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Abstract

A common task in image editing is to change the colours

of a picture to match the desired colour grade of another

picture. Finding the correct colour mapping is tricky because

it involves numerous interrelated operations, like balancing

the colours, mixing the colour channels or adjusting the

contrast. Recently, a number of automated tools have been

proposed to find an adequate one-to-one colour mapping.

The focus in this paper is on finding the best linear colour

transformation. Linear transformations have been proposed in

the literature but independently. The aim of this paper is thus

to establish a common mathematical background to all these

methods. Also, this paper proposes a novel transformation,

which is derived from the Monge-Kantorovicth theory of mass

transportation. The proposed solution is optimal in the sense

that it minimises the amount of changes in the picture colours.

It favourably compares theoretically and experimentally with

other techniques for various images and under various colour

spaces.

1 Introduction

Adjusting the colour grade of pictures is an important step in

professional photography and in the movie post-production.

This process is part of the larger activity of grading in which

the colour and grain aspects of the photographic material

are digitally manipulated. In particular, a main problem in

the movie industry is to adjust the colour consistently across

all the shots, even though the movie has been edited with

heterogeneous video material. Shots taken at different times

under natural light can have a substantially different feel due

to even slight changes in lighting. Colour grading is a delicate

task since the slightest of colour variations can alter the mood

of a picture.

Typical tuning operations comprise adjusting the exposure,

brightness and contrast, calibrating the white point or finding

a colour mapping curve for the luminance levels and the three

colour channels. For instance, in an effort to balance the

contrast of the red colour, the digital samples in the red channel

in one frame may be multiplied by some gain factor and the

output image viewed and compared to the colour of some

other (a target) frame. The gain is then adjusted if the match

in colour is not quite right. The amount of adjustment and

whether it is an increase or decrease depends crucially on the

experience of the artist. An another problem is that most of

these operations are interdependent. For instance, the contrast

on the red channel can change after a mixing of the colour

channels. It would be therefore beneficial to automate this task

in some way.

This paper presents techniques which aim at facilitating the

choice of the colour mappings. These techniques belong to

the class of example-based colour transfer methods. The

idea, first formulated by Reinhard et al.[13], has raised a lot

of interest recently [1, 8, 19, 11]. Figure 1 illustrates this

with an example. The original picture (a) is transformed so

that its colours match the palette of the image (b), regardless

of the content of the pictures. Consider the two pictures as

two sets of three dimensional colour pixels. A way of treating

the re-colouring problem would be to find a one-to-one colour

mapping that is applied for every pixel in the original image.

For example in Figure 1, every blue pixel is re-coloured in

green. The new picture is identical in every aspect to the

original picture, except that the picture now exhibits the same

colour statistics, or palette, as the target picture.

Employing a one-to-one colour mapping is a standard method

in the industry, but note that more complicated grading

techniques based on local manipulations have also been

proposed [16],[3],[20]. These techniques will not be discussed

here but a comprehensive review can be found in [12].

The notion of transfer of colour statistics encompasses an

entire range of possibilities from the simple match of the

mean, variances [13], covariance [1, 6] to the exact transfer of

the exact distribution of the colour samples [7, 8, 11]. Thus,

depending on how close the graded picture should match the

colour distribution of the example image, multiple techniques

could be used. In this paper, the focus is on linear colour

transformations, which correspond to the transfer of the second

statistical moments, i.e. the mean and the covariance. A linear

transformation is usually enough to fix most of the colour

changes. Non-linear refinements can been done afterwards if

necessary using non-linear mappings as presented by Pitié et

al. [12]. Solving the problem for linear colour transformations

is indeed of high interest. To obtain a correct linear colour

transformation under Adobe Photoshop R©, one must correctly
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Figure 1: Colour transfer example. A colour mapping is applied on the original picture (a) to match the palette of an example

(b) provided by the user.

combine the following 6 adjustment functions: “levels”,

“brightness/contrast”, “color balance”, “Hue/Saturation”,

“Channel Mixer” and “Photo Filter”. Finding automatically

the linear transformation would save a lot of time.

