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Abstract

Using Gibbs method of dividing surfaces, the condition of equilibrium of a sessile drop on a flat non-deformable solid substrate is
investigated. The dependence of the line tension on the curvature radius of the dividing three-phase contact line is found. It has been derived a
relationship between the partial derivative of the line tension with respect to the curvature radius of the three-phase contact line (which stands
i ium states.
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n the generalized Young equation) and the total derivative of the line tension with respect to the same radius along the equilibr
arious approximated formulas of the generalized Young equation used in the literature are analyzed.
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. Introduction

A partly wetting liquid forms, on a surface, sessile drops
ith a certain contact angle whose value is determined by

he thermodynamic (adhesive) surface tensions of three in-
erfaces and by the curvature radius of the three-phase contact
ine. For small drops, the dependence of the contact angle on
he contact line radius is known to be considerably influenced
y the line tension at the three-phase boundary. The gener-
lized Young equation describes this dependence. Various
enerally non-equivalent forms of this equation are met in

he literature (see, e.g.,[1–3]), whose experimental verifica-
ion is problematic due to accuracy restrictions at the present.
or a system including a solid substrate (phase�) in contact
ith a liquid drop (phase�) and with its equilibrium vapour

phase�), the Young equation in the most general form (ac-
ounting for gravity, for the slope and strain of the substrate

∗ Corresponding author. Tel.: +7 812 5542877.
E-mail address:rusanov@AR1047.spb.edu (A.I. Rusanov).

and for the line tension dependence on the contact angl
on the radius of the three-phase contact line) is[1]:

σ�� cos θ = σ�� − σ�� −
(
κ

r
+ ∂κ

∂r

)
| cos ϕ|. (1)

Here,σ is the thermodynamic surface tension,θ is the equi
librium contact angle,ϕ is the angle between the substr
surface and the local principal plane of the three-phase
tact line,r is the radius of the three-phase contact line,κ is the
corresponding thermodynamic line tension (or the effec
line tension in case of substrate deformation[1]); double su
perscripts mark the quantities related to the interfaces.Eq. (1)
corresponds to the choice of the surface of tension as a
ing surface between phases� and�.

SinceEq. (1)was derived[1] from the equilibrium condi
tion for the grand thermodynamic potential, the partial de
tive of κ with respect to the radius of the three-phase con
line is evidently taken at the constancy of the temperature
chemical potentials and the contact angle.Eq. (1)was also
generalized for rough and heterogeneous surfaces[4,5].
927-7757/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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Other problems related to the line tension have been
actively studied in last several decades. Among them, a
generalized Neumann–Young equation was obtained[6], the
concept of line of tension was introduced[7], the theories of
line tension based on different approaches to the detailed de-
scription of the system were developed and several estimates
of the value of the line tension were presented[8–12], the
stability conditions were examined and the possibility of line
tension to have positive or negative values was commented
[13–15]. New experimental methods for measuring the line
tension were described and different applications of the
line tension concept to the theories of formation of thin
films, flotation, heterogeneous nucleation were found. A
comprehensive list of references on most mentioned topics
is given in the recent review papers[12]. A review of earlier
works on the line tension can be found in reference[15].

In this work, we investigate the line tension dependence on
the radius of a dividing line which corresponds to the variation
of the radius of the dividing surface between phases� and� at
a fixed physical state of the system. An analogous dependence
appears for surface tension in the known approach developed
by Kondo[16]. We shall consider the simple case of a pure
liquid on a flat uniform substrate (ϕ = 0). The drop size is
implied to be large enough to neglect overlapping the surface
layers at the liquid/substrate and liquid/vapour boundaries
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profile will be spherical far from the three-phase contact line
according to the condition of mechanical equilibrium be-
tween the liquid and the vapour in the absence of gravity.
Overlapping of the surface layers is responsible for the for-
mation of an underlying (precursor) film modifying the solid
surface and leading to a difference betweenσ�γ and the sur-
face tension of a “bare” solid surface. The possible presence
of the precursor film on the substrate is taken into account
in Eq. (2)by the termσ�γA�γ . Neglecting the precursor film
thickness, one can assume the entire sessile drop to have the
shape of a spherical segment. Its radius and the equilibrium
contact angle can be found from the condition of a minimum
of the potentialΩ.

