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THE LINEAR QUADRATIC REGULATOR PROBLEM FOR A CLASS
OF CONTROLLED SYSTEMS MODELED BY SINGULARLY

PERTURBED ITÔ DIFFERENTIAL EQUATIONS∗

VASILE DRAGAN† , HIROAKI MUKAIDANI‡ , AND PENG SHI§

Abstract. This paper discusses an infinite-horizon linear quadratic (LQ) optimal control prob-
lem involving state- and control-dependent noise in singularly perturbed stochastic systems. First,
an asymptotic structure along with a stabilizing solution for the stochastic algebraic Riccati equation
(ARE) are newly established. It is shown that the dominant part of this solution can be obtained
by solving a parameter-independent system of coupled Riccati-type equations. Moreover, sufficient
conditions for the existence of the stabilizing solution to the problem are given. A new sequential
numerical algorithm for solving the reduced-order AREs is also described. Based on the asymp-
totic behavior of the ARE, a class of O(

√
ε) approximate controller that stabilizes the system is

obtained. Unlike the existing results in singularly perturbed deterministic systems, it is noteworthy
that the resulting controller achieves an O(ε) approximation to the optimal cost of the original LQ
optimal control problem. As a result, the proposed control methodology can be applied to practical
applications even if the value of the small parameter ε is not precisely known.

Key words. singularly perturbed control systems, asymptotic behavior, stabilizing solution

AMS subject classifications. 93B40, 93C70, 93E20

DOI. 10.1137/100798661

1. Introduction. The dynamics of many control systems are described by high-
order differential equations. However, the behavior is governed by a few dominant pa-
rameters, with a relatively minor role being played by the remaining parameters, such
as small time constants, masses, moments of inertia, inductances, and capacitances.
The presence of these “parasitic” parameters is often the source of the increased order
and the “stiffness” of the systems. Singularly perturbed systems (SPSs) are those
whose order is reduced when the parasitic parameter is neglected.

Note that in the vast majority of optimal control and optimization problems, the
data/parameters specifying the problem are not precisely known. This imprecision
is often captured by incorporating a “disturbance” called a perturbation into the
problem. In most applications, such a perturbation would be “small” but unknown. A
fundamental issue that needs to be understood is the behavior of the solutions as the
perturbation tends to zero. This issue is important because for many of the most in-
teresting applications, there is, loosely speaking, a “discontinuity” at the time, which
complicates the analysis. These are so-called singularly perturbed problems. SPSs
and, more generally, multi-time-scale systems, often occur naturally as a result of the
presence of small “parasitic” parameters, typically small time constants, masses, etc.,
multiplying time derivatives or, in a more disguised form, as a result of the pres-
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ence of large feedback gains and weak coupling. The main purpose of the singular
perturbation approach to analysis and design is alleviation of the high dimensional-
ity and ill conditioning that results from the interaction of slow and fast dynamic
modes. This time-scale approach is asymptotic, that is, it is exact in the limit as
the ratio ε of the speeds of the slow versus the fast dynamics tends to zero. When
ε is small, approximations are obtained from reduced-order models in separate time
scales [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. A singularly perturbed control
system (SPCS) evolving in a discrete time scale arises in many applications as well
as in the construction of the different approximations of SPCS evolving in continuous
time. An important issue in the theory of SPCS is the justification of the so-called
reduction technique approach (RTA). According to this approach, the fast vari-
ables are replaced by their steady states obtained with “frozen” slow variables and
controls, and the slow dynamics is approximated by the corresponding reduced order
system. Although the RTA may fail to provide a proper approximation for the SPCS
in a general case [20, 21], the application of RTA has been very successful in many
important cases (see [33, 34, 35] and the references therein).

Note that SPSs have been widely used in electric power modeling; in the control
of solar thermal central receivers; in battle management command, control, and com-
munication systems; in armature-controlled DC motors; and in electronic RC circuit
design.

Recently, there has been an increasing interest in the study of various control and
filtering problems for linear stochastic systems modeled by singularly perturbed Itô
differential equations with additive and/or multiplicative white noise perturbations.
See [7, 9, 10, 12, 13, 15, 28, 29, 31, 37, 38, 39, 40, 41] and the references therein.

In this paper, we will study the problem of a linear quadratic regulator
(LQR) for a class of controlled systems modeled by singularly perturbed Itô dif-
ferential equations [36]. The problem investigated in this paper is for a new class
of singularly perturbed controlled stochastic systems, namely, singularly perturbed
linear stochastic systems with both state- and control-dependent multiplicative white
noise. As is known from the existing literature (see, e.g., [36] for the stochastic version
of Tikhonov’s theorem, or [3, 19] for the analysis of the exponential stability in mean
square), a scaling of the diffusion part of the fast differential equations is introduced
in the case of the singularly perturbed stochastic systems with multiplicative and/or
additive white noise. The scaling parameters, which are usually functions of the sin-
gular perturbation ε > 0, are introduced in order to guarantee the correct placement
of the time-scale separation. The scaling technique of the magnitude of the diffusion
part of the fast equations of a singularly perturbed system of Itô differential equations
was successfully used in the asymptotic analysis of some linear quadratic Gaussian
(LQG) problems for singularly perturbed linear time invariant systems affected by
additive white noise [12, 37, 38, 39].

In this paper, we consider an optimization problem described by a controlled
system modeled by singularly perturbed Itô differential equations with the diffusion
part of the fast equation of the order of magnitude

√
ε and a quadratic functional

without sign of the weights. It is known that for each fixed value of the singular
perturbation ε > 0, the LQ optimization problem has an optimal control if a certain
Riccati-type matrix equation has a stabilizing solution [6, 17]. In many applications,
the value of the small parameter ε > 0 is not precisely known; alternatively, even if it
is known, its presence in the coefficients of Riccati equation produces ill conditioning
of the numerical computation of the desired solution. Therefore, it follows that it is
useful to know the dependence with respect to the small parameter ε of the stabilizing
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450 VASILE DRAGAN, HIROAKI MUKAIDANI, AND PENG SHI

solution of the Riccati equation involved in the construction of the optimal control of
the problem under consideration. As such, the main goal of this paper is to deduce
the asymptotic structure when the small parameter ε → 0 of the stabilizing solution
of the Riccati equation arising in connection with the considered LQR problem.

It is known from [2, 15, 16] that in the deterministic case, the dominant part of
the stabilizing solution of the original Riccati equation is constructed based on the
stabilizing solutions of two uncoupled AREs of lower dimensions that are independent
of the small parameter ε. The two Riccati equations of lower dimensions are associated
with two LQ optimization problems obtained from the original problem by simply
neglecting the small parameter ε. In the present paper, we show that in the case of the
LQR problem associated with a singularly perturbed system of stochastic equations
with state- and control-dependent multiplicative white noise, the dominant part of
the stabilizing solution of the associated ARE one constructs based on a suitable
solution of a system of strongly interconnected algebraic Riccati-type equations called
the reduced system of AREs (see system (3.9)). By rewriting this system of matrix
nonlinear equations in the form of a Riccati-type equation on an ordered Banach
space, we are able to introduced the concept of stabilizing the solution of the reduced
system of AREs and to provide a set of necessary and sufficient conditions for the
existence of such a solution. These conditions are expressed in terms of the solvability
of a system of some suitable linear matrix inequalities (LMIs). The solvability of the
same system of LMIs provides a set of sufficient conditions for the existence of the
stabilizing solution of the ARE associated with the original problem. The dominant
part of the stabilizing gain matrix is used to construct a near-optimal stabilizing
control, which does not depend upon the small parameter ε.

The outline of this paper is as follows. Section 2 presents the problem formulation.
In the first part of section 3, we show how we can associate the system of reduced
AREs corresponding to the singularly perturbed Riccati equation described in the
previous section. Further, we show how we can rewrite the system of reduced AREs
as a Riccati-type equation on an ordered Banach space. Following the ideas from
[5, 11], we introduce the concept of stabilizing the solution of the system of reduced
AREs and provide a set of necessary and sufficient conditions for the existence of this
stabilizing solution of this system of strongly interconnected Riccati equations. In the
final part of section 3, we provide an iterative procedure that allows us to compute the
stabilizing solution of the reduced AREs. The asymptotic structure with respect to
the small parameter ε > 0 of the stabilizing solution of the ARE of stochastic control
as well as of the asymptotic structure of the corresponding stabilizing feedback gain is
studied in section 4 (Theorem 4.1). In addition, we show that the control constructed
based on the dominant part of the stabilizing feedback gain still stabilizes the full
controlled system. Finally, we analyze the level of suboptimality achieved by this
control.

