast” in Figure 3A). This focus excludes the
high occlusion under low contrast trial type from the full
factorial design of the experiment, which was subject to
the floor effects because of multiple, compound sources
of degradation. We also included in the analysis a repeti-
tion factor to determine whether there was an effect of
repeating a subset of the stimuli (see Methods).

A repeated-measures ANOVA with p values corrected
for violations in sphericity using the method described
in Geisser and Greenhouse (1958) indicated that there
was a significant effect of the Mask, F(1, 15) = 112.99,
p < .001, such that recognition accuracy was lower when
the mask was present compared with when it was absent.
There were also significant effects of the Trial Type, F(2,
30) = 1512.73, p< .001, and Stimulus Repetition, F(1, 15) =
10.07, p= .006. The latter result indicates that participants
exhibited improved performance for repetitions of stimuli
(which always occurred in the last 400 trials of the experi-
ment), consistent with a training effect. We explore these
results in more detail next to determine whether they in-
teract with the trial type.

Figure 3. Results of the
experiment and model
simulations. (A) The effect of
masking was significant across
three key conditions: low
occlusion under high contrast
(“Control”), high occlusion under
high contrast (“Contrast”), and
low occlusion under low contrast
(“Contrast”). Furthermore, there
were significant interactions
between the mask and occlusion
and mask and contrast such that
recognition was differentially
impaired when degraded stimuli
were masked (“Occlusion,”
“Contrast”) compared with when
relatively clear stimuli were
masked (“Control”). Blue bars
correspond to unmasked trials,
green bars to masked trials.
(B) Themodel fromOʼReilly et al.
(under review) produced a close
fit to the experimental results in
an isomorphic version of the
experiment with identical stimuli.
(C) Themodel also demonstrates
the more general interaction
between the mask and occlusion
across a broad range of mask
latencies and occlusion levels
(with contrast fixed at the level
in the experimentʼs control
condition, 100%). SOA is stimulus
onset asynchrony, that is, mask
latency (in model cycles), where
smaller values correspond to
shorter latencies. (D) The model
predicts a similar general
interaction between the mask
and contrast (with occlusion
fixed at the level in the
experimentʼs control condition,
20%). In all plots, the dashed
line indicates chance
performance for the six-way
categorization task
(1/6 or 0.1667).
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The interaction between the Mask and Trial Type was
found to be significant, F(2, 30) = 10.17, p < .001, indi-
cating a differential impairment of the mask depending
on the specific trial type. Paired t tests (with p values cor-
rected for false discovery rate using the method de-
scribed in Benjamini & Hochberg, 1995) indicated that
the effect of the Mask was significantly different between
the “Control” and “Occlusion” conditions, t(15) = −2.32,
p = .03, and the “Control” and “Contrast” conditions,
t(15) = −5.73, p < .001. The significant interactions be-
tween the Mask and Occlusion and between the Mask and
Contrast indicate that participantsʼ performance on the cat-
egorization task was differentially impaired when heavily
degraded stimuli were masked compared with a relatively
clear viewing conditions. This pattern of results suggests
that recurrent processing helps to resolve the identity of
both heavily occluded and contrast reduced stimuli and that
backward masking interferes with this resolution process.
The interaction between the Mask and Stimulus Repeti-

tion failed to reach significance, F(1, 15) = 2.79, p = .16,
as did the interaction between the Trial Type and Repeti-
tion, F(2, 30) = 3.31, p = .07. Thus, the training effect be-
cause of stimulus repetition was not significantly for
masked/unmasked repetitions or across trial types. The
three-way interaction between the Mask, Trial Type, and
Stimulus Repetition also failed to reach significance, F(2,
30) = 2.15, p = .14.
To further explore the nature of the interactions be-

tween the mask and occlusion and the mask and contrast,
we simulated an isomorphic version of the behavioral
experiment with model from OʼReilly et al. (under review).
The model produced a close fit of the experimental results
and provided an intuitive demonstration of how masking
interferes with the recurrent processing necessary to re-
solve the identity of degraded stimuli.

