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Abstract 

We present a broad survey of recent polynomial algorithms for the linear assign

ment problem. They all use essentially alternating trees and/or strongly feasible 

trees. Most ofthem employ Dijkstra's shortest path algorithm directly or indirectly. 

When properly implemented, each has the same complexity: O( n3 ) for dense graphs 

with simple data structures and O( n2 log n + nm) for sparse graphs using Fibonacci 

Heaps. 

Introduction 

The assignment problem is one of the most-studied, well-solved and important problems in 

combinatorial optimization. It has numerous applications in various scheduling problems, 

vehicle routing etc. More importantly, it emerges as a subproblem in many NP hard 

problems. In particular it occurs as a relaxation of the travelling salesman problem. It has 

been generalized to bottleneck, quadratic and algebraic cases, see [24, 25] for references. 

Solution procedures vary from primal-dual/successive shortest paths [19,58,59,81,43, 

41,26,56] (see [35] for a survey), cost parametric [76], recursive [79], relaxation [39, 52], 

signature based [15, 16, 48, 9, 66, 67,68] to primal methods [17,31,6] to name just a few. 

Our aim is to give a rather informal survey of recent polynomial algorithms for the 

linear assignment problem. Our treatment is a bit biased toward our research in the field. 

Most of these polynomial algorithms have the same time complexity: O(n3 ) for dense 

graphs using simple d~ta structures, and O(n2 logn + nm) for sparse graphs using Fi

bonacci heaps [44]. These are currently the best available bounds. Unless otherwise 

stated explicitly, each of the algorithms discussed has the above complexity. 
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These algorithms share the following features: 

i) They solve, in various ways, an increasing sequence of problems to optimality; the last 

of which being the original problem, 

ii) Either they can be implemented using Dijkstra's algorithm as a subroutine after some 

transformation on the graph, or their behaviour can be better understood and im

plemented in the terminology of Dijkstra's algorithm, 

iii) They work with alternating trees and/or strongly feasible trees. 

In section 1, we set up the notation and terminology used in the rest of the paper. We 

tried to be uniform in our terminology and notation as far as possible. For this purpose, 

we first translate some of the algorithms to our terminology. Then we discuss algorithms 

according to our classification. We try to group the algorithms according to motivation 

and basic algorithmic primitives. Since most of the algorithms are 'near-equivalent' to 

each other, our classification may seem a bit arbitrary. Starting with section 2, we discuss 

the Hungarian algorithm, followed by successive shortest path, primal simplex, signature, 

dual simplex, signature guided, forest and other algorithms. 

1 Preliminaries 

We view the assignment problem (AP) as an instance of transshipment problem over a 

directed (bipartite) graph, G = (U, V, E) = (N, E), where U is the set of source (row) 

nodes, V is the set of sink (column) nodes, N = U U V and E is the set of edges. The 

edge e = (i, j) E E with tail t( e) = i and head h( e) = j, is directed from its tail to its 

head, has weight (cost) We = Wij and flow Xe' Thus the AP can be formulated compactly 

as 

min {wx : Ax = b, x ~ 0 } (1) 

where x EnE, bE nN with bu = -1, u E U, b1J = +1, v E V, and A is the node-edge 

incidence matrix of G. 

The dual of (1) is 

such that 

Yj - Yi :s: Ce ,Ve = (i, j) E E (2) 
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Let us set up some notation: for S, X , YeN and X n Y 0, 

,(S) = {e E E : t(e), h(e) E S} 

5(X, Y) = {e E E : t(e) EX, h(e) E Y} 

5+(X) = 5(X,N\X), 5-(X) = 5(N\X,X) 

G[S] = (S, ,(S)) 
) (3) 

For a subgraph H of G, we will represent edge set and node set of H by E(H) and N(H). 

But, very often we will simply write H for its edge set and node set. For u E U, N+( u) will 

denote nodes or edges incident with u, and for X C U, we have N+(X) = UUEXN+(U). 

dH ( v), for v E N is the degree of node v in the (undirected) subgraph H. Degree 1 

non-root nodes are called leaf. 

The reduced cost of the edge e = (i,j) with respect to y is We = we(y) = Wij - Yj + Yi. 

Given a dual feasible y, let E (y) be the equality set defined as 

E(y) = {e E E : We = o} (4) 

and equality subgraph 

G(y) = (N, E(y)). (5) 

A set of edges M C E is a matching if degree of every node in G[M] = (N, M) is either 

zero or one. Degree one nodes are called matched and degree zero nodes are called free. 

An edge e E E \ M will also be called free. A matching M will be called perfect if every 

node is matched. We often assign flow values x E RE as Xe = 1 -{==? e E M and 

Xe = 0 -{==? e t/. M. For a dual feasible y, a matching M in G(y) will automatically 

satisfy complementary slackness conditions 

Xe > 0 ==} We = O. (6) 

Such a (y, M) pair is often called compatible. The importance of the compatible pair 

concept comes from the observation 

Theorem 1 Let y' be y restricted to N(M). For a compatible pair (y, M) we have: 

i) (y', M) is compatible, 

ii) y' and edges in M solve the assignment problem and its dual defined over G[N(M)]. 

To store the current matching we use an array named mate. If e = (i, j) E M, we will 

say mate(i) = j and mateU) = i. Node i E N will be free if and only if mate(i) = O. 
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A path in G(y) is alternating (with respect to matching M) if the edges are alternately 

free and matched edges. An augmenting path between i, j E N is an alternating path 

with the additional condition that i and j are free. An augmentation is just the switching 

of matched and free edges in an augmenting path, which increases the size of matched 

edges. 

In the context of primal simplex and dual simplex; it is well-known that any basis of 

(1) corresponds to a tree T of G. Given any T, it is well-known that the flow values 

X e , e E T are uniquely determined for each compatible (I: bv = 0) 'supply' vector b. 

Moreover, the complementary dual basic solution is also uniquely determined once one of 

the y's is fixed at an arbitrary level. 

For every co-tree edge e E Tl. = E - T , T U e contains a unique cycle C(T, e), called 

the fundamental cycle determined by T and e. We orient C(T, e) in the direction of 

e. This will give us a partition of C(T, e) as 

C(T, e) = C+(T, e) U C-(T, e), e E C+(T, e) (7) 

where C+(T, e) contains all edges of C(T, e) having the same orientation as e. 

For f E T, T - f will have exactly 2 components, say X and Xc = N - X, with 

t(J) EX. Unconventionally, we will call f the cut-edge, and X the cut-set. 

The set of edges with one end in X and the other in Xc is called the fundamental 

co cycle of G determined by T and f, D(T,1). This can now be partitioned into 

(8) 

where D+(T, 1) contains all the edges in the cocycle having the same orientation as f, 

i.e. {j E E : t(j) EX, h(j) E XC} . 

The dual variable change in primal simplex, dual simplex and primal-dual algorithms 

will be 

{ 
Yv 

Yv = 
Yv + E 

v E Xc 

v EX 
(9) 

for some Xc N; where E is determined so that for some edge e E 8+(X) U 8-(X) we have 

We = 0 with respect to new dual variables, i.e. E is the amount of dual (in)feasibility of 

the edge e; E = ±We• 

Thus, dual variable (potential) change defined by (9) will cause the following changes 

in reduced costs: 



{ 
w·-t: 

Wj = ~: + t: 
Wj 
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j E 8-(X) 

j E 8+(X) 

otherwise 

(10) 

Cunningham [29) and Barr et al. [18), introduced the concept of strongly feasible tree. 

Given a specified node, say, r as a root, let distT( x) be the distance of the node x from r in 

the (undirected) tree T, i.e., the number of edges in the unique path from r to x. We say 

e E T is directed toward r or a reverse edge, if distT( t( e)) = distT( h( e)) + 1 , otherwise 

it is directed away from r or a forward edge. A feasible rooted tree is strongly feasible 

(SFT) if V f E T, x f = 0 implies f is a forward edge. 

Let T be the tree obtained from T by changing all reverse edges to forward edges. 

Vv E N, v =J r, there is a unique edge e = (u,v) E T with h(e) = v. Through such an 

edge the parent of v is defined as p( v) = u. T is called a branching rooted at r. T is 
represented as a data structure using parent, first (child), left (sibling) and right (sibling) 

pointers. A node of degree 2 is completely characterized with parent and first pointers 

in a tree. Clearly, the root has no parent. For v =J r, when (p(v), v) is deleted from T, 
the component containing v is called the subtree rooted at v and denoted by T( v). This 

subtree contains all nodes that can be reached from v by a directed path in T. Clearly, 

v E T( v) and r E T( v) {:=:? v = r. Thus in terms of original orientation of tree edges, 

an edge is forward if and only if its tail is the parent of its head. 