2. Problem formulation. Let us consider a controlled system modeled by sin-
gularly perturbed Itô differential equations of the following form:

dx1(t) = [A11x1(t) +A12x2(t) +B1u(t)]dt

+ [C11x1(t) + C12x2(t) +D1u(t)]dw(t), x1(0) = x10,(2.1a)

εdx2(t) = [A21x1(t) +A22x2(t) +B2u(t)]dt

+
√
ε[C21x1(t) + C22x2(t) +D2u(t)]dw(t), x2(0) = x20,(2.1b)
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where x(t) =
[
xT
1 (t) xT

2 (t)
]T ∈ �n1 ⊕ �n2 is a state vector, u(t) ∈ �m is the

vector of control parameters, Aij , Cij , Bi, Di are the given real matrices of appro-
priate dimensions, and ε > 0 is a small parameter. In (2.1) {w(t)}t≥0 is a standard
scalar process on a given probability space (Ω, F , P). Without loss of generality,
it is assumed that the small parameter

√
ε appears at the diffusion coefficient of the

equation for the fast subsystems [36].
It should be noted that although the LQR problems for a class of SPS and multi-

parameter SPS have been investigated, the state-dependent noise has only been the-
oretically considered [31, 32]. Moreover, for the coefficient matrices of the diffusion
term, a conservative condition has been imposed.

The problem of LQR for system (2.1) requires minimization of the cost functional

J(u) = E

∫ ∞

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt(2.2)

along the trajectories of system (2.1) determined by the admissible controls. The
class of admissible controls consists of the set of measurable stochastic processes,
u = {u(t)}t≥0, which are adapted to the filtration generated by the Wiener process
{w(t)}t≥0 and which satisfy the following additional properties:

E

∫ ∞

0

|u(t)|2dt < +∞

and

lim
t→∞E|xu(t, x0)|2 = 0,

xu(·, x0) being the trajectory of (2.1) determined by the input u(t) starting from x0

at time t0 = 0.
E stands for the mathematical expectation. In (2.2), R = RT and Q = QT . In

[17], it was shown that if the problem of LQR has an optimal control, then it is in a
state feedback form

ũ(t) = F̃ x(t)(2.3)

with the gain matrix F̃ given by

F̃ = −[R+DT (ε)X̃D(ε)]−1[BT (ε)X +DT (ε)X̃C(ε)].(2.4)

In (2.4), X̃ is the stabilizing solution of the ARE

AT (ε)X +XA(ε) + CT (ε)XC(ε) +Q

− [XB(ε) + CT (ε)XD(ε)]Δ(ε)−1[BT (ε)X +DT (ε)XC(ε)] = 0,(2.5)

which satisfies the following sign condition:

Δ(ε) = R+DT (ε)XD(ε) > 0.(2.6)

In (2.4)–(2.6), we have

A(ε) =

[
A11 A12

ε−1A21 ε−1A22

]
, C(ε) =

[
C11 C12√
ε
−1

C21
√
ε
−1

C22

]
,

B(ε) =

[
B1

ε−1B2

]
, D(ε) =

[
D1√
ε
−1

D2

]
.(2.7)
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To compute the stabilizing solution of (2.5) and (2.6), a procedure based on solving a
suitable semidefinite programming is proposed in [17], whereas in [4], an iterative
procedure based on solving Lyapunov equations is provided. In the special case when
Dj = 0, j = 1, 2, an iterative procedure to solve (2.5) is provided in [14].

It is known that the presence of the small parameter ε in the matrix coefficients of
the system provides an ill conditioning of the numerical computations of the stabilizing
solution of the ARE. Therefore, it is desired to obtain the asymptotic structure with
respect to the small parameter ε of the stabilizing solution of (2.5) and (2.6) when the
coefficient matrices have the structure given in (2.7). Together with the asymptotic
structure of the stabilizing solution, we shall provide a set of conditions independent
of the small parameter ε that guarantee the existence of the stabilizing solution of
(2.5) and (2.6). Finally, we shall use the dominant part of the stabilizing solution of
(2.5) to construct a suboptimal control whose feedback gain does not depend upon
the small parameter ε.

We shall see that, unlike in the deterministic framework, in the case of the op-
timization problem described by (2.1) and (2.2), we cannot associate, in a visible
way, two optimization problems of lower dimension. However, one may associate the
so-called reduced system of ARE (2.5) that extends to this framework both the re-
duced (slow) ARE and the boundary layer (fast) ARE equation from the deterministic
framework.

3. The reduced system of AREs.

3.1. The derivation of the reduced system of ARE. Set

F = −[R+DT (ε)XD(ε)]−1[BT (ε)X +DT (ε)XC(ε)],

and note that if X is a solution of (2.5), then (X,F ) is a solution of the following
system:

AT (ε)X +XA(ε) + CT (ε)XC(ε)

+ Q− FT [R+DT (ε)XD(ε)]F = 0,(3.1a)

BT (ε)X +DT (ε)XC(ε) = −[R+DT (ε)XD(ε)]F.(3.1b)

Conversely, if (X,F ) is a solution of the system (3.1) such that R +DT (ε)XD(ε) is
an invertible matrix, then X is a solution of (2.5). Choose

X =

[
X11 εX12

εXT
12 εX22

]
, F =

[
F1 F2

]
with Xii = XT

ii ∈ �ni×ni , i = 1, 2, X12 ∈ �n1×n2 , and Fi ∈ �m×ni , i = 1, 2. With
this notation, one obtains the following partition of (3.1):

AT
11X11 +X11A11 +AT

21X
T
12 +X12A21 + CT

11X11C11

+
√
ε(CT

21X
T
12C11 + CT

11X12C21) + CT
21X22C21 +Q11 − FT

1 Δ(ε)F1 = 0,(3.2a)

εAT
11X12 +X11A12 +AT

21X22 +X12A22 + CT
11X11C12

+
√
ε(CT

21X
T
12C12 + CT

11X12C22) + CT
21X22C22 +Q12 − FT

1 Δ(ε)F2 = 0,(3.2b)

AT
22X22 +X22A22 + ε(AT

12X12 +XT
12A12) + CT

12X11C12

+
√
ε(CT

22X
T
12C12 + CT

12X12C22) + CT
22X22C22 +Q22 − FT

2 Δ(ε)F2 = 0,(3.2c)
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BT
1 X11 +BT

2 X
T
12 +DT

1 X11C11 +
√
ε(DT

2 X
T
12C11 +DT

1 X12C21)

+ DT
2 X22C21 +Δ(ε)F1 = 0,(3.2d)

εBT
1 X12 +BT

2 X
T
22 +DT

1 X11C12 +
√
ε(DT

2 X
T
12C12 +DT

1 X12C22)

+ DT
2 X22C22 +Δ(ε)F2 = 0,(3.2e)

where Δ(ε) = R+DT
1 X11D1 +

√
ε(DT

2 X
T
12D1 +DT

1 X12D2) +DT
2 X22D2.

Here,
[
Q11 Q12

QT
12 Q22

]
is the partition of Q that is compatible with the coefficient struc-

ture (2.7).
Setting ε = 0 in (3.2), one obtains

AT
11X̄11 + X̄11A11 +AT

21X̄
T
12 + X̄12A21 + CT

11X̄11C11

+ CT
21X̄22C21 +Q11 − F̄T

1 Δ̄F̄1 = 0,(3.3a)

X̄11A12 +AT
21X̄22 + X̄12A22 + CT

11X̄11C12

+ CT
21X̄22C22 +Q12 − F̄T

1 Δ̄F̄2 = 0,(3.3b)

AT
22X̄22 + X̄22A22 + CT

12X̄11C12 + CT
22X̄22C22 +Q22 − F̄T

2 Δ̄F̄2 = 0,(3.3c)

BT
1 X̄11 +BT

2 X̄
T
12 +DT

1 X̄11C11 +DT
2 X̄22C21 = −Δ̄F̄1,(3.3d)

BT
2 X̄

T
22 +DT

1 X̄11C12 +DT
2 X̄22C22 = −Δ̄F̄2,(3.3e)

where Δ̄ = R+DT
1 X̄11D1 +DT

2 X̄22D2.
It may be noted that X̄11, X̄21, X̄22, F̄1, and F̄2 are called 0th order solutions.
Let us recall some useful equalities known from the deterministic case (see [2, 15,

16]). They also play an important role in the stochastic case.
Lemma 3.1. If A22 and A22 + B2F̄2 are invertible matrices, then we have the

following:
(i) Im+F̄2A

−1
22 B2 is an invertible matrix and (Im+F̄2A

−1
22 B2)

−1 = Im−F̄2(A22+
B2F̄2)

−1B2.
(ii) (A22 +B2F̄2)

−1 = A−1
22 −A−1

22 B2(Im + F̄2A
−1
22 B2)

−1F̄2A
−1
22 .