Model Simulations

The model from OʼReilly et al. (under review) was used
to model participantsʼ experimental data, as well as to
provide insight into how occlusion and contrast interact
with mask latencies not tested in the human experiment
(see Appendix for detailed simulation methods). To ac-
complish this, the model was first trained to categorize
the images from the same six categories used in the ex-
periment and was then tested with the same occlusion
and contrast manipulations as used in the experiment
as well as an equivalent masking manipulation. Masking
was implemented by clamping an input image into the
modelʼs inputs and iterating the model for a variable num-
ber of processing cycles before replacing the image with a
random pattern mask. In fitting subjectsʼ data, occlusion
and contrast were fixed at the same levels used in the
experiment whereas the onset of the mask was varied as
a free parameter.
The model produced a close fit of data with a simulated

mask latency of 25 cycles, with substantial interactions be-

tween the mask and occlusion and the mask and contrast
(Figure 3B). Occlusion produced a larger overall impair-
ment in recognition than contrast, providing a better ab-
solute fit of subjectsʼ data. Absolute accuracy levels in the
Contrast condition of the modeling results did not reach
the same level as participantsʼ accuracies, but the magni-
tude of the mask effect was comparable. Better absolute
fits are possible by varying contrast as an additional free
parameter (e.g.,, 40% contrast; see Figure 3D). The abso-
lute accuracy difference between the model and subjects
in the Contrast condition simply indicates that the mod-
elʼs contrast threshold is limited compared with human
observers. The general interactions between the mask
and contrast and the mask and occlusion, however, re-
mains at all levels across a broad range of mask latencies
and degradation levels, which we also tested using the
model.

To explore these general interactions, all three vari-
ables were varied in a continuous manner. The onset of
the mask was varied from 20 to 35 model cycles and
crossed with occlusion, which was varied from 0% to
50% (with contrast fixed at the level in the experimentʼs
control condition, 100%) as well as contrast, which was
varied from 100% to 20% (with occlusion fixed at the level
in the experimentʼs control condition, 20%). In both
cases, the model produced an interaction between the
mask and degradation (Figure 3C–D). Generally speaking,
as the amount of degradation increased, recognition be-
came increasingly susceptible to the effect of masking,
even at relatively long latencies. For short latency masks
(e.g., 20 cycles of processing in the model), it is even pos-
sible to impair recognition at low levels of degradation
and the multiplicative effects of these short latency masks
extend to higher levels of degradation.

The general predictions of the model in Figure 3C–D
suggest that the amount of recurrent processing neces-
sary to preserve the recognition of an occluded image
varies monotonically with the amount of signal in the
stimulus, consistent with the idea that processing within
recurrent neural circuits strengthens responses that may
have been weakened by visual degradation. The dynamics
of the model illustrate precisely how this strengthening
through recurrent processing unfolds over time as well
as how it is disrupted by masking. We demonstrate these
dynamics by comparing the similarity of the modelʼs re-
sponses to a degraded stimulus to the responses to a clear
stimulus during each cycle of processing (see Appendix
for details). The results of this analysis are shown in Fig-
ure 4 for occlusion, but the same general principles hold
true for contrast reduction and presumably other forms
of stimulus degradation.

Under relatively clear viewing conditions, there is suffi-
cient signal in the stimulus to drive the responses in early
visual areas (denoted V2/V4 in the model), which in turn
drive the responses in successively higher-level areas (IT
and category-tuned neurons in the model), rapidly re-
covering the correct stored representation (Figure 4A).
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Recognition under heavy degradation is still possible but
proceeds more slowly. Early visual areas exhibit weak,
ambiguous responses because of an underspecified stim-
ulus, but reinforcement from higher-level areas can
strengthen and rectify them, ultimately pulling the system
as a whole into a stable attractor that is a close, if not exact,
match with the stored representations across brain areas
(Figure 4B).

Recurrent dynamics between visual areas play a more
critical role in driving the activity of category-tuned neurons
when stimuli are heavily degraded. Excitatory reinforce-
ment from higher-level visual areas provides additional
input to neurons that were attenuated or even prevented
from firing because of the weakened bottom–up stimulus,
which in turn provides additional bottom–up signals in the
absence of the visual information itself. These additional
signals are propagated downstream to neurons that are in-
volved in the recognition decision, where they accumulate
over time until there is sufficient “evidence” to activate a
population of category-tuned neurons. These same dy-
namics are present under relatively clear viewing condi-
tions but are quicker to manifest and do not last quite as
long as when stimuli are heavily degraded because the sys-
tem converges at an overall faster rate (Figure 4A, com-