Relevant properties of S FTs can be summarized as follows: 

Lemma 1 Let T be a spanning tree for the AP rooted at a sink node, r. Then the 

following are equivalent. 

(i) T is a SFT, 

(ii) Every reverse tree edge has flow 1, and every forward tree edge has flow 0, 

(iii) d(r)=l, d(v)=2, Vv =J r, v E V where d(.) denotes the degree of the specific node. 0 

Clearly (ii) implies that T is primal feasible and (iii) implies that the column signature 

of T, i.e., the degree sequence of the column (sink) nodes is (2,2,2, ... ,2,1). Moreover, 

if any T has column signature such as above and rooted at a node of degree 1, then such 

a T is SFT. 

Clearly, a dual-feasible tree which is also SFT is an optimal tree. A signature-guided 
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method changes the tree by linking and cutting edges to obtain a tree having the desired 

signature, i.e., (2,2,2, ... ,2,1) . 

Alternating Tree 

An alternating tree T is a tree rooted at a free source node r so that for each vET, 

the path from r to v in T is an alternating path. Moreover it has the following properties: 

• d( v) = 2, V v E V nT, 

• r is the only free node, 

• all leaf nodes are source nodes, 

• when matched edges in T are reversed in orientation, the new tree is a branching. 

Equivalently, all matched edges are reverse and all free edges in T are forward. 

• for some natural number k we have the equalities: IN(T)I = 2k+ 1, IE(T) nMI = k, 

IN(T) n UI = k + 1, IN(T) n VI = k. 

2 The Hungarian Algorithm 

The primal-dual algorithm of Kuhn [58] and Munkres [59] starts with a compatible pair 

(y, M) (M = 0, y = 0 is acceptable for w 2:: 0), and maintains such a pair throughout 

the algorithm. It searches for an augmenting path by building an alternating tree rooted, 

say, at a free source node r. When the alternating tree reaches a free sink node, an 

augmenting path is found. Then the matching is enlarged by augmenting along this path 

and the process is repeated with a new alternating tree rooted at a free source node, if 

any. Let us call the work involved between two successive augmentations a stage. Thus 

the primal-dual algorithm needs at most n stages. The alternating tree and the current 

matching are subgraphs of the current equality sub graph G(y). 

When the alternating tree rooted at a free source node r is maximal, dual variables are 

changed so that at least one new edge (whose tail lies in the alternating tree and whose 

head is in the outside of the tree) is added to the equality subgraph to allow a larger 

alternating tree. The alternating tree is maximal means S+(T) n E(y) = 0. Letting 

E = min{we : e E S+(T)} = We, (findmin) 
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if [j+(T) =1= 0, then at least one edge e is added to the alternating tree in the new equality 

sub graph. In order to achieve this, dual variables are updated according to: 

Yv"'- { 
Yv - I: if vET 

Yv otherwise 
(dual- update) 

Note that as a result of the dual variable change yb is increased by 1:. I: > 0, simply 

because T was maximal; if there were e E [j+(T), with We = 0, the algorithm should have 

used it. If however, [j+(T) = 0, then there is no perfect matching saturating T by Hall's 

theorem: N+(UnT) = VnT and IUnTI = IVnTI + 1 by the definition of the alternating 

tree. From now on, we will assume, for ease in presentation, that the graph under study 

has a perfect matching. 

It is worth pointing out that a theorem of alternatives comes into the picture at this 

point. The current alternating tree is maximal means the system 

A'x = b, x ~ 0 

has no solution, where A' is the submatrix of A whose columns are indexed by edges in 

E(y). Then the alternative system 

11"A':::; 0, 11"b = 1, 

has the solution 11" = -XN(T), where N(T) is the node set of T and X is the characteristic 

vector. Thus the dual-update can be viewed as 

y ...- y + 1:11" , 

and I: found by find-min is the largest value maintaining dual feasibility of y. Hall's 

theorem corresponds to case where 11" satisfies 11" A :::; 0, 11"b = 1; implying that the 

system Ax = b, x ~ 0 has no solution, hence G has no perfect matching. 

Thus the Hungarian algorithm is an instance of primal-dual algorithm of the general 

linear programming. Actually, the latter is a generalization of the former. The general 

primal-dual algorithm is finite whereas the Hungarian algorithm for the assignment prob

lem is polynomial. The polynomiality of the Hungarian algorithm for the assignment 

problem comes from the continuation of the same alternating tree until an augmentation 

occurs or a proof that there is no perfect matching available. When we continue working 

with the same alternating tree, the tree grows at most n times, since we add at least 2 

nodes at each 'grow _tree' step. If we change the algorithm so that after each dual-update 

we start afresh with a free source node as the alternating tree, the algorithm may take 
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exponential time, since we are only relying on the increase in the objective function. This 

is exactly what happens in Bertsekas' algorithms [19, 21]. Moreover,if the weights are ir

rational numbers, then the method may fail to give the optimal solution, for the sequence 

of objective function values may converge to a value lower than the optimal objective 

function value as shown by Araoz and Edmonds [14]. 

We now give the pseudo code for the tree version of the Hungarian algorithm for a 

stage. Nodes in T are labeled. L contains edges of the form e = (u, v) in the equality 

subgtaph G(y) with u E T which are not processed yet, and it is automatically updated 

after each dual-update and grow _tree operation. 

The Algorithm Al 1* stage * / 
Input: Compatible pair (y, M), root r E U 

Initialization: T +- r, L +- N+(r), done +- false 

while not done do 

if L = 0 then findmin, dual-update 

else select eEL, e = (u,v), L +- L \ e 

if v ~ T then 1* v is unlabeled * / 
if mate( v) = ° then Augment, done +- true 

else w = mate(v), T +- T+ (u,v)+ (v,w) 1* grow_tree */ 

endif 

end if 

endwhile 

Now we would like to show that dual variable updates can be postponed until an 

augmentation occurs and the amount of dual variable change for each update can be 

calculated efficiently. Suppose we have k dual variable updates before an augmentation 

and let Ti be the tree just before i + 1 'th dual update and yi be the corresponding dual 

vector for i = 0"", k - 1, and Tk and yk be the tree and the dual vector when the 

augmentation detected. Furthermore, let So = TO, and Si = Ti \ T i- 1 , i :::: k; and 

Si = Si, for i = 0,,", k -1, Sk = N \ Tk-l. Si, 1 :::: i :::: k is the part of the tree grown 

after i'th dual-update. Let Ei be the amount of dual variable change and Ei be the set of 

edges e such that w(yi-l) = Ei. Let Eo = 0, Ei = 2:j=o Ej, I'. = Ek. Clearly, 

i+1 _ { y~ - Ei V E Sj, j :::: i 
yv - . 

y~ otherwise 

and consequently, 
k 

k 0 '" yv = yv - ~ Ej, if v E Si, i < k . 
j=i+1 
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Let us define a new dual vector y by 

for v EN. 

Clearly, ykb = yb, and the reduced costs with respect to yk and yare the same. Then 

i 

yv = y~ + L tj = y~ + Ei, for v E Si . 
j=o 

So the main work is the calculation of E;. Instead of updating yi, we will update f/ = y. 

Y will be, just before the i'th dual-update or find-min as 

_ {yV 
Yv = 

y~ 

for v E Sj, j < i 

otherwise 
(11) 

Let e E Ei , e = (u, v), u E Sf, V E Si, £ < i. We need to show that we(y) = Ei <==? 

we(yi) = ti, to prove the validity of the new update. Notice that, 

i-1 i-1 

we(yi) = We - y~ + y~ = We - y~ + (y~ - L tj) = we(yO) - L tj . 

j=£ j=£ 

On the other hand, 

£-1 £-1 

we(y) = We - Yv + Yu = We - y~ + y~ + L tj = we(yO) + L Ej . 

j=O j=O 

From these, it follows that 

Thus one can update dual variables as in (11), and compute E's accordingly. Then 

one does not need to carry the list L, but the list Ei after each findmin. But then the 

computation of Ei and update of y's are essentially the same with Dijkstra's algorithm 

[38]. 