Linear colour transfer techniques actually exist in the literature.

In particular Abadpour and Kasaei [1] and Kotera [19] have

presented simple solutions to this problem. In fact it transpires

from the literature that numerous linear transformations

can achieve an exact transfer of the statistics. The first

contribution of this paper is to mathematically characterise

the ensemble of these linear transformations. This gives a

common mathematical background to these methods. The

second contribution of this paper is to introduce a new

transformation which is based on the Monge-Kantorovitch

(MK) of mass transportation. This solution is optimal in the

sense that it minimises the amount of colour changes. This MK

transformation turns out to be very intuitive from an artist point

of view because it has monotonous properties. For instance

the brightest and the darkest points remains the brightest and

darkest points after transformation. It is also shown here that

the MK transformation is independent to orthogonal colour

space conversions.

Organisation of the Paper. The problem is first formalised

in section 2. The ensemble of the all possible linear

transformations is then characterised in section 3. The review

of existing techniques is then presented in section 4. The

review is accompanied with a table of comparative results.

The optimal Monge-Kantorovitch solution is then presented

in section 5. The last section 6 examines the influence on

the Monge-Kantorovitch transformation when working under

different colour-spaces.

2 Mathematical Background of Linear Colour

Distribution Transfer

The notion of colour statistics can be understood if an image

is represented as a set of colour samples. When working

in RGB colour space, the image is then represented by the

set of the RGB colour samples (R(i), G(i), B(i))1≤i≤M . In a

Mapping u → t(u)

?

pdf f of u pdf g of t(u)

Figure 2: Distribution Transfer Concept. How to find a

mapping that transforms the distribution on the left to the

distribution on the right?

probabilistic sense, these colour samples are realisations of a 3-

dimensional colour random variable and which will be denoted

as u for the original image and v for the target palette image.

The colour palette of the original and target pictures correspond

then to the distributions of u and v.

To simplify the presentation of the problem, it is supposed here

that both distributions have absolutely continuous probability

density function (pdf) f and g. The problem of colour transfer

is to find a C1 continuous mapping u → t(u), such that the

new colour distribution of t(u) matches the target distribution

g. This latter problem, illustrated in Figure 2 is also known

as the mass preserving transport problem in the mathematic

literature[4, 5, 18].

The mapping is in essence a change of variables. Thus the

transfer equation can be written as:

f(u)du = g(v)dv ⇒ f(u) = g(t(u))|detJt(u)| (1)

where Jt(u) is the Jacobian of t taken at u. The constraint

is very complicated in the general case, but in this paper, the

problem is restricted to linear mappings. Mappings are then

of the form t(u) = Tu + t0 where T is a N×N matrix (width

N = 3 for colour). In that form, the Jacobian is then Jt(u) = T

and the quantity |detJt(u)| = |detT | is also constant, thus

f(u) ∝ g(t(u)) (2)

It is not necessarily possible to find a linear mapping in the



general case, but, as it shown hereafter, this can always be

achieved when both the original distributions f and the target

distributions g are multivariate Gaussian distributions (MVG)

denoted as N (µu,Σu) and N (µv,Σv):

f(u) ∝ exp

(

−
1

2
(u − µu)T Σ−1

u (u − µu)

)

g(v) ∝ exp

(

−
1

2
(v − µv)T Σ−1

v (v − µv)

) (3)

with Σu and Σv the covariance matrices of u and v. Note that

when the distributions are not MVG, a MVG approximation

can always be obtained by estimating the mean and the

covariance matrices of the distributions. To have the pdf

transfer condition of equation (2), i.e. g(t(u)) ∝ f(u), it must

hold that:

(t(u)− µv)T Σ−1
v (t(u)− µv) = (u− µu)T Σ−1

u (u− µu) (4)

Thus t must satisfy t(u) = T (u − µu) + µv with TT Σ−1
v T =

Σ−1
u , or equivalently TΣuTT = Σu:

{

t(u) = T (u − µu) + µv

TΣuTT = Σv

(5)

It turns out that there are numerous solutions for the matrix T

and thus multiple ways of transferring the colour statistics.