pared with Figure 4B). When these well-specified stimuli
are masked, the mask influences the responses of early
visual areas, but the strong, stable representations that have
coalesced throughout higher-level areas are unaffected by
the mask (Figure 4C). If we were to take a snapshot of the
brain at the same point during the processing of a heavily
occluded stimulus, high-level visual areas would be engaged
in recurrent processing with earlier areas, and responses
would just be beginning to stabilize (Roland, 2010; Lamme
& Roelfsema, 2000). Interjecting a mask during this time
interrupts the recurrent communication between areas
and prevents the full recovery of the stored representation,
impairing categorization (Figure 4D).
It is specifically the recurrent connectivity between visual

areas that promotes the strengthening and representation
completion dynamics described here. Purely feedforward
models do not demonstrate completion effects because
bottom–up signals are limited by the information present
at the fovea.Without top–down reinforcement fromhigher-
level areas, early visual responses remain attenuated from
degradation, limiting new information frombecoming avail-
able to downstream neurons (Figure 5). This effect can be
viewed in accordance with research suggesting that back-
ward masking selectively disrupts feedback (see Di Lollo

Figure 4. Recurrent processing
dynamics. These plots were
created by comparing the
similarity of the modelʼs
responses to an occluded
stimulus to the responses to
an unoccluded stimulus during
each cycle of processing on a
single trial. Similarity was
measured as the cosine of the
angle between the activation
vectors of each of the modelʼs
layers (V2/ V4 = extrastriate
cortex, IT = inferotemporal
cortex, Cat = category-tuned
units). (A) Under relatively
clear viewing conditions
(Occlusion = 20%, the level
used in the experimentʼs
control condition), there is
sufficient signal in the stimulus
to drive extrastriate units, which
in turn quickly produces an
IT activation pattern that is a
close match to a stored pattern.
These factors translate to the
activation of the correct
category unit. (B) At higher
levels of occlusion (e.g.,
50%, the level used in the
experimentʼs high occlusion
condition), significant recurrent processing is necessary for correct categorization. There is little signal in the stimulus, and extrastriate responses
are weak and asymptote early. As the IT activation pattern approaches a stored pattern, it reinforces extrastriate responses, which in turn provide
additional support to IT units, ultimately activating the correct category unit. (C, D) Masking the image after 20 cycles of processing impairs
recognition of the heavily occluded image but leaves recognition of less occluded stimulus intact. The mask specifically interferes with the
recurrent processing between the IT and extrastriate cortex, which begins shortly after 20 model cycles in the heavily occluded case. These
same dynamics are present under less occluded case but are less critical and have already completed by the time the mask appears.
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et al., 2000; Lamme & Roelfsema, 2000, for reviews). If the
brain is engaged in recurrent processing of a degraded
stimulus and is forced to process a new incoming stimulus
(e.g., a pattern mask), categorization processes only have
access to whatever information was recovered before the
mask was encoded. If a stimulus is heavily degraded, far
less information will be available in the purely bottom–up
signal, and similarly, far less information will be recoverable
before the encoding of a mask.
Finally, we address the possibility that the observed

interactions between masking and occlusion and masking
in contrast reduction in participantsʼ data were because of a
ceiling effect. Strictly speaking, participantsʼ performance
was not at ceiling because the levels of occlusion and con-
trast used in the experiment produced a significant mask-
ing effect in the control condition, t(15) = 3.01, p = .01.
Nevertheless, our model can actually be interpreted as pre-
dicting a genuine ceiling effect, in the sense that the recog-
nition process completes to near-asymptotic levels before
the onset of the mask in the low levels of degradation,
whereas the mask interferes with the ongoing processing
in higher levels of degradation. This is not a general statis-
tical confound, but instead represents the exact mechanis-
tic prediction that a recurrent system like the brain makes.
Furthermore, this prediction is otherwise difficult to moti-
vate for a purely feedforward model, which strictly should
not benefit from additional processing time, because no
additional information or constraints become available to
the system with increased processing time (Figure 5).

