
Journal of Mathematical Modelling and Algorithms 3: 367–402, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

367

The Linear Ordering Problem: Instances, Search
Space Analysis and Algorithms

TOMMASO SCHIAVINOTTO and THOMAS STÜTZLE
Darmstadt University of Technology, Computer Science Department, Hochschulstr. 10,
64289 Darmstadt, Germany.
e-mail: {schiavin,tom}@intellektik.informatik.tu-darmstadt.de

Abstract. The linear ordering problem is an NP -hard problem that arises in a variety of applica-
tions. Due to its interest in practice, it has received considerable attention and a variety of algorithmic
approaches to its solution have been proposed. In this paper we give a detailed search space analysis
of available benchmark instance classes that have been used in various researches. The large fitness-
distance correlations observed for many of these instances suggest that adaptive restart algorithms
like iterated local search or memetic algorithms, which iteratively generate new starting solutions
for a local search based on previous search experience, are promising candidates for obtaining
high performing algorithms. We therefore experimentally compared two such algorithms and the
final experimental results suggest that, in particular, the memetic algorithm is a new state-of-the-art
approach to the linear ordering problem.

Mathematics Subject Classifications (2000): 90C27, 90C59, 68W40.

Key words: linear ordering problem, search space analysis, benchmark instances, iterated local
search, memetic algorithms.

1. Introduction

Given an n × n matrix C, the linear ordering problem (LOP) is the problem of
finding a permutation π of the column and row indices {1, . . . , n} such that the
value

f (π) =
n∑

i=1

n∑
j=i+1

cπiπj

is maximized. In other words, the goal is to find a permutation of the columns and
rows of C such that the sum of the elements in the upper triangle is maximized.

The LOP arises in a large number of applications in a number of fields such
as economy, sociology, graph theory, archaeology, and task scheduling [10]. Two
well known examples of the LOP are the triangularization of input–output matrices
of an economy, where the optimal ordering allows economists to extract some
information about the stability of the economy, and the stratification problem in
archaeology, where the LOP is used to find the most probable chronological order

368 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

of samples found in different sites. The matrix that describes the latter problem is
known as Harris Matrix.

The LOP is NP -hard, that is, we cannot expect to find a polynomial time al-
gorithm for its solution. However, since the LOP arises in a variety of practical
applications, algorithms for its efficient solution are required. Therefore, several
exact and heuristic algorithms were proposed in the literature. Exact algorithms
include a branch & bound algorithm that uses a LP-relaxation of the LOP for the
lower bound by Kaas [15], a branch & cut algorithm proposed by Grötschel, Jünger,
and Reinelt [10] and a combined interior point/cutting plane algorithm by Mitchell
and Borchers [23]. State-of-the-art exact algorithms can solve fairly large instances
from specific instance classes with up to a few hundred columns and rows, while
they fail on much smaller instances of other classes. Independent of the type of
instances solved, the computation time of exact algorithms increases strongly with
instance size.

The LOP was also tackled by a number of heuristic algorithms. These include
constructive algorithms like Becker’s greedy algorithm [3], local search algorithms
like the CK heuristic by Chanas and Kobylanski [8], as well as a number of
metaheuristic approaches such as elite tabu search and scatter search, presented
in a series of papers by Martí, Laguna, and Campos [6, 7, 18], or iterated local
search (ILS) algorithms [9, 25]. In particular, ILS approaches appear currently to
be the most successful metaheuristics, as judged by their performance on a number
of available LOP benchmark instances [9, 25].

Available algorithms have typically been tested on a number of classes of real-
world as well as randomly generated instances. However, little is known about how
the performance of current state-of-the-art algorithms depends on specific char-
acteristics of the various available LOP instance classes neither how differences
among the instances translate into differences in their search space characteristics.
First steps into answering these open questions were undertaken in [25].

The main contributions of this article are the following. First, we give a detailed
analysis of the search space characteristics of all the instance classes introduced in
the major algorithmic contributions to the LOP. This includes a structural analysis,
where standard statistical information is gathered as well as an analysis of the main
search space characteristics such as autocorrelation [27, 33] and fitness-distance
analysis [14]. A second contribution is the detailed analysis of two metaheuristics,
an iterated local search algorithm [19] and a memetic algorithm [24]. As we will
see, their relative performance depends on the particular LOP instance class to
which they are applied. Interestingly, a detailed analysis shows that there is some
correlation between specific search space characteristics and the hardness of the
instances as encountered by the two metaheuristics. Computational comparisons of
the two algorithms to known metaheuristic approaches establish that the memetic
algorithm is a new state-of-the-art algorithm for the LOP.

The paper is structured as follows. Section 2 gives an overview of the instance
classes that we studied. Section 3 introduces the greedy algorithm and the local

THE LINEAR ORDERING PROBLEM 369

search techniques that are used by the metaheuristics. Details on the structural
analysis of the benchmark instances is given in Section 4 and Section 5 describes
the results of the search space analysis. Section 6 introduces the metaheuristics we
applied and Section 7 gives a detailed account of the computational results. We
conclude in Section 8.

2. LOP Instance Classes

So far, research on the LOP has made use of a number of different classes of
benchmark instances, including instances stemming from real-world applications
as well as randomly generated instances. However, typically not all the instances
are tackled in all the available papers and, in addition, several of the randomly
generated instances are not available publically.

The probably most widely used class of instances are those of LOLIB, a bench-
mark library for the LOP that comprises 49 real-world instances corresponding to
input–output tables of economical flows in the EU. LOLIB is available at http:
//www.iwr.uni-heidelberg.de/iwr/comopt/soft/LOLIB/; for all LOLIB
instances optimal solutions are known [11].

Our initial results with an ILS algorithm for the LOP, which were presented
in [25], indicated that the LOLIB instances are actually too small to pose a real
challenge to state-of-the-art metaheuristic approaches and also to exact algorithms.
Therefore, we have generated an additional set of large, random, real-life like
instances through sampling uniformly at random elements from the correspond-
ing original LOLIB instances. We call this instance class XLOLIB for eXtended
LOLIB. Due to the process used for generating them, XLOLIB instances have a
structure similar to those of LOLIB. We generated for each instance of LOLIB two
instances, one of size n = 150 and another one of size n = 250, resulting in a total
of 49 instances of size 150 and 49 instances of size 250. Initial tests showed that
these instances are well beyond the capabilities of the exact algorithm by Mitchell
and Borchers [23], one of the best performing exact algorithms. For example, on
one instance of size 250 we aborted the program after one week computation time
without identifying an optimal solution.

A real life instance consisting of a single input–output matrix of 81 sectors of
the U.S. economy is available from the Stanford graph-base library [17] that is
accessible at http://www-cs-faculty.stanford.edu/~knuth/sgb.html. From
this instance, we generated eight additional smaller instances by randomly select-
ing sectors: three instances for each of n ∈ {50, 65}, one with dimension 79 and
one with dimension 80 (plus the original one of dimension 81). We refer to this
class with SGB. Instances that were generated in an analogous way have been used
to evaluate tabu search and iterated local search algorithms [18, 9].

Because LOLIB instances are rather small, Mitchell and Borchers [23] ran-
domly generated large instances in their research on exact algorithms for the LOP.
They generated a matrix by first drawing numbers between 0 and 99 for the ele-

370 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

ments in the upper triangle, and between 0 and 39 for the others, and then shuffling
the matrix. This technique is used in order to obtain a linearity similar to the LOLIB
instances; the linearity is the ratio of the optimal objective function value over the
sum of the matrix elements excluding those on the diagonal. Furthermore, zeros
are added to increase the sparsity of the matrix. The range used to draw numbers is
extremely limited when compared with the values that LOLIB instances elements
can take. The idea underlying this choice is that there should be a large number
of solutions with costs close to the optimal value, which, according to Mitchell
and Borchers, yields hard instances. Thirty of these instances with known optimal
solutions are available at http://www.rpi.edu/~mitchj/generators/linord,
where also the generator can be found; we will refer to these instances as MBLB
(Mitchell–Borchers LOP Benchmarks). Of these 30 instances, five are of size 100,
ten of size 150, ten of size 200, and five of size 250. Even if the size of the MBLB
instances is comparable to those of XLOLIB, preliminary tests showed that MBLB
instances are significantly easier than XLOLIB instances. In fact, for all MBLB
instances provably optimal solutions are known.

Finally, another class of randomly generated instances was proposed by Laguna,
Martí, and Campos [18]. They generated 25 instances for each of n ∈ {75, 150, 200}
resulting in a total of 75 instances. The matrix entries are generated according to a
uniform distribution in {0, 1, . . . , 250 000}. We call this instance class LMC-LOP.
These instances were made available by Rafael Martí.

3. Constructive and Local Search Algorithms

The currently best known constructive algorithm for the LOP is due to Becker [3].
In a first step the index that maximizes the cost

qi =
∑n

k=1 cik∑n
k=1 cki

, i = 1, . . . , n

is chosen, and it is put in the first position of the permutation. Next, this index
together with the corresponding column and row is removed and the new qi values
for the remaining indices are computed from the resulting sub-matrix. These steps
are repeated until the index list is empty, resulting in a computational cost of O(n3).
A variation of this algorithm is to compute the qi values only once at the start of
the algorithm, sort these values in non-increasing order to yield a permutation of
the indices. Using this variant, a solution can be computed in O(n2).