For the volumeV�, the areaA�β, the base radius (the radius
of the three-phase contact line)r and the areaA�γ of the base
of the spherical segment with the curvature radiusR and the
angleθ between the spherical part and the base, one can write
the following expressions:

V� = πR3

3
(2 + cos θ)(1 − cos θ)2, (3)

A�� = 2πR2(1 − cos θ), A�� = πR2 sin 2 θ, (4)

r = R sin θ, L = 2πR sin θ. (5)

For the quantitiesV� andA�γ , one can write:

V
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n the central part of the drop. Note that overlapping th
ayers at drop perimeter determines the line tension and
rincipal importance. We shall obtain the drop equilibr
onditions written for excess quantities corresponding
nly to the surface of tension, but also to an arbitrary choi
dividing surface. We shall also discuss the physical mea
f the derivative∂κ/∂r and outline the way of its explic
nding by numerical calculation. This way is also applica
o the cases when a dividing surface between phases� and�
s used different from the surface of tension.

. Thermodynamic potential of a system with a
essile drop

Neglecting gravity, the grand thermodynamic potentiaΩ

f a system including a substrate, a one-component s
rop and its vapour can be written as1

= −p�V� − p�V� + σ��A�� + σ��A��

+ σ��A�� + κL, (2)

herep is the pressure,V is the volume,A is the surfac
rea,L is the length of the three-phase contact line; the s
uperscripts mark the quantities related to the correspo
hases.

If there is no overlapping of the liquid/substrate and
id/vapour interfaces in the central part of the drop, the

1 Strictly speaking, this is a hybrid function that is a grand thermodyn
otential for the liquid and vapour and free energy for the solid substr
� = Vt − V�, A�� = At − A��, (6)

hereVt is the total volume of the liquid–vapour subsyst
t is the total substrate area (to be more precise, the
rea of the substrate/liquid,��, and substrate/vapour,��,
urfaces).

We define the excess quantities standing inEq. (2) by
hoosing the Gibbs dividing surfaces as the segment sph
urface with radiusRand contact angleθ and flat surfaces��
nd�� in the framework of the Gibbs method. PuttingEqs.
3)–(6)into the right-hand side ofEq. (2)yields an expressio
or Ω in terms ofRandθ:

= −(p� − p�)
πR3

3
(2 + cos θ)(1 − cos θ)2

+ 2πσ��R2(1 − cos θ) − (σ�� − σ��)πR2 sin 2 θ

+ 2πκR sin θ − p�Vt − σ��At. (7)

vidently, potentialΩ also depends on the chemical poten
of molecules in the system and on the temperatureT of the

ystem.

. The dependence of the line tension on the dividing
urface location

Let us see what condition follows from the variat
f the location of the drop dividing surface at maintain

he physical state of the system, i.e. from the choic
arious curvature radiiR for the drop spherical segment
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the liquid/vapour boundary at fixed profiles of all physical
characteristics within the interface. Naturally, thermody-
namic potentialΩ (as well as the state parameters for the
bulk phases) cannot depend on the pure imaginary variation
of radiusR. Marking such variations with square brackets,
we write this condition as[

dΩ

dR

]
= 0. (8)

We first apply this condition to the case of a free drop in
vapour. Then, instead ofEq. (2), we have

Ω = −4π

3
(p� − p�)R3 + 4πσ��R2 − p�Vt (9)

(Eq. (7)changes toEq. (9)atθ = � andAt = 0.) The condition
(8) for Eq. (9)leads to the known Kondo equation[16]

p� − p� = 2σ��

R
+

[
dσ��

dR

]
, (10)

where the drop surface tensionσ�β is a function of R,
whereas the pressure differencep� − p� plays the role of a
constant. The solution of the differentialEq. (10)is

σ�� = K

R2 + cR, (11)
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Fig. 1. The dividing surfaces and dividing lines for a spherical segment on
the substrate.

Putting nowEq. (7) into Eq. (8) and taking into account
Eq. (14), we obtain[
dΩ

dR

]
= −2πR2(p� −p�)(1− cosθ) + 2πRσ��(2− cosθ)

+2πR2(1 − cos θ)

[
dσ��

dR

]
− 2πR(σ�� − σ��)

+ 2πκ

sin θ
+ 2πR sin θ

[
dκ

dR

]
= 0. (15)

If we now express the surface tension derivative with the aid
of the Kondo equation (10),Eq. (15)immediately leads to
the generalized Young equation

σ�� − σ�� = σ�� cos θ + κ

r
+

[
dκ

dr

]
. (16)

In the right-hand side of this equation, the line tensionκ and
the line tension derivative [dκ/dr] with respect to the divid-
ing surface location in the substrate plane (with respect to the
location of the dividing three-phase contact line) at a fixed
physical state of the system are determined at an arbitrary
choice of the dividing line and the liquid/gas dividing surface.