DISCUSSION

The goal of the present research was to better understand
the feedforward- and feedback-based excitatory dynamics
that give rise to robust object recognition processes. Visual
object recognition in cortex has traditionally been concep-
tualized as the net computational result of feedforward
processing performed in the ventral visual stream (DiCarlo

et al., 2012; Serre, Kreiman, et al., 2007; Serre, Oliva, &
Poggio, 2007; VanRullen, 2007; Riesenhuber & Poggio,
1999). Despite the prominence of this view, anatomical
data indicate massive levels of recurrent feedback connec-
tivity throughout the visual streams (Sporns & Zwi, 2004;
Felleman & Van Essen, 1991). Although feedback is com-
monly held to influence perception at a later time point
than feedforward processing (Hochstein & Ahissar, 2002),
single-cell recordings from the dorsal visual stream suggest
that feedback plays a primary and immediate role in the
computations that give rise to perception by strengthening
neural responses in early visual areas (Hupe et al., 1998,
2001; Lamme et al., 1998). Consistent with these dorsal
streamdata, our results suggest that feedback plays a similar
role in the ventral visual stream during object recognition.

By using backward masking to selectively disrupt influ-
ence from recurrent processing mechanisms (Boehler
et al., 2008; Fahrenfort et al., 2007, 2008; Lamme et al.,
2002), we were able to infer its function during the recog-
nition of degraded visual stimuli. We found that masking
differentially impaired the recognition of stimuli that were
heavily occluded or had restricted contrast compared with
relatively clear control stimuli, suggesting that recurrent
processing was crucial for recognition of degraded stimuli,
but not as important for clear stimuli. This effect was char-
acterized in our results by significant interactions between
the mask and occlusion and the mask and contrast.

We were able to closely model the effect of masking on
degraded object recognition using a cortical model of ob-
ject recognition from the literature (OʼReilly et al., under
review) without any modifications. The model provided a
close fit to subjectsʼ data using the same levels of degra-
dation used in the experiment and also produced a more
general interaction effect of masking across a broad range
of levels for occlusion and contrast and mask latencies.
Although the behavioral experiment did not vary mask
latency, the general effect reported in the literature is
an impairment in accuracy for short mask latencies with

Figure 5. The role of feedback
in recurrent processing
dynamics. Removing feedback
connectivity (e.g., from IT
neurons back to extrastriate
areas V2 and V4) causes
activations across areas to
asymptote quickly after the first
responses. Without top–down
reinforcement from feedback,
the similarity of an areaʼs
activation pattern to the
corresponding unoccluded
activation pattern is simply a
function of the amount of
occlusion. This holds true for IT
activation patterns, which often fully completed to the unoccluded activation pattern in the recurrently connected model. (A) With 20% occlusion,
the purely bottom–up signals are often strong enough to drive correct categorization without significant recurrent processing. (B) With 50%
occlusion, the purely bottom–up responses are weakened compared with the unoccluded responses. Without significant recurrent processing
between areas to strengthen these signals, categorization can become impaired.
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asymptotic gains in accuracy for longer latencies (Bacon-
Mace, Mace, Fabre-Thorpe, & Thorpe, 2005; Rieger, Braun,
Bulthoff, & Gegenfurtner, 2005). We expanded on these
results by demonstrating that degradation interacted with
mask latency in a multiplicative manner because of the in-
creasing amount of recurrent processing that was needed
to amplify increasingly degraded stimulus signals.

Our findings are also generally consistent with previous
work that has used neuroimaging to study the effect of
backward masking on object recognition processes. For
example, Grill-Spector, Kushnir, Hendler, and Malach
(2000) varied the presentation duration of object stimuli
followed by a pattern mask and measured fMRI activation
in the lateral occipital complex (LOC), an object-selective
region that is thought to contain response complexity and
specificity similar to primate IT cortex. Their results indi-
cated that LOC activation decreased with shorter presen-
tation duration, and this activation decrease caused a
near-identical impairment in behavioral recognition perfor-
mance. Similar findings have been demonstrated using
magneto-encephalography recording, where the effect
of backward masking is a decrease in the amplitude in
magneto-encephalography response components related
to discrimination (Noguchi & Kakigi, 2005). The exact
same effect has been reported for the figure-ground seg-
regation tasks, which have been shown to crucially depend
on recurrent processing for successful segmentation
(Fahrenfort et al., 2007, 2008). Altogether, these results
suggest that object-related signals grow stronger over time
up to the point of response saturation or until a new stimu-
lus, such as a mask, enters the processing stream. Our
modeling simulations suggest that it is specifically recur-
rent excitation between brain areas that underlie the ampli-
fication of signals over time.