Assuming that A22 is invertible, we introduce the notation:

As = A11 − A12A
−1
22 A21, Bs = B1 −A12A

−1
22 B2,

C1s = C11 − C12A
−1
22 A21, C2s = C21 − C22A

−1
22 A21,

D1s = D1 − C12A
−1
22 B2, D2s = D2 − C22A

−1
22 B2,

Qs = Q11 −Q12A
−1
22 A21 −AT

21A
−T
22 QT

12 +AT
21A

−T
22 Q22A

−1
22 A21,

Ls = (AT
21A

−T
22 Q22 −Q12)A

−1
22 B2, Rs = R+BT

2 A
−T
22 Q22A

−1
22 B2.(3.4)

Regarding the solutions of the system (3.3), we have the following.
Proposition 3.2. If A22 is an invertible matrix, then the following are true:
(i) If (X̄11, X̄12, X̄22, F̄1, F̄2) is a solution of the system (3.3) such that A22 +

B2F̄2 is an invertible matrix, then (X̄11, X̄22, F̄1, F̄2) ∈ Sn1 ⊕Sn2⊕�m×n1⊕
�m×n2 is a solution of the system

AT
s X̄11 + X̄11As + CT

1sX̄11C1s + CT
2sX̄22C2s

− FT
s (Rs +DT

1sX̄11D1s +DT
2sX̄22D2s)Fs +Qs = 0,(3.5a)

AT
22X̄22 + X̄22A22 + CT

12X̄11C12 + CT
22X̄22C22 − FT

2 Δ̄F2 +Q22 = 0,(3.5b)

BT
s X̄11 +DT

1sX̄11C1s +DT
2sX̄22C2s + LT

s

+ (Rs +DT
1sX̄11D1s +DT

2sX̄22D2s)Fs = 0,(3.5c)

BT
2 X̄22 +DT

1 X̄11C12 +DT
2 X̄22C22 + Δ̄F2 = 0,(3.5d)

D
ow

nl
oa

de
d 

06
/0

6/
13

 to
 1

92
.4

3.
22

7.
18

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

454 VASILE DRAGAN, HIROAKI MUKAIDANI, AND PENG SHI

where

F̄s = (Im + F̄2A
−1
22 B2)

−1(F̄1 − F̄2A
−1
22 A21).(3.6)

(ii) If (X̄11, X̄22, F̄1, F̄2) ∈ Sn1⊕Sn2⊕�m×n1⊕�m×n2 is a solution of the system
(3.5) such that A22+B2F̄2 is an invertible matrix, then (X̄11, X̄12, X̄22, F̄1, F̄2)
verifies the system (3.3), where

F̄1 = (Im + F̄2A
−1
22 B2)F̄s + F̄2A

−1
22 A21,(3.7)

X̄12 = −[X̄11A12 +AT
21X̄22 + CT

11X̄11C12 + CT
21X̄22C22

+ Q12 − F̄T
1 Δ̄F̄2]A

−1
22 .(3.8)

The proof can be obtained from direct but tedious algebraic calculations, the
details of which are omitted.

In the statement of Proposition 3.2 as well as in the remainder of the paper,
Sni ⊂ �ni×ni , i = 1, 2, are subspaces of symmetric matrices.

In Sn1 ⊕ Sn2 , we consider the following subset:

Dom(R0) = {(X1, X2) ∈ Sn1 ⊕ Sn2 | Rs +DT
1sX1D1s +DT

2sX2D2s

and R+DT
1 X1D1 +DT

2 X2D2 are invertible matrices}.
One sees that if (X1, X2) ∈ Dom(R0), then (3.5) is equivalent to the following

subset of coupled AREs:

AT
s X1 +X1As + CT

1sX1C1s + CT
2sX2C2s

− MT
s (Rs +DT

1sX1D1s +DT
2sX2D2s)

−1Ms +Qs = 0,(3.9a)

AT
22X2 +X2A22 + CT

12X1C12 + CT
22X2C22 −MT

2 Δ̄−1M2 +Q22 = 0,(3.9b)

where Ms = BT
s X1 +DT

1sX1C1s +DT
2sX2C2s + LT

s and M2 = BT
2 X2 +DT

1 X1C12 +
DT

2 X2C22.
Let us remark that if Cij , Dj , i, j = 1, 2, vanish, then (3.9) reduces to

AT
s X1 +X1As − (X1Bs + Ls)R

−1
s (BT

s X1 + LT
s ) +Qs = 0(3.10)

and

AT
22X2 +X2A22 −X2B2R

−1BT
2 X2 +Q22 = 0,(3.11)

which appears in the deterministic case, in connection with the investigation of the
asymptotic behavior of the stabilizing solution in the corresponding problem of the
LQR. The stabilizing solutions of the two AREs of lower dimension are involved in the
construction of a suboptimal control in the LQR problem for the deterministic context.
It is expected that in the stochastic case considered in this paper, the stabilizing
solution of (3.9) plays an important role in the investigation of the asymptotic behavior
of the stabilizing solution of (2.5)–(2.6) and in the construction of a suboptimal control
for the optimal control problem described by (2.1) and (2.2).

In the following, the system of coupled AREs (3.9) is called a reduced system of
AREs.

In the next subsection, we provide a set of necessary and sufficient conditions
for the existence of the stabilizing solution of the reduced system of AREs (3.9). In
addition, we present a procedure that allows us to compute the stabilizing solution of
this system.
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3.2. Stabilizing solution of the reduced system of AREs. For a better
understanding of the statements in this subsection, we rewrite (3.9) in a compact
form as a Riccati-type equation on an ordered Hilbert space. Toward this end, we
establish several conventions of notation:

(α) If B = (B1, B2) ∈ �n1×m1 ⊕�n2×m2 and C = (C1, C2) ∈ �m1×q1 ⊕�m2×q2 ,
then D = BC ∈ �n1×q1 ⊕ �n2×q2 is defined by D = (D1, D2) with Di =
BiCi ∈ �ni×qi , i = 1, 2.

(β) IfZ = (Z1, Z2) ∈ �n1×m1⊕�n2×m2 , thenZT is defined by ZT = (ZT
1 , Z

T
2 ) ∈

�m1×n1 ⊕�m2×n2 .
If R = (R1, R2) ∈ �m1×m1 ⊕�m2×m2 is such that detRi 	= 0, i = 1, 2, then
R−1 is defined by R−1 = (R−1

1 , R−1
2 ).

With this convention, the system (3.9) may be written in the form

ATX +XA+Π1(X)− [XB +Π2(X) +L]

× [R+Π3(X)]−1[BTX +Π2
T (X) +LT ] +Q = 0(3.12)

with the unknown X = (X1, X2) ∈ Sn1 ⊕ Sn2 and the coefficients

A = (As, A22) ∈ �n1×n1 ⊕�n2×n2 ,

B = (Bs, B2) ∈ �n1×m ⊕�n2×m,

Q = (Qs, Q22) ∈ Sn1 ⊕ Sn2 , L = (Ls, 0) ∈ �n1×m ⊕�n2×m,

Π1 : Sn1 ⊕ Sn2 → Sn1 ⊕ Sn2 , Π2 : Sn1 ⊕ Sn2 → �n1×m ⊕�n2×m,

Π3 : Sn1 ⊕ Sn2 → Sm ⊕ Sm(3.13)

are linear operators designed by
Πk(X) = (Πks(X), Πkf (X)), k = 1, 2, 3, where

Π1s(X) = CT
1sX1C1s + CT

2sX2C2s, Π1f (X) = CT
12X1C12 + CT

22X2C22,(3.14)

Π2s(X) = CT
1sX1D1s + CT

2sX2D2s, Π2f (X) = CT
12X1D1 + CT

22X2D2,(3.15)

Π3s(X) = DT
1sX1D1s +DT

2sX2D2s, Π3f (X) = DT
1 X1D1 +DT

2 X2D2(3.16)

for all X = (X1, X2) ∈ Sn1 ⊕ Sn2 .
Let us denote the linear space X = Sn1⊕Sn2 . In X , we consider the inner product

〈X , Y 〉 = Tr[X1Y1] +Tr[X2Y2](3.17)

for all X, Y ∈ X .
We introduce the order relation introduced by the closed, solid, convex cone

X+ = S+
n1

⊕ S+
n2
, where for each i = 1, 2

S+
ni

= { Y ∈ Sni | Y ≥ 0 }.

Here, Y ≥ 0 means that Y is positive semidefinite. One verifies that |·| induced by the
inner product (3.17) is monotonic with respect to the cone X+. That is, |X| ≤ |Y | if
0 ≤ X ≤ Y .