3 Characterisation of the Transformations

The main reason why there is more than one solution is because

the covariance matrices Σu and Σv admit more than one square

root, i.e. that there is more than one square matrix A such that

Σu = AAT . To understand this, consider two particular square

roots A and B such that Σu = AAT and Σv = BBT . For

instance the square roots can be found by taking the Cholesky

decomposition: A = chol(Σu) and B = chol(Σv). In this

case both A and B are lower triangle matrices. Consider then

the development of equation (5):

TΣuTT = Σv (6)

T
(

AAT
)

TT = BBT (7)

(TA) (TA)
T

= BBT (8)

One solution for T will be to set TA = B and take T = BA−1

as a solution. However this is not the only solution. Observe

that both TA and B are square roots of Σv . An interesting

result about matrices square root, is that all square roots of a

positive matrix are related by orthogonal transformations. This

means here that there exists an orthogonal matrix Q that links

TA to B by:

TA = BQ (9)

Rearranging this equation yields to the complete

characterisation of the solutions. Any valid transformation can

thus be derived from two given square root matrices A and B

of Σu and Σv by:

T = BQA−1 with QT Q = Id (10)

Thus all the following solutions in this paper only differ for the

choice of this inner orthogonal matrix Q. This choice yields

however to very different properties for the transformations.

4 Review of Existing Linear Transfers

This section presents some particular transformations that have

been explored in the colour grading literature. The different

techniques are compared to each other on a practical example

in Figure 3. The original image is depicted in Figure 3-a and the

target palette is displayed in Figure 3-b. All colour transfers are

done in the RGB space. Note that further comparison analysis

for different colour spaces is carried out in section 6.

In addition to the comparison on this colour transfer example,

it would be interesting to visualise the geometrical differences

between the colour mappings. This is presented in Figure 4,

which shows some the mappings for a 2D case. The original

MVG f is displayed Figure 4-a, and the target MVG g is

displayed on Figure 4-b. Figure 4-c to Figure 4-g overlay the

estimated 2D transformation on the original distribution.

4.1 Independent Transfer

The first linear method, used by Reinhard et al.[14] in their

original paper on colour transfer, is to simply match the means

and the variances of each component independently. This

transformation is not a limited solution as it assumes that

both distributions are separable. The covariance matrices are

assumed to be diagonal: Σu = diag(var(u1), . . . , var(uN ))
and Σv = diag(var(v1), . . . , var(vN )). It yields for the

mapping that

T =











√

var(v1)
var(u1)

0

. . .

0
√

var(vN )
var(uN )











(11)

The independence assumption is simplistic and is rarely valid

for real images. The poor quality of the transfer in the results

in Figure 3-c shows that this is indeed not always the case. The

solution proposed by Reinhard is to work in the decorrelated

colour space lαβ of Ruderman [15]. This helps to some extent

but cannot guarantee a full decorrelation between components.

4.2 Cholesky Decomposition

Following the characterisation of section 3, an exact

solution can be obtain using the Cholesky decomposition

of Σu = LuLT
u and Σv = LvLT

v where Lu and Lv are lower

triangular matrices with strictly positive diagonal elements.

This decomposition yields the following solution:

T = LvL−1
u (12)

Figure 3-d shows that some improvements on the previous

method have been achieved. However, by the iterative nature

of the Cholesky decomposition, the way the colour channels

are ordered has actually an influence on the form of the

transformation. As shown on Figure 4-d and Figure 4-e,



the Cholesky decomposition can lead to radically different

transformation if instead of u = (u2, u1) it is considered

u = (u1, u2). This mean for instance that the channel ordering

RGB leads to different results that with the channel ordering

BGR.