Both, the original algorithm and the variation, return good quality solutions
compared to random ones. For example, the average deviation from optimal solu-
tion quality for LOLIB instances is 6.52% with the original algorithm, 9.46% with
the variation, and 30.48% for random solutions; for MBLB the deviations obtained
are 2.91% with the original algorithm, 2.52% with the static variation, and 40.34%
for random solutions.

THE LINEAR ORDERING PROBLEM 371

Better solutions than with Becker’s construction heuristic are obtained with lo-
cal search algorithms. We considered three possibilities. The first two are based on
neighborhoods defined through the operations applicable to the current solution.

The first neighborhood, NX, is defined by the operation interchange:
�(n) × {1, . . . , n}2 → �(n), where �(n) is the set of all permutations of
{1, . . . , n} and we have for i �= j :

interchange(π, i, j)
�= (π1, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn).

The NX(π) (the neighborhood of a permutation π), is defined to be the set of
all permutations that can be obtained by applying one interchange move to π .
This neighborhood has, for any π , size |NX(π)| = n(n − 1)/2 and a complete
neighbourhood evaluation has cost O(n3). Preliminary tests showed that NX gives
significantly worse solution quality when compared to the following two local
search methods.

A second neighborhood, NI , is defined by the insert operation: an element in
position i is inserted in another position j . Formally, insert: �(n)×{1, . . . , n}2 →
�(n) is defined for i �= j :

insert(π, i, j)
�=

{
(π1, . . . , πi−1, πi+1, . . . , πj , πi, πj+1, . . . , πn), i < j ;
(π1, . . . , πj−1, πi, πj , . . . , πi−1, πi+1, . . . , πn), i > j.

The insert based neighborhood has size |NI (π)| = (n − 1)2.
The �-function

�I(π, i, j)
�= f (insert(π, i, j)) − f (π)

associated with this operation is defined as:

�I(π, i, j)
�=

{ ∑j

k=i+1 cπkπi
− cπiπk

, i < j ;∑i−1
k=j cπiπk

− cπkπi
, i > j.

The cost for evaluating this function is O(|i − j |) and, hence, in O(n) if no care is
taken. In a straightforward implementation of a local search based on this neighbor-
hood one would, given an index i, tentatively try all possible moves insert(π, i, j)

with j ranging from 0 to n − 1. Since for each move the �-function evaluation is
linear, the cost for exhaustively visiting the neighborhood is O(n3). However, the
local search procedure can be sped up significantly, if the neighborhood is visited
in a more systematic way. A particular case of an insert move is given if i = j ± 1;
we call this a swap move, that is swap(π, i) = (π1, . . . , πi+1, πi, . . . , πn), and its
� function is:

�S(π, i)
�= cπi+1πi

− cπiπi+1 .

Hence, the cost of the evaluation of �S is constant. Furthermore, an insert move
(with arguments i and j) is always equivalent to a sequence of |i − j | swap moves.

372 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

For example, for n = 6 the insert move with i = 2, j = 5 can be written as a
sequence of three swap moves:

π = 1 2 3 4 5 6 →
swap(1 2 3 4 5 6, 2) = 1 3 2 4 5 6 = insert(π, 2, 3) →
swap(1 3 2 4 5 6, 3) = 1 3 4 2 5 6 = insert(π, 2, 4) →
swap(1 3 4 2 5 6, 4) = 1 3 4 5 2 6 = insert(π, 2, 5).

In the example, it can be noticed that all the permutations visited are in the in-
sert-neighborhood of π . Hence, the idea is to use only swap-moves to visit the
whole insert-neighborhood. For each index i we will apply all the possible moves
insert(π, i, j) in two stages. First, with indices j that range from i − 1 to 0 and
then for indices j that vary from i + 1 to n − 1. In every stage a solution can be
obtained from the previous visited one by applying a swap move. Hence, every
solution in the neighborhood can be obtained in constant time and therefore the to-
tal computational cost for evaluating the insert neighborhood becomes O(n2). This
technique was inspired by the method that Congram applies to Dynasearch [9].
Figure 1 shows the effect of an insert move on the matrix and how the same move
can be done only through swap moves.

A further, minor speed-up consists in pre-computing the cost for all the possible
swap moves:

dij = cij − cji ∀i, j = 0, . . . , n − 1.

In addition to these standard neighborhoods, we also implemented the CK local
search algorithm by Chanas and Kobylański [8] that uses two functions sort and
reverse. When applied to a permutation, sort returns a new permutation in which
the elements are rearranged according to a specific sorting criterion (see [8]), while
reverse returns the reversed permutation. In the LOP case, if a permutation max-
imizes the objective function, the reversed permutation minimizes the objective
function; hence, reversing a good solution leads to a bad solution. The idea of CK
is to alternate sorting and reversing to improve the current solution; in fact, it has
been shown that the application of reverse and then sort to a solution will lead to a
solution with a value greater or equal to the starting one. The functional description
of the algorithm is:

(sort∗ ◦ reverse)∗ ◦ sort∗,

where ◦ denotes function composition, and the ∗ operator is used to apply any
given function iteratively until the objective function does not change. Formally,
we consider a general function φ, and a generic permutation π :

φ∗(π)
�=

{
π, f (φ(π)) = f (π),

φ∗(φ(π)), otherwise.

The sort function is recursively defined as follows:

sort(π1, . . . , πk) =
{

π1, k = 1,

insertCK(πk, sort(π1, . . . , πk−1)), k > 1,
(1)

THE LINEAR ORDERING PROBLEM 373

Figure 1. Given is a pictorial example of what the � function means in terms of matrix entries
and how an insert move can be done with successive swap moves. The shadings of the cells
visually illustrate for given i and j how the objective function is affected by the single swap
moves. The insert move swaps a group of cells on the upper triangular with another on the
lower (upper part). The same operation can be obtained by a sequence of swap operations
(indicated by the interlined arrows). Notice that when a swap is applied, the cells related to the
swapped indices change position, but only the two close to the diagonal pass from the upper
triangular to the lower and vice versa.

insertCK(t, (π1, . . . , πk−1)) = (π1, . . . , πr̄−1, t, πr̄ , . . . , πk−1), (2)

where r̄ ∈ {1, . . . , k} such that it maximizes the value:

�CK(t, r, (π0, . . . , πk−1)) =
r̄−1∑
j=1

cπj t +
k−1∑
j=r̄

ctπj
.

Unfortunately, this definition does not help in understanding the neighborhood
actually used by CK . In fact, one can show that the CK algorithm actually imple-
ments a local search algorithm based on NI .

We implemented three local search variants, including two versions of the insert
moves and CK . The two insert variants differ only in the pivoting rule applied. One
version uses a pivoting rule that is between first and best improvement:

374 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Table I. Comparison between three local search algorithms on the
benchmark classes. The results are averaged over all instances of each
class and over 100 trials for each instance. Avg.Dev. gives the average
percentage deviation from optimal or best known solutions, # optima
gives the number of optimal or best known solutions found at least once
in the 100 trials for each instance, and Avg.time (sec) gives the average
computation time in seconds on a 1400+ Athlon CPU to run the local
search once on each benchmark instance of a class (for example, the
timing given on LOLIB instances is the time to run a local search once
for all the 49 instances of LOLIB)

Avg.Dev. (%) # optima Avg.time (sec)

LOLIB LSi 0.1842 42 0.1802

CK 0.2403 38 0.0205

LSf 0.22 45 0.013

SGB LSi 0.27 5 0.1389

CK 0.41 3 0.01013

LSf 0.46 7 0.00516

MBLB LSi 0.0195 10 9.81

CK 0.0209 12 0.22

LSf 0.021 10 0.14

XLOLIB (250) CK 1.11 0 2.1256

LSf 0.90 0 0.6741

LMC-LOP CK 0.65 0 1.0496

LSf 0.60 0 0.2976

function visitNI
(π)

for i = 0 .. n − 1 do
r̄ ← arg maxr.r �=i f (insert(π, i, r))

π ′ = insert(π, i, r̄)

if f (π ′) > f (π) then
return(π ′)

end if
end for
return(π)

Obviously, the scan of the indices for finding the best move for each index is
made exploiting the evaluation of the delta function in constant time. We indicate
with LSf the local search based on the visit-function we just introduced; LSi is
a local search on NI using a random first improvement strategy, where the neigh-

THE LINEAR ORDERING PROBLEM 375

borhood is scanned in random order; the latter neighborhood examination scheme
requires the �-function to be computed in linear time.

Table I gives a comparison of the three algorithms on the benchmark classes
we considered. The results show that with respect to solution quality all three
algorithms are comparable. However, they strongly differ in terms of computa-
tional speed. Clearly, LSf is the fastest, followed by CK; LSi is several orders of
magnitude slower than the other two. Based on these results, in the rest of the paper
we will only apply LSf .