Based on the operators Πk(·) introduced in (3.14)–(3.16), we define the operator
Π : X → Sn1+m ⊕ Sn2+m by

Π(X) = (Πs(X), Πf (X)),
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where

Πs(X) =

[
Π1s(X) Π2s(X)

ΠT
2s(X) Π3s(X)

]

=
[
C1s D1s

]T
X1

[
C1s D1s

]
+
[
C2s D2s

]T
X2

[
C2s D2s

]
,(3.18)

Πf (X) =

[
Π1f (X) Π2f (X)

ΠT
2f (X) Π3f (X)

]

=
[
C12 D1

]T
X1

[
C12 D1

]
+
[
C22 D2

]T
X2

[
C22 D2

]
∀X ∈ X .(3.19)

From (3.18) and (3.19), one sees that Π(X) ≥ 0 if X ≥ 0.
If F = (Fs, Ff ) ∈ �m×n1 ⊕ �m×n2 , we construct the operator ΠF : X → X as

follows:

ΠF (X) = (ΠFs(X), ΠFf (X))

with

ΠFs(X) =
[
In1 FT

s

]
Πs(X)

[
In1 FT

s

]T
= (C1s +D1sFs)

TX1(C1s +D1sFs) + (C2s +D2sFs)
TX2(C2s +D2sFs),(3.20)

ΠFf (X) =
[
In2 FT

f

]
Πf (X)

[
In2 FT

f

]T
= (C12 +D1Ff )

TX1(C12 +D1Ff ) + (C22 +D2Ff )
TX2(C22 +D2Ff ),

∀X ∈ X .(3.21)

Hence, ΠF (X) ≥ 0 if X ≥ 0. By direct calculation, one obtains that the correspond-
ing adjoint operator with respect to the inner product (3.17) is given by:

Π∗
F (X) = (Π∗

Fs(X), Π∗
Ff (X)),

where

Π∗
Fs(X) = (C1s +D1sFs)X1(C1s +D1sFs)

T

+(C12 +D1Ff )X2(C12 +D1Ff )
T ,(3.22)

Π∗
Ff (X) = (C2s +D2sFs)X1(C2s +D2sFs)

T

+(C22 +D2Ff )X2(C22 +D2Ff )
T ,(3.23)

∀X ∈ X .

According to [5] and [11], we introduce the following definition.
Definition 3.3. We say that the triple (A,B, Π) is stabilizable if there exists

F = (Fs, Ff ) ∈ �m×n1 ⊕ �m×n2 such that the eigenvalues of the operator LF are in
the half plane C− = {z ∈ C | Re(z) < 0}, where

LF (X) = (A+BF )TX +X(A+BF ) +ΠF (X) ∀X ∈ X .(3.24)

Definition 3.4. A solution X̃ = (X̃1, X̃2) of (3.12) is a stabilizing solution
if the eigenvalues of the linear operator LF̃ are in the half plane C−, where LF̃ is
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constructed via (3.24) for F replaced by F̃ = (F̃s, F̃f ) defined by

F̃s = −(Rs +DT
1sX̃1D1s +D2sX̃D2s)

−1

× (BT
s X̃1 +DT

1sX̃1C1s +DT
2sX̃2C2s + LT

s ),(3.25)

F̃f = −(R+DT
1 X̃1D1 +DT

2 X̃D2)
−1

× (BT
2 X̃1 +DT

1 X̃1C12 +DT
2 X̃2C22).(3.26)

Let us note that the stabilizing feedback gain introduced by (3.25) and (3.26)
may be written in a compact form

F̃ = −[R+Π3(X̃)]−1[X̃B +Π2(X̃) +L]T .(3.27)

To state in an elegant way a set of necessary and sufficient conditions for the existence
of the stabilizing solution of ARE (3.12), or equivalently the stabilizing solution of
the reduced system of AREs (3.9), we introduce the dissipation operator defined by
the coefficients of (3.9),

D : Sn1 ⊕ Sn2 → Sn1+m ⊕ Sn2+m,

as follows:

D(X) = (Ds(X), Df (X)),

where

Ds(X) =

[
Λs1 Λs2

ΛT
s2 Λs3

]
, Df (X) =

[
Λf1 Λf2

ΛT
f2 Λf3

]

with

Λs1 = AT
s X1 +X1As +Π1s(X) +Qs, Λs2 = X1Bs +Π2s(X) + Ls,

Λs3 = Π3s(X) +Rs,(3.28)

Λf1 = AT
22X2 +X2A22 +Π1f (X) +Q22, Λf2 = X1B2 +Π2f (X),

Λf3 = Π3f (X) +R,(3.29)

∀X = (X1, X2) ∈ Sn1 ⊕ Sn2 .

The next result provides a set of conditions equivalent to the existence of the stabi-
lizing solution of system (3.9).

Theorem 3.5. The following are equivalent.
(i) The reduced system of ARE (3.9) has a stabilizing solution X̃ = (X̃1, X̃2)

that satisfies the following sign conditions:

Rs +DT
1sX̃1D1s +DT

2sX̃2D2s > 0,(3.30)

R+DT
1 X̃1D1 +DT

2 X̃2D2 > 0.(3.31)

(ii) (a) The triple (A, B, Π) is stabilizable.
(b) There exists Y = (Y1, Y2) ∈ X that verifies the LMIs:

Ds(Y ) > 0, Df (Y ) > 0.

The proof may be realized by following step by step the proof of Theorems 4.7
and 5.8 in [4]. For the special case C12 = 0 and C22 = 0, see [9].
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Remark 3.1. In [9], the stabilizing solution (X̃1, X̃2) is obtained as the limit of
a sequence of approximations {X1k, X2k}k≥1. These approximations are obtained by
specializing to the case of the system of AREs (3.9) for the Newton–Kantorovich
algorithm. Hence, this method would be used for numerical computation of the
stabilizing solution of (3.9). Unfortunately, this procedure requires the solving of
some systems of coupled Lyapunov type equations for each step k. In what follows,
we provide an iterative procedure for numerical computation of the stabilizing solution
of (3.9) based on the solution of a decoupled standard Lyapunov equations.

This procedure is obtained by specializing to the case of (3.12) via the similar
procedure given in [4]. The main steps of this procedure are as follows.
STEP 0. Choose a stabilizing feedback gain W = (W1, W2) ∈ �m×n1 ⊕ �m×n2 .

One can take, for example, Wj = VjZ
−1
j , j = 1, 2, where (Zj , Vj), j = 1, 2, is

a solution of the system of LMIs (3.40)–(3.41).
STEP 1. Compute X1 = (X1

1 , X
1
2 ) ∈ Sn1 ⊕Sn2 as a solution of the following system

of LMIs:

(As +BsW1)
TX1

1 +X1
1 (As +BsW1)

+ (C1s +D1sW1)
TX1

1 (C1s +D1sW1)

+ (C2s +D2sW1)
TX1

2 (C2s +D2sW1)

+ Qs + LsW1 +WT
1 LT

s +WT
1 RsW1 + δIn1 ≤ 0,(3.32a)

(A22 +B2W2)
TX1

2 +X1
2 (A22 +B2W2)

+ (C12 +D1W2)
TX1

1 (C12 +D1W2)

+ (C22 +D2W2)
TX1

2 (C22 +D2W2)

+ Q22 +WT
2 RW2 + δIn2 ≤ 0,(3.32b)

where δ > 0 is a fixed parameter.
Compute the feedback gains F 1 = (F 1

1 , F 1
2 ) by

F 1
1 = −[Rs +Π3s(X̃

1
)]−1[X1

1Bs +Π2s(X̃
1
) +Ls]

T ,(3.33a)

F 1
2 = −[R+Π3f (X̃

1
)]−1[X1

2B2 +Π2f (X̃
1
)]T .(3.33b)

STEP k, k ≥ 2. Compute Xk = (Xk
1 , Xk

2 ) ∈ Sn1 ⊕ Sn2 satisfying the following
decoupled standard Lyapunov equations:

(As +BsF
k−1
1 )TXk

1 +Xk
1 (As +BsF

k−1
1 ) +Qk

1 = 0,(3.34)

(A22 +B2F
k−1
2 )TXk

2 +Xk
2 (A22 +B2F

k−1
2 ) +Qk

2 = 0,(3.35)

where

Qk
1 =

δ

k
In1 +Qs + LsF

k−1
1 + (F

(k−1)
1 )TLT

s + (F
(k−1)
1 )TRsF

k−1
1

+ (C1s +D1sF
k−1
1 )TXk−1

1 (C1s +D1sF
k−1
1 )

+ (C2s +D2sF
k−1
1 )TXk−1

2 (C2s +D2sF
k−1
1 ),(3.36)

Qk
2 =

δ

k
In2 +Q22 + (F

(k−1)
2 )TRF k−1

2

+ (C12 +D1F
k−1
2 )TXk−1

1 (C12 +D1F
k−1
2 )

+ (C22 +D2F
k−1
2 )TXk−1

2 (C22 +D2F
k−1
2 ),(3.37)

F k
1 = −[Rs +Π3s(X̃

k−1
)]−1[Xk

1Bs +Π2s(X̃
k−1

) + Ls]
T ,(3.38)

F k
2 = −[R+Π3f (X̃

k−1
)]−1[Xk

2B2 + Π2f (X̃
k−1

)]T .(3.39)
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Remark 3.2. If (A, B, Π) is stabilizable and there exists Y = (Y1, Y2) verifying
Ds(Y ) > 0, Df (Y ) > 0, then the sequences {Xk}k≥1 and {F k}k≥1 are well defined
by (3.32)–(3.39). Moreover, we have X1

j ≥ · · · ≥ Xk
j ≥ Xk+1

j ≥ · · · ≥ Yj , j = 1, 2.
Setting

X̃j = lim
k→∞

Xk
j , j = 1, 2,

X̃ = (X̃1, X̃2) is simply the stabilizing solution of (3.9). The existence of a stabilizing
feedback gain W from STEP 0 is closely related to the stabilizability property of the
triple (A, B, Π).