The dependence ofσ�β and cosθ on r in Eq. (16)is de-
termined byEqs. (5), (10) and (14). The left-hand side of
Eq. (16)is given by the differenceσ�γ − σ�γ , which is con-
s this,
w[

w
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κ
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here the constantK is the work of the drop formation at
iven value of the condensate chemical potential andc = (p�

p�)/3 (these relationships can also be directly obta
rom Eq. (9) taking into account thatΩ is independent o
). The plot of the function (11) is characterized by a uni
inimum ofσ�β. The location of the dividing surface at t
inimum is called surface of tension, andEq. (10)change

o the Laplace equation

� − p� = 2σ��
st

Rst
. (12)

n this case, we designated the radius of the surfac
ension asRst and surface tensionσ�� at R = Rst asσ��

st . In
iew of Eqs. (11) and (12), we have

= σ
��
st R

2
st

3
, c = 2σ��

st

3Rst
. (13)

e now apply the same approach to a sessile drop i
hape of a spherical segment. We follow the scheme
n reference[7] with some adaptation for the system un
onsideration. Similar to the case of a free drop, all divid
urface positions should be concentric, i.e. the divi
urfaces should be conformal as defined by Gibbs[17].
owever, they are segmental but not sectorial in the ca
sessile drop (Fig. 1), so that the relationships hold

cos θ = h = const,
dθ

dR
= cot θ

R
,

dr

dR
= 1

sin θ
.

(14)
tant at a fixed physical state of the system. Recognizing
e rewrite (16) as a differential equation

dκ

dr

]
+ κ

r
+ a

(r2 + h2)3/2 = b, (17)

here we have introduced the notations

≡ Kh, b ≡ σ�� − σ�� − ch. (18)

hus, taking into account the said above, three constanth, a
ndb are present inEq. (17).

The solution ofEq. (17)is

= br

2
+ a

r(r2 + h2)1/2 + d

r
, (19)

here the integration constantdcan be expressed through
adiusr = r lt of the dividing surface on the substrate plan
he extreme point for the line tensionκ as a function ofr:

= br2
lt

2
+ a(2r2

lt + h2)

(r2
lt + h2)

3/2 . (20)

quation can also be directly obtained fromEq. (7)by ex-
ressingΩ in terms ofr andh and usingEq. (11).
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By analogy with the surface of tension, the dividing line
characterized byr = r lt and for which [dκ/dr] = 0 can be called
the line of tension[7]. With this choice of a dividing surface,
the generalized Young equation (16) takes the simplest form

σ�� − σ�� = σ�� cos θ + κlt

rlt
, (21)

whereκlt = κ|r=rlt
.

As it follows fromEq. (17), the valueκlt of the line tension
can be expressed through the parametersh, a andb and the
radiusr lt as

κlt = brlt − arlt

(r2
lt + h2)

3/2 . (22)

According to the definitions (18) and (13), the constanta
is positive, whereas the constantb can be either positive or
negative depending on the substrate wettability. Since, ob-
viously, r lt > 0, the value ofκlt can be either positive (at

b > a/(r2
lt + h2)

3/2
) or negative (atb < a/(r2

lt + h2)
3/2

).
It is convenient to pass to dimensionless quantities in

Eq. (19), κ̃ ≡ κ/κlt andr̃ ≡ r/rlt , usingEq. (20)and exclud-
ing constantb with the aid ofEq. (22).

As a result, we obtain, instead ofEq. (19),

κ̃ = 1

2

(
r̃ + 1

r̃

)

w

A
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t
=

F
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a

A=−0.8. In all cases considered, the value ˜κ = 1 corresponds
to the local minimum in the curve ˜κ(r̃). Because ofEqs. (22)
and (24), the absolute values ofA must be smaller than unity
(even smaller than 1/2 at negativeb andκlt ). Therefore, the
appearance of a maximum in the case of negative line tensions
in Fig. 2atA = −0.8 can be an artefact.

We designate asrst the radius of the dividing line, on the
substrate, corresponding to the choice of the surface of ten-
sion as a dividing surface between the liquid and the vapour.
From the above phenomenological analysis, it is hard to de-
duce how the quantitiesrst andr lt are related to each other.
One can only expect that their coincidence can be completely
random and rare. In particular, this means that there is no rea-
son for neglecting the last term inEq. (16)when using the
surface of tension (as well as the equimolecular surface) as a
dividing surface between the liquid and the vapour.