In light of our findings and those of others, it is worth
considering more specifically how exactly masking inter-
feres with and ultimately disrupts the signal amplification
properties of recurrent processing. Lamme and Roelfsema
(2000) suggest that masking creates a mismatch between
feedforward- and feedback-based neural responding. Fol-
lowing the presentation of an initial stimulus, responses
propagate through the ventral visual stream in a feedforward
manner, ultimately reaching processing sites that contain
backprojections to earlier areas. If a mask is encoded at a
short latency following the initial stimulus, mask-specific
responses will propagate forward through the ventral
visual stream at the same time that responses encoding
the initial stimulus are propagating backward through
recurrent connections, creating a mismatch between the
feedforward- and feedback-based neural responses and
impairing the perception of the original stimulus. Consis-
tent with this view, masking has been shown to cause a de-
coupling in the functional connectivity (i.e., coactivation)
between low-level and high-level visual areas, which has
the psychological effect of greatly reduced perceptual
visibility (Haynes, Driver, & Rees, 2005; Dehaene et al.,
2001).

Our work expands on Lamme and Roelfsemaʼs (2000)
theory of recurrent processing and masking by demon-
strating the function that the coupled processing between
recurrently connected visual areas serves in the context of
degraded object recognition. The model dynamics demon-
strated in our simulations indicate that recurrent connec-
tions between hierarchically adjacent areas provide
excitatory reinforcement to each other. This reinforcement
is crucial when inputs are underspecified, such as when
stimuli are occluded or have reduced contrast, because
bottom–up signals are weak and ambiguous. Feedback
from higher-level areas can evoke responses in early areas,
providing additional bottom–up reinforcement in the
absence of the stimulus-driven input. In our simulations,
this extra excitation caused the layer that corresponded
to IT cortex to form a close (often exact) match to a stored
pattern, regardless of the level of degradation. This effect
has been described as “object completion,” during which
missing object features are filled in and has been observed
in human LOC imaging studies (Lerner, Harel, & Malach,
2004; Lerner,Hendler,&Malach, 2002; Kourtzi &Kanwisher,
2001). Our model predicts that it is specifically recurrent
processing that underlies object completion effects, because
purely feedforward models do not exhibit these completion
effects. This simple prediction could be explicitly tested by
extending our experiment with fMRI methods.
Cumulatively, our results provide insight into exactly

why robust recognition is possible in the face of occlu-
sion, although the responses of IT neurons are attenuated
(Nielsen et al., 2006; Kovacs et al., 1995). Although the
initial responses from IT neurons are weak and ambigu-
ous, recurrent processing between IT and other areas
amplifies the responses and rectifies them over time pro-
gressively approximating the “object-complete” repre-
sentation associated with unoccluded stimuli. Recurrent
processing and object completion effects take substantial
time to manifest due to the multiple bottom–up and top–
down constraints that must be integrated into the re-
sponses. Accordingly, Kovacs et al. (1995) found that
shape-selective IT responses took longer to manifest for
occluded images compared with unoccluded images, sug-
gesting that object-complete responses were driving shape
selectivity.
Recurrent processing also explains why information

analyses of IT responses have indicated that the amount
of information embedded in their responses increases
over time (Heller et al., 1995; Rolls & Tovee, 1995). Re-
current processing ensures that novel information not
explicitly present in the ambiguous stimulus-driven sig-
nals becomes integrated into the cumulative response.
Furthermore, backward masking has been shown to
greatly reduces the amount of information that can be
read out of IT responses (Rolls, Tovee, & Panzeri, 1999),
presumably because irrelevant information not correlated
with the original stimulus-driven response becomes inte-
grated into the total response decreasing the effective
signal-to-noise ratio. Given that occluded stimuli require
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substantially more recurrent processing than clear stimuli
to evoke selective responses in IT neurons, it makes sense
that masking would cause a more severe impairment in the
recognition of degraded stimuli.
The model of recurrent processing advocated here

