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SUMMARY 

The linear regression model is one of the most frequently used model in 

statistics and there are applications of it in many different areas. In the 

field of system identification this model is often used for impulse 

response estimation. If the length of the actual impulse response is known 

the corresponding least squares estimator is known to be a minimum variance 

unbiased estimator. However, this is usually not the case and therefore it 

is more common than rare that the wrong model structure is used. In this 

report the consequences of (in)correct modelling will be studied. It will 

be shown that the estimates can be improved if a smaller model structure is 

chosen. Furthermore some criteria will be given which can be used for the 

selection of a model structure. 

The asymptotic behaviour and sampling properties of these criteria will be 

studied in the case that the best out of two model structures (the true 

model and a predefined smaller model structure) has to be chosen. It will 

be shown that some criteria are asymptotically equivalent or wi II 

asymptotically choose the right model structure. Furthermore it will be 

shown that the risk i nvol ved 

parameter space where it is 

estimator in the true model 

with 

smaller 

and a 

these criteria yield a 

than the risk of the 

range 

least 

in the 

squares 

As an range where it is greater. 

exception to this rule a selection procedure will be given which is based 

on the James-Stein estimator. 

In this report some other selection procedure 

designed to improve the mean square error of 

repsonse. However, simi lations wi II indicate that 

common used similar model selection criterion. 

will be given which is 

estimating the impulse 

it is not superior to a 

Besides model structure selection some other ways are briefly investigated 

to improve the least squares estimator in the true model structure. Among 

them are principal component selection and ridge regression. Unfortunately 

they improve the least squares estimator only for a limited range in the 

parameter space. However, a class of biased estimators will be given, 

which will, under certain conditions, be uniformely better than the least 

squares estimator. 
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NOTAlIO.AL COIVENTIONS 

OPERATORS 

arg min fez) :value of z that minimizes fez) 

z 

covez) 

pUm 

E( ) 

t r( A ) 

A 

A- 1 

A-

I z I 

:covariance matrix of random vector z 

:probability limit 

:expectation 

:trace (sum of diagonal elements) of the matrix A 

:transpose of matrix A 

:inverse of matrix A 
:(A'A)-1 A

1 

:norm of a vector = Jz'z 

SYMBOLS USED .1 TEXT 

d :dimension of the largest to be considered model structure 

de :dimension of the true model structure 

e :vector of process disturbances (except in section 3.7.2) 

I :ldentity matrix (except in section 3.7.2> 

l( :loss function 

LH( ) :llkelihood function 

M :model structure 

MSEC ):Mean Square Error function 

n :number of output samples 

p :dimension of the current model' structure 

pC :(joint) probability density function 

p( ):conditional (joint) probability density function 

RH( ) :Risk Matrix function 

Sf :shrinkage factor 

U :known design matrix 

w :vector of model residuals 

x :vector of undisturbed output samples 

y :vector of disturbed output samples 

Z :transformed U, used in canonical forms 

fJ :transformed 9, used in canonical forms 

9 :vector of process parameters 

• :vector used to parametrize models 

0 1 :variance of process disturbances 

:used to indicate that this is an estimator 
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1. INTRODUCTION 

The Linear regression model is one of the most frequently used models in 

statistics and there are applications of it in many different areas. In 

matrix notation the .odel can be expressed 8S: 

where, 

y=Ut+w (1.1) 

y: n-vector of observable random variables 

U: known matrix of dimension n*d 

t: p-vector of unknown regression coefficients 

w: n-vector of unknown random variables 

(disturbances) 

In the field of system identification the linear regression model is often 

used for impulse response estimation. The model is especially usefull when 

there is no prior information about a relationship between the markov 

parameters. let the input-output behaviour of a process be given by : 

here, 

dc ·1 

y(k)= ~ h(i)u(k-i) + e(k) 

;=0 

y(k): disturbed output 

u(k): undisturbed input 

e(k): disturbance 

h impulse response 

de length of (correct) impulse response 

( 1 • Z ) 

Then, given the data set ( y(1), •. ,y(n),u(2-p), •• ,u(n) ) of measured input

output samples, we can write the input-output relation of the process in 

the following form: 

y( 1) u( 1) u(Z'p) e ( 1 ) 

~'"' J u( 1) 

+ (1. 3) 

u(n-p+1) h(p·1) 

yen) u(n) u(n-p+1 ) e(n) 

y us + e 

y x + e 

So we see that U is filled with the input samples and becomes a Toeplitz 

matrix. It is assumed that there are enough output samples Cn ~ de)' The 

input signal is supposed to be sufficiently rich, so that U has full rank. 

The vector y consists of the output samples and e becomes the unknown 

impulse response. The n-vector x denotes the undisturbed output. 

Throughout this report it is assumed that the disturbances ei are 



6 

independent, have zero mean, have variance a' and are normally distributed 

<for some definitions see appendix A). Thus, 

so, 

y f N(U9,a'l n > 

Here In denotes an identity matrix of dimension n*n. 

The objective is to use this linear regression model 

impulse response 9. One usually estimates this 

(1.5) 

(1.6) 

(1.1) to estimate the 

impulse response by 

minimizing the difference between the measured output y and the estimated 

output x. This results in. an estimator of the following form: 

When the Length of the actual impulse response is known this estimator is a 

minimum variance unbiased estimator of 9. But in practice the length of the 

impulse response is unknown, in fact it may be infinite. In such situations 

we are forced to estimate the dimension of the model. Then we are usually 

dealing with an incorrect model. 

The aim of this study is to investigate what the consequences of incorrect 

modelling are and to evaluate criteria for selecting a model. Furthermore I 

will briefly mention some ways to improve the least square estimator. Then 

it is assumed that the process ;s in the modal set. 
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2_ CONSEQUENCES Of (IN)CORRECT MODELLING 

In this chapter I wilL introduce the least squares estimator, define some 

functions that are going to be used to measure the performance of an 

estimator and discuss the properties of the least squares estimator when 

the process is (in)correctly modelled. The properties that will be derived 

are dependent on the assumption that the model is selected without 

reference to the actual data. However, since this is normally not the case 

the results should be used with caution. 1 will return to this point later. 

2.1 THE LEAST SQUARES ESTIMATOR 

As already mentioned, the objective 

unknown markov parameters. Throughout 

the estimator of e that minimizes the 

is to obtain an estimation of the 

this chapter we restrict ourselves to 

residual sum of squares (RSS): 

- , 
RSS= (V-x) (V-x) (2 _1) 

Here x denotes the estimated undisturbed output x ( x=ue ). Thus given the 

model y=Ut+w, where. is left as a variable and w is the corresponding 

vector of residuals (so RSS=w'w), minimizing of RSS results in the 

optimizing condition: 

8RSS / 8+ = 2(U'U)t-2U'V = Q (2 _ 2) 

When U has full rank this leads to the optimizing vector, 

- ,- l' + 
9 = (U U) U V = U V (2.3) 

We call the estimator given in (2.3) the least squares estimator of 9 ( 

under the loss function RSS). 

2_2 PERfORMANCE MEASURES 

If one has some estimate of S, say e, it is desirable to know how good 

that estimator is. I wi II now discuss the form of functions that are to be 

used in evaluating the performance of an estimator. Although there are 

many alternatives, I will only discuss the mean square error (MSE) 

function and the risk matrix (RM). 

First of all I will discuss the mean square error function for measuring 

the distance between the actual impulse response and the estimated impulse 

response. 

Let the squared difference between e and e be denoted as lee). 
Thus: , -

L(9) = (9-9) (9-9) (2_4) 

Then the corresponding mean square error function is, 

MSE(9)=E( L(e) } (2_5) 
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Rewrite "SEeS) as, 

• I - I -

MSE(9)= (E{9}-9) (E{9}-9) + E{ (e-E{e}) (9-E{e}) } (2.6) 

Thus we see that this loss function consists of a bias part (first term) 

and a variance part (second term). 

Sometimes, for example when prediction is the objective, it is desirable to 

measure the performance of an estimator by looking how well the undisturbed 

output X has been estimated. In that case the MSE function wilL be defined 

as follows. 

Let the squared difference between x and x be denoted as lex). 

Thus: , . 
lex) = (x-x) (x-x) (2.7) 

Then the corresponding mean square error function is, 

MSE(x) = E ( L(x) } (2.8) 

Similar to (2.6) we can split this function into a bias part and a 

variance part. 

To establish a relation between (2.5) and (2.8) let us consider the risk 

matrix of the estimator 9. 

RM(e) = E{ (9-9)(9-9) } (2.9) 

Then it can be seen that, 

MSE(9) tr( RMea) ) (2.10) 

MSE(x) = tr{ U*RM(9)*U' } (2.11) 

Suppose that there are two est imators 9 a and 8 b of 8. Then we ~ay that for 

a given performance measure Sa is a better estimator than 8 b when the 

following condition holds, 

. : for MSE(9) if MSEC9,8 a ) < MSE(9,9b ) (2.12) 

b: for MSE(x) i f MSE(x,x a ) < MSE(x,xb) (2.13) 

c: for RM(9) if RM(9,9 b )-RM(9.9.) is positive (2.14) 

semidefinite cp.s.d) and nonzero. 

It is easy to see that if condition (2.14) is true, then conditions (2.12) 

and (2.13) are also true (because of (2.10) and (2.11». But the reverse 

doesn't hold. If condition (2.12) and/or (2.13) are true, the condition 

(2.14) doesn't have to be true. Thus the condition (2.14) is much more 

severe than condition (2.12) and (2.13). 
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2.3 THE PROCESS IS IN THE MODEL SET 

I will now discuss some properties of the least squares estimator when the 

process is in the model set. Suppose that the length of the actual impuLse 

response is de (the supcript c stands for correct). let the length of the 

impulse response in the model be equal to p where p :!:: d c ' Then we can 

write, 

here, 

process 

model 

Y = ufef+e 

y Uf'f+w 

= U9+U r er +e 

Ut.urtr+w 

Uf=(U Ur ) is an n*p matrix 

u = n*d c matrix 

Ur = n*(p-d c ) matrix 

• 8 f = (9 1 9 r ') 

9 and tare 

8 r =Q and fr 

• and 'f= (t l Irl) 

dc·vectors 

are (p-dc)-vectors 

(2.15) 

are 

Since 9 f is not known we leave it in the model as a variable (if). Then w 

is the corresponding n-vector of residuals. 

CASE ( p=dc..l.l. 

First, let us assume that 

model set and we assumed to 

e, we can derive the maximum 

Because, 

p=d c so ef=e. Because the 

know the exact probability 

likelihood estimator (MLE) 

process is in the 

density function of 

of 8. 

we can write the probability of obtaining the observed vector y as, 

. n/2 • 
pCy;e,ql )=(270 1 ) exp { ·Cy-U9) (y·U9)/20 1 ) (2.16) 

Because e is unknown we leave it as a variable (I). Then we obtain the 

likelihood function LHClly) for 8, 

LH(tly)= p(y;t) (2.17> 

To obtain the maximum likelihood estimator of 9 we have to optimize 

L(lly). This results in: 

9 ml = arg max LH(lly) 

t 

I • 1 I + 
(U U) U Y = U Y (2.18) 

Thus we see that the MlE of 8 is equal to the least squares estimator of e 

(under the loss function Ly )' B~cause the process is in the model set the 

following properties of the LSE 9 = U+y can be derived: 
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PROPERTIES 

a: unbiased, E{ 9 }= 9 

b: cov(O) = E{ (O·E{ 0 »(O·E{ 0» ) = a'(u'u)·1 

c: minimum variance unbiased estimator 

(see Arnold '81) 

d: e 'N(a.al(U'U)~1) because e is a linear combination 

of y and (8) and (b) hold. 

Thus our performance measures become 

e: MSE(O) a'tr{ (U'U)-l ) 

f: MSE(x) q1tr{ U(U'U)-l U
I 

) = aIde 

g: RM(O) = a l (u'u)-l 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

In the derivation of the maximum likelihood estimator of e we assumed that 

the variance of the noise at was known. In practice, this is usualLy not 

the case. Then we have to estimate 0 2 • The likelihood function (lH) for e 

and 0 1 can be written as: 

LH(t,a'ly)=p(y;t,a' ) 

Here 9 and alere left as variables t and 0 1 • 

likelihood estimator of e and 0 2 we have to optimize 

9,e7' = erg max LHCt,Qlly) 

t,a 

This leads to the optimizing estimators: 

+ 
e = u y and 

To find the 

(2.26).Thus, 

(2.26) 

maximum 

(2.27) 

(2.28) 

The with the estimator e corresponding residuals will be denoted as e. Thus 

the estimate of e remains the same. The estimate of qZ can be written as, 

(2.29) 

Here IxP is defined as XiX. Then we see that qZ is a biased estimate of 

qZ because. 