We now give a modification of the algorithm Al which implements the above dual

update. Instead of the list L C E(y), we carry the node list Q = V \ T. For i E Q, 7ri 

stores the temporary label min { Wu,i (y) : u E Un T} and nb( i) stores the tail of the edge 

defining 7ri. The routine findmin returns E, u, v, where v = argmin{7ri : i E Q} and 

E = 7rv , U = nb(v). 

The Algorithm A2 /* stage * / 
Input: Compatible pair (y, M), (free) root r E U 
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Initialization: Q (- V, 7ri (- 00, nb(i) (- 0, for i E N, 7rr (- 0, scan(r), done (- false 

while not done do 

findmin 

if mate( v) = 0 then Augment, done (- true 

else 

Q (- Q \ v, w (- mate(v), Yv (- Yv + c, 

T(-T+(u,v)+(w,v), scan(w) 

endwhile 

Yw (- Yw + c, } 

Yj (- Yj + c for j E v U N \ T /* Extend..Dual */ 

scan(i) /*iEU*/ 

for (i, j) E E and j E Q do 

temp = Wij - Yj + Yi 

if temp < 7rj then 

7rj = temp, nb(j) = i 

endif 

endfor 

endscan 

3 Successive Shortest Path Algorithms 

There is a strong relationship between assignment problem (AP) and shortest path prob

lem (SP). It is known since Ford-Fulkerson [43] that one can solve AP by solving a min

imum cost flow problem over an extended graph. Just add a supersource s and connect 

to every source node via artificial arcs (s, i), i E U with zero cost and unit capacity, and 

add a supersink t and arcs (j, t), j E V with zero cost and unit capacity. Original edges 

retain their costs and get capacity 1 or 00. Given any graph G and 0 - 1 flow vector 

x, the residual graph RG( x) is obtained from G by reversing the direction of edges with 

flow 1, and multiplying their cost by -1. General primal-dual algorithm for the min-cost 

problem when specialized to assignment problem (with w ~ 0) reduces to: 

Algorithm A3 

0) Pass from G to extended graph G' with (super)source sand (super)sink t 

G (-- G' , y=o 
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1) fori=l,···,ndo 

Solve SP over G ( using reduced costs Wij = Wij - Yj + Yi (t)) 

Send one unit of flow from s to t in G with dual variable vector 7r. 

G<-RG, 

endfor 

2) Edges in G, except artificial edges, in the reverse direction give the optimum match

ing and Y is an optimal dual vector. 

Since in passing to residual graph the sign of edge costs change, (without using 0)), 

one can not use Dijkstra's algorithm and hence complexity of SP becomes O(n3 ) resulting 

O(n4) complexity for dense AP's. Edmonds-Karp[41] and Tomizawa[81] independently 

observed that one can work with reduced costs. Since edges subject to reversing are on 

the shortest path tree in the current graph, their reduced costs are zero, whence remain 

zero. Thus, edge costs in SP calculations remain nonnegative and hence one can use 

Dijkstra's algorithm resulting O(n3 ) or O(n2 log n + nm) algorithm depending on density 

of the graph and data structures used. 

The classical Kuhn's algorithm grows only one alternating tree rooted at a source 

node. To realize Kuhn's algorithm by the above algorithm one does not need to add a 

supersourcei but choose a free source node as the root for SP. 

The Shortest Path Problem in the above algorithm is the single source problem. In 

other words, one needs to reach or label every node in the original graph. Since Dijkstra's 

algorithm is a special case of general primal-dual algorithm[65], one does not need to form 

full shortest path tree. In other words, one can stop SP algorithm after at least one free 

sink node is reached. Then one can extend dual-variable vector to unlabeled nodes by 

assigning the last label to all of these nodes. 

One can start with any compatible pair (y, M) instead of M = 0, Y = o. For 

random problems the classical row minimum/column minimum yields an initial matching 

saturating %75 of nodes on the average[35]. Nawijn and Dorhout [60] studied the size of 

maximum matchings in G(y), where y is obtained by the classical row reduction followed 

by column reduction and G is the complete bipartite graph. Under non-degeneracy and 

uniform distribution of cost coefficients assumptions, they showed that, asymptotically, 

the expected size of a maximum matching in G(y) is equal to %80 n. 

There are several successive shortest path algorithms e.g., [35, 26, 42, 47, 56, 27], 

differing mainly in the way they solve the shortest path problems. For some recent 
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improvement in data structures to solve the shortest path problem see [44, 4] and for 

earlier related works see, e.g., [33,34,36,37,40,45,49,50,53,61,62,70,80]. 

There is an alternative to residual graph. Given M one can shrink (contract) the 

edges in M; i.e. e = (u, v) can be replaced by a pseudo node, say, e. Let G be the graph 

resulting from shrinking, and t be the corresponding shortest path tree. Replacing each 

pseudo node e E t with the edge e appropriately, we obtain an alternating tree. Succes

sive shortest path algorithms are performing this shrinking and unshrinking operations 

implicitly. 

Relaxation Methods 

We now discuss 1969 algorithm of Dinic-Kronrod [39] and 1980 algorithm of Hung-Rom 

[52]. Even though Dinic-Kronrod algorithm is published a decade ago, it did not get 

the attention it deserves. We believe this is partly due to the facts that: i) the paper 

does not use LP terminology, ii) it contains significant typographical errors, and iii) the 

translation is not very good. However, when properly implemented it should be faster 

than Hung-Rom algorithm. 

Both algorithms work with semi-assignments and utilize star graphs. A semi-assignment 

is a many-to-one mapping from U to V ( or from V to U). A star is a complete bipartite 

graph K1,k for some k; that is a source node is connected to k sink nodes or vice versa 

for Kk,l. A semi-assignment M decomposes into a matching M and a collection of stars. 

In a star, there can be one matched edge. In both algorithms, the selection of match

ing edge within a star is postponed until the star reduces to a single edge. This 'equal 

employement' behaviour saves a little work. 

Let us now give an equivalent description of Dinic-Kronrod algorithm in our terminol

ogy. Let us apply the classical column minimum, find a dual-feasible y, semi-assignment 

Min G(y), with matching part M C M. Let U_ CUbe set of free nodes, and U+ be set 

of nodes of degree ;::: 2, and Uo = U \ (U _ U U + ). Nodes in Uo are matched by the edges 

in M. Let 1\ be the neighbour set of U+ with respect to M. A stage of Dinic-Kronrod 

algorithm starts with the selection of r E U_, and obtains a new semi-assignment for 

which r 1. U_. Thus the number stages is bounded by the initiallU_l. The algorithm for 

a stage amounts to finding a shortest path from r to V+ on the graph G[V U Uo + r] with 

edges in M reversed in orientation. Let P be such a path and t E V+ be the end of P 

and u E U+ be the node assigned to t by M. Then t is removed from star of u and M is 
shifted along the path P. 
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Hung-Rom algorithm starts with row minimum and obtains a dual-feasible y, a semi

assignment M. Let us define V_, Vo, V+ as the set of free nodes, matched sink nodes, and 

nodes with degree ~ 2 with respect to M. In a stage: i) they choose an r E V+ as a root, ii) 

form a shortest path tree spanning N == N\ V_ with the edges in M reversed in orientation, 

iii) choose atE V_, extend T and y to t by an edge e via e = argminG : j E 8(N, t)}, and 

iv) change the semi-assignment along the path in T from r to t. When demand vector b 

is relaxed as bv = dM( v), for v E V+, T is 8FT for the resulting transshipment problem 

over N. 

In Dinic-Kronrod algorithm only one star is involved; whereas in Hung-Rom algorithm 

one star is chosen as a root and all others are forced to be on the shortest path tree 

T. Thus in Hung-Rom algorithm the shortest path problem is solved on a larger set of 

nodes. Moreover 'relaxation' in Dinic-Kronrod is combinatorial whereas in Hung-Rom it 

is algebraic. 

Engquist [42] presented an algorithm which is essentially the same as the Dinic-Kronrod 

algorithm. It is described in LP terminology, and involves shrinking and/or reorienting 

semi-matched edges. He reports that his code is about six times faster than Hung-Rom 

code. 

4 Primal Simplex Methods 

Dantzig specialized the simplex method to networks early in 1951. The network simplex 

method in general is very efficient for network flow problems. This efficiency comes mainly 

from the fact that the network simplex algorithm works combinatorially over trees rather 

than algebraically over the matrices. 

There are several efficient primal simplex algorithms for the assignment problem, either 

especially designed for the assignment problem [18] or designed for the transshipment 

problem [46, 75]. Naturally, they all work reasonably well in practice, but theoretically 

they are exponential algorithms. 