4. The equilibrium condition at the three-phase
contact line

We now return toEq. (7)for the thermodynamic potential
Ω of the system to derive the condition of equilibrium at the
three-phase contact line. Applying the equilibrium principle
to Ω, we have(

T iven
a em-
s ical
p of the
s .
B e.
H(

P
y(

)

I t
e
t e
K ed
Y ons)
l rre-
+A

[
r̃ + 2

r̃ sin 3 θlt (r̃2 + cot 2 θlt )
1/2 − 3 + 2 cot 2 θlt

r̃

]
,

(23)

here only two parameters remain,A andθlt ,

≡ arlt

2κlt (r2
lt + h2)

3/2 , θlt ≡ arccot
h

rlt
. (24)

hese parameters can be regarded as independent, w
ign of parameterA being determined by the sign of the li
ensionκlt .

Fig. 2 shows the dependence of the dimensionless
ensionκ̃ on the dimensionless radius ˜r of a dividing line atθlt
0.1 and at three values of parameterA:A= 0.5,A= −0.1 and

ig. 2. The dependence of the line tension ˜κ on the radius ˜r of a dividing
ine atθlt = 0.1 and at three different values of parameterA:A= 0.5,A= −0.1
ndA = −0.8.
e

∂Ω

∂θ

)
T,µ,R

= 0. (25)

he location of a dividing surface is now considered as g
t fixed conditions (and is arbitrary, since the conditions th
elves are arbitrary). Fixing the temperature and chem
otential means the constancy of all state parameters
ystem including the curvature radiusR of the drop surface
y contrast, the distanceh (seeFig. 1) becomes variabl
erewith the relationship is fulfilled

∂r

∂θ

)
T,µ,R

= R cos θ. (26)

utting Eq. (7) into Eq. (25) taking into accountEq. (26)
ields

∂Ω

∂θ

)
T,µ,R

= −(p� − p�)πR3 sin 3 θ + 2πσ��R2 sin θ

+2πκR cosθ− 2π(σ�� − σ��)R2 sinθ cosθ

+2πR2 sin θ cos θ

(
∂κ

∂r

)
T,µ

= 0. (27

t is implied here that the line tensionκ = κ(T, µ, r) does no
xplicitly depend on the contact angleθ. If we now replace
he differencep� − p� by the expression following from th
ondo equation (10),Eq. (27)changes to the generaliz
oung equation at a certain given (by external conditi

ocation of the dividing surface and at a dividing line co
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sponding to this dividing surface:

σ�� − σ�� = σ�� cosθ + κ

r
+

(
∂κ

∂r

)
T,µ

− r tan θ

2

[
dσ��

dR

]
.

(28)

Taking the surface of tension as the dividing surface,Eq. (28)
becomes

σ�� − σ�� = σ�� cos θ + κ

r
+

(
∂κ

∂r

)
T,µ

, (29)

which coincides withEq. (1)atϕ = 0. Comparing the right-
hand sides ofEqs. (16) and (29), we arrive at the relationship(
∂κ

∂r

)
T,µ

=
[

dκ

dr

]
+ r tan θ

2

[
dσ��

dR

]
. (30)

This equation relates the physical dependence of the line ten-
sion on the radius of the three-phase contact line at given
temperature and chemical potential to the imaginary depen-
dence of the line and surface tensions on the dividing surface
location. If the surface of tension is chosen as a dividing sur-
face, the surface tension derivative inEq. (30)becomes zero,
and we arrive at a remarkable relationship(
∂κ

)
=

[
dκ

]
. (31)
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Gibbs adsorption equation for surfaces (the excessΛ plays
the role of a linear adsorption). At a constant temperature,
Eq. (32)yields an important relationship(
∂κ

∂r

)
T,µ

= dκ

dr
+ Λ

dµ

dr
. (33)

In particular,Eq. (33)permits us finding the partial derivative
(∂κ/∂r)T ,� from the linear adsorption valueΛ and the deriva-
tives dκ/dr and dµ/dr along equilibrium states. For example,
such calculations are possible by applying the density func-
tional method based on the models for intermolecular poten-
tials[10,11,20]and by applying the method of the functional
of the local thickness of a liquid film based on the approxima-
tions for the isotherm of the disjoining pressure as a function
of the film thickness[8,9,11]. Both these methods are capa-
ble of independent calculating the contact angle, the chemical
potential of molecules in a system and the linear adsorption
as functions of the dividing line radius.