4. Structural Analysis of the Instances

As a first step in our analysis of the LOP instance characteristics, we computed
cross-statistical information on the distribution of the matrix entries for the avail-
able instances. In particular, we computed for all instances the sparsity, the vari-
ation coefficient and the skewness of the matrix entries. The sparsity measures
the percentage of matrix elements that are equal to zero; the main interest in this
measure is that, according to Mitchell and Borchers, it has a strong influence on the
behaviour of their algorithm [23]. The variation coefficient (VC) is defined as σ/x̄,
where σ is the standard deviation and x̄ the mean of the matrix entries. VC gives
an estimate of the variability of the matrix entries, independent of their size. The
skewness is the third moment of the mean normalized by the standard deviation; it
gives an indication of the degree of asymmetry of the matrix entries. The statistical
data is given in Table II for LOLIB and XLOLIB instances and in Table III for the
random instance classes MBLB and LMC-LOP.

The cross statistical data for the SGB instances are the following: the median of
the sparsity is 14.16 and 22.91 for the size 50 and 65 instances, respectively; the VC
is 4.59 and 5.23, respectively; the skewness is 10.31 and 13.09, respectively. For the
size 79, 80 and 81 instances the sparsity is 26.26, 25.91, and 25.29, respectively;
the VC is 6.12, 6.13, and 10.62, respectively; and the skewness is 16.62, 16.80, and
21.27, respectively.�

These statistical data show that there are significant differences between the
real-life instances (LOLIB and SGB) and real-life like random problems (XLOLIB)
on the one side and the randomly generated instances from LMC-LOP and MBLB
on the other side. For the real-life and real-life like instances all statistics (sparsity,
VC, and skewness) are typically much higher than for the randomly generated
instances. This suggests that the former class of instances are much less regular
and the variation among the matrix entries is much stronger than for the ran-
dom instances. Additionally, the variation of the statistics among the real-world
instances is much larger indicating a certain diversity of structural features in these
instances. Obviously, SGB instances are an exception in that respect, because they

� Note that the full SGB instance of size 81 has the particularity of having a negative row, hence
resulting in a somewhat different structure of this instance with respect to VC and skewness than
other instances of similar size.

376 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Table II. Structural information on the real-world and real-world like
instance classes. “Sp.” indicates the sparsity, “VC” the variation co-
efficient, and “Sk.” the skewness. Given are the minimum, the 0.25
and 0.75 quantiles, the median, the maximum and the mean of these
measures across all instances of a benchmark class

LOLIB

Size Min 1st qu. Median 3rd qu. Max Mean

Sp. 11.00 26.91 35.28 46.13 80.63 37.34

all VC 4.10 4.45 4.87 5.78 16.25 5.49

Sk. 9.15 11.40 12.93 15.83 39.18 15.50

XLOLIB

Sp. 10.57 26.80 34.71 45.74 80.351 37.25

150 VC 4.04 4.46 4.84 5.54 16.05 5.42

Sk. 8.94 11.09 12.49 15.78 42.62 15.04

Sp. 10.79 26.98 35.04 45.76 80.48 37.25

250 VC 4.07 4.39 5.00 5.77 15.81 5.48

Sk. 9.05 11.33 12.61 16.51 43.63 15.49

are all generated from the same matrix. Differently, the variance of the statistical
measures is low for LMC-LOP and MBLB instances, indicating a more regular
structure of these.

The data presented here give evidence that we might observe significant differ-
ences in the behavior of algorithms when applied to random instances or real-life
(like) instances. Additionally, these data give an indication that conclusions ob-
tained for the random instances do not necessarily apply to real-life instances,
because random instances show very different statistical data from real-life in-
stances. Hence, the XLOLIB instances appear to be much better suited for testing
algorithms on realistic, large LOP instances than the random instances.

5. Landscape Analysis

Central to the landscape analysis in combinatorial optimization is (i) a representa-
tion of the space searched by an algorithm as a landscape formed by all feasible so-
lutions, which in the LOP case are permutations, (ii) a fitness value assigned to each
solution, which in our case is the objective function value f (π) of a permutation π ,
and (iii) a distance metric on the search space [21]. The usefulness of landscape
analysis is typically based on the insights with respect to landscape characteris-
tics and the relationship to the behavior of local search algorithms or metaheuris-

THE LINEAR ORDERING PROBLEM 377

Table III. Structural information on randomly generated instance
classes. “Sp.” indicates the sparsity, “VC” the variation coefficient, and
“Sk.” the skewness. Given are the minimum, the 0.25 and 0.75 quan-
tiles, the median, the maximum and the mean of these measures across
all instances of a benchmark class

LMC-LOP

Size Min 1st qu. Median 3rd qu. Max Mean

Sp. 0.5 0.5 0.50 0.51 0.51 0.51

75 VC 0.70 0.71 0.71 0.71 0.72 0.71

Sk. 0.389 0.40 0.40 0.40 0.42 0.40

Sp. 1.33 1.33 1.33 1.33 1.37 1.34

150 VC 0.70 0.71 0.72 0.72 0.73 0.72

Sk. 0.36 0.40 0.41 0.43 0.46 0.41

Sp. 0.67 0.67 0.67 0.68 0.68 0.67

200 VC 0.71 0.71 0.71 0.71 0.72 0.71

Sk. 0.38 0.34 0.40 0.41 0.43 0.40

MBLB

Sp. 22.01 22.12 22.33 22.44 23.36 22.45

100 VC 1.00 1.01 1.01 1.01 1.02 1.01

Sk. 0.98 0.98 1.00 1.00 1.00 0.99

Sp. 2.29 2.38 7.15 12.02 12.48 7.23

150 VC 0.77 0.78 0.83 0.88 0.89 0.83

Sk. 0.82 0.84 0.86 0.88 0.88 0.86

Sp. 2.08 2.25 7.02 11.87 12.10 7.06

200 VC 0.77 0.78 0.83 0.88 0.88 0.83

Sk. 0.82 0.84 0.86 0.88 0.89 0.86

Sp. 2.04 2.11 2.12 2.15 2.23 2.13

250 VC 0.77 0.77 0.78 0.78 0.78 0.77

Sk. 0.82 0.83 0.84 0.84 0.84 0.84

tics [5, 30], the possibility to predict problem or problem instance difficulty [2, 28],
or indications for useful parameterizations of local search algorithms [1].

Formally, the search landscape of the LOP is described by a triple 〈�(n), f, d〉,
where �(n) is the set of all permutations of the integers {1, . . . , n}, f is the
objective function and d is a distance measure, which induces a structure on the
landscape. It is natural to define the distance between two permutations π and π ′
so as to depend on the “basic operation” used by a local search algorithm; typically,

378 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

the distance is given by the minimum number of applications of this basic operation
needed to transform π into π ′. Since the best performing local search algorithms
are all based on NI , we consider an insert move as our basic operation.

5.1. LANDSCAPE CORRELATION ANALYSIS

The first feature of the search landscape we studied is its ruggedness: a search
landscape is said to be rugged if there is a low correlation between neighboring
points. To measure this correlation, Weinberger suggested to perform a random
walk in the search landscape of length m, to interpret the resulting set of m points
{f (xt)}, t = 1, . . . , m as a time series and to measure the autocorrelation r(s) of
points in this time series that are separated by s steps [33] as

r(s) =
∑m−s

t=1 (f (xt) − f̄)(f (xt+s) − f̄)

σ̂ 2(f)(m − s)
,

where σ̂ 2(f) is the variance of the time series, and f̄ its mean. Often, the re-
sulting time series can be modeled as an autoregressive process of order one, and
then the whole correlation structure can be summarized by r(1) or, equivalently,
by the search landscape correlation length that is computed as � = − 1

ln(|r(1)|)
(r(1) �= 0) [26, 27, 33]; the lower is the value of �, the more rugged is the land-
scape. Interestingly, in landscape analysis literature general intuitions and some
results suggest that there is a negative correlation between � and the hardness of
the problem [2].

We computed � on all benchmark instances with a random walk of one million
steps; Table IV summarizes data collected on all instances. � is given normalized by
the instance size (n). As we see, each class has a relatively small variance (SGB has
one instance that represents an outlier in these data). This means, that the landscape
correlation length can characterize specific instance classes. From these instance
classes, the MBLB instances have by far the largest normalized correlation length,
which would suggest that these instances are also the easiest to solve; in fact, when
abstracting from instance size, our experimental results with metaheuristics suggest
that this is true. The next smaller �/n is found for the real-life instances from
LOLIB and SGB, while the smallest values, on average, are observed for LMC-
LOP and XLOLIB instances.

Note that the values of �/n alone are not sufficient to serve as the sole basis
for the definition of instance classes. For example, XLOLIB instances showed
roughly the same normalized values for �/n as LMC-LOP instances, which would
suggest similar behavior. However, both types of instances have widely different
characteristics as shown by the data on the distribution of the matrix entries.