The next result provides necessary and sufficient conditions for the stabilizability
of this triple.

Proposition 3.6. For (A, B, Π) introduced via (3.13)–(3.16), the following
are equivalent:

(i) The triple (A, B, Π) is stabilizable.
(ii) There exist Z = (Z1, Z2) ∈ Sn1 ⊕ Sn2 and V = (V1, V2) ∈ �m×n1 ⊕�m×n2

that solve the system of LMIs⎡
⎣ Ψ1(Z, V ) C1sZ1 +D1sV1 C12Z2 +D2V2

(C1sZ1 +D1sV1)
T −Z1 0

(C12Z2 +D2V2)
T 0 −Z2

⎤
⎦ < 0,(3.40)

⎡
⎣ Ψ2(Z, V ) C2sZ1 +D2sV1 C22Z2 +D2V2

(C2sZ1 +D2sV1)
T −Z1 0

(C22Z2 +D2V2)
T 0 −Z2

⎤
⎦ < 0(3.41)

with Ψ1(Z , V ) = AsZ1 + Z1A
T
s +BsV1 + V T

1 BT
s and Ψ2(Z, V ) = A22Z2 +

Z2A
T
22 +B2V2 + V T

2 BT
2 .

If (Z , V ) is a solution of the system (3.40)–(3.41), then W = (W1, W2)
defined by Wj = VjZ

−1
j , j = 1, 2, is a stabilizing feedback gain for the triple

(A, B, Π).
Proof. From Definition 3.3, we know that the stabilizability of the triple (A, B, Π)

is equivalent to the existence of a feedback gain F = (F1, F2) such that the eigen-
values of the linear operator LF defined by (3.24) are located in C− or, equiv-
alently, the eigenvalues of the adjoint operator L∗

F are located in the half plane
C−. Applying Theorem 2.11 from [1], we deduce that the fact that the eigenval-
ues of the operator L∗

F are in the half plane C− is equivalent to the existence of
Z = (Z1, Z2) ∈ Sn1 ⊕ Sn2 , Zi > 0, i = 1, 2, such that L∗

F (Z) < 0. Finally, if we take
into account the fact that L∗

F (Z) = (A+BF )Z+Z(A +BF )T +Π∗
F (Z), then we ob-

tain via (3.22)–(3.23) together with the Schur complement technique that L∗
F (Z) < 0

is equivalent to the LMIs (3.40) and (3.41), and thus the proof is complete.

4. The main results.

4.1. The asymptotic structure of the stabilizing solution of ARE (2.5)–
(2.6). In this subsection, we provide a set of sufficient conditions that guarantee the
existence of the stabilizing solution of ARE (2.5), which verifies the sign condition
(2.6) for any ε > 0 that is sufficiently small.

Theorem 4.1. Assume the following:
(a) A22 is invertible.
(b) The triple (A, B, Π) is stabilizable.
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(c) There exists Y = (Y1, Y2) ∈ Sn1 ⊕ Sn2 , which satisfies the following system
of LMIs:

Ds(Y ) > 0, Df (Y ) > 0.(4.1)

Under these conditions, there exists ε∗ > 0 with the property that for any ε ∈
(0, ε∗], ARE (2.5) has a stabilizing solution X̃(ε) that satisfies the sign condition (2.6).
Moreover, the stabilizing solution X̃(ε) and the corresponding stabilizing feedback gain
F̃ (ε) have an asymptotic structure,

X̃(ε) =

[
X̃1 +

√
εX̌11(ε) ε(X̃12 +

√
εX̌12(ε))

ε(X̃12 +
√
εX̌12(ε))

T ε(X̃2 +
√
εX̌22(ε))

]
,(4.2)

F̃ (ε) =
[
F̃1 +

√
εF̌1(ε) F̃2 +

√
εF̌2(ε)

]
,(4.3)

where (X̃1, X̃2) ∈ Sn1 ⊕Sn2 is the stabilizing solution of the reduced system of AREs
(3.9), satisfying the sign conditions (3.30)–(3.31),

F̃2 = F̃f , F̃1 = (Im + F̃2A
−1
22 B2)(F̃s + F̃2A

−1
22 A21)(4.4)

(F̃s is introduced in (3.25) and F̃f , in (3.26)).

X̃12 = −[AT
22X̃2 + X̃1A12 − F̃T

1 (R+DT
1 X̃1D1 +DT

2 X̃2D2)F̃2

+ Q12 + CT
11X̃1C12 + CT

21X̃2C22]A
−1
22(4.5)

ε → X̌ij(ε), ε → F̌j(ε), i, j ∈ {1, 2}, are bounded functions on (0, ε∗].
Proof. Setting η =

√
ε, we may rewrite the system (3.2) in the compact form

F(Y , η) = 0,(4.6)

where Y = (X11, X12, X22, F1, F2) ∈ Y = Sn1 ⊕ �n1×n2 ⊕ Sn2 ⊕�m×n1 ⊕ �m×n2 ,
while F : Y ×� → Y is described by the left-hand side of (3.2), where

√
ε is replaced

by η and ε by η2. We apply the implicit function theorem to obtain the existence of
the solution with the desired properties of system (3.2).

First, let us observe that F(·, ·) is an analytic function. On the other hand,
assumptions (a)–(c) guarantee the existence of the stabilizing solution (X̃1, X̃2) of
the reduced system of AREs (3.9), which verifies the sign conditions (3.30)–(3.31).

Let (F̃s, F̃f ) be the stabilizing feedback gain constructed via (3.25)–(3.26). Take

Ỹ = (X̃1, X̃12, X̃2, F̃1, F̃2) ∈ Y, where F̃1 is constructed via (4.4) and X̃12 is
constructed via (4.5), respectively.

Using the result of Proposition 3.2(ii), one obtains that

F(Ỹ , 0) = 0.(4.7)

As Y is a finite dimensional Banach space, it follows that to show thatZ → ∂F/∂Y (Ỹ ,
0)Z is an isomorphism, it is sufficient to check that it is an injective map. Based on
the fact that

∂F
∂Y

(Ỹ , 0)Z = lim
h→0

1

h
[F(Ỹ + hZ, 0)−F(Ỹ , 0)],

one obtains that the equation

∂F
∂Y

(Ỹ , 0)Z = 0(4.8)
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with unknown Z = (X11, X12, X22, F1, F2) ∈ Y is equivalent to the linear system

AT
11X11 +X11A11 +AT

21X
T
12 +X12A21 + CT

11X11C11 + CT
21X22C21

− F̃T
1 (R+DT

1 X̃1D1 +DT
2 X̃2D2)F1 − FT

1 (R+DT
1 X̃1D1 +DT

2 X̃2D2)F̃1

− F̃T
1 (DT

1 X11D1 +DT
2 X22D2)F̃1 = 0,(4.9a)

AT
21X22 +X11A12 +X12A22 + CT

11X11C12 + CT
21X22C22

− FT
1 (R+DT

1 X̃1D1 +DT
2 X̃2D2)F̃2 − F̃T

1 (R+DT
1 X̃1D1 +DT

2 X̃2D2)F2

− F̃T
1 (DT

1 X11D1 +DT
2 X22D2)F̃2 = 0,(4.9b)

AT
22X22 +X22A22 + CT

12X11C12 + CT
22X22C22

− F̃T
2 (R+DT

1 X̃1D1 +DT
2 X̃2D2)F2 − FT

2 (R+DT
1 X̃1D1 +DT

2 X̃2D2)F̃2

− F̃T
2 (DT

1 X11D1 +DT
2 X22D2)F̃2 = 0,(4.9c)

BT
1 X11 +BT

2 X
T
12 +DT

1 X11C11 +DT
2 X22C21

+ (DT
1 X11D1 +DT

2 X22D2)F̃1 + (R +DT
1 X̃1D1 +DT

2 X̃2D2)F1 = 0,(4.9d)

BT
2 X22 +DT

1 X11C12 +DT
2 X22C22

+ (DT
1 X11D1 +DT

2 X22D2)F̃2 + (R +DT
1 X̃1D1 +DT

2 X̃2D2)F2 = 0.(4.9e)

Because A22 is invertible, we may use the second equation of system (4.9) to eliminate
X12 from the other equation of that system. By some algebraic laborious calculation,
based on the identities from Lemma 3.1, one obtains that if (X11, X12, X22, F1, F2)
is a solution of the system (4.9), then (X11, X22) is a solution of the system

(As +BsF̃s)
TX11 +X11(As +BsF̃s) + (C1s +D1sF̃s)

TX11(C1s +D1sF̃s)

+ (C2s +D2sF̃s)
TX22(C2s +D2sF̃s) = 0,(4.10a)

(A22 +B2F̃f )
TX22 +X22(A22 +B2F̃f ) + (C12 +D1F̃f )

TX11(C12 +D1F̃f )

+ (C22 +D2F̃f )
TX22(C22 +D2F̃f ) = 0.(4.10b)

System (4.10) may be rewritten in a compact form as follows: L∗
F̃
(X) = 0. If we

take into account Definition 3.4 of the stabilizing solution of (3.12), we deduce that
the eigenvalues of the operators LF̃ and L∗

F̃
are in the half plane C−. Applying

Theorem 4.5 in [8], we deduce that (4.10) has a unique solution. As X̂1 = 0, X̂2 = 0
verifies (4.10), we may conclude that X11 = 0, X22 = 0. Furthermore, from the last
two equations in (4.9), one obtains F1 = 0 and F2 = 0. Finally, from the second
equation of (4.9), one obtains X12 = 0. We have shown that (4.8) has only the
solution Z = 0, which confirms the injectivity of the map Z → ∂F/∂Y (Ỹ , 0)Z.