4.3 Square Root Decomposition

Another popular solution [10, 6, 1, 2, 17] is to find the mapping

that realigns the principal axes of Σv to that of Σu. In

this solution the covariances matrices are decomposed into

symmetric definite positive matrices. This done by using

the square root operator for symmetric positive semidefinite

matrices. There are multiple square roots for matrices, but

if the matrix is symmetric positive then there is only one

symmetric positive square root matrix. Denote as Σ
1/2
u and

Σ
1/2
v these positive square roots. They can be obtained via the

spectral decomposition of Σu and Σv:

Σu = PT
u DuPu and Σ1/2

u = PT
u D1/2

u Pu (13)

Σv = PT
v DvPv and Σ1/2

v = PT
v D1/2

v Pv (14)

where Pu and Pv are orthogonal matrices and Du and Dv

the diagonal matrix containing the (positive) eigenvalues of

Σu and Σv . Since Σ
1/2
u and Σ

1/2
v are uniquely defined, no

special arrangement of the eigenvectors is necessary. These

decompositions lead to the following mapping:

T = Σ1/2
v Σ−1/2

u (15)

Results displayed in Figure 3-e show an improvement over

the mapping based on the Cholesky decomposition. Note in

particular that the violet colour of the grass in Figure 3-e is not

present here. This is due to fact that the mapping here does not

depend on the channel ordering.

In fact, this paper shows hereafter that this transformation

is independent of orthogonal transformations. Consider an

orthogonal transformation defined as u → Hu. To be

independent under the transformation H , it must be shown that

the transformation T is the same up to the transformation H ,

i.e. that THu→Hv = HT Tu→vH . To show this, it is sufficient

to realise that:

Σ
1/2
Hu =

(

HT ΣuH
)1/2

(16)

=
(

HT PT
u DuPuH

)1/2
(17)

since PuH is also orthogonal, it yields that

Σ
1/2
Hu = HT PT

u (Du)
1/2

PuH (18)

= HT (Σu)
1/2

H (19)

Thus

THu→Hv = Σ
1/2
Hv Σ

−1/2
Hu (20)

= HT Σ1/2
v HHT Σ−1/2

u H (21)

= HT Tu→vH (22)

This property of independence to orthogonal transformations

is a major advantage over the Choleski based method. This

means that the colour transfer has mainly the same effect under

different colour spaces, which is clearly not the case with

Choleski.

5 The Linear Monge-Kantorovitch Solution

The problem encountered with most of the presented

transformations is that the geometry of the resulting mapping

might not be as it was intended. For example, it is not

guaranteed that a transfer will not map black pixels to white

and conversely white pixels to black. The resulting picture

could have the colour proportions as expected, but locally the

colours would be swapped. To avoid this problem, a good

solution is to further constrain the transfer problem and look

for a mapping that also minimise its displacement cost:

I[t] =

∫

u

‖t(u) − u‖2f(u)du (23)

Finding this minimal displacement mapping in the general case

is known as the Monge’s optimal transportation problem.

Monge’s problem has raised a major interest in mathematics in

recent years [4, 5, 18] as it has been found to be relevant for

many scientific fields like fluid mechanics.

To understand the interest of the MK solution in colour grading,

three aspects of the MK solutions will be reported here. The

first result of importance is that the MK solution always exists

for continuous pdfs and is unique. This means that there is

no room left for ambiguity. The second result, which is of

interest here, is that the MK solution is the gradient of a convex

function1:

t = ∇φ where φ : R
N → R is convex (24)

This property might seem quite obscure at first sight, but this

simply is the equivalent of monotonicity for one dimensional

functions in R. It implies for instance that the brightest areas of

a picture still remain the brightest areas after mapping. The MK

solution is thus geometrically more intuitive than the Cholesky

or the Principal Axes solution. One could be concerned that

the MK solution might not be linear for MVG distributions.

Fortunately the solution for MVGs is actually linear and admits

a simple closed form. The detailed proof of how to find the MK

mapping can be found in [9]. The mainstay of the reasoning is

that since the MK solution is the gradient of a convex function,

the matrix T has to be symmetric definite positive, which leads

to this unique solution for T :

T = Σ−1/2
u

(

Σ1/2
u ΣvΣ1/2

u

)1/2

Σ−1/2
u (25)

The corresponding results in Figure 3-f are convincing. The

results are slightly better than the ones of the Principal Axes

method. For instance a pink trace on the grass in front of the

1A convex function [5] φ : R
N → R is such that ∀u1, u2 ∈ R

N , α ∈

[0; 1], φ(αu1 + (1 − α)u2) ≤ αφ(u1) + (1 − α)φ(u2)



house is visible in (e) but not in (f). The difference between

the PCA and the MK mappings can also be seen on Figure 4-f

where both mappings have been overlaid.