From a methodological point of view we were interested on how long a random
walk should be to obtain a stable estimate of �. Therefore, we measured on all
MBLB and XLOLIB instances of size 250 ten times � for different lengths of the
random walks. Figure 2 shows the values for �/n resulting from these experiments

THE LINEAR ORDERING PROBLEM 379

Table IV. Given are standard statistical data (minimum, 0.25 and 0.75 quan-
tiles, median, average, and maximum) for the normalized values �/n of the
search landscape correlation length measured across all the instances of the
available benchmark classes

Min 1st qu. Median 3rd qu. Max Mean

LOLIB 0.7536 0.7907 0.8004 0.8207 0.8403 0.8021

SGB 0.4821 0.8055 0.8163 0.8248 0.8347 0.7810

XLOLIB(100) 0.7094 0.7278 0.7311 0.7416 0.7671 0.7341

XLOLIB(250) 0.7165 0.7327 0.7364 0.7407 0.7524 0.7372

MBLB 0.9339 0.9595 0.9639 0.9707 0.9775 0.9620

LMC-LOP 0.6924 0.7211 0.7312 0.7450 0.7746 0.7332

Figure 2. Dependence of �/n (given in the y-axis) on the random walk length (x-axis) for
MBLB (left) and XLOLIB (right) instances. Every dot gives the average normalized landscape
correlation length measured across 10 random walks for each instance.

for all instances. As can be seen, the longer is the random walk the more precise is
the resulting measure of �. These plots also indicate that apparently for 1,000,000
steps in the random walk the estimate has stabilized. On the other side, these
results also suggest that the random walks for measuring � should be by a large
multiple (e.g., 400 in this case) larger than the instance size (or the diameter of the
landscape, which in this case is n − 1) to result in stable estimates.

5.2. FITNESS-DISTANCE ANALYSIS

In a next step we analyzed the distribution and the relative location of local optima
to the global optima of the LOP instances.

380 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Table V. Summary information on the percentage of distinct lo-
cal optima found (percentage of the total number of local optima
generated)

Min 1st qu. Median 3rd qu. Max Mean

LOLIB 0.12 40.35 63.65 80.49 99.2 67.93

SGB 25.60 64.50 94.60 99.5 100.00 81.09

MBLB 7.30 76.75 96.50 99.48 100.00 82.17

Table VI. Summary information on the number of distinct global
optima found, given as the percentage of the total number of
distinct local optima

Min 1st qu. Median 3rd qu. Max Mean

LOLIB 0.47 2.34 14.10 16.54 85.12 8.33

SGB 0.00 0.10 0.20 1.17 1.86 0.68

MBLB 0.00 0.00 0.22 0.57 4.27 0.46

For LOLIB instances we ran 13,000 local searches starting from random so-
lutions, while for the other instance classes 1,000 local searches were done. On
the instance classes LMC-LOP and XLOLIB the local searches generated 1,000
distinct local optima for each instance and in no case was the best known solution
found. For LOLIB instead, the number of distinct local optima was considerably
varying, between 24 and 13,000 with a median around 9,400; for MBLB instances
the number ranged from around 73 to 1,000, with a median of 965; finally for the
smaller SGB instances around 600 distinct local optima were found, while in the
largest ones 1,000 distinct local optima resulted. Summary data are given also in
Table V.

For all LOLIB, SGB and MBLB instances we know the global optima. In fact,
on several instances we could find global optima among the local optima generated.
Among the total number of distinct local optima, the percentage of global optima
ranges from 0.47% to 85.12% for LOLIB, while for the other instance classes the
corresponding percentages are much smaller. Summary data on these values are
given in Table VI. In fact, these results also suggest that especially the LOLIB
instances can effectively be solved by a random restart algorithm that is run long
enough.

Finally, we analyzed the relationship between the quality of local optima and
their distance to the closest global optimum by measuring the fitness distance cor-
relation coefficient and generating fitness distance plots [14]. Given a sample of m

candidate solutions {π1, . . . , πm} with an associated set of pairs {(f1, d1), . . . ,

THE LINEAR ORDERING PROBLEM 381

Table VII. Some information on the local optima generated, the mean distance
from the best known solution is given as percentage over the max distance. The
number of distinct local optima is given as percentage of the number of local
optima generated; the LOLIB value is over 13,000 trials explaining in part the
very low value

Class Avg.Dist (%) from best known Avg. (%) distinct local optima

LOLIB 5.84 58.55∗
SGB 10.51 81.18

XLOLIB 26.27 100

MBLB 0.43 82.02

LMC-LOP 23.22 100

(fm, dm)} of fitness (solution quality) values fi and distances to the closest global
optimum di , the (sample) fitness distance correlation coefficient ρ can be com-
puted as

ρ = Ĉov(f, d)

σ̂ (f) · σ̂ (d)
, (3)

where

Ĉov(f, d) = 1

m − 1

m∑
i=1

(fi − f̄)(di − d̄), (4)

σ̂ (f) =
√√√√ 1

m − 1

m∑
i=1

(fi − f̄)2, σ̂F =
√√√√ 1

m − 1

m∑
i=1

(di − d̄)2, (5)

and f̄ , d̄ are the averages over the sets F = {f1, . . . , fm} and D = {d1, . . . , dm},
respectively. Ĉov(f, d) is the sample covariance between the f and d values, while
σ̂F and σ̂D are the sample standard deviations of F and D, respectively. As usual,
we have −1 � ρ � 1. In our case, we used as the fitness the deviation from
the global optimum. Hence, a high, positive value of ρ indicates that the higher
the solution quality, the closer one gets, on average, to global optima; hence, the
solution quality gives good guidance when searching for global optima. For the
instances of the classes LMC-LOP and XLOLIB we do not have proven optimal
solutions available, since exact algorithms were not able to solve these. In this case,
we used the best known solutions instead. The best known solutions were the best
ones found by the metaheuristics we tested in Section 7. In the case of the LMC-
LOP instances of dimension 75, these best known solutions are conjectured to be
the optimal ones, since the same best solutions were found in many trials of the
metaheuristics we tested.

In addition, we used a second measure of the FDC that is a variation on the
original measure. For this new measure the FDC is computed only for the local

382 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Table VIII. Summary information for ρ, the fitness distance correlation
coefficient, computed on the complete set of local optima

Min 1st qu. Median 3rd qu. Max Mean

LOLIB 0.1369 0.5471 0.6057 0.7397 0.8669 0.6173

SGB 0.3408 0.5431 0.5944 0.6222 0.8914 0.5956

XLOLIB 0.2364 0.3903 0.4313 0.4772 0.6243 0.4322

MBLB 0.6516 0.7266 0.7758 0.8344 0.8871 0.7741

LMC-LOP 0.2271 0.4149 0.4824 0.5560 0.8060 0.4850

Table IX. Summary information for ρ′, the easy level fitness distance correlation
coefficient, computed on the local optima better than the easy level (see text for
details)

Min 1st qu. Median 3rd qu. Max Mean

LOLIB 0.3087 0.5980 0.7408 0.8612 0.9968 0.7142

SGB 0.4959 0.5655 0.6327 0.7089 0.9386 0.6536

XLOLIB 0.1580 0.2564 0.3145 0.3597 0.5528 0.3143

MBLB 0.4605 0.6539 0.6864 0.7510 0.8394 0.6874

LMC-LOP 0.09149 0.27240 0.33240 0.42820 0.75480 0.35360

optima with an objective function value that is better than the median objective
function for all the local optima that were generated. The idea behind this measure
is that all the metaheuristics should be able to easily reach a solution with such an
objective function value. In fact, by a simple random restart, within a few iterations
the probability of finding a solution better than a median local optimum quality
approaches one. Furthermore, in an analysis of the FDC relationship one should
focus on the solutions which are the more likely ones to be encountered in the
search trajectory of the metaheuristics. We will refer to the threshold on the solution
quality as the easy level and to the FDC based on the solutions passing this bound
as the easy level FDC (ρ ′).

Tables VIII and IX summarize the information about FDC and easy level FDC,
respectively. For the larger instances, it appears that the easy level FDC coefficients
are lower than the standard FDC coefficients. This probably is the case because
poor quality local optima that are far from the global optimum can have a con-
siderable influence on the resulting correlation and these poor local optima are
eliminated when imposing the “easy level” bound. For some instances the values of
ρ and ρ ′ are strongly positive, suggesting that these instances should be relatively
easy for restart type algorithms [21].

THE LINEAR ORDERING PROBLEM 383

In Figure 3 we show some example FDC plots for instances from all benchmark
classes except XLOLIB. Since the range of the x-axis is from zero to the maximum
distance, the plots give visual information on the typical distance of local optima
to the nearest global optima (see also Table VII). MBLB instances show the pecu-
liarity that the local optima are relatively close to global optima. In order to give
a more detailed picture of the fitness-distance relationship for these instances, we
plot in Figure 4 the same data as in Figure 3 but using a logarithmic scale on the
x-axis. In Section 7, we will give an analysis of how the fitness distance measure
correlates with the hardness of LOP instances for particular metaheuristics.

According to the FDC analysis and the FDC plots, the MBLB instances would
be predicted to be the easiest ones among the large instances. This is the case
because of the very high FDC coefficients and the concentration of the local op-
tima in a very tiny part of the whole search space. A further confirmation of this
impression is given by the analysis of the landscape ruggedness through the cor-
relation length of random walks. In fact, later experimental results suggest that
MBLB instances are easily solved, while XLOLIB and LMC-LOP instances of a
similar size are by far harder for metaheuristics but also for exact algorithms. An
additional, interesting observation is that the landscape analysis would suggest that
the characteristics of the XLOLIB instances are different from the original LOLIB
instances, differently from the structural analysis of these instances. In fact, the
later experimental evaluation showed that XLOLIB instances are much harder to
solve than LOLIB instances (see also experimental evaluation in Section 7) and
this observation gives an indication that the hardness of XLOLIB instances may
not only be due to their larger size.