When the network simplex method is specialized to assignment problems, degeneracy 

comes into picture. For an n X n assignment problem there are n - 1 degenerate and 

n non-degenerate edges in any basis. It has been observed by several researchers that 

about %90 percent of pivots are degenerate in an assignment problem. Roohy-Laleh [72] 

exhibits a family of problems with exponentially long non-degenerate pivot sequences. 

Cunningham [29, 30] while devising a network simplex method which does not cycle 
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introduced the concept of strongly feasible tree. Barr, Glover and Klingman, indepen

dently and simultaneously introduced the alternating basis tree. It turns out that, a 

strongly feasible tree for an assignment problem is exactly an alternating basis tree. An 

alternating basis tree resembles the alternating tree of the primal-dual algorithm. In fact, 

an alternating tree becomes a strongly feasible tree after an augmentation if rerooted at 

the free sink node causing augmentation. 

In a primal simplex algorithm, if We ~ 0, VeE E then T is optimal. Otherwise an 

edge e E T.L = E \ T is chosen with We < 0 as the pivot edge. Then a flow of value () is 

sent through C(T, e) in the direction of e. The cut edge, f, () and the flow update can be 

described as: 
() = XI = min{xj : j E C-(T,e)} 

T=T+e-f 

j E C+(T, e) 

j E C-(T, e) 

otherwise 

(12) 

y is updated so that We = o. For more information on the simplex method see, e.g. 

[28, 29, 54, 22, 71, 3]. Following the convention in [6, 18], we will choose the root of 

the 8FT as a source node and use S FT' to differentiate from the previous one. Then 

T is SFT' if Vf E T, XI = 0 implies f is a reverse edge. We need to classify co-tree 

edges as forward, reverse and cross. e E T.L is a forward edge if t( e) lies on the 

unique path from r to h( e) and a reverse edge if h( e) lies on the path from r to t( e) . 

Otherwise a co-tree edge is called a cross edge. For nodes u and v, the nearest common 

ancestor NCA(u,v) is the last node common to paths from r to u and v respectively. 

Then, e = (u, v) E E is forward if u = NCA(u, v), reverse if v = NCA(u, v), otherwise 

e is a cross edge. 

When rooted at a source node, a S FT' has the following properties: 

Lemma 2 

i) Every forward edge has flow value I, and every reverse edge has flow value O. 

ii) The root has degree 1, every other source node has degree 2. 

iii) If e, f satisfy 

e E T.L, f E C(T,e), tee) = t(f), (13) 

then the selection of f as the departing variable is valid and maintains strong feasi

bility. 
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iv) .For e E Tl. , the pivot determined by e and (13) is nondegenerate iff e E Tl. is forward 

iff f E T is forward. 

v) For e, f satisfying (13) the pivot is nondegenerate iff rEX. 

vi) For e, f = (u, w) satisfying (13): the pivot is degenerate iff X = T(u), and the 

pivot is nondegenerate iff X = N \ T( w). 0 

Cunningham and Roohy-Laleh [72] developed a genuinely polynomial primal simplex 

algorithm. The algorithm needs O(n3 ) pivots and O(n5 ) time in the worst case. The 

algorithm uses strongly feasible trees. 

Hung [51] gave a polynomial primal simplex method that requires O(n3 log~) pivots, 

where ~ = ~o and ~k = wxk - wx* is the difference in the objective function value 

between the current solution xk and an optimal solution x* , and XO is the initial basic 

solution. Let 13k = min{ We : e E E} < 0, be the most negative reduced cost at the 

iteration k (Dantzig's rule). From the equation w x = W x + w X, one obtains 

Suppose the pivot with reduced cost 13k is non-degenerate, then 

~k 1 
~k+1 = ~k + 13k :S ~k - - = ~k(l - -) 

n n 

Thus after k non-degenerate pivots with Dantzig's rule, we have 

~k :S ~o(1 - ~f . 
n 

Assuming integral w, when ~k < 1 the current solution xk is optimal. Thus, the number 

of non-degenerate pivots by Dantzig's rule is bounded by O(nlog~). Cunningham [30] 

ea;rlier bounded the number of degenerate pivots at an extreme point by n( n - 1) by 

utilizing strongly feasible trees and a certain pivot rule. Hung performs all available 

degenerate pivots (O(n2)) to ensure that the first available non-degenerate pivot has the 

largest reduced cost. Combining these, one obtains the given bound. 

Cunningham [29], Orlin [63] and Srinivasan-Thomson [76] observed the relation be

tween strongly feasible trees and a classical perturbation technique. For E small enough, 

consider the perturbed b vector 

b; = -1 + E, i E U, b~ = 1 - nE, b~ = 1, v E V, v =1= r, (14) 

where r is the root of the tree. Then any basic feasible solution of Ax = b' , X ~ ° is 
non-degenerate, and the resulting tree is strongly feasible tree for the unperturbed system. 
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Orlin [63J using this perturbation technique reduced the bound on the number of pivots 

to O(n2 log b..). To see this, notice that for the perturbed system every pivot is non

degenerate, ( for each tree edge e we have Xe ;::: t). Thus, for each pivot with Dantzig's 

rule we have 

and for t = 2
1n' we obtain 

1 k 
b..k < b.. (1 - -) 

- 0 2n2 ' 

which implies O(n2 log b..) pivot bound. He later reduced the bound to O(n2 m log n) 

where m is the number of edges and n is the number of nodes in the graph by showing 

that there exists an equivalent network with cost coefficients bounded by 4m (m!)2 ; and 

hence proving log b.. is O(mlogn). The above algorithms, [51, 63J at least implicitly, 

are influenced by the ellipsoidal algorithm. Their common feature is the reduction of 

the objective function value by a fraction depending on n or m, independent of the rest 

of the problem parameters. In ellipsoidal algorithm this ratio is exp( :~ ) , whereas, say, 

in Orlin's algorithm exp( :i). It is worth mentioning that for totally unimodular linear 

programs the ellipsoidal algorithm needs O(m2 log (mllclillbll) iterations [5, ch 4], where 

as before m is the number of variables, and Ilxll denotes the (euclidean) norm of the 

vector x. 

In [6J we presented a primal simplex algorithm with O(n2 ) pivot and O(n3 ) time bound. 

We cast the problem as an instance of transshipment problem and work on a directed 

graph. The algorithm has three features. We consider an increasing sequence of sub

graphs, the last of which is the graph of the original problem, and each one differs from 

the previous one by addition of some of the edges incident with one node. In matrix 

terms, we solve the subproblems defined by principal minors of the cost matrix. The 

motivation for this approach came from the author's work on the shortest path problem 

[8J. Moreover, we restrict the feasible basis to strongly feasible trees. Interestingly, de

generacy together with strongly feasible trees is very helpful, at least theoretically. The 

third component of the algorithm is the use of Dantzig's rule restricted to the current 

subgraph. Our algorithm is a purely primal simplex algorithm, because we carry a full 

basis of the original problem all the time. We do not attempt to evaluate the change in 

the objective function value. Instead, we study the structure of the set of nodes on which 

we make dual variable changes during the solution of the current subproblem. We call 

these sets cutsets. It turns out that: i) cutsets are disjoint, ii) edges originating from a 

cutset are dual-feasible once for all for the subgraph under consideration, iii) dual infea

sible edges have the property that their tails have no dual variable change and iv) each 
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node is subject to at most one dual variable change. Thus passing from a subproblem of 

size k x k to a subproblem of size (k + 1) x (k + 1) can be done with at most k + 2 pivots. 

Hence, we have the bound tn(n + 3) - 4 for the number of pivots. The total number of 

non-degenerate pivots is bounded by n - 1. The total number of consecutive degenerate 

pivots is bounded by t(n + 2) (n - 1). All of these bounds are sharp. 

Ahuja and Orlin [2] presented a new primal simplex algorithm with O(n2 log W) pivot 

and O(nmlogW) time bound where W is an upper bound 0]1 Wij' Their pivot rule is a 

variation of Dantzig's rule and employs scaling. Initially, the parameter a = W, and any 

edge with We ::; -ta is a valid pivot edge. When there is no valid edge then a is replaced 

with ~. 