E{ ii' ) = E{ Iyl' 
+ 

luu YI' lin 

E{ IYI' lin 
+ 

E{ IUU yl' )/n 

(2.30) 

Consider now the following estimate of q' • 

• 
qZ = qzn/Cn-dc) =1(ln-UU )yl'/(n-d c ) (2.31 ) 

This estimator has the following properties, 
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a: unbiased (see (2.30) and (2.31» 

b: minimum variance unbiased estimator 

(see Arnold 181) 

C: 0'2 and 8 are independent, because 

with covariance E{ (w-E{w})(8-E{8}) } = 0n,de 

(2.32) 

(2.33) 

(2.34) 

Let P=(In-UU+). Because P is a orthogonal projector on the null space of 

U', it has (n-d e > eigenvalues which are one and de eigenvalues which are 

zero. Therefore e'Pe can be written as eIV'lVe, where V is an n*n 

orthonormal matrix and T is an n*n diagonal matrix whose diagonal elements 

are the eigenvalues of P. If we rewrite elV'lVe as rllr, where r E 

N(O,qlI n ), it can be seen that <n-dc)qZ/ql is distributed as a ChP

distribution (for some distributions see appendix A) with (n-d e ) degrees of 

freedom, thus 

(2.35) 

CASE { P > dc~ 

Sofar we discussed the case when the length of the actual impulse response 

was known. L.et us now discuss what happens when the modeL is chosen too 

large, thus n > p > d c ' In that case our estimator of 9 f = (9' Sr')' 

becomes, 

(2.36) 

This estimator has the foLLowing properties, 

PROPERTIES 

a: unbiased, E{ 9f } = 9f (2.37) 

(2.38) 

(2.39) 

(2.40) 

e: MSE(x) .'p (2.41) 

(2.42) 

However, this estimator is no Longer a minimum variance estimator, because 

if we compare the covariance matrix of the estimator 

(2.43) 

given by, 
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(see prev; DUS 

(2.39), we see 

12 

a l cu l
u)·1 

dc,p-dc · ] 0 
p-dc,dc °p-dc,P-dc 

section), with the covariance matrix of 9f 

that the difference between these two matrices, 

(see appendix B) 

is at least 

definite (U f 

positive semidefinite, 

has full rank). 

since B is assumed to 

(2-44) 

as liven in 

(2_45) 

be positive 

The estimator of at (see (2.31» where U and de are rep~aced by Uf and p is 

in this larger model still unbiased and independent of ef, but also in this 

case it is no longer 8 minimum variance estimator because of reasons 

similar to (2.45). 

2.4 THE PROCESS IS lOT .1 THE MODEL SET 

In the previous section we discussed the situation that the process is in 

the model set. let us now assume that the process is not in the model set. 

Thus we assume that the dimension of the model is chosen too small. Then we 

get, 

process y= U,9,+U282+e = U9+e 

model y= U,I,+w = U,I,+U 212+w = UI.w so 1 2=Q 

Here we assume that: 

U=(U, U2) is an n*d c matrix 

U, is an n*p matrix 

U2 is an n*(dc~p) matrix 

, 
8=(8,' 9 2

1 ) and 1=(1,112 1) are d-vectors 

9, and I, are p-vectors 

8 2 and 12=Q are (dc-p)-vectors 

(2_46) 

Although one may argue about the type of estimator to use in this 

situation, we take the least squares estimator as an estimate of 8" since 

we are investigating the consequences of incorrect modelling when using 

this estimator, thus, 

9 2 = Q (2_47) 

so, 
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8=(8,'0')' (2.48) 

Then the following properties can be derived: 

PROPERTIES 

+ 
a: biased, E(8,>= 8,+U,U282 E(92 )= Q (2.49) 

b: covce,>= al(U~U1)-1 (2.50) 

Thus our performance measures become now, 

d: MSEeS) (2.52) 

e: MSE(x) (2.53) 

f: 

(2.54) 

(see appendix B) 

\.Ie will now investigate the effect of the too small model on the estimate 

of gl. Suppose u l is estimated with the estimator given in (2.311, where U 

and de are replaced by U, and p. Then, in our incorrect model a' is 

estimated by. 

q' (2.55) 

But because, 

(2.56) 

we see that this estimator ;s normally upwards biased. 

2.5 EVALUATION 

In the previous sections we considered the consequences of (in)correct 

modelling, The aim of this section is to evaluate these consequences. 

Suppose our estimated model is too large. As we sew in (2.46), the 

difference between the covariance matrices of the too large model and the 

correct model is positive semidefinite (and is non zero). Thus, although 
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too big 8 model set leads to unbiased estimates, one pays with greater 

variance. Consequently, since in this case the risk matrices are equivalent 

with the covariance matrices, OUf' three performance measures (2.5) (2.8) 

and (2.9) will prefer the estimators from the correct model. 

Let us now suppose that the chosen mode~ is too small. If we compare the 

estimate of e in the too small model (9) with the estimate of e in the 

correct model (9 = U+y ) we can see that the difference between the risk 

matrices of both models is given by, 

RM(9,O) 

Here we see that when, 

thus when the covari ance matrix 

minus the bias matrix of 9 2 is 

matrices is at least p.s.d.(see 

equivalent to, 

+ 'J -U1U2{0'IB-e2~2} 

{a's·e292} 

(2.57) 

(see appendix B) 

(2.58) 

of estimating 8 Z in 

p.d., the difference 

the correct model 

between the ri sk 

appendfx B). The condition (Z.58) is 

(2.59) 

(see appendix B) 

If condition (2.59) is true, it means that our three performance measures 

indicate that we can get a better estimate in the incorrect model 

structure. But even when (2.59) doesn't hold our estimates can become 

better in the incorrect model structure according to the mean square error 

functions H, 

MSE(9,9) MSE(9,9) = 

(2.60) 

or, 

MSEex,x) - MSE(x,x) 

< 0 (2.61) 

From these evaluations we can conclude that too. large a model always gives 

worse estimates because of the increasing variance, but too small a .odel 

can give better estimates when the introduced bias is s.aller than the 

am.ount of decreasing variance. 

Our primary goal was to get a good estimate of the impulse response 
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according to a particular performance measure. Thus, although the length of 

the actual impulse response may be known, it may be better to choose a 

smaller model. In that case we define the best model as the model that 

minimizes: 

MSE(9) (2.62) 

MSE(x) : (2.63 ) 

If the performance measure is the risk matrix, it is more difficult to 

define a best model. Therefore we will define 8 set of 'good ' models rather 

than a best model. This set is defined as follows, 

Let dmax be the dimension of the model with, 

RMC8,ep>-RM(9,8dmax) is p.s.d. and non zero for p > dmax 

Let dmin be the dimension of the model with, 

is p.s.d. and non zero for p < dmin 

Where 9 p 8 dmax and 8dmin are the estimates of e as given in (2.48) in the 

model with dimension P, dmax and dmin. Then the set of 'good' models is 

defined as the set of models with dimension dmin ~ p ~ dmax. 

Since we used the least square estimator to estimate 9 1 , all above 

I'optimal models" are confined to the class of least square estimates. 

In order to find the best model we have to cope with the fact that the 

actual impulse response is unknown. Logically, because that is what we 

wanted to estimate. Thus we are forced to consider estimates of the 

dimension of the model. In the next chapters I will discuss some criteria 

that have been proposed for finding an 'optimal model'. 
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3. CRITERIA FOR SELECTIIG AI 'OPTIMAL' MODEL STRUCTURE 

In this chapter will present a review of criteria that have been 

proposed for selecting the dimension of a linear regression model. 

3.1 MOfATiON 

Throughout this chapter we consider a set of possible model structures. 

This set consists of models with increasing dimension. Let the highest 

dimension to be considered be d. Then there are d+l possible models which 

vary in dimension from 0 to d. Furthermore it is assumed that the Length of 

the actual impulse response (de) is smaller than d. let the dimension of 

the varying model be denoted as P. then we write, 

where 

process: y=U8+e=U,8,+U 28 2+e where elements of 

8
2 

may be zero 

model: 
+ 

with 8, = U1Y and e =<I n -U,U1)y 

U=(U, u 2 ) is an n*d matrix 

U, is an n*p matrix 

U
2 

is an n*(d~p) matix 

9=(6,192
1 )1 is a d~vector 

9, is a p~vector 

92 is a (d~p) vector 

(3.1) 

let the residual sum of squares (RSSp) in the model with dimension p be 

defined as, 

. , 
RSSp = e1e = (y·x) (y-X) (3.2) 

Since in practice ql is usually not k.nown, will define 4 different 

estimates of 0 1 when working with a model of dimension p. 

a: 0 1 (p) RSSp/(n-p) (3.3) 

b: Ol(p) = RSSp/n (3.4) 

c: ql (d) = RSSd/(n·d) (3.5) 

d: ol(d) = RSSd/n (3.6) 

All these estimators and 91 are independent (see 2.34). The estimators (b) 

and (d) are the MlE est imates of ql when the dimensi on of the model is 

respectively p and d, provided that d ~ P >d c ' The estimators (a) and (c) 

are the corrected estimates of 0 1 (see 2.31) in the model of dimension p 

and d. As we already saw the estimator (a) is usually upwards biased for p 

< d c (see 2.47). 
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3~2 MODEL STRUCTURE SELECTIOI 

In the field of system identification it is very popular to perform a 

whiteness test of the residuals or to look. at the behaviour of the 

residuals loss function in order to select a model structure. These 

methods can be decribed as subjective ones because the outcome of these 

methods highly depend on the interpretation of a particular plet. For 

example, in case of Linear regression models a frequently used plot is the 

plot of Rp versus p. Here Rp is the squared muLtiple correlation 

coefficient and it is defined as, 

Rp = 1 . RSSp/(y'y) (3.7) 

This plot may yield a locus of maximum Rp which remains quite flat as p is 

decreased and then turns sharply downward. The value of p at which this 

'k.nee l ls, is used to indicate the dimension of the selected model. 

Unfortunally this knee isnlt so clear when the signal to noise ratio is 

bad. Then it becomes very difficult to determine an loptimal I model. 

Another 'subjective' method is the plot of the residual mean square (RMSp) 

versus p, where 

RMSp= RSSp/(n-p) = qr(p) (3.6) 

As we saw in the previous chapter the expectation 

when the process is in the model set. If not, 

upwards. When interpretating this plot the choice 

Hocking '76): 

of RMSp is equal to (JZ 

it is usually biased 

of pis based on (see 

a: minimum RMSp 

b: the value of p such that RMSp = RSSd 

c: the value of p where the RMSp increases sharply 

for further reduction of p 

An unfortunate aspect of these two measures is that they do not cons icier 

the gain of improved estimation when using an incorrect model. 

In the remainder of this chapter wi II only discuss 

selecting the dimension of a linear regression model 

solution that is free from interpretation. This means 

structure is chosen that optimizes a particular criterion. 

procedures for 

which yield a 

that the model 

In the last two decades, many criteria' have been proposed for model 

structure selection (for 

Amemiya 180, Judge et al. 

good 

180). 

reviews see Hocking 176, Thompson 178, 

The aim of this chapter is to summarize 

some of these criteria to have some guidelines for deciding where to cut 

off the tail of an impuLse response. 

Most of the selection procedures to be discussed have a very different 

background. There are criteria which are designed on hypothesis arguments, 

on prediction arguments, information theoretic 

arguments, cross-validation arguments or on Stein 

following I will discuss each of these arguments. 

arguments, 

arguments. 

bayesian 

In the 
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3.3 HYPOTHESIS ARGUMENTS 

3.3.1 CONFIDENCE INTERVALS 

As we already saw in chapter 2, the following holds for the full model. 

y E N(U9,a'l n > 

(3.9.) 

Thus we see that, 

(3.9b) 

because 0" is unk.nown and we estimate it with RSSd/(n·d). Since ISSd/(n-d) 

and 9 are independent, we get from the ratio of 3.98 and 3.9b, 

(3.10) 

where F (d,n-d) denotes a F-distribution with d and nod degrees of freedom 

(see appendix A). 

Suppose we estimate the markov parameters from the full model. If we are 

only interested in the last (d-p) parameters, we can see that, 

It is now possible to derive a 100(1-0:>% 

This region is defined as the region in 

100(1-0:)%. Because of (3.11) we see that 

8 2 (ReeZ> can be defined as, 

joint confidence region for 9 2 -

which 92 lies with probability 

a 100(1-a)X confidence region of 

R(ez ) 

here Fa (d-p,n-d) is the solution of 

[ PC X < Fa Cd-p,n-d) 

x E F Cd-p,n-d) 

1 •• 

It is not difficult to construct a joint 

parameters, but if the number of parameters 

somewhat harder to solve. 