6. Metaheuristics

The results of the search space analysis of the LOP suggest that methods that are
able to exploit both the good performances of the local search, and the often highly
positive fitness distance correlation are promising for this problem. Earlier research
results suggest that two metaheuristics that have these characteristics are Iterated
Local Search (ILS) [19], and Memetic Algorithms (MAs) [5, 21, 20].

6.1. ITERATED LOCAL SEARCH

ILS is a conceptually very simple but at the same time very powerful metaheuristic,
as shown by a number of applications [19]. ILS iterates in a particular way over
the local search process by applying three main steps: (i) perturb a locally optimal
solution, (ii) locally optimize it with the local search chosen and (iii) choose, based
on some acceptance criterion, the solution that undergoes the next perturbation
phase. Algorithm 1 describes the general algorithmic outline for ILS. Next, we
indicate the possibilities we considered for the final ILS algorithm.

384 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Figure 3. Examples of FDC plots. On the x-axis is given the distance to the nearest global
optimum (or best known solution if optima are not proven) and on the y axis the percentage
deviation from the optimum or best known solution. The dashed line indicates the median
deviation from the best known or globally optimal solution over the randomly generated local
optima.

THE LINEAR ORDERING PROBLEM 385

Figure 4. FDC plots for two MBLB instances; here the x-axis uses a log scale.

ALGORITHM 1. Algorithmic outline of an ILS algorithm.
π ← GenerateInitialSolution();
π ← LocalSearch(π);
repeat

π ′ ← Perturbation(π);
π ′ ← LocalSearch(π ′);
π ← AcceptanceCriterion(π, π ′, history);

until termination condition met;

• GenerateInitialSolution: The initial solution is taken to be a random permuta-
tion.

• LocalSearch: The local search procedure is the core of the algorithm and the
overall ILS performance depends strongly on it. For the ILS algorithm, we
use the LSf local search, which was the best performing one according to
Section 3.

• Perturbation: As the perturbation operator we used interchange moves, be-
cause it is a move that cannot be undone by insert moves in one step. The
number of interchange moves to be applied in a perturbation is a parameter of
the algorithm.

• AcceptanceCriterion: The acceptance criterion determines to which solution
the next perturbation is applied. We tried different approaches, the final choice
of which one to be used was made using an automatic tuning procedure.

Accept better: A new local optimum is accepted only if the objective func-
tion is larger than the current best solution, that is, is f (π ′) > f (π);

386 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Accept small worsening: A new local optimum is accepted if the objective
function f (π ′) is larger than (1 − ε) · f (π), where ε is a parameter to be
tuned;

Simulated annealing like: A probabilistic acceptance/rejection test is applied,
based on the standard Metropolis acceptance criterion in simulated anneal-
ing [16]. In this case, the parameters to be tuned are the initial temperature,
the temperature cooling ratio, and the number of steps between consecutive
temperature reductions.

6.2. MEMETIC ALGORITHM

MAs are evolutionary algorithms that are intimately coupled with local search
algorithms, resulting in a population-based algorithm that effectively searches in
the space of local optima [24].

ALGORITHM 2. Algorithmic outline of a memetic algorithm.
Population ← {};
for i = 1 . . . m do {m is the number of individuals}

π ← LocalSearch(GenerateRandomSolution());
Population ← Population ∪ {π};

end for
repeat

Offspring ← {};
for i ← 1 . . . #crossovers do

draw πa, πb from Population
Offspring ← Offspring ∪ {LocalSearch(Crossover(πa, πb))};

end for
for i ← 1 . . . #mutations do

draw πa from Population
Offspring ← Offspring ∪ {LocalSearch(Mutate(πa))};

end for
Population ← SelectBest(Population ∪ Offspring,m);
if same average solution quality for a long time then {diversification}

Population ← SelectBest(Population, 1);
for i = 1 . . . m − 1 do {m is the number of individuals}

π ← LocalSearch(GenerateRandomSolution());
Population ← Population ∪ {π};

end for
end if

until termination condition met;

THE LINEAR ORDERING PROBLEM 387

Figure 5. (a) DPX operator: the positions marked with a circle are common to the parents; (b)
CX operator: the positions marked with a circle are common to the parents (c) OB operator:
the positions marked with a circle are the reordered elements (k = 5); (d) Rank operator.

Algorithm 2 shows the algorithmic scheme of MAs that we used in our im-
plementation. In the first step, a population of individuals is obtained by first
generating m distinct random permutations and applying to each LSf . Then, in
each iteration (generation) a number of new individuals are created by applying
crossover and mutation operators (in the literature these new individuals are called
offspring). The individuals to which crossover and mutation are applied are chosen
randomly according to a uniform distribution as in several other, high performing
MAs [20]. The crossover operator takes two individuals of the current population
and combines them into a new individual, while the mutation operator introduces
a perturbation into an individual. To each of the offspring LSf is applied. Finally,
the best m individuals from the original population and the newly generated ones
are selected for the new population; care is taken to eliminate duplicates.

In addition to this rather standard scheme for MAs, we use a diversification
mechanism that is triggered if the average objective function value of the popula-
tion has not changed for a number of steps. In this case, we generate a new, random
initial population, keeping only the overall best individual.

It is well known that the performance of an MA may depend strongly on the
crossover operator. Therefore, we tested four different ones.

DPX (Figure 5a): The offspring inherits the elements that have the same position
in both parents; these are put into the same position as in the parents. The
other elements are assigned randomly between those positions that have not
yet been chosen. This results in an offspring that, on average, has the same
distance from both parents.

388 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

CX (Figure 5b): The idea of CX is to keep as much information as possible from
the parents. For the elements in common between the parents it works like the
previous operator. For the others, the CX operator chooses randomly an empty
position (i) and a parent (π1), determining an element a (a = π1

i) that in turn
is assigned to the offspring in position i. In the second parent, π2, a different
element b = π2

i occupies this same position i. The element b is then copied
to the offspring in the position occupied by b in π1. This process iterates until
all the position are filled (see [22]).

OB (Figure 5c): In the first phase of the order-based crossover, the solution of the
first parent is copied to the offspring. In the second phase it selects k positions,
0 < k < n, and orders the elements in these k positions according to their
order in the second parent (see [32]);

Rank (Figure 5d): The offspring permutation is obtained by sorting the elements
by their average ranking over the two parents, ties are broken randomly ac-
cording to a uniform distribution.

6.3. PARAMETER TUNING

The tuning of the ILS and the MA algorithm was done in a systematic, statistically
well-founded approach. We have developed a number of different candidate con-
figurations for the two algorithms, 78 in the ILS case and 144 in the MA case, and
a final configuration was selected using an automatic tuning procedure based on
F-races [4]. The F-race returns the configuration of a metaheuristic, that performs
best with respect to some evaluation metric on a number of instances that are used
for parameter tuning. In our case, parameter tuning was done using XLOLIB in-
stances of size 100. Notice that the instances used for tuning are different from the
solutions in the benchmark sets on which the computational results are presented
in the following. Hence, we have a clear separation of the instances into training
instances, used for parameter tuning and test instances, on which the final results
are presented.

Certainly, it may be argued that tuning the algorithms on one specific instance
class and testing them in possibly different ones may give a bias in the results.
However, this procedure gives also an impression of the robustness of an algorithm,
since we can examine how the performance on one instance class generalizes to a
wider set of instances. Additionally, we did further experiments testing different
configurations when deemed necessary (see, for example, Section 7.3), so that a
more complete picture of the overall performance can be obtained.

In the ILS case, the tuning concerned mainly the acceptance criterion to be
used and the strength of the perturbation. The final configuration uses the accep-
tance criterion that accepts slightly worsening solutions with ε = 0.0001 and the

THE LINEAR ORDERING PROBLEM 389

perturbation consists of 7 interchange moves. We refer to this ILS algorithm with
these parameter settings as ILS-LOP in what follows.

In the MA case, we performed some exploratory experiments before applying
the actual tuning procedure. In preliminary experiments we found that the CX and
OB crossovers gave best results. Therefore, we considered only these two in the
automatic tuning phase. Mutations are obtained by applying the interchange oper-
ation to an individual. The number of times the operation is applied is a parameter;
we fixed this parameter to 7, so that the mutation corresponds to the perturbation
in the ILS case. In the actual tuning phase with the F-races we considered 144
different configurations (more than for ILS, but ILS has fewer parameters). We
compared the one that resulted to be the best to the two extreme cases that are
an MA without crossover and one without mutation. This final comparison led to
the choice of the configuration with no mutation, supposedly, because the partial
restarts were enough to introduce diversification into the search, making the muta-
tion unnecessary. The final configuration had a population size of 25 individuals,
every generation 11 new offsprings are formed using the OB crossover operator,
and the diversification was applied after the average fitness of the population has
not changed for 30 generations (we refer to this MA as MA-LOP in what follows).