Note that, like the PCA based transformation, the MK

transformation is independent of orthogonal transformations.

The MK solution is thus interesting as it provides an intuitive

and probably better mapping for a similar computational

complexity to the popular methods.

6 Comparisons in different Colour Spaces

If a method can exactly transfer the complete colour statistics,

then this method will work regardless of the chosen colour

space. Thus, in that respect, the colour space is not important

to transfer the colour ‘feel‘ of an image.

The colour space has however an influence on the geometrical

form of the colour mapping. It is now known that the

PCA and MK transformations are independent to orthogonal

transformations, so the influence of the colour space is not

as dramatic as it can be for the Choleski method. However

these methods are not independent to non-linear colour space

transformations or even colour scaling.

In the MK formulation for instance, the cost of transportation

is related to the colour difference, which depends on the chosen

colour space. Thus uniform colour spaces like YUV, or better

CIELAB and CIELUV, are preferable to the basic RGB to

obtain coherent colour mappings. Comparative results for

RGB, YUV, CIE XYZ, CIELAB and CIELUV are displayed

in Figure 5 for the linear MK solution. Differences might be

difficult to see on printed images, but these are very significant

when displayed on a big screen, especially if they are images

in a sequence which is played back. The CIELAB colour space

overall offers better renderings, for the linear and the non-linear

case. This is because it is designed to measure the difference

between colours under different illuminants.

7 Conclusion

The study conducted in the paper has established a solid

background to understand differences in linear colour

transformations for example-based colour transfer. The linear

Monge-Kantorovicth solution, which is to our knowledge

introduced here for the first time in the image processing

community, offers a number of advantages over previously

proposed transformations. It gives to the user intuitive

guarantees on the colour transfer:

1. it minimises the amount of colour changes

2. it has some nice monotonicity property and thus preserves

the relative positions of colours

3. it produces relatively similar results under different colour

spaces

The linear Monge-Kantorovitch seems therefore to be a good

choice in an interactive post-production environment.
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[10] F. Pitié. Statistical Signal Processing Techniques for

Visual Post-Production. PhD thesis, University of Dublin,

Trinity College, April 2006.
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comparison between the PCA (red) and the MK (black) methods.



(a) target colour palette (b) RGB
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Figure 5: Colour-Space. Results of the Linear Monge-Kantorovitch transfer for different colour spaces.



[13] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley.

Color transfer between images. IEEE Computer Graphics

Applications, 21(5):34–41, 2001.

[14] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda.

Photographic tone reproduction for digital images. ACM

Transactions on Graphics, 21(3):267–276, 2002.

[15] D. L. Ruderman, T. W. Cronin, and C. C. Chiao. Statistics

of Cone Responses to Natural Images: Implications for

Visual Coding. Journal of the Optical Society of America,

(8):2036–2045, 1998.

[16] H. L. Shen and J. H. Xin. Transferring color between

three-dimensional objects. Applied Optics, 44(10):1969–

1976, April 2005.

[17] H. J. Trussell and M. J. Vrhel. Color correction using

principle components. In M. R. Civanlar, S. K. Mitra,

and R. J. Moorhead, II, editors, Proc. of Society of Photo-

Optical Instrumentation Engineers (SPIE), volume 1452,

pages 2–9, June 1991.

[18] C. Villani. Topics in Optimal Transportation, volume 58

of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 2003.

[19] C. M. Wang and Y. H. Huang. A novel color transfer

algorithm for image sequences. Journal of Information

Science and Engineering, 20(6):1039–1056, November

2004.

[20] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring

Color to Greyscale Images. In Proceedings of ACM

SIGGRAPH, pages 227–280, San Antonio, 2002.