3.3_2 HYPOTHESIS TESTING 

(3.12) 

(3.13) 

confidence region for 2 

exceeds 2 the problem is 

let us assume that we estimate the parameters in the full model and we 

wish to test if 8 2 =0, so that a smaller model structure can be used to 
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estimate e. Thus we have the following hypothesis, 

H 1 9 2<>0 

1n hypothesis testing we assume that the null hypothesis (HO) is true 

unless there is a convincing evidence that the hypothesis H1 is true. \.Ie 

should like to make a decision between HO and H1 such that the risk of 

rejecting HO when it is true is less than a certain number a. 

A commonly used test in system identification ( see Soderstrom 177) is the 

F-test. Suppose that HO is true, thus 8 2=0. Then we see with, 

+ + 
=IUU yl'-IU 1U 1yl' 

=IAA+yl' (3.14) 

that (RSSp-RSSd)/q! is distributed as, 

(RSSp-RSSd)/a z E ChP(d-p) (3.15) 

And because RSSp-RSSd and RSSd are independent we see that, 

(3.16) 

When HO is not true 

distribution. In this 

this expression 

F-test we accept 

is distributed as a noncentral F 

HO and thus take the smaller model 

structure to estimate e if, 

(RSSp-RSSd)/«d-p)aZ(d» < Fa (d-p,n-d) 

or equi'valently, 

+ 
fAA yl' I «d·p)a'(d) < Fa (d-p.n-d) (3.17> 

This test is called a partial f-test, because ~t measures the contribution 

of regressor 92 given that the other regressor 91 is in the model set. 

In the previous section we defined the joint confidence region of 9 2 when 

we estimated e in the full model. Testing if 92 could be set to zero by 

looking if the null-vecor belongs to the joint confidence region of 9 2 can 

reduce the number of parameters, however, 9, would still be estimated in 

the full model. To establish a relation between the partial F-test and the 

joint confidence region, let us consider the following. A necessary 

condition for 9 2=0 to belong to this region is (see 3.12), 

< Fa (d-p,n-d) (3.18) 

and thus if, 

(3.19) 
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because, 

(3.20) 

This means that when 62=0 belongs to the joint confidence region of 92 the 

condition (3.17) holds and thus HO is accepted. But the reverse is not 

true. If HO is accepted according to condition (3.17) it does not have to 

mean that 9 2 belongs to this joint confidence region. This is only true is 

when U is orthogonal. 

How can we use this partial F~test in the selection of a model. A 

possibiUty is to take the smallest value of p as the final dimension of 

the model for which the test (3.17) holds. Thus we have to determine the 

largest dimension of the vector 9 2 for which the partial F-test gives 

satisfactory results. 

An important problem with hypothesis testing is that a value for a has to 

be chosen. A small 0: causes many parameters to be deleted from the full 

modeL. A large a causes many parameters to be included. The most widely 

used value of a is 5-10%. 

3_4 PREDICTION ARGUMENTS 

3_4.1 MALlOVS' Cp 

let us suppose that our main concern is to get a good prediction of future 

responses. Considers the prediction of future responses from the same 

design matrix U as is used in the estimatl0n. As a measure of the goodness 

of this prediction consider the mean square error of prediction (MSEP). 

(3.21) 

here Yp denotes the vector of real future responses, xp denotes the vector 

of estimated future responses. Because we consider prediction from our 

current matrix U we can write, 

= x 

and thus MSEP can be written as, 

, . 
MSEP(yp ) = E( (x-x) (x-X) ) + no Z 

MSE(x) + no Z (3.22) 

Thus minimization of MSEP means in this case that we would like to 

minimize MSE(x). As we already saw in (2.53) we can write MSE(x) as, 

• 
MSE(x) = 1(ln-U,U,)U292IZ + poz (3.23) 

Consider now the expectation of the residuals sum of squares. 

(3.24) 

As an estimate of MSE(x)/oz Mallows (173) considered the following 
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function, 

Cp RSSp/ql + 2p-n (3.25) 

~ere ql i~ some estimate of qt. The most practibLe estimates of (It are 

q~(d) and ql(d). When o'=ql(d) Cp is an unbiased estimate of (3.23). So the 

modeL structure that minimizes Cp should be chosen. MalLows pointed out 

that it is better to inspect a plot of Cp versus p than blindly choose the 

model that minimizes Cpo Models leading to smaller Cp are prefered, but 

points close to the line Cp=p are lik.ely to be for models with a small 

bies. In view of our performance measures we see that this model selection 

procedure is clearly an procedure that is designed to improve the 

performance measure MSE(x). 

3.4.2 AMEMIYAIS PC 

Amemiya (180) also considered the problem of improving prediction. Suppose 

we have a vector of future input samples uf and we want to. predict the 

response to this input sequence. \.lith the predictor xp=uf'e 1 • the mean 

square error function of prediction can be written as, 

Where Ya is the actua l future 

take further expectations of 

that satisfies, 

, 
U U/n 

Then we obtain, 

(3.26) 

response. Amemeiya suggested that one should 

(3.26) regarding uf as the random variable 

(3.27) 

(3.28) 

Given this risk function he considered two criteria based on different 

decision strategies. The first one he called the Prediction Criterion 

(PC). This criterion is obtained by replacing u2 with its estimator qt(p) 

and then minimiz~ng the first term of (3.28) by putting it to zero. Thus, 

pc= u l (p)(1+p/n) (1/n)*RSSp(1+2p/(n-p» (3.29) 

The second criterion is obtained by estimating the first term rather than 

eliminating it. Because of relation (3.24) the first term can be estimated 

with, 

(3.30) 

When we substitute this in (3.28) the second criterion becomes, 

RSSp/n + 2pol/n (3.31) 
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Because we have to estimate OZ we see that then ql is estimated with 

ql Cd) or (11 (d) 

Mallows Cp when 

estimated with 

pc. 

minimizing this criterion is equivalent With minimizing 

the same estimator of ql is used. However when (11 is 

al(p) we see that this second criterion becomes exactly 

Amemiya pointed out that his PC can be used as a selection criterion 

either in linear regression models with the error term having a general 

variance-covariance matrix or in the nonlinear regression mOdel. 

3.4.3 THE FINAL PREDICTION ERROR (FPEI CRITERION 

In 169 Akaike introduced a procedure for fitting autoregressive models for 

prediction. AkaUc.e suggested to take the model which minimizes the FPE, 

which is defined as follows, 

FPE = V(8)( (n+#par)/(n-#par) > (3.321 

here #par is the number of free parameters and Vee) is the residuals sum of 

squares. This criterion reflects the prediction-error variance that one 

will obtain, on the average, when the model is applied as a predictor to 

other datasets than those used for the identification. Although it was 

originally designed for autoregressive model it has become a popular method 

even in non autoregressive modets. "-'hen we use thts method in a linear 

regression model we have, 

FPEp RSSp{ (n+p)/(n-p) > = RSSP{ 1+2p/(n-p) } (3.33) 

Thus we see that this method is equivalent with Amemiyals PC, besides a 

factor 1/n. 

3.5 I_fORMATION THEORETIC ARGUMENTS 

3.5.1 AKAIKEIS INFORMATIOI THEORETIC CRITERIOI 

let us consider the general process where the probability of obtaining the 

vector of observed output samples is given by, p(y;e). Here e denotes the 

unknown parameters of the process. let us consider a set of estimates als 

of the vector of parameters 8. The objective is to estimate a_in such a way 

that the a posteriori probabi lity density function (PDF) p(y;a) is as close 

as possible to the real PDF. As a measure of agreement between the real PDF 

and the estimated PDF consider the following function, 

1(9,9) = E{ ·In{ p(y;e)/p(y;9) ) ) = 

. f p(y;9) In { p(y;91/P(y;9) 1 dy (3.34) 
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Here the expectation is taken with respect to y. We consider e as given and 

thus independent of y. So (3.34) is in fact the a priori expectation. 

1(9,9) is called the Kullback-leibler information distance and it has the 

following properties, 

a: 1(8,9) ~ 0 (3.35) 

b: 1(9,9) = 0 if and only if 9=9 (3.36) 

For an enhanced list of properties see Ponomarenko 181 .Since there are 

only n independent realizations Yi (1=1..n) avai~lable, the sample mean of 

the log likelihood ratio is used to estimate IC9,9), thus 

n 

1(8,9) = - lin ~ In{ P(Yi;8)/p(Yi;8) } 

i = 1 

(3.37) 

This is a consistent estimate of 1(9,9). If the objective is to minimize 

(3.37) we see that this can be realized wHhout knowing the true value of 

S, giving the well known maximum likelihood estimator of 8. 

Akaike (173) proposed to minimize, 

E{ 2*1(8,8) } (3.38) 

Here the expectation is taken with respect to the distribution of 8. Thus, 

here we assume that e is no longer 8 constant but actually depends on y. 

and therefore has a distribution. In order to calculate this minimum he 

derived the following criterion (for some easier derivation than the 

original one see Amemiya '80), 

AIC = -2ln{ p(y;9) } + 2#par (3.39 ) 

Where Spar is the number of unknown parameters. This criterion is called 

Akaikels Information theoretic Criterion (AIC). 

If we project these derivations on our problem it can be seen (see 

appendix C), 

(3.40) 

and thus, 

E{ 2* 1(9,8) } MSE(x) Iql (3.41) 

Since, 

p(y;8) 
-n/2 I 

= (ZTqr) exp { -(V-US) (y-U9)/2qZ ) (3.42) 

we can see that, 

AIC = n*ln{27} + n*ln{qZ} + Iy-yl' I qZ + 2p (3.43) 

Minimizing the third term of the Ale (within our model structure) leads to 

the least square estimator 8, of 8,. So when qZ is known this Ale leads to 
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0' known, 

min Ale = min { RSSp/ql + 2p } (3.44) 

so it is equal to minimizing Cp (with known 0 ' ). ~hen (II is unknown we 

must use the maximum likelihood estimation of (/1 in that model. This means 

that we should take (JI (p) as an estimate of (/1. In that case the AIC 

criterion becomes, 

0' unknown, 

min Ale = min ( n-tn{ Ol(p) } + 2p ) (3.45) 

If we don't tak.e the maximum likelihood estimation of ql, thus we donlt 

follow the AfC exactly. but some other estimator (see 3.3-3.6) we get the 

following criteria, 

min ( n-ln{ ql(p) ) + P ) (3.46) 

u'ed) min ( RSSp/qt(d) + 2p } (3.47) 

o'ed) min ( RSSp/qr(d) + 2p } (3.45) 

Here we see that in the last two cases the criteria become equivalent with 

the Cp criterion if the same estimate of the noise would be used. 

3.6 SAYESt"l ARGUMEITS 

In the preceding chapters we assumed that there was no prior information 

about the actual impulse reponse. In this chapter it is assumed that there 

exist some prior density function about 9. Under this assumption, it is 

possible to derive a model selection procedure using a bayesian framework. 

of course, since these methods are based on heuristic arguments the only 

justification for them is through performance in practice. I will discuss 

now a general model selection procedure based on bayesian arguments. 

In our linear regression model we are searching for the best model 

structure out of d possible model structures. Assume that there exists a 

probability function for the model structure. Let the model structure with 

the dimension p be denoted as Mp' The probabi lity of the model structure Mp 

is denoted as, 

d 

with ~ P(M p ) = 

p=' 
(3.49) 

Furthermore we assume that the prior probability density function of the 

parameters (9 1 ) in the model structure Mp is given by, 

(3.50) 
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Let~ 

(3.5n 

denote the usual probability density function of y conditional on the 

model structure Mp with its parameters 9 1 " 

Then with the relations, 

Pcyl"p) J PCyI9,.M p )·PC9,IM p ) d9, (3.52) 

d 

pCy) E PCyl"p)'pC"p) C3.53) 

p=' 

it is possibLe to derive the probability of the model structure Mp 

conditional on y. Because, 

Pcyl"p) = PCY'"p) / PC"p) 

and 

PC"ply) 

we can see that, 

d 

PCYIMp) * pCMp) / E PCyl"p)*pC"p) 

p=' 

C3.54) 

C3.55) 

C3.56) 

When we substitute the measured Y, then (3.56) is the a posteriori 

probability for "p' Finding the Mp for which this a posteriori probability 

is maximal yields the Bayes solution to this problem. For this maximization 

problem pey) is a constant and can therefore be skipped from (3.56). 

When we assume that each model structure has equal probabi l ; ty we can see 

that maximizing of p(Mply) is equaL to maximizing P(yIM p>' 

There are several 

selection procedure 

only a few. 

model selection criteria developed on 

or on a variant of it. In the following 

this general 

I will discuss 

3.6.1 AKAIKE'S BAYESIAN INFORMATION CRITERION (BIC) 

Akaike ('77) derived a criterion based on a mixture 

bayesian arguments. His suggestion may be interpreted 

Amemiya '80). Assume that the prior density function of 9 1 

of classical and 

as follows (see 

is given by, 

C3.57) 

Thus the covariance matrix of the prior is except for a factor equal to 

the covariance matrix of the least-squares estimate of 9. It is assumed 

that all model structures have equal probability. 