Using the simple form of F(·, ·), one easily proves the continuity of (Y , ε) →
∂F/∂Y (Y , ε). As such, we have shown that the assumptions of the implicit function
theorem [18] are verified for (4.6).

Thus, we deduce that there exist η1 > 0 and an analytic function η → Y (η) =
(X11(η), X12(η), X22(η), F1(η), F2(η)) : (−η1, η1) → Y that verify F(Y (η), η) = 0
for all |η| ≤ η1.

We also have the asymptotic structure

Xii(η) = X̃i + ηX̌ii(η), Fi(η) = F̃i + ηF̌i(η), i = 1, 2,

X12(η) = X̃12 + ηX̌12(η) ∀η ∈ (−η1, η1).(4.11)

We set

X̃(ε) =

[
X11(

√
ε) εX12(

√
ε)

εXT
12(

√
ε) εX22(

√
ε)

]
,(4.12)
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F̃ (ε) =
[
F1(

√
ε) F2(

√
ε)

]
, 0 ≤ ε ≤ ε1 = η21 .(4.13)

Using (3.1) and (3.2), we deduce that X̃(ε) is a solution of ARE (2.5) and F̃ (ε) is
a corresponding feedback gain associated via (2.4). Combining (3.31) and (4.11), we
deduce that there exists 0 < ε2 ≤ ε1 such that

R+DT
1 X11(

√
ε)D1 +

√
ε(DT

2 X
T
12(

√
ε)D1 +DT

1 X12(
√
ε)D2)

+ DT
2 X22(

√
ε)D2 > 0 ∀ε ∈ (0, ε2].(4.14)

Thus, from (4.11) and (4.14), it follows that X̃ is a solution of ARE (2.5), which
satisfies the sign condition (2.6) for 0 < ε < ε2 and has the asymptotic structure (4.2)
and (4.3). It remains to be shown that there exists ε∗ ∈ (0, ε2] such that X̃(ε) is the
stabilizing solution of (2.5) for any ε ∈ (0, ε∗]. Toward this end, we show that the
linear equation on Sn, n = n1 + n2,

[A(ε) +B(ε)F̃ (ε)]TU + U [A(ε) +B(ε)F̃ (ε)]

+ [C(ε) +D(ε)F̃ (ε)]TU [C(ε) +D(ε)F̃ (ε)] + In = 0(4.15)

has a solution U(ε) > 0. Taking

U(ε) =

[
U11 εU12

εUT
12 εU22

]

and using the structure (2.7) of the coefficients of (4.15), we obtain the following
partition of this equation:

[A11 +B1F1(
√
ε)]TU11 + U11[A11 +B1F1(

√
ε)]

+ [A21 +B2F1(
√
ε)]TUT

12 + U12[A21 +B2F1(
√
ε)]

+ [C11 +D1F1(
√
ε)]TU11[C11 +D1F1(

√
ε)]

+
√
ε
(
[C21 +D2F1(

√
ε)]TUT

12[C11 +D1F1(
√
ε)]

+ [C11 +D1F1(
√
ε)]TU12[C21 +D2F1(

√
ε)]

)
+ [C21 +D2F1(

√
ε)]TU22[C21 +D2F1(

√
ε)] + In1 = 0,(4.16a)

ε[A11 +B1F1(
√
ε)]TU12 + [A21 +B2F1(

√
ε)]TU22

+ U11[A12 +B1F2(
√
ε)] + U12[A22 +B2F2(

√
ε)]

+ [C11 +D1F1(
√
ε)]TU11[C12 +D1F2(

√
ε)]

+
√
ε
(
[C21 +D2F1(

√
ε)]TUT

12[C12 +D1F2(
√
ε)]

+ [C11 +D1F1(
√
ε)]TU12[C22 +D2F2(

√
ε)]

)
+ [C21 +D2F1(

√
ε)]TU22[C22 +D2F2(

√
ε)] = 0,(4.16b)

[A22 +B2F2(
√
ε)]TU22 + U22[A22 +B2F2(

√
ε)]

+ ε
(
[A12 +B1F2(

√
ε)]TU12 + UT

12[A12 +B1F2(
√
ε)]

)
+ [C12 +D1F2(

√
ε)]TU11[C12 +D1F2(

√
ε)]

+
√
ε
(
[C22 +D2F2(

√
ε)]TUT

12[C12 +D1F2(
√
ε)]

+ [C12 +D1F2(
√
ε)]TU12[C22 +D2F2(

√
ε)]

)
+ [C22 +D2F2(

√
ε)]TU22[C22 +D2F2(

√
ε)] + In2 = 0.(4.16c)

D
ow

nl
oa

de
d 

06
/0

6/
13

 to
 1

92
.4

3.
22

7.
18

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LQR FOR SINGULARLY PERTURBED STOCHASTIC SYSTEMS 463

Taking ε = 0 in (4.16), one obtains via (4.11) the following system:

(A11 +B1F̃1)
T Ū11 + Ū11(A11 +B1F̃1)

+ (A21 +B2F̃1)
T ŪT

12 + Ū12(A21 +B2F̃1)

+ (C11 +D1F̃1)
T Ū11(C11 +D1F̃1)

+ (C21 +D2F̃1)
T Ū22(C21 +D2F̃1) + In1 = 0,(4.17a)

(A21 +B2F̃1)
T Ū22 + Ū11(A12 +B1F̃2) + Ū12(A22 +B2F̃2)

+ (C11 +D1F̃1)
T Ū11(C12 +D1F̃2)

+ (C21 +D2F̃1)
T Ū22(C22 +D2F̃2) = 0,(4.17b)

(A22 +B2F̃2)
T Ū22 + Ū22(A22 +B2F̃2)

+ (C12 +D1F̃2)
T Ū11(C12 +D1F̃2)

+ (C22 +D2F̃2)
T Ū22(C22 +D2F̃2) + In2 = 0.(4.17c)

By direct calculations based on the identities given in Lemma 3.1 as well as A22+B2F̃2

as a stable matrix, one obtains that if (Ū11, Ū12, Ū22) is a solution of system (4.17),
then (Ū11, Ū22) is a solution of the system

(As +BsF̃s)
T Ū11 + Ū11(As +BsF̃s) + (C1s +D1sF̃s)

T Ū11(C1s +D1sF̃s)

+ (C2s +D2sF̃s)
T Ū22(C2s +D2sF̃s) +Hs = 0,(4.18a)

(A22 +B2F̃2)
T Ū22 + Ū22(A22 +B2F̃2) + (C12 +D1F̃2)

T Ū11(C12 +D1F̃2)

+ (C22 +D2F̃2)
T Ū22(C22 +D2F̃2) + In2 = 0,(4.18b)

where

Hs = In1 + (A21 +B2F̃1)
T (A22 +B2F̃2)

−T (A22 +B2F̃2)
−1(A21 +B2F̃1)

T(4.19)

and F̃ = (F̃s, F̃f ) is the stabilizing feedback gain correspond to the solution (X̃1, X̃2).
System (4.18) can be regarded as a system on the linear space X = Sn1 ⊕ Sn2 of

the form

LF̃ (U) +H = 0,(4.20)

where U = (Ū11, Ū22) ∈ Sn1 ⊕ Sn2 and H = (Hs, In2) and LF̃ are linear operators

(3.24) with F replaced by F̃ . Based on Definition 3.2 of the stabilizing solution
of the reduced system of ARE (3.12), we deduce that the eigenvalues of the linear
operator LF̃ are in the half plane C−. On the other hand, from (4.19), we have
that H > 0. Thus, applying Theorem 4.5(iii) in [5], we deduce that (4.20) has a
unique solution Ũ = (Ũ1, Ũ2), and this solution satisfies Ũi > 0, i = 1, 2. Set
Ũ12 = −[(A21 + B2F̃1)

T Ũ2 + Ũ1(A12 + B2F̃2) + (C11 + D1F̃1)
T Ũ1(C12 + D1F̃2) +

(C21 +D2F̃1)
T Ũ2(C22 + D2F̃2)](A22 + B2F̃2)

−1. One obtains by direct calculations
that the triple (Ũ1, Ũ12, Ũ2) is a solution of system (4.17).