5 Signature Methods 

The dual simplex algorithm for the transshipment problem starts with a dual feasible 

tree. If Xj ~ 0, V f E T, then T is optimal. Otherwise the algorithm chooses an f E T 

with Xj < 0, as the leaving edge (cut-edge), and chooses a co-tree edge e E Tl. as the 

entering (pivot) edge to satisfy dual-feasibility via 

E=we=min{wj :jED-(T,f)}. (15) 

Thus the result of a pivot is the new tree T' = T + e - f. A pivot will increase flows 

on the edges C+(T, e) by () = -xj, decrease flows on C-(T, e) by (), and increase the 

reduced cost of the edges in D+ (T, f) by E and decrease that of the edges in D- (T, f) by 

Eo Note that for Y being the component of T - f containing t(f) we have the equalities 

5+(Y) = D+(T, f) and 5-(y) = D-(T, f). 

Since a SFT is automatically primal feasible, a dual feasible SFT tree is optimal. 

Balinski [15] starts with a specially structured dual-feasible tree and tries to obtain a 

SFT. Balinski's algorithm performs essentially dual-simplex pivots, but the algorithm 

never evaluates or updates flow values explicitly. Its behaviour is dictated by the degree 

structure or signature of the tree. Even though Balinski starts with what is known as the 

Balinski tree, one can start with any dual feasible tree [48]. Let V+ = {v E V : d( v) ~ 3}, 

V_ = {v E V : d(v) = I}. A SFT can be characterized by either IV+I = 0, or equivalently 

by IV-I = 1. 

Balinski defines the level of a tree as the cardinality of V_. By stage we mean the 

total work involved in reducing level by 1. Then Balinski's algorithm for a stage can be 

described as: 
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Algorithm A4 /* stage * / 
Input: s E V+, t E V_ 

reroot T at t, S +- S 

while S ~ V_ do 

1= (p(s),s) /* cut-edge */ 

e = argmin{wj : j E D-(T, 1)} 

T+-T+e-I 

/* link-edge * / 

s +- t(e) 

endwhile 

Let Sl, S2,···, Sk be the nodes encountered at the while loop, and iI,···, Ik, and 

e1,· .. ,ek be the corresponding cut-edges and link-edges respectively. Let Xi be the 

component of Ti- Ii containing Si. Thus J; E 5-(Xi) and ei E 5+(Xi). Since Si+1 = t( ei) E 

X i+1, and Si+1 ~ Xi, it follows that X i+1 J Xi and s;'s are distinct, and {Sl' S2,···, Si} C 

Xi. Since the while loop breaks once Si E V_, the number of iterations in a stage is 

bounded by IV \ V_I. SO, if the current level is k, then one can have at most n - k pivots. 

Thus the total number of pivots is bounded by 

n-1 n-2 ( ) 

~(n-k)=~j= n~l 

Goldfarb [48] developed a sequential version of the signature method which starts 

with 1 x 1 problem, and solves k + 1 x k + 1 problem using an optimal SFT solution 

to k x k problem, for k = 1,···, n - 1. Given a SFT TI for the k x k problem of the 

graph GI = (UI, VI) rooted at r E VI, with dual vector y, TI and y is extended for the 

k + 1 x k + 1 problem of G = (UI + u, VI + v) as: 

Yv = min{Yi + Wiv : i E UI} = Yil + Wilv 

and 

Yu = max{Yj - Wuj : j E Vi U V } = Yv - Wuv 

and the new tree as 

T +- TI + (u,v) + (u,v) . 

If v = v or v = r then T is a SFT with root r or root v, and the solution of the new 

subproblem is at hand. Otherwise d(v) = 3 and d(r) = d(v) = 1. Then for s = v and 

t = r or t = v the previous algorithm requires at most k pivots. 
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6 Purely Dual-Simplex Algorithms 

The above algorithms, strictly speaking, are not dual simplex algorithms for they may 

cut an edge with zero flow (Balinski tree) or with positive flow (arbitrary dual-feasible 

tree or Goldfarb's variant). 

Balinski [16] later introduced a notion of Dual Strongly Feasible Tree (DSFT) for the 

assignment problem with very strong properties. Paparrizos [69] extended this concept to 

the transportation problem somehow, but the resulting algorithm for the transportation 

problem is pseudo-polynomial. 

Let T be a dual-feasible tree for AP rooted at a sink node r. Let L be the set of edges 

in T attached to r and to a leaf, i.e. L = {(u,r) E T: d(u) = I}. Then T is DSFT if: 

i) JET \ L, reverse ==? xi ~ 0, 

ii) JET, forward ==? xi 2: 1. 

Notice that for J E L we have xi = 1. Let u+ = {u E U : d(u) 2: 3} and 

U_ = {u E U : d(u) = 1 }. The relevant properties of DSFT are given in [16] as: 

Lemma 3 Let T be a DSFT rooted at rEV. Let u E U+ and let J = (u,p(u)). Then 

i) xi ~ -I, and 

ii) the selection oj J as the cut-edge oj a dual-simplex pivot maintains DSFT. 

Thus DSFT is maintained as long as the cut-edge is a reverse edge J = (u, v), with 

d(u) 2: 3. 

Balinski's dual-simplex algorithm for a stage is: 

Algorithm A5 (s) 1* stage * / 
Sf-S 

while des) 2: 3 do 

let J = (s,p(s)) and e E TJ.. via (15) 

Tf-T+e-J 

Sf- tee) 

endwhile 

Letting ei, Ji, Ti, and Y; be respectively pivot edge, cut-edge, tree and the component 

of Ti - Ji containing Si = t(Ji), with Ti+1 = Ti + ei - 1;, it follows easily that Y; c Y;+1, 
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s;'s are distinct and {SI,"" s;} c Yi. Thus the number of pivots in a stage is bounded 

by 1 U \ U _I measured at the beginning of the stage. Hence we obtain the same bound for 

the total number of pivots as before. 

We should point out that the final SFT is rooted at a source node. This is so because 

the algorithm works with row signatures instead of column signatures (this is our version 

of Balinski's algorithm). 

Akgiil's Sequential Algorithm 

Akgiil [7] presented a sequential algorithm which, starting with trivial problem (of a 

perturbed system) APo, solves API,' .. APn and from the last one, obtains an optimal 

solution of the original problem. The final solution need not be a tree solution, but a 

collection of strongly feasible trees each rooted at a source node. Let V = {VI, vz, ... ,vn } 

be an arbitrary ordering of sink nodes, and let r == va be a dummy sink node. Form the new 

graph G# == (U, V, E + {(u, r), u E U}), and define Gk as Gk = G#[U + {va"'" vdJ, and 

let APk be the transshipment problem over Gk with bu = -1, u E U, bVJ = 1, 1 s:: j s:: k, 

and br = n - k. Assign W ru = K, for u E U (for the artificial edges). Clearly Yr = K, 

Yu = 0 for u E U is feasible for APo, and Go is a feasible hence optimal tree for APo' Here 

K is a large constant. 

Let T; be an optimal D8FT for APk • Then T; - r will be disjoint union of (primal) 

8FT's each rooted at a source node together with n - k isolated source nodes. Letting 

v == Vk+I, Gk+l contains, in addition to Gk, the node v and the edges 8(U, v). Given T; 

and v, the dual vector Y is extended to the node v and a new edge is added to T; to 

obtain T, a D8FT for Gk+l via: 

Yv == min {wuv + Yu : (u, v) E E } = WSV + Y. 

and T = T; + (s,v). If d(s) = 2 then T is optimal. Otherwise, d(s) = 3, and all the 

reverse edges from r to s have flow value -1. Even though a dual simplex algorithm can 

choose anyone of them as a cut-edge, there is a unique cut-edge which maintains DSFT, 

namely f = (s,p(s)). Solving APk+l starting with the above T will be referred as stage 

k + 1. The sequential algorithm for solving APk+l is as follows: 

Algorithm A6 (8) /* stage * / 
Sf--8 

while d(s) = 3 do 

let f = (s,p(s)) and e E T.l via (15) 



Tt-T+e-J 

s t- t(e) 

endwhile 

105 

The arguments given for the Balinski's algorithm remain valid. One can easily show 

that the total number of pivots is bounded by G). 

The O(n2 ) bound on the number of pivots will not translate into O(n3 ) time bound for 

the dense case. For this one needs to utilize the nested structure of various Xi'S or Y;'s. 

One can implement these algorithms so that the total work in a stage takes O(n2 ) for 

the dense case with simple data structures and O(m + nlog n) for the sparse case using 

Fibonacci heaps. For details see [16,48, 7,9]. 

Paparrizos [68] developed a sequential dual simplex algorithm similar to ours. He starts 

with a Balinski tree and from that tree he drives the sequence of problems to be solved. 

The solution of the subproblems are essentially the same with ours. 