7. Experimental Results

In this section we study the performance of ILS-LOP and MA-LOP and compare
them to results from the literature. The algorithms were run on dual processor
Athlon 2400+ machine with a clock speed of 2 GHz and with 1 GB of RAM;
since the algorithms were implemented as single processes (no threads) only one
processor was used at a time. Each algorithm was run 100 times on each instance
from LOLIB, MBLB, and SGB and 30 times on the XLOLIB and the LMC-LOP
instances. For the experiments a CPU time limit of 120 seconds was fixed, only
runs that reached the known optimum solution value were aborted prematurely.�

The performance analysis is divided into two parts, in the first we consider the
instances for which we know the optimal or the conjectured optimal objective func-
tion value, while in the second the other instances are considered. Next, different
aspects of the algorithms are analyzed in more detail and the results are compared
to those in the literature.

7.1. INSTANCES WITH KNOWN OPTIMAL SOLUTIONS

For all LOLIB, SGB and MBLB instances we were able to determine the optima,
using an exact algorithm that is presented in [23]. The same algorithm is not able
to find solutions for the instances of the other classes in reasonable computation

� To give some impression of the time limits: the time taken to apply 1,000 time LSf starting from
random solutions on the be75eec_250.mat instance from XLOLIB of size 250 took 5.86 seconds.

390 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Figure 6. Pairwise comparison of ILS-LOP and MA-LOP with respect to the maximum time
taken to solve MBLB (left) and LMC-LOP (right) instances. Each point corresponds to one
instance; the x-axis indicates the maximum computation time of ILS-LOP and the y-axis gives
the maximum computation time for MA-LOP.

time (this was tested running randomly chosen instances for 18 hours). For LMC-
LOP instances of size 75, we observed that MA-LOP found for each instance the
same objective function value; the very same value was the best found by ILS-LOP,
which, however, did not reach such a solution in every single trial. Therefore, we
strongly suppose that this value is optimal and we used it as the conjectured global
optimum for our analysis. In fact, the generated solutions were found to be unique.
Solutions that we conjecture to be global optima will also be called pseudo-optima
in the following.

Experiments with MA-LOP and ILS-LOP showed that the LOLIB and SGB
instances are extremely easy and cannot be considered as challenging benchmarks
for state-of-the-art metaheuristics. In fact, the longest trial of ILS-LOP and MA-
LOP for any of the instances of LOLIB took less than 0.1 seconds and less than 0.2
seconds for the SGB instances.

For MBLB the situation is different. While MA-LOP obtained very good results
and the maximum time to solve an instance was 6.5 seconds, the results for ILS-
LOP were much worse, as shown in Figure 6 on the left. In fact, for 2 instances
ILS-LOP failed to find an optimum in all the runs (once in one instance, three times
for the other one) and when it succeeded, it took much longer than MA-LOP.

Somewhat stronger tradeoffs between the performance of the two algorithm
became noticeable on the LMC-LOP instances of size 75 (Figure 6, right). Here,
MA-LOP obtained much better results than ILS-LOP: First, as said above, MA-
LOP was able to find the best known solutions in all the 30 runs, while ILS-

THE LINEAR ORDERING PROBLEM 391

Figure 7. Run time distributions for the hardest LMC-LOP instances of size 75. The com-
putation time is given on the x-axis and the empirical cumulative probability of finding a
pseudo-optimal solution is given on the y-axis.

LOP could reach the same level of performance only for 12 instances. For seven
instances, it found the best known permutation even in less than 50% of the runs.

To give a more detailed impression of the behavior of MA-LOP and ILS-LOP,
for selected instances we examined the run-time distributions that give the empir-
ical probability of finding a global optimum or pseudo-optimum (or a bound on
the solution quality) in dependence of the computation time [12]. Figure 7 gives
the RTDs for the two hardest LMC-LOP instances of size 75 as judged by the
computational results of ILS-LOP. In both cases, ILS-LOP finds the best known
solution in only 11 out of 30 trials. The plots show that (i) the probability of
finding such a solution for MA-LOP increases continuously and quickly reaches
one, suggesting that MA-LOP is preferable to ILS-LOP for computation times in
the range of a few seconds and (ii) ILS-LOP suffers from a type of stagnation
behavior that strongly compromises its performance.

In fact, the observation of search stagnation suggests that ILS-LOP performance
can be strongly improved by including additional means of search diversifica-
tion [31]. Therefore, we introduced a simple diversification step for ILS-LOP that
restarts the algorithm from a new random solution, if no improved solution is found
for nni of iterations. The parameter nni was set (without tuning) to 750, which is
the same number of solutions visited by MA-LOP before the diversification step is
applied. The new algorithm (ILS_R) strongly improved over ILS-LOP, although it
did not fully reach the level of performance of MA-LOP. Certainly, ILS_R could
be improved by additional tuning or by using more sophisticated ways of search
diversification than in ILS-LOP.

392 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Table X. For LMC-LOP instance of size 75, where
ILS-LOP did not find the best known solution in all
trials, we give statistics on the time it reached the
last improvement in solution quality. Given that the
maximum computation time was 120 seconds, the re-
sults indicate that ILS-LOP stagnates very early in the
search. No-opt indicates the number of runs (out of
30) for which the best known solution was not found

Instance Median Mean Max No-opt

d75.1.mat 0.095 2.045 36.52 17

d75.3.mat 1.360 5.730 28.65 16

d75.4.mat 0.335 1.609 11.87 17

d75.5.mat 0.075 3.478 42.13 19

d75.6.mat 0.385 1.131 21.42 12

d75.7.mat 0.010 7.690 111.27 5

d75.9.mat 0.325 6.823 79.57 18

d75.12.mat 0.055 0.208 1.51 19

d75.13.mat 1.595 8.952 86.24 18

d75.14.mat 2.650 26.078 117.41 9

d75.19.mat 0.150 2.385 25.27 2

d75.21.mat 0.920 8.429 87.30 14

d75.23.mat 0.030 0.144 1.25 2

Finally, we compare the computational results of MA-LOP to an exact algo-
rithm by Mitchell and Borchers (SimpMB) [23], which is based on the Simplex
algorithm and that uses a branch and bound procedure to find an integer solution.
Figure 8 gives a visual comparison of the results on the LOLIB and MBLB in-
stances. MA-LOP is clearly much faster than SimpMB, often by several orders of
magnitude. The much superior performance of MA-LOP over SimpMB is further
confirmed by experiments run on some XLOLIB and LMC-LOP instances in which
SimpMB could not solve these instances within several CPU days.

7.2. INSTANCES WITH UNKNOWN GLOBAL OPTIMA

For XLOLIB and LMC-LOP instances with matrices of dimension larger than 75
no optimal or pseudo-optimal solutions are known. Therefore, we restricted the
comparison of MA-LOP and ILS-LOP to a statistical analysis of the quality of the
solutions returned by the two algorithms after the maximum computation time. The
overall result was that for the large instances of LMC-LOP, MA-LOP obtains av-
erage results that are significantly better than those of ILS-LOP, as confirmed by a
Wilcoxon test with α = 0.01. Similarly, MA-LOP gives better performance on the
XLOLIB instances. This is true for the instances of dimension 150, as indicated by

THE LINEAR ORDERING PROBLEM 393

Figure 8. Pairwise comparison of SimpMB (indicated as exact method) to MA-LOP for the
LOLIB and MBLB instances. For each instance, the time given for MA-LOP is the maximum
time over 100 trials to find a globally optimal solution (y-axis), while the timing for SimbMB
(given in the x-axis) is obtained from running it once since it is a deterministic algorithm.

a Wilcoxon test with α = 0.01; however, for the large instances of dimensionality
250, no significant differences between MA-LOP and ILS-LOP could be found.
The computational results are visualized in Figure 9.

7.3. TUNING EFFECT FOR ILS-LOP

The results presented in Section 7.1 for ILS-LOP on the MBLB instances are ac-
tually much worse than those presented in an earlier article with a different ILS
algorithm [25] using the CK local search and different parameter settings for the
perturbation size (5 interchange moves were used) and the acceptance criterion
(only better quality solutions were accepted). Hence, we suspect that the main
reason for the “poor” performance of ILS-LOP is that the configuration returned
from the automatic tuning procedure performs poorly on MBLB instances. Hence,
we tested again this earlier ILS implementation, referring to it in the following
as ILSv5, with the only difference that now we use the LSf local search instead
of CK .

In fact, ILSv5 resulted to be far better than ILS-LOP; it was able to reach the
optimal solution in all trials for every instance, and the computation times were
even smaller than that of MA-LOP, as shown by Figure 10. The hardest instance
was solved by ILSv5 in a maximum computation time of less than 5 seconds, while
all other instances took less than one second.

These results suggest, in turn, that ILSv5 may perform better than ILS-LOP also
on other instance classes. We tested this conjecture on the LMC-LOP instances

394 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Figure 9. Pairwise comparison of the average solution quality obtained by ILS-LOP and
MA-LOP, on large LMC-LOP instances (left) and XLOLIB instances (right). The results
are grouped according to the different instance sizes (indicated by crosses or circles). Each
cross (circle) gives on the x-axis the average deviation from the best known solution found by
ILS-LOP and on the y-axis that of MA-LOP.

Figure 10. Pairwise comparison of ILSv5 to ILS-LOP (left) and ILSv5 to MA-LOP (right)
based on the maximum time measured across 100 trials to find a globally optimal solution on
MBLB instances.