Some assertions can be made without using any specific
model. Let us assume that the line tensionκ and the linear ad-
sorptionΛ expressed as functions of the equilibrium contact
line radiusr have the following asymptotic behavior:

κ = κ0 + O(r−1), Λ = Λ0 + O(r−1) (34)

with the finite limitsκ andΛ corresponding to the bulk
c e
b e liq-
u

p

w e
L
−

Λ

w
θ Ac-
c
d 34),
t
κ tion
( e-
f e
c fi-
c d
w

6

with
t the
t oung
∂r T,µ dr

q. (31)means that, with this choice of a dividing surfa
he derivative of the line tension with respect to radius o
hree-phase contact line at constant temperature and c
al potential coincides with the line tension derivative a

maginary shift of the dividing surface at fixed physical s
f the system.

. The role of linear adsorption

As it was shown above, there remains a possibility fo
ine tension variation together with the radius of the th
hase contact line even when a certain choice is made f

ocation of the dividing surface between the liquid and
apour and all the state parameters of the bulk phase
urfaces, like the temperature and the chemical potentia
xed. The corresponding derivative stands in the equilib
ondition expressed byEq. (28).

To write the expression for the total differential of the l
ension, it is sufficient to supplement the partial differen
orresponding to this derivative with the terms with differ
ials of temperature and chemical potential:

κ =
(
∂κ

∂r

)
T,µ

dr − sldT − Λdµ. (32)

oefficientssl andΛ are known as the linear excesses of
ropy and matter, respectively, related to the unit length o
hree-phase contact line.Eq. (32)itself is nothing else as th
inear adsorption equation[15,18]called by analogy with th
0 0
oexistence atµ → µ0 (wherer → ∞, i.e. the contact lin
ecomes straight). Under assumption of incompressibl
id, we have for the pressure difference

� − p� ≈ µ − µ0

v�
(35)

ith v� the molecular volume in� phase. Using th
aplace equation (12) andEq. (34), one can derive dµ/dr =
2σ��v�r−2 sin θ. It leads to the following estimation:

dµ

dr
= −2Λ0σ

��
0 v�r−2 sin θ0 + O(r−3)

hereσ��
0 is the value of the surface tensionσ�β atµ = µ0,

0 is the limit macroscopic value of the contact angle.
ording toEq. (34), one can estimate the derivative dκ/dr as
κ/dr = O(r−2). It means that under the assumptions (
he partial derivative (∂κ/∂r)T ,� = O(r−2), while for the term
/r on the right-hand side of the generalized Young equa
29), the estimationκ/r = κ0/r + O(r−2) can be made. Ther
ore, if the linear adsorptionΛ has a finite limit at bulk phas
oexistence, the term (∂κ/∂r)T ,� can be neglected for suf
iently large droplets and the termκ/r can be approximate
ith its asymptotic formκ0/r.

. Conclusion

The analysis presented ascertains the role of the term
he line tension derivative with respect to the radius of
hree-phase contact line when using the generalized Y
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equation for establishing relations between the contact an-
gle, the line tension and the radius of the three-phase contact
line. The generalized Young equation withκ = const and,
correspondingly, without the term∂κ/∂r (see, e.g.,[2], and
also references in reference[19]) has repeatedly been dis-
cussed in the literature. In other papers, the dependenceκ(r)
has been granted in the generalized Young equation, but the
contribution of the partial derivative∂κ/∂r [21] has been ne-
glected. In the third case, the partial derivative∂κ/∂r in the
generalized Young equation had been replaced by the total
derivative dκ/dr along the equilibrium states (as, for example,
it was actually made in reference[3]) and, in this way, the
linear adsorption (seeEq. (33)) had been neglected.

In the limit of large drops, whenµ tends to the chemical
potentialµ0 for coexisting bulk phases� and�, the terms
containing the line tension inEq. (29)become negligible.
Then, the equation changes to the classical Young equation

σ
��
0 cos θ0 = σ

��
0 − σ

��
0 , (36)

whereσ��
0 , σ��

0 andσ��
0 are the corresponding surface ten-

sions atµ = µ0.
Comparing the generalized Young equation (29) with the

classical oneEq. (36), variations of surface tensionsσ��,σ��

andσ�� related to the variation of chemical potentialµ of the
whole system are often neglected to write

c

I
c the
e nent
i oice
h
n oten-
t ntly
c oose

the corresponding dividing surfaces equimolecular with re-
spect to the solid component. Choosing the equimolecular
surface as the dividing surface��, adsorptionΓ �β becomes
exactly equal to zero. In this case, however,Eqs. (10) and
(28) expressing the equilibrium condition become different
from the Laplace equation (12) and the generalized Young
equation (29).

WhereasEq. (29)derived within phenomenological ther-
modynamics is rigorous at the choice of dividing surfaces as
is indicated, its various truncated forms can be used, if at all,
only in restricted regions.
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