Moreover, the fact that (Ũ1, Ũ2) is the unique solution of (4.18) guarantees that
(Ũ1, Ũ12, Ũ2) is a unique solution of (4.17). Therefore, we deduce that there ex-
ists ε3 ∈ (0, ε2] such that for 0 ≤ ε ≤ ε3, system (4.16) has a unique solution
(U11(ε), U12(ε), U22(ε)) with the property that

lim
ε→0+

Uii(ε) = Ũi, i = 1, 2,(4.21)

lim
ε→0+

U12(ε) = Ũ12.(4.22)
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This means that there exists ε∗ ≤ ε3 such that

U22(ε) > 0, U11(ε)− εU12(ε)U
−1
22 (ε)UT

12(ε) > 0 ∀ε ∈ (0, ε∗].(4.23)

Setting

U(ε) =

[
U11(ε) εU12(ε)
εUT

12(ε) εU22(ε)

]
,

one obtains via (4.23) that U(ε) is the positive definite solution of (4.15). Thus, the
proof is complete.

Corollary 4.2. Assume that the assumptions of Theorem 4.1 are fulfilled. Let
(X̃1, X̃2) be the stabilizing solution of the reduced system of AREs (3.9) and let
(F̃s, F̃f ) be the corresponding feedback gains constructed via (3.25)–(3.26). Let F̃1

and F̃2 be constructed via (4.4). Under these conditions, there exists 0 < ε∗∗ ≤ ε∗

with the property that the control

uapp(t) = F̃1x1(t) + F̃2x2(t)(4.24)

stabilizes system (2.1) for arbitrary 0 < ε ≤ ε∗∗.
The proof can be obtained by repeating the reasoning from the last part of the

proof of Theorem 4.1 by replacing (4.15) with

[A(ε) +B(ε) ˜̃F ]TU + U [A(ε) +B(ε) ˜̃F ]

+ [C(ε) +D(ε) ˜̃F ]TU [C(ε) +D(ε) ˜̃F ] + In = 0,(4.25)

where ˜̃F = [F̃1 F̃2].
Remark 4.1.

(a) Control (4.24) does not depend upon ε, but it stabilizes system (2.1) for
a sufficiently small ε > 0. The level of suboptimality with respect to the
optimal value of the cost functional (2.2) achieved by control (4.24) will be
analyzed in the next subsection.

(b) The result proved in Theorem 4.1 shows that in the stochastic framework
of systems of type (2.1), the dominant parts of the stabilizing solution and
of the stabilizing feedback constructed via the stabilizing solution of the re-
duced system of AREs achieve an approximation of order O(

√
ε) of the exact

stabilizing solution and of the exact stabilizing feedback gain, respectively. It
is worth mentioning that in the deterministic framework, such deviations are
of the order O(ε).

Taking into account the analyticity of the solution Y (η) of the implicit function
problem (4.6), we may write

Y (η) = Ỹ +

∞∑
k=1

ηkY k,

where Ỹ = (X̃1, X̃12, X̃2, F̃1, F̃2) and Y k are obtained, for example, by successively
differentiating (4.6) verified by Y (η).

Therefore, for k = 1, Y 1 is obtained as solution of the linear equation

∂F
∂Y

(Ỹ , 0)Y 1 +
∂F
∂η

(Ỹ , 0) = 0.(4.26)
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Setting Y 1 = (X1
1 , X

1
12, X

1
2 , F

1
1 , F

1
2 ), one obtains the following equation (4.26):

AT
11X

1
1 +X1

1A11 +AT
21X

1T
12 +X1

12A21 + CT
11X

1
1C11 + CT

21X
1
2C21

− F̃T
1 (R +DT

1 X̃1D1 +DT
2 X̃2D2)F

1
1 − F 1T

1 (R +DT
1 X̃1D1 +DT

2 X̃2D2)F̃1

− F̃T
1 (DT

1 X
1
1D1 +DT

2 X
1
2D2)F̃1 +M1 = 0,(4.27a)

AT
21X

1
2 +X1

1A12 +X1
12A22 + CT

11X
1
1C12 + CT

21X
1
2C22

− F 1T
1 (R +DT

1 X̃1D1 +DT
2 X̃2D2)F̃2 − F̃T

1 (R+DT
1 X̃1D1 +DT

2 X̃2D2)F
1
2

− F̃T
1 (DT

1 X
1
1D1 +DT

2 X
1
2D2)F̃2 +M12 = 0,(4.27b)

AT
22X

1
2 +X1

2A22 + CT
12X

1
1C12 + CT

22X
1
2C22

− F̃T
2 (R +DT

1 X̃1D1 +DT
2 X̃2D2)F

1
2 − F 1T

2 (R +DT
1 X̃1D1 +DT

2 X̃2D2)F̃2

− F̃T
2 (DT

1 X
1
1D1 +DT

2 X
1
2D2)F̃2 +M2 = 0,(4.27c)

BT
1 X

1
1 +BT

2 X
1T
12 +DT

1 X
1
1C11 +DT

2 X
1
2C21 + (DT

1 X
1
1D1 +DT

2 X
1
2D2)F̃1

+ (R+DT
1 X̃1D1 +DT

2 X̃2D2)F
1
1 +M3 = 0,(4.27d)

BT
2 X

1
2 +DT

1 X
1
1C12 +DT

2 X
1
2C22 + (DT

1 X
1
1D1 +DT

2 X
1
2D2)F̃2

+ (R+DT
1 X̃1D1 +DT

2 X̃2D2)F
1
2 +M4 = 0,(4.27e)

where

M1 = CT
21X̃

T
12C11 + CT

11X̃12C21 − F̃T
1 (DT

2 X̃
T
12D1 +DT

1 X̃12D2)F̃1,(4.28a)

M12 = CT
21X̃

T
12C12 + CT

11X̃12C22 − F̃T
1 (DT

2 X̃
T
12D1 +DT

1 X̃12D2)F̃2,(4.28b)

M2 = CT
22X̃

T
12C12 + CT

12X̃12C22 − F̃T
2 (DT

2 X̃
T
12D1 +DT

1 X̃12D2)F̃2,(4.28c)

M3 = DT
2 X̃

T
12C11 +DT

1 X̃12C21 − (DT
2 X̃

T
12D1 +DT

1 X̃12D2)F̃1,(4.28d)

M4 = DT
2 X̃

T
12C12 +DT

1 X̃12C22 − (DT
2 X̃

T
12D1 +DT

1 X̃12D2)F̃2.(4.28e)

Using the second equation of (4.27), we eliminate X1
12 from the other equation of

this system. Furthermore, taking into account (3.30)–(3.31), we conclude that if
(X1

1 , X1
12, X1

2 , F 1
1 , F 1

2 ) is a solution of (4.27), then (X1
1 , X1

2 ) verifies system

(As +BsF̃s)
TX1

1 +X1
1 (As +BsF̃s) + (C1s +D1sF̃s)

TX1
1 (C1s +D1sF̃s)

+ (C2s +D2sF̃s)
TX1

2 (C2s +D2sF̃s) + M̃1 = 0,(4.29a)

(A22 +B2F̃f )
TX1

2 +X1
2 (A22 +B2F̃f ) + (C12 +D1F̃f )

TX1
1 (C12 +D1F̃f )

+ (C22 +D2F̃f )
TX1

2 (C22 +D2F̃f ) + M̃2 = 0,(4.29b)

where M̃1 and M̃2 are computed based on M1, M12, M2, M3, and M4 in (4.28).
System (4.29) has a unique solution (X1

1 , X1
2 ) ∈ Sn1 ⊕ Sn2 because (F̃s, F̃f ) is the

stabilizing feedback gain. Furthermore, the last two equations of (4.27) allow us to
uniquely compute the matrices F 1

1 and F 1
2 . Finally, from the second equation of

(4.27), one uniquely determines X1
12. Therefore, we have proved the following.

Corollary 4.3. Under the assumptions of Theorem 4.1, there exists ε∗ > 0
with the property that for any ε ∈ (0, ε∗], the stabilizing solution X̃(ε) of ARE (2.5),
which verifies the sign condition (2.6), exists and has an asymptotic structure,

X̃(ε) =

[
X̃1 +

√
εX1

1 +O(ε) ε[X̃12 +
√
εX1

12 +O(ε)]

ε[X̃12 +
√
εX1

12 +O(ε)]T ε[X̃2 +
√
εX1

2 +O(ε)]

]
.

The corresponding stabilizing feedback gain has an asymptotic structure,

F̃ (ε) =
[
F̃1 +

√
εF 1

1 +O(ε) F̃2 +
√
εF 1

2 +O(ε)
]
,
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where X̃1, X̃12, X̃2, F̃1 and F̃2 are those from Theorem 4.1, where (X1
1 , X

1
12, X

1
2 , F

1
1 ,

F 1
2 ) is a solution of (4.27)–(4.28).

At the end of this subsection, let us note that as a result of the sign conditions
(3.30)–(3.31), we may eliminate the variables F 1

1 and F 1
2 from systems (4.27)–(4.28).