THE LINEAR ORDERING PROBLEM 395

Figure 11. Pairwise comparison between the ILS-LOP and ILSv5 on LMC-LOP and XLOLIB
instances. Each cross gives on the x-axis the average deviation from the best known solution
found by ILS-LOP and on the y-axis that of ILSv5.

of dimension 75 and the XLOLIB instances of size 150. For these instances, we
computed the average deviation from the best known solutions and plotted these
in Figure 11; the result is that ILSv5 is significantly worse than ILS-LOP on these
instances.

Overall, these results suggest that the performance of MA-LOP is more robust
with respect to the various instance classes than ILS-LOP. This conclusion can be
drawn because (i) ILS-LOP and MA-LOP were only tuned on the dimension 100
instances from XLOLIB, but MA-LOP shows, in general, good behavior across
all instance classes and (ii) variants of ILS-LOP that differ only in some details
of the parameter tuning make a large difference to performance and, hence, make
parameter settings strongly dependent on instance classes.

7.4. FDC AND INSTANCE HARDNESS

The experiments with ILS-LOP on the LMC-LOP instances indicate that ILS-LOP
has significant difficulties for solving all instances in each single run. One reason
may be that ILS-LOP is attracted to high quality solutions that may be far from a
globally optimal one. But, if this is the case, it is likely that ILS-LOP shows such a
behavior on instances with a low FDC value.

This conjecture is examined by analyzing ILS-LOP results in dependence of
the FDC coefficient ρ and the easy level FDC coefficient ρ ′. As an index of how
hard is an instance for ILS-LOP, we used the average deviation from the best
known solutions and the number of best known solutions returned by ILS-LOP
over 30 trials. The plots in Figure 12 illustrate graphically the relationship of

396 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Figure 12. FDC affects the instance hardness. Shown are plots of the average percentage
deviation from pseudo-optimal solutions for ILS-LOP (in the first row) and the number of
best known solutions found by ILS-LOP (second row) versus the FDC (left column) and the
easy level FDC (right column). In addition, are given the correlations between each pair of
measures.

these measures to the FDC and easy level FDC and show that these search space
characteristics affect the hardness of an instance as encountered by ILS-LOP. The
FDC has a strong negative correlation with the average deviation from the optima
found by ILS-LOP and a strong positive one with the number of global optima.
Summarizing, the higher is the FDC the easier become the instances for ILS-LOP,
as we conjectured. A slightly stronger correlation is observed for the easy level
FDC, which may suggest that the easy level FDC is better suited to predict the
instance hardness for ILS-LOP.

Besides the correlation value, the plots illustrate an interesting behaviour: if we
consider the FDC ρ, there exists a transition phase between the values 0.4 and
0.7; for smaller values the instances result to be hard, while for larger values all
instances are easy. The same happens for the easy level FDC (ρ ′), but here the

THE LINEAR ORDERING PROBLEM 397

Table XI. Comparison of ILS-LOP and MA-LOP to three algorithms from the
literature. Avg.Dev. (%) gives the average percentage deviation from the known
optimal solutions, # optima the number of optimal solutions found, run time (s)
gives the run-times reported in the original papers, and “P166 run time” are the
computation times translated to a 166 MHz Pentium CPU

SS ETS IDS ILS-LOP MA-LOP

Avg.Dev. (%) 0.01 0.00 0.00 0.00 0.00

LOLIB # optima 42 47 49 49 49

Run time (s) 3.82 0.93 1.22 0.00165 0.00176

P166 run time 3.82 0.93 0.30 0.35 0.37

Avg. Dev. (%) – 0.05 0.00 0.0072 0.00

LMC-LOP # optima – 3 25 13 (25) 25

size: 75 Run time (s) – 2.95 10.56 6.58∗ 0.38

P166 run time – 2.95 38.25 138.15 7.90

transition is sharper (between 0.4 and 0.5). This, once more, suggest that ρ ′ is a
better measure to predict the hardness of a given instance.

7.5. COMPARISON

In the literature, we find three main metaheuristic approaches to the LOP. In [7],
Campos, Laguna, and Martí proposed the application of Scatter Search (SS) to
the LOP and they discussed several ways of how to implement an SS approach to
the LOP.� The same authors studied an elite tabu search algorithm with additional
diversification features for the LOP [18]. In this latter article, they also presented
the instance class LMC-LOP. The most recent metaheuristic application for the
LOP is the iterated dynasearch (IDS) of Congram [9]. Dynasearch is a local search
algorithm where a dynamic programming approach is used to find the best set
of independent insert moves (two moves are independent if they do not overlap);
iterated dynasearch is then simply an ILS algorithm that uses dynasearch in the
local search step.

In the following, we give some comparisons on the solution quality and the tim-
ings between the different available approaches. However, we encountered several
difficulties for doing so. The least severe probably is that the experiments in these
articles were run on different machines. Using the SPEC benchmark results [29]
and some experimental test we found that the machine we use is 21 times faster
than the Intel Pentium 166 MHz used in [7, 18] and 15 times faster than the Power
Challenge R10000 used in [9]. In Table XI we report some results for the instance

� The scatter search of [6] differs only in minor details from the one in [7] and the results are very
similar. Therefore, we focus in the following on the results presented in the first article.

398 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

Table XII. Comparison of ILS-LOP
and MA-LOP to ETS on large
LMC-LOP instances. Given is the av-
erage percentage deviation from the
best known solutions, averaged over
all trials and all instances

Size ETS ILS-LOP MA-LOP

150 0.18 0.029 0.0022

200 0.19 0.033 0.015

classes studied in [9, 7, 18]. The major difficulty for the comparison we found were
that not enough details were given in these articles to allow a detailed comparison.
First, the termination criterion applied to ETS and IDS is not clearly stated, neither
how many trials were run on the different available instances. Second, the “average
deviation” is the mean of the results over all the instances of the considered class;
however it is not clear which results are reported (for example, if it is the mean
over the experiments or the best results obtained). Because of these problems it
is not possible to establish if the number of optima given in these articles is the
number of instances for which the algorithm was able to get at least once a global
optimum, always the optimum, or the result after just one run. To be on the most
cautious side (that is, to let the reported results appear in the best possible light),
we will assume that averages for SS, ETS, and IDS are given as averages of the
best solutions found and that the number of optima is the number of instances that
are always solved to optimality.

For the results of MA-LOP and ILS-LOP, we report the average deviation com-
puted over all results obtained in 100 runs for LOLIB and 30 runs for LMC-LOP
instances. (Note, that for these instances MA-LOP found the optimal or pseudo-
optimal solutions in each single trial for all the instances of LOLIB and LMC-
LOP.) For the time we indicate the average time to find an optimal solution when
it was found. As the number of optima we report how many instances were solved
to the optimum in all the considered runs by MA-LOP, while for ILS-LOP we
additionally give the number of instances for which a global optimum was found at
least once. Regarding the results in Table XI, let us remark the following. In [9] is
reported that the IDS was able to obtain always the same best result for the LMC-
LOP instances. Therefore, we assumed that this is the very same result we obtained
(and, hence, the resulting average deviation of 0.0 for IDS in Table XI from the best
known solution). Instead, for ETS we can give precise results, because Rafael Martí
sent us a spread-sheet containing the results of ETS for each instance.

The data for the comparison are given in Table XI. From these data it is clear
that, even under the cautious assumptions about the results of SS, ETS, and IDS,
our ILS and MA are extremely competitive to the earlier proposed metaheuristic

THE LINEAR ORDERING PROBLEM 399

approaches to the LOP. In fact, ILS-LOP and MA-LOP outperform ETS and SS on
the LOLIB instances and are roughly on a par with IDS. On the small LMC-LOP
instances, ILS-LOP and MA-LOP return much better quality solutions than ETS
at, however, higher computation times. ILS-LOP appears to perform slightly worse
than IDS on these instances, while MA-LOP solves the small LMC-LOP instances
about five times faster than IDS. Next, we compare the average deviation from
the best known solutions for the LMC-LOP instances of dimension 150 or 200 for
ETS, ILS-LOP, and MA-LOP in Table XII. (Note that ETS results were adjusted to
the new best known solutions for these instances.) The results show that ILS-LOP
and MA-LOP yield by far better quality solutions than ETS; however, it is not clear
how the computation times of the three algorithms compare, because not enough
details are given in [18]. Recently, another memetic algorithm for the LOP has been
presented [13]. This algorithm is run once for each LOP, MBLB and LMC-LOP
instance; the computational results with that algorithm on LOP and MBLB are
comparable to ours; on the LMC-LOP instances they use a very different stopping
criterion resulting in much shorter computation times than ours. The solution qual-
ity we reach after two minutes is much better than those of [13] for these instances.
If we impose similar short computation times for our algorithm, considering the
differences in CPU speed, the two MAs seem to be similarly effective.

The overall result of the comparison is that, in particular, MA-LOP obtains
excellent performance, from a computation time and solution quality perspective.
In fact, even when being cautious about the experimental conditions used in the
other papers, our results suggest that MA-LOB is a new, very robust state-of-the-art
algorithm for the LOP.