Thus because, 

C3.58) 
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we have that, 

(3.59) 

Akailce suggested to estimate 0 1 and ,.1 by maximizing (3.59). Substituting 

these estimates in (3.59) and taking minus two times the logarithm of tt. 

he obtained. 

BIC = 

The model that minimizes this BIC shaold be chosen. 

3.6.2 SCHWARZ CRITERION (SC) 

Schwarz (178) studies the asymptotic behaviour of 

speciaL class of prior distributions. Because of 

his derivation this prior distribution needs not 

large-sample Limit, the leading term of the Bayes 

the maximum likelihood estimator. In order to 

proposed to minimize the following criterion, 

sc = -2ln lH(ely) + #par*ln{n) 

(3.60) 

Bayes estimators under a 

the asymptotic nature of 

be known exactly. In the 

solution turns out to be 

select a model Schwarz 

(3.61> 

Here Ie is the number of free parameters and L(ely) is the likelihood 

function for 9. Just as in the Ale we can get for our problem two different 

criteria dependent on the fact if ot is known or not. 

So, 

qt known 

min SC = mine RSSp/q' + p*ln{n} } (3.62) 

0 1 unknown 

min Sc = mine n*Ln{ Ol(p) } + p*Ln{n} } (3.63 ) 

\Jhen we compare this criterion with the AIC we see that this criterion ;s 

more parsimonious i.e. it deletes more parameters from the full model than 

the AIC does because In{n} is usually greater than 2 (for n > 7). 
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3.7 CROSS-VALIDATION ARGUMENTS 

A very common way to validate the selection of a subset of regressors is to 

collect additional data and to look how well this subset performs. Because 

it is not always possible to colLect additional data, the current data set 

could be split into two groups. One for analysis (subset selection and 

estimation) and one for validation. Based on this principle some criteria 

have been proposed for subset selection. 

3~7.1 ALLAN'S PREDICTIVE SUM OF SQUARES (PRESS) 

Allan (174) proposed a criterion that simulates cross-vaLidation. suppose 

we are working with a model of dimension p. let, 

U,(/i) = U, matrix without the i - th row. 

u 1 ( i ) the i - t h row of U, 
y(J i) output vector without the i - t h output 

y( ; ) = i - t h output 

Here we use all but the i-th output samples to predict the loth response. 

let the predi cted response be denoted as yp( i). Then we can wri te for a 

least squares prediction, 

(3.64) 

Allan proposed to "predict" each output sample using the other n-1 

output samples. The resulting "errors of prediction" are squared end 

summed to form PRESS(p). Here p stands for the dimension of the model. 

n 

PRESS(p) = t [y(i)· yp(i) J' 

i = 1 

(3.65) 

The proposed procedure is now to choose the model that minimizes PRESS. 

At first sight the criterion seems very complicated. Fortunally it is 

possible to rewrite it in a more easier form. It can be proved (see 

appendix D) that PRESS(p) is equivalent with, 

Where, 

PRESS(p) 

the diagonal matrix whose diagonal elements are 

those of (I n -U 1U1) 

(3.66) 
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3.7.2. STOICA'S CI(m) and C2(m) 

In the previous PRESS criterion the 

one sample. Stoice et at. ('85) 

Yalidatign criteria. For the sake 

notations used in that article. 

validation set consisted each time of 

discussed some more generaL cross-

of convenience will a~apt Some 

let the interval I={ 1..n) be divided in k-' intervals of Length m and 1 

interval which is smaller than 2m, where It is the largest integer not 

greater than n/m. Then the intervals Iv can be defined as follows, 

Iv { (v-l)m+l, .• ,vrn ) v = l, .. ,t-, (3.67) 

lit = ( (k-l)m+l, •• ,n ) v = It (3.68) 

Furthermore let the residuals as a function of the model parameters' be 

denoted as e(t,') where t stands for the t-th residuaL. let, 

e = arg min vet' 
I 

vet) = l/n E eZ(t , ') 

tEl 

(3.69) 

Stoice et al. assumed the followin! conditions to hold, 

A1. e(t,') is sufficiently smooth (so its derivatives with 

respect to t exist and are finite) 

is positive definite 

1=9 

A3. The residuals e(t,') and 

et(t,') = 6 e(t,') / 6. 

et.(t,') = GJ e(t,') I Gt ' 

are stationary and ergodic processes for any t. Moreover the 

sample moments are assumed to converge to the theoretical moments 

(as n tends to infinity) at a rate of order O(1/Jn). 

FIRST CROSS·VALIDATION CRITERION 

For cross-validatory assessment of the model structure, the following 

function is used, 

k 

C I = I I e ' (t,8v ) (3.70) 

v=1 t€t v 
with, 

9 v = .rg min I e'(t,t) v=1. . k <3.71) 

I tEl· I v 

Thus each time m residuals are used to validate the estimate from the 

other n-m residuals. Stoica et al. proved that when the assumptions A1-A3 
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hold, for k large enough the following relation (for the SISO case) holds, 

where, 

wi th, 

k 

C,(m) = Vee) + 4/n l E WV(i)IVtt(~)-lWV(9) 
v=1 

eet,S)e.(t,S) v=1 •• Ie 

(3.72) 

(3.73) 

(3.74) 

Therefore their first model structure selection rule was stated as 

follows, 

choose the .odel structure that leads to the smallest value of C1(.)' 

SECOND CROSS-VALIDATION CRITERION 

For the second cross-validatory assessment the following function is used, 

k 

C I I = ~ ~ e1(t,e
v

) (3.75 ) 

v=1 tEl-Iv 

where, 

ev a r9 min ~ e2(t,t) v= 1 •. Ie (3.76) 

• tElv 

Thus in this function only m residuals are used to estimate e and all nom 

other residuals are used to validate this estimate. Stoice et ale proved 

that when Al-A3 are valid, for m and Ie large enough the following relation 

(for the SISO case) holds, 

where, 

C2 (m) 

wi th, 

k 

V(e) + 2k/n' ~ WV(9)'v .. (e)-'wv(S) 

v=l 

v=1. • k 

The second cross-validation criterion is stated as follows, 

(3.77) 

(3.78 ) 

(3.79) 

Choose the .odel structure which leads to the smallest value of 

cZ<·)-
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The advantage of C,(m) and C2(m) is that they are much easier to compute 

than CI and ell' since in the last two criteria for each subset the 'new' 

e~timate hBS to be computed. In C,(m) and C2(m) we use only one estimtate 

(8). 

In the following will give the derivation of the two criteria when 

projected on the linear regression model. 

STOICA'S Cl(m) IN THE LINEAR REGRESSION MODEL 

In the linear regression model ( y=U,8,+e ) we have, 

.(t,') = y(t)·u'(t)' (3.80) 

Here u1(t) is the t-th row of U, and yet) is the t-th element of y. So we 

have, 

et(t,f) = -U1(t)' (3.81 ) 

(3.82) 

and, 

VItI (y·u,t)'(y·u,t) In (3.83) 

v •• (3.84) 

From these expressions we see that the assumptions A1-A2 are val id. The 

assumption A3 does not have to hold, since, for example, the statistical 

properties of etCt,') depend entirely on the actuaL input. Therefore, when 

glvlng the derivation of the cross-validation criteria for the linear 

regression model and to establish the same asymptotic behaviour for those 

criteria as given in (3.72) and (3.77), the assumptions made in A-3 will be 

given in terms of assumptions concerning the actual input. 

Because of (3.71>,(3.81),(3.82> and the Taylor series expansion it can 

written that, 

Q = 6161 1/n 

= V,(9) + 

2/n E e(t,8v>e.(t,8v > 

t£ I v 

V .. (8)(9v·8) + 

- 2/n ~ e(t,8)e.(t,e) 2/n ~ e.(t,e)e.(t,8)'(ev-e> 

tEIV tEIV 

2/n • 
U, U1 (Ov- e ) + 2/n Uv • 2/n Uv 

, 
Uv (9 v -9) ev . 

2/n 
, 

2/n • Us Us (9 v ·e) + Uv ev (3.85) 
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where Uv is 8 matrix whose rows ere the vectors u1(t) for tE1V and ev is 

the corresponding vector of residuels. Us is the matrix Ul without the rows 

u1(t) for tElv' Because of relation (3.85) we can write, 

( = 0(1/k.m) } (3.86 ) 

This relation is exact. ( For the order determination, Stoice et al. made 

use of the following, 

11m E e(t,e)e.(t,9) = E{ e(t,e)e.(t,e) } + O(I/.m) 

tE1v 

1/n E e(t,e)e.(t,9) + O(I/.n) + O(I/.m) = O(I/.m) 

t ,I 

because of assumption A-3. In our linear regression model we have, 

and 

11m E -e(t,9)e.Ct,9) = -11m Uv'ev 

tElv 

1/n I -eCt,9)e.Ct,9) 

tEl 

o 

Although the last expression is equal to zero this does not have to mean 

that -1/mUv'ev is of order O(1/.Jm). However, if we assume that ev is a 

vector with white noise (and thus assume that the process is in the model 

set, which is usually the case when n tends to infinity), averaging the 

vector ev by -1/mUv l ev makes it to decrease with order O(1/Jm). Thus when n 

tends to infinity it is likely that the assumption that -1/mUv l ev is of 

order O(1/Jm) is true.) 

In (3.86) the inverse of UslUs has to be computed for each subset. To 

decrease the computational task Stoica et at. used, in terms of our linear 

regression model, the following approximation, 

Approximation-1 : 

(3.87) 

Translating the assumptions (A-3) made in this approximation in terms of 

conditions on the actual input, it is assumed that, 

(3.88) 

Let us now evaluate CI . It can be written that, 
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. . 
e l (t,9V) = E (eet,e)· u1(t)(9 y-9) }r 

k 

'/ n CI "'/ n E 

tElv 

v=l tElv 

k 

lIn E 

e l (t,9
V

> = 

< eet,e) 

This reLation is exact. However, 

validation criterion Stoica et aL. 

in the derivation 

approximated (3.90) 

Approximation-2 

of the 

wi th, 

k 

lIn E E ( .'(t,e) ·2.(t,e)ul(t)(ev ·e) } 

v=l tElv 

(3.89) 

(3.90) 

first cross 

(3.91) 

Since (av·e) is of order O(1/kJrn) (see 21). When the approximations 1 and 

2 are combined, we obtain the criterion, 

k 

lIn C I " lIn E E (e'(t,9)-Ze(t,9)ul(t)* 

+ O(l/k. z m) 

I _, I 

1/n E (ev'ev +2ev I Uv(U,U,) Uv ev} + Oel/k ' m) 

v=l 

k 

= Vee) + 4/n' E WV(S)'Vtt C9)'l WV (9) + De1/k'm) 

v=l 

0.92) 

Thus in the linear regression model the first cross validation criterion is 

stated 8S folLows, 

Choose the model structure that minimizes, 

C,(m) 

k 

l/n E { ev'ev + 2ev l Uv(U;U,)"uv'ev } 

v=l 
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The first approximation gives clearly a computational improvement compared 

to the reaL cross vaLidation criterion, but the second approximation does 

not seem to give any computationaL improvement. Therefore we can consider 

to delete this approximation. This results in the following relation, 

k 

l/n E lev + UV(U;U,)'uv'ev 12 + Oel/k'm) 

v=1 

(3.93) 

The difference between the real cross validation criterion and the 

approximated one remains of the order O(1/k'm), so in order to approximate 

l/n C
I 

it does not make any difference if we use approximation 2 or not ( 

Although minimizing the first right term of (3.93) and c, can lead to 

different model structures). 

Stoica et at. showed that under certain conditions the first cross 

validation criterion is asymptotically equal to AIC. For the linear 

regression model, this can be seen as follows, 

k 

1/n 1: 

v=1 

k 
I ~ 1 I 

V(S) + 2/n*tr{ eU,U,) * I Uv evev'Uv } 

v=1 

(3. 94) 

I f we assume that, 

white noise samples 

when n tends to infinity, 

(with approximated variance 

ev becomes a vector wi th 

Vee», the last expression 

can approximated with, 

k 

vee) + 2tr{ (U~U1)-1* l/n* 
, 

E Uv V(S) ImUv 

v=1 

vee) + 2/n vee) t r{ 
, . , 

(U,U, ) 
, 

(U, U,) } = 

vee) + 2p/n vee) V(9) [1 + 2p/n 1 (3.95) 

So for large n we have, 

In{ V(e)['+2p/nJ } In{ Vee) } + In{ 1+2p/n } 

:::::: In{ vee) } + 2p/n ::: AICln (3.96 ) 

(see 3.45) 

When n tends to infinity the model is usually overestimated and thus the 

condition that ev is a white noise vector is fulfilled. 
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STOICA'S C2em) IN THE LINEAR REGRESSION MODEL 

For the second cross-validation criterion with (3.76) ,(3.81) and (3.82) 

the following holds, 

So, 

Q E e(t,e,,)e.Ct,ev > 

= 

tElv 

E e(t,e)e.Ct,9) + 21m E e.(t,9)e.(t,9)'(8,,'9) 

tEl" tEl" 

, 
-Us es + 

(9'1'9) = (US'US)-1 Us'es (= O(1/Jm) } 

<3.97 ) 

(3.98) 

where Us is the matrix whose rowA are the vectors u1et) for tEly and es is 

the vector of the corresponding residuals. In (3.96) it is assumed that 

Us'es = O(Jm) (see (3.86». 