that is centered around the amplification of signals can
be contrasted with “predictive coding” models of recur-
rent feedback (e.g., Rao, 1999; Rao & Ballard, 1997; see
also Friston, 2009, 2010). These models propose that the
fundamental role of feedback in the brain is to generate
internal predictions of incoming information. These pre-
dictions are compared with the incoming information to
compute a residual error signal, which is propagated for-
ward to the next processing area where another predic-
tion is generated, repeating the process as the signal
ascends the hierarchy of processing areas. The primary
difference between predictive coding models and the
model of recurrent feedback advocated here is that the
former requires feedback to be inhibitory to compute
the residual error signal. Recurrent feedback in the brain
is exclusively excitatory, and although there are ways to
address the biological implausibility of predictive coding
(e.g., Spratling, 2008), perhaps the larger issue is that it
predicts that degradations that underspecify stimuli like
the ones used in the present research should generate
higher response levels than relatively clear stimuli, be-
cause they will tend to differ greatly from stored mem-
ories. In contrast, all the neural data we are aware of
show that the effect of occlusion and contrast reduction
is an overall decrease in response levels across brain
areas (Nielsen et al., 2006; Williford & Maunsell, 2006;
Kovacs et al., 1995; Sclar, Maunsell, & Lennie, 1990).
Furthermore, processing over time increases response
levels for degraded stimuli (Kovacs et al., 1995), opposed
to the decrease that predictive coding would suggest as
the residual error associated with a degraded stimulus
decreases. Thus, an excitatory model of recurrent process-
ing that amplifies weak signals over time provides a better
overall fit with the biology of recurrent processing in the
brain and is more consistent with the neural data on
degraded object recognition.
We also consider the possibility that the interaction

between the mask and degradation can be explained by
purely feedforward mechanisms. Feedforward accounts
of masking assume the existence of at least two distinct
processing channels—one for processing the original stim-
ulus and one for processing the mask—with different
speeds of information transmission (Breitmeyer & Ganz,
1976). The relatively faster transmission speed of the mask
channel allows a mask to “catch up” with the original stim-
ulus and impair its processing via interchannel inhibitory
mechanisms. Although the present experiment was not
explicitly designed to rule out this feedforward explanation,
this explanation is unlikely, especially considering there is
little neural evidence that interchannel inhibition exists as
a masking mechanism (Fahrenfort et al., 2007; Enns &
Di Lollo, 2000). Furthermore, the feedforward explanation

of masking was originally posed to explain metacontrast
masking, in which the masking stimulus does not spatially
overlap the original stimulus yet still impairs its recogni-
tion. The pattern masks used in our experiment, however,
contain considerable spatial overlap with the preceding
stimulus, and thus, spatial-based inhibition should be mini-
mal. At the highest levels of the ventral stream where
pattern masking has been reported to impair object recog-
nition (Grill-Spector et al., 2000; Rolls et al., 1999), recep-
tive fields subtend large portions of the visual field
(generally 10–20°; Rust &Dicarlo, 2010; Kobatake& Tanaka,
1994), and thus, spatial-based inhibition at this level is vir-
tually nonexistent. Altogether, these points cast serious
doubt on feedforward-based masking as a viable explana-
tion of our results.

Despite the robustness conferred by recurrent process-
ing, precise timing data from neural recordings impose the
strict temporal constraint of as little as 100–150 msec on
the computations that can take place before category-
tuned brain areas become active, providing strong sup-
port for models based on a single feedforward sweep
of responses (VanRullen & Koch, 2003; Li, VanRullen,
Koch, & Perona, 2002; VanRullen & Thorpe, 2001; Thorpe
et al., 1996). These tasks generally only involve a binary
decision about whether an image contains a target object
(such as an animal), compared with the six-way categori-
zation task used in the present research. Thus, it might be
the case that target detection tasks can be solved relatively
well with only feedforward responses (Serre, Oliva, &
Poggio, 2007), whereas recognition tasks like ours that
contain significantly more feature overlap and uncertainty
across a larger number of categories require recurrent pro-
cessing and thus take longer for the brain to resolve. This
view is consistent with more conservative estimates of the
time course of object recognition (e.g., 150–300 msec re-
ported by Johnson & Olshausen, 2003). Alternatively, it
could be the case that target detection tasks already reflect
some degree of influence from recurrent processing. In
accordance with this latter view, recent reports have cited
recurrent processing effects occurring as early as 100–
150 msec (Koivisto, Railo, Revonsuo, Vanni, & Salminen-
Vaparanta, 2011; Roland, 2010; Bar et al., 2006; Foxe &
Simpson, 2002; Lamme & Roelfsema, 2000).