7 Signature Guided Algorithms 

Paparrizos [66] introduced a non-dual signature method which solves the n by n assign

ment problem in at most O(n2 ) pivots and O(n4) time. 

In [9], a modification of Paparrizos' algorithm, is given: it is a dual-feasible signature

guided forest algorithm which terminates with a strongly feasible tree. 

First, we will describe Paparrizos'[66] algorithm in our notation. His algorithm works 

with, what we call, layers. Initial tree is dual-feasible and is rooted at a source node 

and all sink nodes of degree 1 are attached to this source node, i.e., a Balinski tree. A 

layer consists of two parts: decompose and link. To decompose a tree, a sink node 

of degree ~ 3 which is minimal in distance to the root is identified. If there is no such 

node, then T is S FT and hence it is optimal. Let v E V be such a node. Then the edge 

(p( v), v) is deleted and the cutoff subtree rooted at v is identified as a 'candidate tree', 

and is denoted as say, Tv. The process is continued until the tree rooted at r contains no 

sink nodes of degree ~ 3. The tree rooted at r is called T+ and T_ is the collection of 

candidate trees. The link part of the algorithm is as follows. 

while T_ i- 0 do begin 

e t- argmin{we : e E 8(T_,T+)} 

f t- We, let t(e) E Tk 



Y1J f- Y1J - E Vv E Tk 

T_ f- T_ \ Tk 

T+ f- T+ + Tk + e 

endwhile 
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The main invariant during link is that the subtree T+ is dual-feasible, i.e., edges in 

,(T+) are dual-feasible. Consequently, when a layer is finished, the new tree is dual

feasible. Since the layer algorithm is continued until T is SFT, the algorithm stops 

with an optimal tree. The pivot bound is O(n2 ) but the number of layers also has the 

same bound. This results in an O(n4) algorithm. Moreover, during a layer, dual-feasibility 

may be violated. 

In the new algorithm, the layer concept is abandoned altogether. After linking a subtree 

to T+ via sink node v, instead of linking other trees in T_ to T+, decompose is applied if 

possible. So the algorithm performs a simpler form of link and decompose alternatively 

(some decompose could be vacuous). The whole process is divided into stages which will 

facilitate an efficient implementation of the algorithm. 

We also make dual variable changes on the whole T_ rather than on a subtree of it. 

Consequently, we obtain a dual feasible algorithm with the state of the art complexity. 

Now, we describe the new algorithm. 

For a tree (forest) T, let 0'1 = 0'1(T),0'2,0'3 be the number of sink nodes of degree 1, 

degree 2 and degree at least 3 respectively. Hence, T is SFT if and only if 0'1 = 1,0'2 = 

n - 1,0'3 = O. The level of a tree is O'l(T). Our algorithm works with stages through 

each of which 0'1 is reduced by 1. The computational cost of a stage will be O(n2) for 

the dense case and O( n log n + m) for the sparse case. 

We start with the well-known 'Balinski-tree' rooted at a source node 'f'. We then apply 
I 

decompose. Thus, we obtain T+, and T_ = UTi and l ~ 0'3' 

i=l 

Our link routine (at say kth iteration) is as follows: 

begin 

end 

e = (u,v) = argmin{we : e E 5(T_,T+)} 

let E = We and t( e) = u E Tq 

Y~ f- Y z - E V Z E T_ 

T~ f- T+ + Tq + e 

T!.. f- T_ \ Tq 
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where T = T_ UT+ is the forest at the kth iteration and T' = T~ UT~ is the forest obtained 

after the kth link. 

A link followed by a, possibly vacuous, decompose is called a pivot. Let d( v) be the 

degree of v in T~. Depending on d(v) where v = h(e) (e is the link-edge at kth link), we 

identify 3 types of pivots. 

d( v) = 3: In this case, we cut the edge (p( v), v) from T~, and add the cutoff subtree 

rooted at v to T~. This is called a type 1 pivot. 

d( v) = 2: In this case, a stage is over. Here, we check whether the subtree of T~ rooted 

at v, which is Tq + e contains any sink node(s) of degree ~ 3. If so, we apply 

decompose and add the resulting subtrees to the collection T~. Otherwise, we just 

continue. The former case is called type 2 pivot and the latter type 3 pivot. In 

type 2 pivots, the number of subtrees in T~ may increase by more than one. In 

type 1 pivots, the number of subtrees in T~ is the same as that of T_, and in type 

3 pivots the number of subtrees in T~ is one less than that of T_. 

The algorithm continues until T_ = 0 and terminates with a strongly feasible and 

hence an optimal tree T +. 

Lemma 4 The new forest T' = (T~, T~) is dual-feasible. 

Proof: It suffices to show that with respect to dual variables y', forest T is dual-feasible 

and the reduced cost of the link-edge e is zero. Clearly, the reduced costs of the edges in 

,(T_) and ,(T+) do not change. The reduced costs of the edges in 5(T_, T+) decrease by E 

and those in 5(T+, T_) increase by Eo Since E ~ 0, edges in 5(T+, T_) remain dual-feasible. 

Edges in 5(T_, T+) are also dual-feasible simply because of the way link-edge e is chosen. 

With respect to y', edge e has zero reduced cost. Therefore, T + e is dual feasible. Clearly, 

decompose routine does not affect dual-feasibility. As a result, T' is dual-feasible. 0 

Since the algorithm maintains dual-feasibility and stops with SFT, it is valid. 

The total number of pivots is bounded by (n -l)(n - 2)/2. 

8 Forest Algorithms 

Here we present a forest version of the classical primal-dual algorithm of Kuhn imple

mented in the spirit of successive shortest paths. Strictly speaking, we successively solve 

a shortest path problem over the residual graph whose arc costs are reduced costs, until 
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optimality. We grow a forest of alternating trees each rooted at a free source node, and 

allow strongly feasible trees each rooted at a sink node 'float' around. We do not neces

sarily stop when an augmenting path is found. When an augmentation happens we do 

not discard the whole alternating forest. We reroot the tree subject to augmentation on 

the free sink node causing augmentation and obtain a strongly feasible tree rooted at that 

sink node. When we grow an alternating tree with an edge whose head lies in a non-trivial 

strongly feasible tree, if necessary we decompose that tree and append a maximal subtree 

to the alternating tree. The subtree may contain more than one matched edges, which 

we call as 'block pivot'. 

Block Pivots 

The key to our 'block pivot' is the relationship between an alternating tree and a strongly 

feasible tree. Recall that if T is an alternating tree rooted at a source node rand T is 

subject to augmentation with edge e = (u, v), then T' = T + (u, v) is a strongly feasible 

tree when rerooted at the (previously free) sink node v. Recall also that it is very easy to 

identify the matched edges in a SFT. Thus after an augmentation we reroot the current 

alternating tree and retain it as a SFT. 

Let T be an alternating tree rooted at r, and T be a SFT rooted at q E V, and 

suppose in the primal-dual algorithm we apply grow _tree step with the edge e = (u, v), 

where u E T and vET. Ordinarily, we grow the alternating tree by adding edges e and 

(v, mate(v)) to T. In a block pivot, we add e and Tv the subtree of T rooted at v to T 

(N(Tv) = N(Tv)). Thus, if v = q then we have T ~ T + (u, v) + T, otherwise we delete 

the edge f = (p( v), v) from T obtaining, say, Tq and Tv and let T ~ T + (u, v) + Tv. 

Clearly, in both cases T will be an alternating tree, and in the latter case Tq will remain 

a SFT. 

Like other primal-dual/successive shortest path algorithms, the new algorithm works 

in stages which involve finding a set of cheapest augmentations, updating matching and 

dual variables and continues until an optimal perfect matching is found. 

Let us set up some notation. We use UF , VF to denote set of free source/sink nodes. 

We will maintain a set of alternating trees each rooted at a free source node, possibly 

a trivial tree consisting of a root. This collection will be called Planted Forest (PF). 

Since each isolated node is a trivial tree, the set VF will be called, alternately, Trivial 

Forest (TF). Moreover, we will have several SFT's containing equal number of source 

nodes, sink nodes and matched edges. Each such tree is rooted at a sink node of degree 
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1. The collection of such trees will be called Matched Forest (MF). The union of TF 

and MF will be called as Floating Forest (FF). PF, MF and TF will be maintained via 

a circular list containing roots of the trees in each forest. 