To decrease the computationaL tllsk. stoica et al. used, in terms of our 

linear regression model, the followin! approximation of (3.98), 

Approximation-1 : 

<3.99) 

Translating the assumptions (A-3) made in this approximation in terms of 

conditions on the actual input, it is assumed that, 

(US'US)·1 
, ·1 I 

n/m «U,U 1 ) + O(l/(m~m) 

let us now evaluate CII , 

. . 
= e'(t,8) . 2 eCt,8)ul(t)C8v ·9) + 

So, 

k 

1/«k-1>n) ell 1/«k-1)n) E E .'(t,ev ) = 

k 

1/«k-1)n) E E (o(t,e) 

v=l tfl-Iv 

(3.100) 

(3.101> 



35 

k 

l/«k-1)n):E :E e!(t,9) + 

v=l tEl-Iv 

k - -
1/«k-l)n):E E -2e(t.8)ul(t)(9

V
-8) + 

v=l tEl-Iv 

k 

l/«k-l)n) E E (SV'S)'ul(t)'Ul(t)'9V-e) 

v=l tEl-Iv 

Vee) + T2 + T3 (3.102) 

First let us consider term T3. 

k 

T3 = l/«k-l)n) E E (8v -8)' u l(t)'ul(t)(8 v ·e) 

v=l tEl-Iv 

k 

= l/«k-l)n) E (Bv-S) UV'UV(9 v ·9) 

v=l 

(3.103) 

Here Uv denotes the matrix u, without the rows u1(t) for tElv. Stoica et 

al. used the following approximation of T3, 

Approximation-2 

T3 

k 

1/((k-1)n) E 

v=l 

+ O(l/n) 

~here it is assumed that, 

Let us now consider term 12, 

k 

T2 = -2/(Ck-l)n) E t e(t,9)ul(t)(8v -9) 

v=l tEl-Iv 

(3.104) 

(3.105) 

= 
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k 

-2/((k-l)n) ~ ~ e(t,9)ul(t)(8.-9) 

v=' tEl 

k 

+ 2/((k-l)n) ~ ~ e(t,9)ul(t)(9.-9) 

v=1 t(I
V 

k 

2/«(k-1)n) ~ 

Stoiee et al. used the folLowing approximation, 

Approximation-2 

T2 = 0(1/n) 

= 

(3.106) 

(3.107) 

Because (9y ·e) is of order Del/1m). Since (Bv·e) is of order Oelllm), 13 is 

of order O(1/m) and thus much larger than 12 when" tends to infinity. 

When we use the approximation-' of (av·e), T3 becomes, 

T3 

k 

1/«k-1)n) ~ {n/m (U~U1)-lus'es + OC1/ m)}'U, 

v=1 

(n/m ' - 1 (U 1Ul ) Us 
, 
es + O( 11m)} 

+ 0(1/n) 

k 

1/(Ck-l)n) ~ n Z Im z es'Us ' - 1 
, 

(U 1Ul) Us es 

v=l 

+ 0(1/mJm) + 0(1/n) 

k 

kIn ~ es'Us (U'U)-1 Us'es + O(1/min(n,mJm» 

v=1 

k 

2k/nr t WV1V •• -'*wv + O(1/rnin(n,mJm» 

v=1 

, 
Ul • 

(3.108) 

Because of this last approximation and wHh ilpproximation-2 it can be 

written that, 

wHh, 

1/«(k-l)n) err C2 + O(1/min(n,mJm) 

k 

Cz = vee) + k/n r t WV1Vtt-'wv 

v=1 

(3.109) 
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Thus the second cross-validation criterion for the Linear regression model 

can be stated as, 

Choose the model structure that minimizes, 

k 

C
2 

= 1/n E es'es + k es'Us (U'U)-1 Us'es 

v=1 

We see that this criterion is essentialLy the same as C," The only 

difference is that that second term in C2 has a different weight faetor. 

Therefore and for reasons similar to (3.95-3.96), it can be seen, as Stoics 

et al. proved, that this criterion is 8&ymptot'icaLly equivalent to a 

generalized ~IC. Since for targe nand m, 

C2 = In{ VeS) } + kp/n (3.110) 

SOME REMARKS 

As already mentioned, the assumption A-3 does not have to hold for the 

linear regression model. However, in order to derive the cross-vaLidation 

criteria for the linear regression model and to establish the same 

asymptotical behaviour of those criteria as given in (3.72) and (3.77), we 

projected the assumptions made in A·3 on conditions about the actual input 

(see 22,32 and 37). However, this means that the assumptions are all fairly 

weak. If the order of approximation is somewhat different as those given in 

(3.88), (3.100) and (3.105) it will only IIffect the order of approximation 

given in the two cross-validation criteria and not the general ideas. 

The procedures given above depend on m, and the choice of this parameter 

should be discussed. Although no precise rules on how to choose m can be 

given, Stoica et al. gave some ideas about the value of m. For the first 

cross-validation criterion m should be chosen so as to indicate on how many 

future sampling points we intend to use our model. Suppose we wish to use 

the estimated model at some, say f, future time instants. Then we may 

choose m such that, 

0.111> 

However, since m/(n-m) must be small for C1(m) to be a good approximation 

of CI, C1(m) can be used to select a good 'short term' model. 

For the second cross validation criterion Stoica et al. remarked that a 

good choice for k may be k=ln(n), since for this value C2em) becomes 

asymptotically equivalent to the well known Schwarz criterion (SC) and 

therefore it will choose, as we will see, asymptotically the right model 

structure. 
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3~8 STEIN RULE ARGUMENTS 

So far discussed only the least squares method for obtaininl an 

estimator for S. Jt was said that when the process is in the model set, 

this estimator h a minimum variance unbiased estimator. Thus if we are 

willing to improve our estimator we have to restrict ourselves to the 

class of unbiased estimators. 

Suppose we observe n independently normally distributed variables, r,_. rn 

with unk.nown means "'1""n and known variance ql, It is common to estimate 

"l""n by r".r o ' However, Stein (156) t'roved that this estimator is 

admissable for n<3 and inadmissable for n~3 under the loss function, 

MSECIl,") = E{ (1'-,,)1(1'-") } 

{ An estimator & of " 

estimator S* for which 

inequality for some ",. 

inadmissable. } 

is said to be inadmissable if 
• MSE(~,6) ~ MSE(~.6) for all 

An estimator is admissable 

(3.112) 

there exists &In 

~ with strict 

if it is not 

James and Stein (161) exhibited an estimator that is uniformly better than 

the least squares one. For a review on this topic see Draper and Van 

Nostrand (179) or Judge and Bock ('78). 

Suppose that we have, 

r=JL+e (3.113) 

As an estimator of JL we take r ( so ~=r ). Then we have, 

(3.114) 

Here we see that when n*O!/Il'1J. is large we would be over-estimating JL by ill 

very large amount. Thus in order to improve our estimator it suggests that 

the least squares estimator could be improved by shrinking it (= 

multiplying it by a scalar). This shrinking factor (Sf) should be smatl 

when n*a'/~'~ is large and should be nearly 1 when n*(J211J.'~ is small. Of 

course, ~ is unknown. When taking its estimate the previous discussion 

suggest that we should consider estimates of the followng form, 

- . 
JL = [1 - ca'/"'JL]* I' = [1 - cO"/rlr]* r (3.115) 

where c is some constant. James and Stein proved that when 0'2 is known the 

estimator 1', 

o < c < 2(n-2) c-optimal = (n-2) 

is uniformly better, 

of I' I than the least 

(n-2). \lhen ql is 

in the sense that MSE(JL,IJ.) < MSE(~,~) 

squares estimator 

not known they 

for n~3. 

proved 

The optimal 

that with 

(3.116) 

for all values 

value for c is 

an independent 

estimator of 0
' 

(0 1 ), where ql·V must be distributed as 0
' 

times a ChfZ 

distribution with v degrees of freedom (thus be unbiased), the estimator 
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(3.117) 

o < c < 2(n-2) c-optimal = (n-2) 

is also 

quadratic 

uniformly better than the least 

loss function (3.112) for n~3. 

squares estimator under the 

In 3.117 we used the origin as the place to shrink to. This is not 

necessary. Although the notation conceals it, we may choose any other 

point to shrink to. The estimator of the mean given by the James-Stein 

estimator in the following general form, 

with, 

It = [1 - {c/(v+2)}v*u'/CIl-O)'CIl-o)}]* (IL-O) + 0 

= St(o)* (IL-o) + 0 (3.118) 

c = (n-2) 

v = degrees of freedom in ql 

o = new origin to shrink to 

is also uniformly better than the least squares estimator. Thus a 

researcher can choose a value 0 that he thinks that IL should be near. He 

then compute~ Il with (3.118). If he is correct, his estimator will be 

better than IL. but even when he is wrong , hi~ e~timator wi II be better 

than Il. 

How can we use these properties in model selection? We first have to make 

an assumption. let us assume that the U matrix is column orthogonal with, 

here l 

be the 

that 9 

U'U = 'd /1 (3.119) 

is some number (which only depends on n). This would approximately 

case when U is filled with white noise and n » d. Then we can see 

is independently normally 

distributed. Thus, 

<3.120) 

Let now take e the place of IL in the previous derivations. This means that 

according to (3.116) the estimator. 

e [ 1 . {c/(v+2»v*o2/8'81* e (3.121) 

e = st" e 
with, 

0 < c < 2(d·2) c·optimal (d·2) 

.' = l'*RSSd/v ( = l'*o'(d) } v=(n-d) 

(which is independent from S ) is a uniformly better estimator than 9 for 

d~3, according to the loss function HSE(S). I will call this estimator the 

James-Stein estimator of 8. An important point is that the James-Stein 

estimator itself is also not admissable. In relation (3.74) we can see that 

Sf <1. If Sf > 0 then e will be shrunken towards zero. However when Sf < 0 

then 8 will be shrunken past zero. Sclove (168) mentioned that the 
estimator 
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e = max(D,Sf)* e (3.122) 

with 

(3.123) 

o < c < 2(d-Z) v=n-d 

is uniformly better the James-Stein estimator (with the same value of c). 

will call this estimator the positive James-Stein estimator. In this 

positive James-Stein estimator there exists no optimal value for c, but if 

c lies between 0 and 2(d-2) it elves better results than the least squares 

estimator. 

The property (3.122) is an interesti". property for hypothesis testing. 

Suppose the parameter set is divided, without reference to the data, into 

two subsets. One subset which is assumed to be important and another subset 

which is assumed to be unimportant. !ecause all the parameters are 

independent we can shrink. the subset, which is supposed to be unimportant 

tewards zero. Then, 

where 

9 
(e)1J wi th 9 = 

(9)2 

SfZ=[1-{c/(v+Z)}v*o'/ce)Z"C8)Z] 

(9)1 is a p-vector 

(9)Z IS a (d-p)-vector 

o < c < Z(d-p-Z) v=n-d 

G~)~ 
~e)~ 

(3.124) 

is uniformly better estimator than e under MSE(8), if (d-p) ~ 3. This 

last relation suggests that we c.n set the last Cd-p) parameters to zero if 

Sf2 < O. 

In this case CU'U=l
d 

Il) a normal F-test would conclude that the last 

(d-p) parameters could be set to lero if (see (3.17», 

(3.125) 

If we look at relation (3.124) we see that in the James-Stein case we set 

the last (d-p) parameters to zero if, 

(8)Z' (8)Z /{(d-p)6 ' Cd)} < c*l*v/{(v+Z)(d-p)} 

can 

main 

be seen as 

di fference 

a 

is 

F-test 

that 

(3.126) 

with a 

when the 

Thus the positive James-Stein rule 

particular value of cz. However, the 

hypothesis is rejected, the subset will be shrunken towards zero instead of 

maintaining their original values. This will assure us that, unlike in the 

F-test case, we will get a uniformly better estimate I will return on this 

point later. 
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The previous derived resuLts for the parameter 

Id Il. What can we do when U this relation does 

, 
space onLy hold when U U 

not hold? 