Conclusions

The research described here demonstrates one of the
fundamental roles of recurrent processing during object
recognition: creating a strong, stable representation that
promotes robust recognition. This is especially important
when visual stimuli are not viewed under idealized con-
ditions, which is a frequent occurrence during real-world
vision. Objects in our field of view are often occluded,
shrouded under complex lighting and shadows, and gen-
erally suffer from countless other sources of environmen-
tal variability. Standard models of object recognition that
use only a single series of feedforward computations for
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recognizing stimuli (Serre, Kreiman, et al., 2007; Serre,
Oliva, & Poggio, 2007; VanRullen, 2007; Riesenhuber &
Poggio, 1999) depend on sufficient signal in the visual
stimulus for recognition but often break down under
these realistic, suboptimal conditions (OʼReilly et al., under
review).

Overall, it has become apparent that vision is a highly
interactive, dynamic process that depends on multiple
brain areas at different levels of the ventral visual hierar-
chy participating in processing (Roland, 2010; Spivey,
2007). Whether these dynamics are reflected during ob-
ject recognition in the initial preattentive representations
or are due to late, top–down attentional effects remains
an open question. Furthermore, the exact time course of
feedforward and recurrent computations that give rise to
object recognition processes is not well understood, be-
cause recent reports are suggesting that recurrent pro-
cessing might manifest much faster than initially thought.
Ultimately, research that focuses on short timescale neural
dynamics and biologically realistic computational modeling
will be necessary to fully understanding the computations
and interactions that give rise to object recognition.

APPENDIX

LVis Model

The LVis model (Leabra Vision model) and the training/
testing methods as they relate to the present simulations
are briefly described here. See OʼReilly et al. (under re-
view) for a detailed description. The model consists of
a hierarchy of feature processing layers that roughly cor-
respond to areas along the ventral stream of the brain—
primary visual cortex (V1), extrastriate cortex (V2/V4),
inferotemporal cortex (IT), and a categorical output layer
that can be conceptualized as either anterior inferotem-
poral cortex or pFC. The model receives grayscale bitmap
images as inputs, which are processed with filtering that
captures the relevant computations of the retina and LGN
of the thalamus. The results of this filtering are further
processed by a chain of V1-like operations—Gabor filter-
ing followed by a spatial “max” operation (e.g., Riesenhuber
& Poggio, 1999)—and then used as inputs to the model
proper. Subsequent layers in the model contain decreasing
numbers of units (V1: 3600 units; V2/V4: 2880 units; IT:
200 units; Output: 200 units, only six of which were used
for the six-way categorization task used in the present simu-
lations) as well as increasing receptive field sizes, computed
through a series of converging connections.

Overall, the model can be viewed as an extension of a
large class of hierarchical feedforward models of visual
processing in the brain (e.g., Masquelier & Thorpe,
2007; Serre, Kreiman, et al., 2007; Delorme & Thorpe,
2001; Riesenhuber & Poggio, 1999). The primary innova-
tion of the model is that hierarchically adjacent areas (e.g.,
V2/V4 and IT) are reciprocally connected, providing an
account of the recurrent connectivity observed throughout

the ventral stream. Feedforward connections generally
contribute 80–90% of the total input to a receiving layer
and feedback connections contribute the remaining 10–
20% of the total input. As all connections are excitatory,
layer activations are controlled using a k-winners-take-all
(kWTA) inhibitory competition rule (OʼReilly & Munakata,
2000; OʼReilly, 1996) that ensures only the k most active
units remain active over time. The specific k value varies
for each layer in the model but is generally in the range of
10–20% of the number of units in the layer.
The model is trained using an extension of the Leabra

algorithm (OʼReilly&Munakata, 2000;OʼReilly, 1996), which
contains both self-organizing and error-driven components.
The model learns a sparse distributed representation at the
IT level that serves as a translation between themore graded
sensory inputs represented at lower levels and categorical
outputs. The sparseness of the representation arises from
the learning algorithm as well as other Leabra mechanisms
(e.g., kWTA, recurrent connectivity) that interact over the
course of learning.