8. Conclusions

In this paper we have given a detailed analysis of benchmark instances for the
LOP. These include a new class of instances, called XLOLIB.� The instances of
this class are randomly generated through sampling real-world instances, which
allows us to derive large, random real-world like instances. In fact, cross-statistical
data on the distribution of the matrix entries of XLOLIB instances are basically
the same as those of the underlying real-world instances from LOLIB. However,
the search space analysis showed some discrepancy between the original LOLIB
instances and the newly generated XLOLIB instances. Nevertheless, XLOLIB in-
stances appear to be much closer to real-world instances than instances from other,
randomly generated classes like MBLB or LMC-LOP instances.

The search space analysis of LOP instances showed that most instances have
high correlation length, suggesting that, in general, the LOP is easy to solve when
compared to other problems [2]. Furthermore, most LOP instances have a high
fitness distance correlation. Notable exceptions occur for a few LOLIB instances,

� All the instances and the best known results will be published on the WWW at the address
http://intellektik.informatik.tu-darmstadt.de/~schiavin/lop for their easy access.

400 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

where even negative fitness distance correlations were found. Concerning measures
of search space characteristics, we introduced a new way to measure the FDC,
which we called “easy level FDC”. This measure tries to consider the fact that
metaheuristics actually search through high quality local optima and the central
idea of the easy level FDC is to focus the analysis on high quality solutions. In fact,
the easy level FDC showed a better correlation to the instance hardness of small
LMC-LOP instances for ILS algorithms than the standard way of determining
FDCs.

Based on the results of the search space analysis and the high solution quality
returned by simple iterative improvement algorithms, we further studied efficient
iterated local search and memetic algorithms for the LOP. A comparison between
the two algorithmic approaches showed that the MA resulted in a much more robust
performance with respect to the different instance classes than the ILS algorithm.
It is an open question whether, with appropriate tuning, ILS can reach the MA’s
performance on all the instance classes. A final comparison of MA and ILS per-
formance to other available metaheuristic approaches to the LOP showed that our
MA is a new, very robust state-of-the-art algorithm for the LOP.

Acknowledgements

The authors would wish to thank John Mitchell and Brian Borchers for making
available the code of their exact algorithm. We also thank Rafael Martí for sending
to us the LMC-LOP instances and the results of the Tabu Search. Finally, we want
thank Joshua Knowles for helpful advices.

This work was supported by the “Metaheuristics Network”, a Research Train-
ing Network funded by the Improving Human Potential programme of the CEC,
grant HPRN-CT-1999-00106. The information provided is the sole responsibility
of the authors and does not reflect the Community’s opinion. The Community is not
responsible for any use that might be made of data appearing in this publication.

References

1. Angel, E. and Zissimopoulos, V.: Autocorrelation coefficient for the graph bipartitioning
problem, Theoret. Comput. Sci. 191(1–2) (1998), 229–243.

2. Angel, E. and Zissimopoulos, V.: On the classification of NP-complete problems in terms of
their correlation coefficient, Discrete Appl. Math. 99(1–3) (2000), 261–277.

3. Becker, O.: Das Helmstädtersche Reihenfolgeproblem – die Effizienz verschiedener
Näherungsverfahren, in Computer Uses in the Social Science, Wien, January 1967.

4. Birattari, M., Stützle, T., Paquete, L. and Varrentrapp, K.: A racing algorithm for configuring
metaheuristics, in W. B. Langdon et al. (eds), Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), Morgan Kaufmann Publishers, San Francisco, CA,
2002, pp. 11–18.

5. Boese, K. D.: Models for iterative global optimization, PhD thesis, University of California,
Computer Science Department, Los Angeles, CA, 1996.

THE LINEAR ORDERING PROBLEM 401

6. Campos, V., Glover, F., Laguna, M. and Martí, R.: An experimental evaluation of a scatter
search for the linear ordering problem, J. Global Optim. 21(4) (2001), 397–414.

7. Campos, V., Laguna, M. and Martí, R.: Scatter search for the linear ordering problem, in
D. Corne, M. Dorigo and F. Glover (eds), New Ideas in Optimization, McGraw-Hill, London,
UK, 1999, pp. 331–339.

8. Chanas, S. and Kobylanski, P.: A new heuristic algorithm solving the linear ordering problem,
Comput. Optim. Appl. 6 (1996), 191–205.

9. Congram, R. K.: Polynomially searchable exponential neighbourhoods for sequencing prob-
lems in combinatorial optimisation, PhD thesis, University of Southampton, Faculty of
Mathematical Studies, UK, 2000.

10. Grötschel, M., Jünger, M. and Reinelt, G.: A cutting plane algorithm for the linear ordering
problem, Oper. Res. 32(6) (1984), 1195–1220.

11. Grötschel, M., Jünger, M. and Reinelt, G.: Optimal triangulation of large real world input–
output matrices, Statistische Hefte 25 (1984), 261–295.

12. Hoos, H. H. and Stützle, T.: Evaluating Las Vegas algorithms — pitfalls and remedies, in
G. F. Cooper and S. Moral (eds), Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufmann Publishers, San Francisco, CA, 1998, pp. 238–245.

13. Huang, G. and Lim, A.: Designing a hybrid genetic algorithm for the linear ordering problem,
in E. Cantú-Paz et al. (eds), Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2003), Lecture Notes in Comput. Sci. 2723, Springer-Verlag, Berlin, 2003,
pp. 1053–1064.

14. Jones, T. and Forrest, S.: Fitness distance correlation as a measure of problem difficulty for
genetic algorithms, in L. J. Eshelman (ed.), Proceedings of the Sixth International Conference
on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1995, pp. 184–192.

15. Kaas, R.: A branch and bound algorithm for the acyclic subgraph problem, European J. Oper.
Res. 8 (1981), 355–362.

16. Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi, M. P.: Optimization by simulated annealing,
Science 220 (1983), 671–680.

17. Knuth, D. E.: The Stanford GraphBase: A Platform for Combinatorial Computing, Addison-
Wesley, New York, 1993.

18. Laguna, M., Martí, R. and Campos, V.: Intensification and diversification with elite tabu search
solutions for the linear ordering problem, Comput. Oper. Res. 26(12) (1999), 1217–1230.

19. Lourenço, H. R., Martin, O. and Stützle, T.: Iterated local search, in F. Glover and G. Kochen-
berger (eds), Handbook of Metaheuristics, International Series in Operations Research &
Management Science 57, Kluwer Academic Publishers, Norwell, MA, 2002, pp. 321–353.

20. Merz, P.: Memetic algorithms for combinatorial optimization problems: Fitness landscapes and
effective search strategies, PhD thesis, Department of Electrical Engineering and Computer
Science, University of Siegen, Germany, 2000.

21. Merz, P. and Freisleben, B.: Fitness landscapes and memetic algorithm design, in D. Corne,
M. Dorigo and F. Glover (eds), New Ideas in Optimization, McGraw-Hill, London, UK, 1999,
pp. 245–260.

22. Merz, P. and Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem, IEEE Trans. Evolut. Comput. 4(4) (2000), 337–352.

23. Mitchell, J. E. and Borchers, B.: Solving linear ordering problems with a combined interior
point/simplex cutting plane algorithm, in H. L. Frenk, K. Roos, T. Terlaky and S. Zhang (eds),
High Performance Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2000, pp. 349–366.

24. Moscato, P. and Cotta, C.: A gentle introduction to memetic algorithms, in F. Glover
and G. Kochenberger (eds), Handbook of Metaheuristics, International Series in Operations
Research & Management Science 57, Kluwer Academic Publishers, Norwell, MA, 2002,
pp. 105–144.

402 TOMMASO SCHIAVINOTTO AND THOMAS STÜTZLE

25. Schiavinotto, T. and Stützle, T.: Search space analysis of the linear ordering problem, in
G. R. Raidl et al. (eds), Applications of Evolutionary Computing, Lecture Notes in Comput.
Sci. 2611, Springer-Verlag, Berlin, 2003, pp. 322–333.

26. Stadler, P. F.: Towards a theory of landscapes, in R. Lopéz-Peña, R. Capovilla, R. García-
Pelayo, H. Waelbroeck and F. Zertuche (eds), Complex Systems and Binary Networks, Lecture
Notes in Phys. 461, Springer-Verlag, Berlin, 1995, pp. 77–163.

27. Stadler, P. F.: Landscapes and their correlation functions, J. Math. Chemistry 20(1) (1996),
1–45.

28. Stadler, P. F. and Schnabl, W.: The landscape of the travelling salesman problem, Phys. Lett. A
161 (1992), 337–344.

29. Standard Performance Evaluation Corporation: SPEC CPU95 and CPU2000 Benchmarks,
http://www.spec.org/, November 2002.

30. Stützle, T. and Hoos, H. H.: MAX–MIN ant system, Future Generation Computer Systems
16(8) (2000), 889–914.

31. Stützle, T. and Hoos, H. H.: Analysing the run-time behaviour of iterated local search for the
travelling salesman problem, in P. Hansen and C. C. Ribeiro (eds), Essays and Surveys on
Metaheuristics, Kluwer Academic Publishers, Boston, MA, 2001, pp. 589–611.

32. Syswerda, G.: Schedule optimization using genetic algorithms, in L. Davis (ed.), Handbook of
Genetic Algorithms, Van Nostrand Reinhold, New York, 1990.

33. Weinberger, E. D.: Correlated and uncorrelated fitness landscapes and how to tell the difference,
Biological Cybernetics 63(5) (1990), 325–336.