Let us consider the general model y=ue+e=x+e. Rewrite U as, 

U=VEY' (singular value decomposition) (3.127) 

Here V and Ware coLumn unitary and orthonormal, and E is a n*d diagonaL 

matrix with diag(E)=(u""'O'd>' and a, ~ .. ~ ad > O. (since we assumed that 

U had full rank). Therefore we can write, 

(3.128) 

, 
= WT"" = WODW 

, 
0.129) 

Where E* is a d*n diagonal matrix with di89(E*>=(1/0'1 ••• ,1/0'd). 0 is a d*d 

diagonal matrix with the same elements as E. From this last expression we 

can see that the columns of Ware the eigenvectors of UIU and the diagonaL 

values of T are the corresponding eigenvalues. let us define, 

(3.130) 

0.131) 

Then we can rewrite the general model as, 

y = Z/3 + e (3.132) 

This model will be called the orthonormal canonical form of the general 

model. In this canonical form the least squares estimator of /3 is given by, 

, 
= wow e (3.133) 

, 
because of (3.27-3.29). Since Z Z = Id we see from this expression that, 

Thus in 

norma II y 

the /3 space the 

distributed. This 

least 

means 

(3.134) 

squares estimate of /3 is independently 

that we can apply the resuLts from 3.122 

directLy on them. So, 

P = max(O,Sf) P 0.135) 

with 

Sf [1-{c/(v+2)}v*o2/x'x] 

(since /3'/3 x'x) 

v=(n-d) o2=RSSd/v a < c < 2(d-2) 

is a uniformLy better estimator than P according to the loss function, 

E{ (p'P)' (p·P) } = E{ (x·X)'(x·X) } (3.136) 

for d ~ 3. This means that the shrunken estimator in the original 

parameter space. 
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9 = WD-1W'~ = max(O,Sf)* e (3.137) 

gives uniformly better results than 8 according to the performance 

function MSE(x). Since the estimator in the p space was independently 

normally distributed, we can test if some subset of p parameters can be 

set to zero according to the previous given method. However, although it 

can lead to a reduction in the fJ space, it does not lead to 

the e space because of the transformation (3.131). Thus 

reduction cannot be achieved. 

a reduction in 

a real model 

The estimator in (3.137) is better than e under the loss function MSE(x). 

But how does it perform under MSEeS)? This problem wi L 1 be discussed in 

chapter 5. 
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4. EVALUATION OF SELECTION CRITERIA 

4.' ASYMPTOTIC PROPERTIES 

In this section will derive the asymptotic properties of a general 

criterion that is based on RSSp. When taking this derivation as an example, 

it is possible to say something about the asymptotic properties of 

particular criteria. I do not claim that thia derivation is a good one, but 

I think it gives some insight into what happens when n tends to infinity. 

Let the criterion be given by, 

, . 
C = (x-x) (x-x) + S = RSSp + S (4.1) 

Here 5 is a monotonically increasing function of p, that is built-in to 

penalize large models. For example in the Cp case S is 2pQz. Suppose we 

have two models A and B, 

mode l A dim U = n*d 

(4.2) 

model B: y=U,8, + e dim U, = n*p 

We take that model as our final model that minimizes c. Our goal is to 

investigate what happens in our selection as n tends to infinity. This 

will we done in two cases. In one case I assume that model A is true and in 

the other case I assume that model a is true. First let us suppose that 

model A is true. let, 

+ 
RSSp·RSSd I AA YI' 

See (3.14). Rewrite A as, 

A VEW' ( singular value decomposition 

Here V and Ware column uni tary and orthonormal, 

diagonal matrix with diag(E)=(c11, .. ,c1(d-p», where 

follows that, 

+ • 
A = IoII V' 

+ 
AI'. = VTV' 

and z: is an 

C11~ •. ~C1(d-p). 

(4.3) 

(4.4) 

n*(d-p) 

Then it 

(4.5) 

(4.6) 

Here E* is a (d-p)*n diagonal matrix with dieg(E*) = (1/c11, .. ,l/c1(d-p) and 

T is an n*n diagonal matrix whose first (d-1) diagonal elements are 1 and 

the rest O. Let us rewrite T as 

T DO' with 0 =[ I(d-p) 0 ]' = n*(d-p) matrix (4.7) 

Then with the following definitions, 

r=O'V'e r=(d-p)-vector noise vector) (4.8) 

b=O'I W'9 2 (b=(d-p)-vector = 'bias' vector) (4.9) 

where 

(4.10) 
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because r is a linear combination of normally distributed variables and E( 

r )=0 and CoY{ r }= l(d~p)1 we can rewrite (4.3) as, 

= Ibl' + 2r'b + Irl' (4.11) 

Here, 

Irl' /.' (4.12) 

2r 1 b I J(4q'b ' b) , N(O,ll (4.13) 

Let us now investigate the asymptotic behaviour of the selection criterion. 

first we have to make an assumption. In the following it is assumed that, 

(4.14) 

increases proportionally with n. We say that this factor is of order n ( = 
O(n) }. This means that future in,ut samples must contain enough 

information and that the input 

investigate what happens with 

power dGes not change in time. Let us now 

the selection of a model when n tends to 

infinity. let Ca and cb denote the value of the criterion With model A and 

B. Then we can write, 

+ 
Cb·Ca = IAA yJ' + Sb·S. 

Here Sb-Sa < O. When cb-Ca is positive we choose model A. Thus when, 

Cb-Ca > 0 <==> 

bib + Zr'b + r'r + Sb-S. > 0 <==> 

bib IF + Zb'r IF + r'r IF + (Sb-Sa) IF > 0 

with F = (4a'b'b) (= O(n) ) we see that, 

b'b IF = 1/4a
' 

> 0 

plim Zb'r IF = plim N(O,l) I JF = 0 

plim r'r IF 

n_ 

and finally, 

plim ChP (d-p)*a l I F 

~ 

plim Cb-Ca > 0 if and only if 

.-

plim (Sb-Sa) IF> -1/4a l 

~ 

o 

(4.15) 

(4.16) 

(4.17> 

(4.18) 

(4.19) 

(4.20) 
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Thus we see that when model A is true and n tends to infinity the right 

model ;s chosen if the order of Sb-Sa is smaller than O(n). 

Let us now assume that model B is true. Because 9 2=0 we have, 

Cb-Ca = rlr + Sb-Sa 

When this factor is negative, model 8 is chosen. Thus, 

plim Cb-Ca < a if and only if 

~m 

plim rlr + Sb-Sa < 0 

".... 

(4.21) 

(4.22) 

Here we see that when 

relation (4.22) is true, 

Sa-Sb is an increasing 

we asymptotically choose 

function of n such 

the right model. 

that 

Let us take an example. Suppose, 

c= RSSp + 2pO'~ (4.23) 

This is the Cp or Ale when 0 1 is known. First assume model A is true. Then 

we see that conditon (4.20) is satisfied because, 

lim 2(p-d)qZ I F = 0 

However when modeL B is true the condition (4.22) 

because 2(d-p)o:i is not an increasing function of n. 

infinity there always exists a risk, 

(4.24) 

cannot be sat i sf i ed 

Although n tends to 

P( rlr > 2q2(d-p) ) = P( Chi 2 (d-p) > 2(d-p) ) (4.25) 

that the wrong model is chosen. 

Although we obtained this result for the case in which we had to made a 

choice between two model structures, we can say that in the general case in 

which we have d possible model structures the Cp criterion is not 

consistent as an estimator of the true model. There is always a risk. that 

we overestimate the true model dimension. 

Let us now investigate the SC criterion and assume q' is known. Then, 

Cb-Ca=b'b + 2b 1 r + rlr +q1ln(n)(p-d) (4.26) 

Here we see that the last term has order O(ln(n». Thus suppose model A is 

the right one. Then with, 

lim 

~ 

In(n)/n 

we see (4.20) that, 

o (4.27) 

(4.28 ) 
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Thus the right model ;s chosen. When model B is true we see that, 

plim Cb·Ca = plim rlr + a1ln(n)(p-d) < 0 (4.29) 

.".-

So also in this case the SC chooses the asymptotically the right madel. By 

similar reasons it can be shown that Akaike's SIC 1150 chooses 

asymptotically the right model. 

In literature, some authors have studied the asymptotic 

several criteria. NishH (184) showed that AIC, Cp, FPE and 

asymptotically equivalent. Furthermore he proved that the 

consistent estimator of the true model structure. Shibata (181) 

behaviour of 

PRESS are all 

sc gives a 

proved that 

when the number of parameters is infinite or increases with the sample size 

his criterion, 

Sn(p) = (n+2p}RSSp/n = {n+2p} al(p) (4.30) 

is an asymptotically optimal criterion, in the sense that it attains a 

lower bound for MSE(x). He showed th.t the Cp, AIC and the FP'E are all 

asymptotically equivalent to this criterion. Furthermore he showed that in 

this case the sc is not asymptotically optimal in his sense. 

4_2 F-TEST INTERPRETATION 

In chapter 3 I discussed some criteria that have 

selection. Although some of them are known 

equivalent, their small sample properties are all 

been proposed for model 

to be asymptotically 

different. Since most of 

these criteria are 

it is interesting 

statistic. 

simple functions 

and informative 

of the residu.ls sum of squares (RSS) 

to interpret them through the F·test 

First, let us consider two models A and B with, 

From 

process y=u,e, + U2e 2 + • 

model .: y=U,t, + U2t 2 + w (4.31> 

model B: y=U,., + w 

chapter 2 (2.58-2.6' ) we k.now that, 

a: Under the mean square error function in the 'parameter pace' the 

model B gives better results when, 

b: Under the mean square error function in the 'measurement space' 

the model B gives better results when, 

(4.33) 
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c; Under the risk matrix the model B gives better results when, 

(4.34) 

Let us look at condition (4.32). Define, 

(4.35> 

H is positive definite (since U has full rank) and therefore we can 

rewrite it as, 

, , 
H = \.lEE U DO with D = WE (4.36) 

Where W is orthonormal and 1:: is a positive definite diagonaL matrix. So 0 

has full rank. Then we can write. 

with, 

Because G is symmetric it holds that, 

max 

x"D 

(4.37) 

(4.38) 

(4.39) 

Where tmax is the largest eigenvalue of G. Therefore, 

(4.40) 

This means that for all possible 9 2 the condition (4.32) will be true if, 

When in the conditions (4~33). (4.34) and (4.41) 

with their estimators (82 and RSSd/(n-d) ), 

(4.41) 

9 2 and ql are replaced 

we can see that these 

conditions the can be stated in terms of the F-test statistics associated 

with testing 8 2 =0. So with, 

F = (n-d)*{RSSp-RSSd) I {(d-p)*RSSd) 

(4.33) (4.34) and (4.41) become respectively, 
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F < 1 (4.42) 

F < 1/(d-p) (4.43) 

and 

F < ql ( t r( 
, - 1 

(U 1U1 ) }-tr( (U' u,. 1 ) ) I tmax (4.44) 

Let us now Look. at some of the criteria of the previous section. Then we 

see that model B is selected when the following conditions hold, 

F-test : F < Fa (d-p,n-p) (4.45) 

Mallows' Cp (with a'ed) < 2 (4.46) 

Amemiya's PC (=FPE) : F < 2n/(n+p) (4.47) 

Akaike's Ale (0'. unknown) 

F < [exp( 2(d-p)/n ) - l]*[(n-d)/(d-p)] (4.48) 

Schwarz I SC 

0" known : 

F < In(n) (4.49) 

ti' unknown 

F < [exp{ In(n)(d-p)/n ) - l]*[(n-d)/(d-p)] (4.50) 

For BIC and PRESS no such expressions can be derived. Since most of the 

discussed criteria can be seen as an F-test with a particular valUe of a it 

is interessing to study the sampling properties of such a f-test. This will 

be done in the special case that U'U=I ( which would approximately be the 

case when U is filled with white noise ). 

Suppose we have a general F-test where model B is chosen when f is smaller 

than a certai n number c and where model A is chosen when F ; s greater then 

c. The objective is now to investigate the mean squared error of estimating 

9 of the F-test as a function of the length of 92 . Since this MSE(9) can be 

written as, 

MSE(9) 

(4.51) 

When c=O, so model A is always chosen, then MSE(9
2

)=(d-p)ql and 

MSE(9) = d*qz. From Sclove ('72) and Judge and lock (178) we k.now that for 

c<>O, 

MSE(92 ) > (d-p)*qZ ; f 1921 ' > (d-p)*ql (4.52) 

MSE(92) < (d-p)*ql ; f 19 2 1' < (d-p)*qr/2 (4.53) 

MSE(9 2 ) (d-p)ql*l if 19 21' =0 (4.54) 

where L=P( Chi l (d-p+2)/Chi Z (n-d) > c*(d-p)f(n-d) ) 
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increases and approaches 

the least square estimator. 

infinity. the MSE(9Z) 

Knowing these properties 8 plot of MSE'AZ ) versus the length of 8, will 

yield the following characteristic (see Judge and Bock ('78». 

t 

(d-p)a
' 

"".--- ..... 
'" ......... , 

j( .'. , .. , ..... , ~--....... , ......................................... . 
, 

, , , 

(d-p)/2 (d-p) 19 z1'1.' ~ 

Figure 1: MSE(92 ) versus 1921'/0'1 for the Fotest. 