Thus, we obtain

(A11 +B1F̃1)
TX1

1 +X1
1 (A11 +B1F̃1)

+ (A21 +B2F̃1)
TX1T

12 +X1
12(A21 +B2F̃1)

+ (C11 +D1F̃1)
TX1

1 (C11 +D1F̃1) + (C21 +D2F̃1)
TX1

2 (C21 +D2F̃1)

+(C21 +D2F̃1)
T X̃T

12(C11 +D1F̃1)

+ (C11 +D1F̃1)
T X̃12(C21 +D2F̃1) = 0,(4.30a)

(A21 +B2F̃1)
TX1

2 +X1
1 (A12 +B1F̃2) +X1

12(A22 +B2F̃2)

+ (C11 +D1F̃1)
TX1

1 (C12 +D1F̃2) + (C21 +D2F̃1)
TX1

2 (C22 +D2F̃2)

+ (C21 +D2F̃1)
T X̃T

12(C12 +D1F̃2)

+ (C11 +D1F̃1)
T X̃12(C22 +D2F̃2) = 0,(4.30b)

(A22 +B2F̃2)
TX1

2 +X1
2 (A22 +B2F̃2) + (C12 +D1F̃2)

TX1
1 (C12 +D1F̃2)

+ (C22 +D2F̃2)
TX1

2 (C22 +D2F̃2) + (C22 +D2F̃2)
T X̃T

12(C12 +D1F̃2)

+ (C12 +D1F̃2)
T X̃12(C22 +D2F̃2) = 0.(4.30c)

4.2. The estimation of the performance lostness. In this subsection, we
analyze the deviation from the optimal value of the cost (2.2) when control (4.24) is
used instead of optimal controls (2.3)–(2.4).

Theorem 4.4. Under the assumption from Theorem 4.1, we have

0 ≤ Japp − Jopt ≤ ρε|x0|2 ∀ε ∈ (0, ε∗∗),(4.31)

where Japp = J(uapp), Jopt = J(ũ) is the optimal value of the cost functional, x(0) =
x0 = [ xT

1 (0) xT
2 (0) ]T , ρ > 0 is a constant independent of x0, ε, and ε∗∗ is given

in Corollary 4.2.
Proof. Applying Corollary 4.2, we deduce that the control uapp(t) stabilizes sys-

tem (2.1) for arbitrary 0 < ε ≤ ε∗∗. Hence, the eigenvalues of the Lyapunov-type op-
erator Y → [A(ε)+B(ε)F̂ ]TY +Y [A(ε)+B(ε)F̂ ]+ [C(ε)+D(ε)F̂ ]TY [C(ε)+D(ε)F̂ ]
are in the half plane C−. Thus, we obtain via Theorem 4.5(i) and (iii) in [8] that the
linear equation on Sn,

[A(ε) +B(ε)F̂ ]TV (ε) + V (ε)[A(ε) +B(ε)F̂ ]

+ [C(ε) +D(ε)F̂ ]TV (ε)[C(ε) +D(ε)F̂ ] +Q+ F̂TRF̂ = 0,(4.32)

has a unique solution V (ε), where F̂ = (F̃1 F̃2) is the gain matrix of (4.24). We have
J(uapp(t)) = xT

0 V (ε)x0. In order to prove (4.31), we have to estimate ||V (ε)− X̃(ε)||.
The unique solution of (4.32) is given by

V (ε) = E

∫ ∞

0

ΦT (s, 0, ε)[Q+ F̂TRF̂ ]Φ(s, 0, ε)ds,(4.33)

where Φ(s, 0, ε) is the matrix solution of the initial value problem

dΦ(s, 0, ε) = [A(ε) +B(ε)F̂ ]Φ(s, 0, ε)ds+ [C(ε) +D(ε)F̂ ]Φ(s, 0, ε)dw(s), s > 0,

where Φ(0, 0, ε) = In.
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Let

Φ(t, 0, ε) =

[
Φ11(t, 0, ε) Φ12(t, 0, ε)
Φ21(t, 0, ε) Φ22(t, 0, ε)

]

be the partition of the matrix solution Φ(t, 0, ε) compatible with the partition of the
coefficients of system (2.1). Applying Theorem 4.4 in [3], we obtain the estimates

E[|Φk1(t, 0, ε)|2] ≤ βk1e
−α1t, k ∈ {1, 2},

E[|Φ12(t, 0, ε)|2] ≤ β12εe
−α1t,

E[|Φ22(t, 0, ε)|2] ≤ β22(e
−α2

t
ε + εe−α1t)

for all t ≥ 0, where βlj , αj , l, j ∈ {1, 2}, are positive constants independent of t and
ε. In (4.33), using the above estimates for the block components of Φ(s, 0, ε), one
obtains that V (ε) has structure

V (ε) =

[
V11(ε) εV12(ε)
εV T

12(ε) εV22(ε)

]
.(4.34)

Substituting (4.34) into (4.32), one obtains a linear system with unknowns V11, V12,
and V22.

The coefficients of this system are analytic functions with respect to the parameter
η =

√
ε. This means that the unique solution of this system is an analytic function

with respect to η. Hence,

Vij(ε) = V 0
ij +

√
εV 1

ij +
√
ε

∞∑
k=0

√
ε
k
V k+2
ij , i, j = 1, 2.

By standard calculations, which are omitted for brevity, one obtains that V 0
ij , i,

j = 1, 2, verifies system (3.9) completed with (3.25), (3.26), and (4.5), whereas
(V 1

11, V 1
12, V 1

22) verifies system (4.30). The uniqueness of the stabilizing solution of
system (3.9) together with the uniqueness of the solution of system (4.30) leads to

V 0
11 = X̃1, V 0

22 = X̃2, V 0
12 = X̃12,(4.35)

and

V 1
11 = X1

1 , V 1
22 = X1

2 , V 1
12 = X1

12.(4.36)

Combining the result from Corollary 4.2 with (4.34), (4.35), and (4.36), we deduce

||V (ε)− X̃(ε)|| ≤ ρε, (∀) 0 < ε ≤ ε∗∗.

Thus, the proof is complete.

5. Conclusions. In this paper, several aspects of the problem of an LQ opti-
mal regulator for a class of stochastic controlled linear systems modeled by systems
of singularly perturbed Itô differential equations were considered. The asymptotic
structure of the stabilizing solution of the ARE associated with this problem was
derived. The dominant part of this solution involved solving a system of coupled
Riccati-type equations that is not dependent upon the small parameter ε that was
used to construct a suboptimal control. As in the deterministic case, the presence of
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the small parameter ε in the structure of the coefficients of the ARE leads to an ill
conditioning of numerical computations, affecting the accuracy of the existing algo-
rithms for the computation of the stabilizing solution of the ARE associated with the
problem of LQR. It is worth mentioning that in many applications, the value of the
small parameter ε is not precisely known. This is another argument in favor of the
derivation of the asymptotic structure of the stabilizing solution of the ARE in order
to be able to construct a near-optimal control law. It is known from [2, 15, 16] that in
the deterministic case, two control problems of lower dimension are associated with
the original problem, namely, the reduced LQ problem and the boundary layer LQ
problem. This is done by simply neglecting the small parameter ε in the controlled
system followed by some simple algebraic computations. The stabilizing solutions of
the Riccati equations associated with the reduced problem and the boundary layer
problem play an important role in the construction of the dominant part of the sta-
bilizing solution of the ARE of the original problem. Unlike the deterministic case,
in the stochastic context considered in this paper, we cannot associate a reduced LQ
problem and a boundary layer LQ problem by simply neglecting the small parameter
ε arising in system (2.1). However, we can associate a system of coupled algebraic
Riccati-type equations that are not dependent upon ε, i.e., the so-called reduced sys-
tem of AREs (3.9). In the case when the matrix coefficients of the diffusion part of
the controlled system vanish, system (3.9) reduces to the two AREs of lower dimen-
sion known from the deterministic case. As for the system of coupled AREs (3.9), we
introduced the concept of the stabilizing solution and provided a set of necessary and
sufficient conditions that guarantee the existence of the stabilizing solution of (3.9).
An iterative procedure for numerical computation of the stabilizing solution of (3.9)
was described. It should be noted that the dominant part of the stabilizing solution of
the original ARE constructed based on the stabilizing solution of the reduced system
of AREs (3.9) provides an approximation of order O(

√
ε) of the stabilizing solution

associated with the original problem. This guarantees a level of suboptimality of order
O(ε) achieved by the control uapp constructed based on the stabilizing solution of the
reduced system of AREs (3.9). Finally, we note that the assumptions in Theorem 4.1
also provide a set of sufficient conditions (independent of the small parameter ε) that
guarantee that the existence of the stabilizing solution of ARE is associated with the
considered problem of LQR. The techniques developed in this paper can be used to
derive similar results for other types of Riccati equations associated with controlled
linear systems modeled by singularly perturbed Itô differential equations with one or
more small parameters. Moreover, the developed methodology can also be further
used to solve the H2 filtering problem for systems governed by singularly perturbed
Itô differential equations.
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[13] H. Khalil and Z. Gajić, Near-optimum regulators for stochastic linear singularly perturbed
systems, IEEE Trans. Automat. Control, 29 (1984), pp. 531–541.
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