Q denotes set of nodes that can be appended to planted forest. It is initially identical 

with node set of floating forest, but may differ slightly later. For j E Q n V, 7r(j) holds the 

minimum reduced cost of the edges whose tail lies in Planted Forest and whose head is j 

and tail of such an edge is stored in nb(j). In order to facilitate multiple augmentations, 

we carry the field sroot (source root), which identifies for each node in the planted forest, 

root of the alternating tree which contains that node. We also carry two scalars labeled 

and augmented which counts number of nodes in VF which are reached and which will 

be subjected to augmentation. T denotes any tree, and T; denotes the tree containing the 

node i. y denotes the cumulative dual vector and 7r denotes dual vector for the shortest 

path problem. 

The Algorithm AT 

Input: (y, M), PF, FF 

global: y, 7r, E, sroot, augmented, labeled 

while VF i 0 do begin /* shortest path * / 
InitializeJlhortest_path 

repeat 1* solve shortest path * / 
k = argmin{7r(i) : i E Q n V} /* findmin */ 

E = 7r(k), u = nb(k), £ = Jsroot(u)J 

If k E VF then /* k is free sink node * / 
Count_labeled_and_augmented 

else /* k is not free * / 
Grow_Tree 

until labeled and/or augmented is large enough 

Augment 

Extend_Dual 

y+-y+7r 

endwhile 

CounLlabeled_and_augmented (k, u, £) 

Q +- Q \ k, labeled +- labeled + 1 

If sroot(£) = £ then 1* augmentation * / 
sroot(k) = £, p(k) = u 



sroot(£) = -£ 1* mark £ as used * / 
augmented t- augmented + 1 

endif 

endCount_labeled_and_augmented 

Grow_Tree (k, u, £) 

If p(k) = 0 then delete'TJ. from MF 

else 

r = p(k) 

delete k among children of r 

endif 

parent(k) = u 

for j E N('TJ.) do 

1r(j) = E, Q t- Q - j 

if j E U then Scan(j), sroot(j) = £, 

end Grow _Tree 

Initialize.J!!hortest_path 

labeled t- 0, augmented t- 0 

Q t- N(FF) 

for j E Q, 1r(j) = +00, nb(j) = 0, 

for 'T E PF 

for j E 'T 1r(j) = 0, 

if j E U scan(u), 

endfor 

endlnitialize.J!!hortest_path 
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Augment 

for v E VF do 

if sroot( v) :I 0 then 

remove v from VF 

reroot Tv making v root 

transfer Tv from PF to MF 

endif 

endfor 

endAugment 

Extend_Dual 

begin 

for j E Q 

7r(j) = E 

endfor 

endExtend..Dual 

/* the last E * / 

Scan(i) /* i E U */ 
for (i, j) E E and j E Q do 

temp = Wij - Yj + Yi + 1r(i) 

if temp < 1r(j) then 

7r(j) = temp, nb(j) = i 

endif 

endfor 

endS can 

Augment does not actually perform augmentations, but instead reroots the alternat

ing trees on the free sink node causing augmentation. Thus each such tree becomes a 

SFT and transferred to MF. Matching is defined via parent pointers of the source nodes. 

Initialize.J!!hortest_path calculates 7r(j), nb(j), for j E V n F F by scanning source 

nodes in planted forest. Clearly, there is some freedom in ending a stage: from labeling a 

free sink node to labeling all free sink nodes. 
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A Faster Version of Hong-Rom Algorithm 

We now apply the ideas presented in the above algorithm to semi-assignment algorithms 

of Dinic-Kronrod and Hung-Rom [39, 52]. 

Our Initialize routine is the classical row minimum routine followed by a slight varia

tion of column minimum applied to free sink nodes. At initialization we allow formation 

of stars rooted at source nodes as well as at sink nodes. Our initial forest F decomposes 

into 3 parts: F_, Fo, F+ where Fo is a collection of matched edges, F_ is a collection of 

stars rooted at sink nodes, and F+ is a collection of stars rooted at source nodes. Each 

star in F_ has deficit of sink nodes and each star in F+ has surplus of sink nodes. Initially 

the root of a star in F_ U F+ has degree::::: 2. When degree of such a root decreases to 1, 

the tree rooted at that node is transferred directly into forest containing Fo. We let 

(16) 

When we grow forest and perform augmentations, structures of F_, Fo, F+ will change 

and identities in (16) will be maintained at the beginning of each stage. F_ will become 

the Planted Forest (PF), a collection of trees each rooted at node in V_. When nodes in 

V_ are deleted, resulting collection of trees will be alternating trees rooted at nodes in U _. 

We would like to view PF as a collection of alternating trees each rooted at a node in U_ 

(which is true for PF\ V_). Fo wil become a collection of SFT's rooted at sink nodes. This 

forest will be called Matched Forest (MF). F+ will be called Surplus Forest (SF) and 

will be treated as a collection of stars each rooted at a node in U +, except some isolated 

sink nodes (SF will replace TF the trivial forest). Only isolated nodes in the current forest 

could be in V+ which is in SF. The union of MF and SF will be called Floating Forest 

(FF). 

Q, y, 7r, nb, sroot} labeled and augmented will be the same as before. Actually, the 

main routine will be the same. Only routines Grow_Tree} CounUabeled_and_augmented 

and Augment will change slightly to handle stars. 

The main operation in a primal-dual/successive shortest path algorithm is findmin 

followed by Grow_Tree or Augment. Our findmin is 

e=(u,k)=argmin{wij: iEPF, jEQ}. (17) 

Normally, for k as defined by (17), k E SF means an augmentation. However, this 

is no longer true in our algorithm since we are allowing multiple augmentations. We 

check whether root £ of the subtree containing u, with £ = Isroot(u)l, is marked for 
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augmentation. If £ is marked before, we remove k from Q and increase labeled by l. 

Node k is temporarily taken from SF but kept in V+ as an isolated node for later stages. 

Otherwise, we mark £ as augmented via 8root(£) = -£ and delete edges (l,8) and (k,q) 

where 8 = p(£), q = p(k) from:F_ and :F+ respectively. Furthermore, we check degrees 

of 8 and q. If d(q) = 1, we move the tree consisting of (q,r) to MF with root r, where r 

is the only child of q after deletion of k. If the new degree of 8 is 1, we mark u' the only 

neighbour of 8 in :F as augmented, but keep in PF. At the end of augmentation we move 

such trees from PF to MF. We also increase labeled and augmented by 1. This is what 

Count_labeled_and_augmented does. 

If k 1:. SF we call Grow_Tree. If k is not root of a SFT, we delete (k, p(k)). Then we 

append SFT rooted at k to PF, and for each i E N(Tk) we set 7l"(i) = 7l"(k), delete i from 

Q, and perform Scan(i) if i is a source node. Details are given in [ll]. 

Paparrizos [67] developed a pivotal algorithm which he calls 'exterior point' algorithm. 

The algorithm as presented attains primal feasibility and dual feasibly only at optimality. 

The selection of pivot edge (co-tree edge) is done in the spirit of dual simplex algorithm, 

and cut-edge is selected from the fundamental cycle using signature guided considerations. 

It can be made dual feasible quite easily via lemma 4. More importantly, it can be realized 

as a variant of the above algorithm. 

Achatz, Kleinschmidt and Paparrizos [1] presented another dual simplex based forest 

algorithm where pivot selection is guided by signature of a SFT. It is very similar in 

principle to our algorithm A 7 and can be made dual feasible via lemma 4. 

9 A Few Other Algorithms 

In this section we will discuss some old and some new algorithms with different motivations 

and different characteristics. 

Balinski-Gomory Primal Algorithm 

We start with the primal algorithm of Balinski-Gomory [17]. It maintains a matching M 

and a (non-basic) dual vector y and the invariant that they are complementary throughout 

the algorithm. y and M are complementary if e EM==? we(y) = O. Let us define 

E+ = E+(y) = {e E E : we(y) > OJ, and similarly E_ and Eo. Clearly Eo(Y) = E(y) in 

our terminology. A second invariant of the algorithm is that as y is updated to y', we have 
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E+(y) U Eo(Y) C E+(y') U Eo(Y'); in other words once an edge is dual feasible, it remains 

dual feasible throughout the algorithm. If E_(y) = 0 then the pair (y, M) is optimal. A 

stage chooses eo = (u, v) E E_, and ends with new y and M with eo E E+ U Eo. Since 

eo E E_, eo <t M. Let (r, v) EM. The algorithm grows an alternating tree rooted at r in 

the graph (N, E+ U Eo) (with edges in M reversed in orientation). As usual it performs 

grow _tree and dual-update operations and changes the matching if the edge eo is on a 

negative alternating cycle. 