From figure 1 

l east squares 

we can conclude that the F-test performs better th_" the 

est imator (c=O) if the faut t made In the hypothes" II 

small, but over a large range in the 92 parameter spice it is inferfor to 

the least squares estimator. 

In section 3.8 discussed the positive James-Stein estimator enG said 

that under certain conditions it can be used in hypothesis testing. It was 

said that in those cases the estimator is uniformly better than the least 

squares estimator. 

Sclove (172) combined the normal F-test with the positive James-Stein rule 

and constructed a modified F-test of the following form, 

choose model B when (4_55) 

choose model A when F > c and estimate 8
2 

by 

where 0 < a :s 2 

He proved that this estimator is uniformly better, in MSE(9) sense, than 

the normal F-test with decision level c (in this case where U'U=l
n
). 

If we combine the results from the F-test, positive James-Stein estillator 

and the modified F-test in one plot we get the following characteristics 

(see Judge and Bock '78). 
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.... -- ... ..". ..... ,& 

~'" .."..- .... ' ,. ,.- .. " 
, # '0 ............ ..... 

, "e ..... ..... 
......... .;:~.. .....,:a 

t 
"S£(92 ) 

'" 

(d-p)f2 (d-p) 

Figure 2: MSE(9 2) versus 182I'/0'i 8=F~test. b=politive 

James-Stein estimator. c=modified F-test. 

Conclusion; 

In this section we saw that most edterta can be written in terms of f

test statistics with a particular value of o. \Ie studied the sample 

performance of such a F-test in the case that we had to select the best 

out of two models and that the general design matrix U was orthonormal. A 

plot of the risk. involved with such 8 F-test yields a range of the 

parameter space where the risk. is smaller than the risk of the least 

squares estimator of the full model and a range where it is greater. 

But even when U is not orthonormal there is a range in the parameter space 

where the risk. (MSE(e» is smaller than the risk. of the least squares 

estimator of the full model and a range where the risk. is greater. (See 

Judge and Bock. 178). 

An exception to this general rule is the positive James-Stein estimator. 

Here the risk. will, under certain conditions, be uniformty better than that 

of the LSE. 
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4.3 THE PARAMETER SPACE 

As aLready mentioned, most of the discussed model selection procedures are 

simple functions of the residuals sum of squares and can be seen as 

criteria that are designed for improving the prediction and thus MSE(x). 

However, when parameter estimation is the object, for example for 

controlling purposes, we have to improve the estimators by looking at 

MSE(S). When U is orthonormal minimizing of MSE(x) is equal to minimizing 

MSE(9). But when U is not orthogonal they are not the same. Noticing this 

difference between MSE(x) and MSE(9) it is possible to derive another class 

of ad hoc procedures for model selection. 

4.3.1 THE MODIFIED Cp 

As we saw, Mallows derived his Cp by giving an estimate of the MSE(x). 

Following his derivation it is possible to derive an 

unbiased estimate of MSEeS). We can write MSE(S) as (see 2.52). 

Since S2 is unkown we replace it with its unbiased estimate. let 82 denote 

the estimate of 82 from the full modet. First, let us look at the estimate 

of e in the full model. 

e [::J [ :: J ' (4.57) 

Here 

"+ . + 
is p*n matrix T, = , "'"ZT Z • 

TZ = A+ is • (d-p)*n matrix 
+ 

A = (In-U,U,)U Z is • n*(d-p) matrix 

(see appendix A) 

So if we estimate 9 2 by 8 2 from the full modeL we see that, 

(4.58) 

(4.59) 

With these relations and with the estimate RSSd/(n-d) = a'(d) of 0 1 we get 

that, 

(4.60) 

is an unbiased estimate of MSE(S). When we add the following constant term 
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(constant in the sense that it does not depend on the dimension of the 

model p), 

2*0'1(d)*tr( (U'U)1 ) (4.61) 

to (4.60) we get an easier to handle unbiased estimate (Np='New' Cp 

criterion) of MSE(9), 

Np = 1 8 p . 8f I' + a'(d)'( tr{ 2'(U;U 1 )-1 )-tr{ (U'U)-1 ) 

= IU+(I-U 1U1)yl' + o'(d)·( tr{ 2*CU;U,)·' }-tr{ (U'U)-l ) (4.62) 

with 

8
p 

= [8
0
' 1J [Uo;~L - ~ - 8 of model with dimension p 

9 f = u+y = e of full model 

So this Np criterion looks very like the original Cp criterion. When U'U 

Inll minimizing of Np is equal to minimizing Cpo 

Since the Np criterion 

question arises if it is 

is especially 

indeed better 

to designed 

than Cp or 

minimize "SEeS) the 

not. 

performance we should calculate the risk of estimating 

As a measure of 

9 involved with 

these two criteria. However, this can be a very complicated, problem. For 

example, let us assume that we use Np and Cp to select the best out of 2 

possible model structures where, 

process: y=ue + e 

model A: y=Ut + W 

model B: y=w thus all parameters are set to zero 

and assume that qZ is known. Then we choose model B when, 

Np criterion 

Cp criterion 

(4.63) 

(4.64) 

otherwise we choose model A. To obtain 

these criteria we have to compute, 

the risk. involved with each of 

Np criterion 

MSE(Np,e)= E{ max(O,-sign(ln»*lel' } + E{ max(O, sign(ln»*le-efl' } 

(4.65) 
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Cp criterion 

MSE(Cp,9)= E{ max(O,-sign(Lc»*lel' ) + E{ minCO, signCLC»*le-Ofl' ) 

where, 

signCh) 

signCh) 

1 if h>O 

= -1 if h:5:0 

Let us try to calculate MSE(Cp,8) when 8=0. Define, 

U=VEW' (s.v.d.) 

so, 

Then we see that MSE(Cp,O) becomes. 

H I I - I 

E{ elV!: W WIVe} 

, - , 
under the conditon that e'VIW WIVe >2da l 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

- ,-
Define IE = DO', with 0=[ Id 0] I is a n*d matrix, 

d*d positive definite diagonal matrix. Then with, 

and E 1:=OTO' where T is a 

(4.70) 

we get I 

MSE(Cp,O) = E{ n'Tn} for nln > 2da' (4.71) 

Similar for MSE(NP,O) we get 

MSE(Np,O) = E{ n'Tn} for n'Tn > 2a ' tr{ T } (4.72 ) 

From these equations we see that they are equivalent when d=1. For d > 2 

these functions are very difficult to compute. Let us study the case when 

d=2. Although the area of the ellips formed by n'Tn = 20 z tr{ T } is 

greater than that of the circle nln = 2do l • the calculation of MSE(Np,O) is 

performed over an area where the values of F(n):(a*nl z + b*nz Z )*p(n1)*p(n2) 

(here diag(T)=(a b) ) are greater than those of the area in caLculation of 

MSE(Cp,O). To illustate this I have made a 3-dimensional plot of the areas 

that have to be computed for some a and b (see figure 3). Simulations for 

various combinations of a and b confirmed this. All the simulations in this 

report were done with the package PC-Mat lab. Some other simulations for d > 

2 also indicated that MSE(Cp,O) ~ MSE(Np,O). So in this ad hoc derivation 

we saw that MSE(CP,O) ! MSE(Np,O) 
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Cp criterion 

Figure 3: Some 3-dimensional plots of the risk 

computation if 8=0 

Ip criterion 

since these results only hold for a-O we expect that the clIlc:ul.t10n& of 

the risk for 9<>0 will not become any easier. Because an evaluation of the 

risk involved by choosing the best out of d possible model would co.plicate 

the calculation again we are forced to make some comparison between these 

criteria by means of more simulations. 

This has been done. have done two types of simulations. First 

simulated the MSE(e) for the Np and the Cp cri terion .ssullin9 that there 

had to be made a choice between the full model and the model with 

dimension O. This MSE has been simulated as II function of the Length of 8. 

Secondly simulated the MSE(9) for the Np and the Cp criterion assuming 

that there had to be made a choice between 10 possible model structures 

(dimension 0 to 9). This MSE has again been simUlated as a function of 9. 
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SlMUlATIONS-1 : 

First I simulated the MSE as defined in (4.65) and (4.66) as a function of 

the length of e, assuming a fixed orientation for 9. In that simulation I 

took some predefined matrix U, calculated the undisturbed output x and 

disturbed it with a noise vector. From the resulting vector Y, I let the Np 

and the Cp criterion decide what model structure to take. From that chosen 

model structure I calculated the resulting error between the actual 9 and 

the estimated 9. To obtain reasonable results, the resulting MSE has been 

averaged over 200 simulations. This procedure has been done for 100 

different values of the length of 9. 

The preceding procedure has been done for two different orientations of 8. 

In both cases the U matrix was the same. The difference between the two 

cases was that in one case the norm of the undisturbed output vector x was 

greater than that 1n the other case (for equal length of e). 

Values: 

0 

0 , 0 

U='O/3* 0 , 0 

0 

( with tr{ (U
I
U)·1 }=0.1454 ) , a Z =1 

e 

x'x 

RESULTS: 

The resul ts are 

5b for case 2. 

as a function 

criterion. the 

case , 
a* [1 , 

11' 

a l *189 

shown in figure 

In these figures 

of the squared 

Cp criterion and 

(FM) would be chosen. 

case 2 

a/1. 5* [1 

a2*33.4 

4a and 4b for 

I plotted the 

length of e. 
for the case 

0 - 1] I 

case , and in figure Sa and 

simulated mean square error 

This is done for the Np 

that always the full model 

In figure 4a-4b we see that when e'e is small ( <0.08 ) both the Np and cp 

criterion give better results than the FM. The difference between Np and Cp 

is relative small in this region. But we see that for a small value of ele 

the Cp criterion is slightly better than the Np criterion and when ele is 

increased the Np criterion becomes slightly better. However, if the squared 

Length is further increased >0.08) we see that both the Cp as the Np 

criterion give worse results than the FM (compare it with 
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'" 

0.12 

0 .• 
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....., 

Figure 48: 0 < 9'g < 0.16 
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0.' 

0.' u 
....., 

Figure 4b: 0 < ele < 3 

Figure 4: Case 1, NSEea) for Np(-) Cp(-.) FMC.,) 

, 

O.H,---_--_--_---_-__ --, 

0.11 

0.' 

0." ... ... ... 
-... 

ell O,W 0.11 O-~o~--~o~,---:---~.~,-----c,:---7.----! 

....., 
Figure 5a: 0 < 9'9 < 0.16 Figure 5b: a < a'e < 3 

figure 5: Case 2, MSE(S) for NpC-) Cp(-.) FMC .• ) 

the characteristic in figure 1). But we see that in this region the Np 

criterion gives much worse results than the Cp criterion. 

To have an impression of the goodness of the 200 simulations per value of 

9, we can compare the theoretical value of the MSE for the full model 

(=0.14) with the simulated NSE. We see that the simulated HSE varies around 

this value. 

When we look: at case 2 (figure Sa and 5b) we see that there is a clear 

preference 

when 9'9 

for the Cp criterion for small squared 

is increased the Np criterion turns out 

lengths of 8. 

to be better 

they both give much worse results than the full model. 

However 

although 
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From the previous figures we may conclude that for smell values of 9 ' 9 the 

Cp criterion gives better results than the Np criterion. But if ale is 

increased it depends on the orientation of e which criterion will be 

better. If (x'x)/C9 I e) is 'small l the Np criterion turns out to be better, 

if not the Cp eiterion turns out to be better. 

Thus we can not say that one criterion is better than the other since 

there are always points 

but the Cp criterion has 

in the parameter space where the reverse holds, 

the advantage that for small 9 1 e it is always 

better than the Np criterion. 

SIMULATIONS-2 

In the previous section the Np-Cp criterion had to make a choice between 2 

model structures. In this section the Np-Cp criterion has to make a choice 

between 10 different model structures. 

contructed several 16*9 matrices U in such a way that I could control 

the condition number (= largest singular value/smallest singular value of 

U) and the sum of squared elements (I define this as the 'signal power') of 

it. Furthermore I considered two different orientations of e. Per 

orientation considered 21 different lengths of the actual e. With a 

particular U and e I calculated the undisturbed output x and disturbed it 

with white noise to obtain the output vector y. As the full model I took 

the true model (So the highest to be regarded dimension of the model is the 

dimension of the true model = 9). From the vector y I calculated in each of 

the 10 possible model structures (dimension a to 9) the value of some 

criteria. The model structure with the smallest value was chosen according 

to that criterion. 