Simulation Methods

Before simulating the experiment, the model was trained
across images from the six categories used in the human
experiment. Images were taken from the CU3D-100 data
set (http://cu3d.colorado.edu). Two exemplars from each
category were reserved to assess generalization perfor-
mance, which was 91%, averaged across five random com-
binations of training and testing exemplars (referred to as
training/testing splits). There were 980 total training images,
distributed roughly equally across the six categories. Each
image was presented both during the initial training phase,
as well as the subsequent simulations with small variations
in foveal position, scale, and planar rotation. These 2-D vari-
ations were important for the modelʼs ability to learn an
invariant representation similar to that coded by IT neu-
rons (Serre, Kreiman, et al., 2007; Riesenhuber & Poggio,
1999) and also ensured that each presented image was
likely to be unique. Although the model was optimized
for generalization, the simulations described below were
conducted using the training images. This was done to pre-
vent confounding the effects of occlusion and masking
with any performance impairment because of generaliza-
tion. Additional simulations using the testing images indi-
cated that the results were slightly noisier, but qualitatively
similar.
Each model was trained for 25,000 trials total using an

extension of the Leabra algorithm (OʼReilly & Munakata,
2000; OʼReilly, 1998), and the resulting trained weights
were used for the subsequent simulations. Separate sim-
ulations were performed for each combination of masking,
occlusion, and contrast variables. Each of these simulation
types used the same five training/testing splits and corre-
sponding weights. Masks were constructed in the same
manner as in the experiment, except that pregenerating a
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large number of masks was largely unnecessary because of
the model being prevented from learning during the actual
simulated experiment. A total of 100 masks were pregener-
ated for use in the simulations.
The simulated experiment consisted of seven presen-

tations of each of the 980 training images with variations
in foveal position, scale, and planar rotation. The pres-
ented image was degraded using the same occlusion and
contrast manipulations as during the experiment. Nor-
mally, the modelʼs inputs are normalized after filtering
the image to enhance their dynamic range, but this step
was omitted for all simulations, as normalization would
undo the effects of contrast reduction. For simulations dur-
ing which the mask was absent, the image was clamped
into to the modelʼs inputs and the model was iterated for
50 cycles after which the category associated with the most
active output unit was recorded as the modelʼs response.
For simulations during which the mask was present, pre-
sentation of the image proceeded in the same way, but
the modelʼs inputs were subsequently reclamped with a
randomly chosen mask before the 50th model cycle. Any
activation associated with the original image that had been
established before the remapping was preserved and
allowed to interact with any new activation that was estab-
lished as a result of processing the mask. The mask image
remained clamped into to the modelʼs inputs for the re-
mainder of the 50 cycles, after which the modelʼs response
was recorded.
No assumptions were made about how the time inte-

gration represented by a single cycle of the modelʼs pro-
cessing mapped onto the passage of time in the physical
world. Thus, to find the equivalent of presenting a mask
with the latency of 100 msec used in the experiment, the
processing cycle that the mask was mapped into the
modelʼs inputs was varied as a free parameter to find
the best fit of subjectsʼ data. The model was fit to subjectsʼ
data by minimizing the sum squared error of the effect of
the mask, combined across the three experimental condi-
tions (Control, Occlusion, and Contrast). For the data fits in
depicted in Figure 3B, occlusion and contrast were held
constant at the levels used in the experiment. Because sub-
jectsʼ accuracy scores were higher overall compared with
the model, we computed model outputs using a majority
vote across the seven 2-D variations in foveal position,
scale, and planar rotation while holding the occlusion
manipulation fixed (i.e., if the modelʼs outputs for the seven
2-D variations were fish, fish, car, fish, car, fish, fish, the
final voted output would be computed as fish). This voting
procedure reflects variability because of fixation error and
head position during the experiment, which can be used
in an aggregate manner during the recognition process
(Ratcliff & McKoon, 2008; Bradski & Grossberg, 1995;
Ratcliff, 1978). The amount of improvement from the vot-
ing procedure was around 3–4% across conditions. For the
more general predictions depicted in Figure 3C that did
not require absolute fits, this voting procedure was
omitted.

The plots in Figure 4 were created by first presenting
an unoccluded image to the model and recording the
activation patterns in each of the annotated model areas.
The model was then presented with the same image, but
with an occlusion pattern applied. During each cycle of
processing, the similarity between the current activation
pattern in each of the model layers and the correspond-
ing unoccluded activation pattern was calculated by
taking the cosine of the angle between the two activation
vectors. A value of 1.0 indicated that the two vectors were
identical, and for model units that represent category-
tuned neurons (denoted with “Cat” on the plots), this indi-
cated a correct response. To explore the effect of removing
feedback on the modelʼs activation patterns, feedback
weights between category-tuned units and IT units as well
as IT units and extrastriate units were multiplied by zero
when computing the activations across each layer.
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