An equivalent description of the algorithm for a stage is the following. Let Eo = wuv 

at the beginning of the stage. Solve the single source shortest path problem for root r 

over the edges E+(y) U Eo(Y) with node v deleted and edges in M \ (r,v) reversed in 

orientation. Let G' be the resulting graph, T be resulting shortest path tree, and 7r be 

the dual vector for SP. To describe the new y and M we need to look at 3 cases: 

i) u <t T, i.e. u is not reached, which means 8~,(T) = 0. 8+(T) n E+(y) = 0 is obvious. 

8+ n Eo(Y) = 0 follows from the facts that T is alternating and every node in G' 

except r is matched. Define 

{ 

Yi + 7ri 

y; = Yi + E 

Yi 

i E T 

i <t T, ii-v (18) 

l=V 

where E is the last label. Clearly T C Eo(y'), and E+(y') ::) E+(y). Let E' 

-wuv(y') S Eo· If E' S 0 then eo <t E_(y') and we are done. Otherwise, let 

A {y; - E' i = v, i E T 
Yi = y; otherwise 

Notice that for e E 8-(T+v), we(f)) = we(y')+E', and in particular wuv(f)) = O. Since 

8~,(T) = 0, we have the invariant E_(f)) C E_(y'). Then (f), M) is complementary 

pair and eo = (u, v) ~ E_, i.e. the stage is over. 

ii) u E T and 7r(u) ~ Eo. Let y' be as in (18). Then wuv(Y') = wuv(y) + 7r(u) ~ 0, and 

y~ = Yr, y~ = Yv implies (r,v) E Eo(Y'). Thus (y', M) is a complementary pair and 

eo = (u, v) ~ E_(y'). 

iii) u E T and 7r ( u) < Eo. In this case, the path P from r to u in T and the edges 

(r, v), (u, v) form a negative alternating cycle C. Let M' be the matching obtained 

from M by switching matching and free edges in C, i.e., M' = M E9 C. Let y' as in 

(18) and define 

ii-v 

l = V 
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Clearly, wuv(fJ) = 0, (y, M') is compatible and the stage is over. 

By choosing edge (u, v) as argmin {w;v : i E U} and (u, v) E E_ we can bound the number 

of stage by n. This algorithm is generalized to non-bipartite matching by Cunningham 

and Marsh [31]. Balinski-Gomory also presented a sequential version of their algorithm. 

Cost Operator Algorithms 

Srinivasan and Thompson [76] presented the so called 'cell cost operator' and 'area cost 

operator' algorithms for the assignment problem which require O(n2 ) pivots. We conjec

ture that with proper design they can be implemented in O(n3 ) time. The algorithms 

maintain a (non-basic) dual feasible y and SFT which defines the matching. They came 

to the notion of SFT in an attempt to handle degeneracy, and of course they do not use 

the term SFT. Let us define E+(y) = {e E T : we(y) > 0, Xe > O}. Since they introduce 

a perturbation so that for e E T we have Xe > 0, the latter condition is not needed in the 

definition of E+(y). 

The cell cost operator algorithm can be described as: 

while E+(y) -=I- 0 do 

eo E E+(y), eo = (p, q), 

while eo E E+(y) do /* stage * / 

Let X be the component of T - eo containing p 

e = argmin{ Wj : j E 8+(X)}, E = we(y) 

if E = weJy) then 

Update y via (9); break 

else 

Update x, y and T via (12), (9) 

endwhile 

endwhile 

Since y is unrelated to T, the algorithm is not a pivotal algorithm in LP sense; though 

each pivot looks as a combination of primal pivot and semi-dual pivot. A similar pivot 

appears in Paparrizos [67]. By using the classical perturbation technique (14), it is easy 

to see that each stage requires O(n) pivots, since eo E C-(T, e) for each e in a stage. 

Thus the total number of pivots is O(n2 ). Actually, one can work with the combinatorial 

definition of SFT and using essentially the algorithm of [6], one can show that a stage 

requires at most IXo n UI pivots, where Xo is the X set at the beginning of the stage. 
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Area cost operator algorithm inherits some of the notions of cell cost operator al

gorithm, and introduces some more. Let y, T, E+(y) as before. Let X be the characteristic 

vector of E+, and 7r be a basic solution of 

7rj-7ri=Xij, (i,j)ET. 

Let E = {(i,j) E E : Xij < 7rj - 7ri} and define 

Jl = min { ~e(Y) : e E E} 
Xe(7r) 

(19) 

(20) 

Let e = e(Jl) be the edge defining Jl, if any. Letting trr = 0 and T be a SFT rooted at a 

source node, 7ri is equal to the algebraic sum of the edges of E+(y) on the path P from r 

to i: each non-degenerate edge in E+(y) n P contributes 1, and each degenerate edge in 

E+(y) n P contributes -1. Since for e E T, Xe(7r) = 0, and Xe = 0, for e E Tl.; E can be 

described alternately as E = {(i,j) E Tl. : 7ri < 7rj}. 

The algorithm can be described as: 

while E+ (y) i:- 0 do 

Compute Jl and e(Jl) via (20) 

Jl' = min{wj : j E E+(y)} 

( = min{Jl, Jl'} 

y <- y + (7r 

if e(Jl) defined Pivot via (12) using e(Jl) 

endwhile 

Letting y' = y + (7r, we have for e E E+(y), we(y') = we(y) - (. Thus, when Jl = 00, 

we have (= Jl', and the edge defining Jl' will leave E+(y). By working with the classical 

perturbation (14), each pivot with ( = Jl' will decrease the sum I:{Xj : j E E+(y)} by 

() ~ 2~. Thus the total number of pivots can be bounded by O(n2 ). 

Again, y is non-basic and we do not see any stage concept. For details see [76] and the 

references given there. 

A Criss-Cross Algorithm 

Criss-Cross method of Terlaky[78] performs 'primal' and 'dual' pivots with a well-defined 

pivot selection rule, but does not maintain primal or dual-feasibility. The Criss-Cross 

algorithm of [78] stops with primal-infeasibility, dual-infeasibility or finite-optimum for 

the given linear program. A pivot in a network-simplex method performs 'link' and 'cut' 

operations, which changes a tree to a new one. 
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Akgiil-Ekin [12] present a new algorithm for AP, termed Criss-Cross, which performs 

essentially primal pivots and dual pivots. Like many algorithms, it works in stages, at 

the end of which a measure towards optimality is improved. In the basic model, it start 

with a specially constructed strongly feasible tree. At the end of stage i, primal strong 

feasibility is regained and dual-feasibility of the set of edges incident with first i source 

nodes is obtained. In a non-trivial stage, the algorithm first destroys the tree by cutting 

an edge and linking another one and gain dual-feasibility for the desired set of edges. 

This part of the algorithm is termed as the dual-phase. Then a strongly feasible tree 

is obtained by performing essentially dual-simplex pivots. This part of the algorithm is 

called a primal-phase. Later, a modified algorithm is given which is faster, and can 

start with any strongly feasible tree. 

The algorithm has the pivot bound of O(n2 ), and time bound of O(n3 ) for dense graphs 

and O(n2 logn+nm) for sparse graphs using Fibonacci heaps of Fredman and Tarjan[44]. 

In [79], Thompson presented a Recursive algorithm which may look similar to criss

cross [12] at the first sight. His subproblems are similar to that of the basic model in [12]. 

However, inner working of the algorithm is quite different: in [79], first an optimal primal 

solution is obtained, then strong feasibility of the basis tree is restored with degenerate 

pivots. The complexity of both algorithms is the same. 

10 Implementation 

We now discuss briefly some implementation details. To maintain a tree we use parent 

(p(.)), first (child), left (sibling) and right (sibling) pointers for each node. Children of a 

node are maintained as a doubly linked circular list using left and right sibling pointers. 

Since a doubly linked circular list allows addition and deletion of an element in 0(1) time, 

each cut, link can be performed in constant time. Thus all tree operations in a stage takes 

O(n) time. All dual updates in a stage also takes O(n) time. We maintain roots of trees 

in Planted Forest, MF, TF and SF in a doubly linked circular list. Q is maintained in two 

ways simultaneously: once as a doubly linked circular list and once as a 0-1 array. For 

dense graphs we maintain 7r in an array and for sparse graphs in a fibonacci heap. The 

array mate is not needed since that information is available in parent and first fields. For 

more information about data structures see, e.g. [77,44,3,4, 13,35]. 
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