In this chosen model structure the difference between the actual and the 

estimated 8 was calculated. The simulated HSE(8) was approximated by 100 of 

such simulations. 

Besides the Cpo Np and the FM (=always chosing the full model) criterion 

(as in the previous section) I considered two other criteria. In each model 

structure calculated the squared difference between the actual and 

estimated e (thus I assumed that e was known). The model structure with the 

smallest squared difference between the actual and estimated 8 ( =l(8) 

was chosen. This has also been done for the 

actual and estimated x =l(x». These 

squared difference between the 

last two criteria can not be 

calculated in practice since the actual 8 or x are not known. They are only 

computed to have some idea about the lower bounds. 
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VALUES: 

The two orientations of the impulse responses where defined as follows. 

(see table 1 and figure 6) 

Table 1 , Impulse responses 

impulse response A impulse response B 

h(i)=a*exp(-O.2S*i) hCi)=a-(-1)i exp (-O.2S*i) 

im.l)ulse rep_onses: A=It_" . B="--" 
lr-----~----~~~~~~~~~=r-----r-----r----_, 

time 

Figure 6: The two orientations of the impulse 

response 

The U matrices were constructed in the following way. First took 8 

matrix and filted it with white nohe samples. To cont!"o! the condition 

number I added the same constant term to each elememt of it and finally I 

multiplied the matrix in such a way that 1 would obtain the desirable 

signal to noise ratio ( sum«Uij)~)/nD'I). The variance of the noise 

("I) was set to 0.01 and the signal to noise ratio was set to 100. 

considered 4 different U matrices. For some characteristics of these 

matrices see table 2. In this table is also the ratio (X'X)A!(x'x)S given, 

which is the ratio of the norms of the undisturbed output x with the 

impulse response A and B (for equal length of 9(A) and 9(8». 

Table 2, U characteristics 

case , case 2 case 3 case 4 

tr{ (U'U)-1 ) 7.565 11.40 153.0 331.6 

condition 2.868 4.658 38.80 50.55 

number 

(x'x)A!(x'x)S 1.776 0.8648 11.92 14.30 
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RESULTS: 

for each matrix U I made a plot of the NSE(S) (as a function of 8'8 ) tor 

the two orientations of 9. As already mentioned these plots were made ot 21 

different values of 9'9 and each value of MSEeS) was approximated by 100 

simulations. For the results of case '-4 see figure 7a,7b-l0a,10b. 

In each figure the "SEeS) was simulated fOI" the Np,Cp,FM,L(x), and lee) 

criterion. The HSE(S) in the L(e) cr-iterion is the lowerbound fOI" the 

MSEeS) which can be achieved with a critel"ion. 

0.1 ~-----r-------' 0.1.-------,-------, 

5 
8'8 

10 s 
8'8 

Figure 7a: impulse response A figure 7b: i.pul •• I".'pon, •• 

Figul"e 7: Case 1, MSECe) for l(e)(- - -) L(x)(----' Cp( ••• ) 

NpC-o·o) FMC __ ' 

10 

0.2.------,-----, 0.2r----"T------. 

0.15 

oL----~- ___ ~ 
o 50 100 

8'8 
O~----~----~ o SO 100 

8'8 

figul"e aa: impulse response A Figure ab: tmpulle reapona. B 

Figure 8: Case 2, "SE(8) for Lee)(- 0 -) l(x)(~ Cp( ••• ) 
.pC·.·.) F.C __ ) 
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Figure 98: impulse response A Figure 9b: impulse response B 

Figure 9: Case 3, MSEeS) for Lea)(- - -) L(x)(--) CpL •• ) 
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In figure 7a-7b we have a matrix with a low condition number (=2.868) and 

we see that for both the impulse reponse A and 8 the Cp criterion gives 

better results than the Np criterion (for the given range in the parameter 

space). In figure 8a-8b we have another matrix with a tow condition number 

(=4.658), but the range in the parameter space is enlarged. Here we see 

that for small values of a'e the Cp criterion gives better results for both 

the actual impulse response A and B
f 

but if ele is large it depends on the 

impulse response which criterion ~s better. However, this behaviour could 

be expected. In the previous section we saw that the Np criterion gave 

better results (in choosing between two model structures) when the norm of 

x was relative small. In this case where when e'e is large not many 

parameters can be deleted. So we are in fact chosing between the full model 

with dimension 9 and the model with dimension 8 (or yet one dimension 

lower>, Since (x'x)A is lower than (x'x)B we can therefore expect that the 
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Np criterion can be better than the Cp criterion with impulse response A. 

In both the figures 7a-7b and 8a-8b we see that there is not much 

difference between the lee) criterion and the lex) criterion. 

In figure 9a-9b we have a matrix with 8 large condition number (=38.80) and 

in these figures we see that for low values of 9'8 the Cp criterion gives 

better results and for large 9 1 8 it depends on the actual impulse response 

which criterion is better. In this case we also see a large variation 

between the Lee) criterion and the lex) criterion. 

In figure 10a-10b we have another matrix with B large condition number 

(=50.55). Here we see that, for both the impuLse response A and 

criterion is better than the Np criterion (for this range of the 

space) and that there is a small difference between the L(e) 

criterion. 

8, the Cp 

parameter 

and L(x) 

From these figures we see that for small values of ele the Cp criterion 

gives better results than the Np criterion. If ala is large it depends on 

the actual impulse response which criterion gives better results (and thus 

how long Cp remains better). 

Conclusions 

From the previous simulations it turns out that this Np criterion, which 

was based on the idea that it might be better to base a selection criterion 

on the parameter space rather than on the measurement space, does not give 

a clear improvement above the Cp criterion. In fact, the results may become 

much worse. 

Simulations indicated that when the actual parameters are indeed near zero 

the Cp criterion seems to be superior to the Np criterion. But even when 

the parameters are large the Cp criterion seems to be a good choice in many 

cases. 

Therefore, if in practice the full model is chosen in such a way that the 

model is chosen too large and thus the last parameters are indeed near 

zero, the Cp criterion seems to be a good choice. 

So evaluating these results think that we can conclude that it is not 

advisable to use this Np criterion because ot the following reasons, 

(1) it could not prove its superiority to Cp 

(2) it requires more computation than Cp 
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4.4 ORDERED-NO.ORDERED PARAMETER REDUCTION 

Sofar I only discussed the case in which we didn't have any idea about the 

length of the actual impulse response and thus were forced to choose a 

model according to a certain criterion. However, the criteria in chapter 3 

can also be used in other situations. For example for estimating the delay 

of an impulse response. In both cases we are testing if we can set of 

ordered parameters to zero. I wi II call this manner the ordered parameter 

reduction. 

A further step would be to test if we could set any single parameter to 

zero. In that case we should choose the best subset of parameters according 

to a criterion. I wil l call this manner the nonordered parameter reduction 

(or subset selection). The aim of this chapter is to mention some topics 

that are highly related to nonordered parameter reduction. 

4.4.1 COMPUTATIONAL PROBLEMS 

Suppose the aim is to select the best subset out of d possible parameters. 

Then there are, 

(4.73) 

possible subsets to examine. The subset that minimizes a certain criterion 

(for example Cp of AIC) should be chosen. There are some algorithms for 

efficiently handling the computation of all possible subsets (for a review 

on this topic see Hocking 176). The underlying idea of most of these 

algorithms is to perform the calculation of all possible subsets in such a 

way that sequential subset models differ by only one variable. 

Another idea is to use branch and bound techniques. Suppose we are 

searching for the best subset (in RSS sense) of dimension p. Thus we have 

to delete (d-p) parameters from the fulL model. For example let (d-p)=4 and 

let RSS(a,b,c,d) denote the residuals sum of squares when parameters 

a,b,c,d are deleted from the full model. The underlying idea of these 

branch and bound algorithms is that if RSS(e) ~ RSS(a,b,c,d) then, for 

every set of parameters where • is involved is RSS(e,?,?,?) , RSS(a,b,c,d) 

and thus we should not search in that direction. However when RSS(e) < 

RSS(a,b,c,d) additional subsets have to be evaLuated. After finding the 

best subset for each dimension it is possibLe to select the overall best 

subset according to one of the previous discussed selection criteria. 

When the number of parameters is large it is usually not feasible to 

examine aLL possibLe subsets. Therefore various methods have been deveLoped 

for evaluating only a small number of subsets by either adding or deleting 

parameters one at a time. These methods are generally referred to as 

stepwise methods. The basic ideas behind these methods are called forward 

selection (FS) and backward elimination (BE). 
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FORWARD SELECTION. 

First we start with a model with no parameters. Then we select the 

parameter which gives the greatest reduction in the residuals sum of 

squares sense. When this reduction is smaller than 8 predefined value Fin 

the procedure is stopped. IJhen not, we include this parameter in our model 

and we check if we can add another parameter in the model. Of course the 

number of variables included highly depends on Fin. One way of choosing Fin 

is to assume that the i-th variable is the last to enter variable. Then is, 

RSSp - RSSp+i 

F= 

RSSp+i/(n'p'1) 

where RSSp+ i denotes the RSS 

included. Then the i-th variable 

F > Fin = Fa Cl.d-p-1) 

, F (1,d-p-1) 

of the model where 

is included if 

(4.74) 

the i-th variable is 

(4.75) 

Of course we should again choose a value for Q. Another possibility is to 

take Fin = 2 which is in accordance with the Cp rule. 

BACK~ARD ELIMINATION 

This procedure is the reverse of the FS. In this case we start with all 

possible parameters and we check if we can delete some parameters one at 

the time. At any step the variable with the smallest reduction of the 

residuls sum of squares is chosen. Then 

the i~th variable is deleted from the model if, 

RSSp-i - RSSp 

F= < Fin (4.76) 
RSSp/(n'p) 

"'here RSSp-i is the RSS of the model without the i-th variable. The same 

values for Fin as in FS can be used as a stopping rule. 

Based on these two procedures several other procedures have been proposed 

such as the forward stepwise selection procedure, Which is essentially the 

same as the FS procedure but now at each stage the possibility of deleting 

a variable is considered, or the backward stepwise selection procedure, 

which is essentially the same as the BE procedure but now at each stage the 

including of a variable is considered. 

It should be noted that none of the stepwise methods assure us that we get 

the best overall subset. However there is a feeling that these methods witl 

reveal subsets that are near optimal. The obvious advantage of these 

methods is that in the worst case only t+(t-1)+(t~2) .. +1 = t(t+1)/2 subsets 

have to be calculated. 
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4.4.2 PRIOR KIOULEDGE 

In this section I want to discuss the prior condhions which have to be 

met to assure us that the method of searching for the best subset wi II 

indeed give better results than taking all the parameters in our final 

model. This will be done in the simple case in wich the U matrix is 

orthogonaL and the variance of the noise is known. It is assumed that, 

(4.77) 

Thus we can see that, 

(4.78) 

let us denote sZ:u'/l as the variance of the noise in the parameter space. 

As a selection criterion consider the generalized AIC criterion, 

GAle = min RSSp + a'*u' (4.79) 

This means that a variable is included in the model if its contribution to 

the decreasing of the RSS exceeds al*o'. For the parameter space this 

condition means that a variable is included if, 

If this condition doesn't hold, the variable is excluded from the model. 

Because of the simplicity of the distribution of the parameters it is 

possible to calculate the resulting mean square error. Let us write, 

d d 

MSE(8)= E E(8; ·8;)' = E MSE(8;) (4.81) 

i = 1 i = 1 

Let "SE(9i) denote the mean square error of the i-th variable. Since we 

don't known what the exact value of 91. is we leave it as a vaiable. 

Because of the normal distribution of 9 i we can calculate MSEcei) as 

folloW's, 

MSE(8;)= 

as 

J 9i t p(ei-Si) de i + st 

-aS 

as 

J (8 i -9 i )1 p(e i -9 i )d9 i ::l: 

·as 

(4.82) 
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where, 

p( t) (4.83) 

t 

F(t) J pCr) dr 
(4.84) 

When we plot this MSE(e
i

) versus e i in a figure we get the following 

results (see figure 11). 

---,.-,11-11 
_A_A_1 

MEAN ~E EMIlOf' 
_A_A_4 
------+-- A-A-INF. 

-------~'=.~'-=.'r---._----._----._,_--._----,_----,_--_r,_----,_----,_----,_----~ 

2.4 

1.9 

1.2 

o. s 
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/ 

/ 

-s -4 -, • 2 

Figure 11: MSE(e i ) versus lei I' for 8 ' =°, a l =1, a l =2, 

a l =4,a l =infinity 

4 s 

In this plot it is assumed that S2 is equal to one, but this is not a 

severe restriction since the characteristics remain the same for a general 

S'. In figure 11, MSE(ei) was plotted for five different values of a, 

namely 0,1, 2, 4 and infinity. In this application these values correspond 



66 

with a hypothesis test with significance leveL a of 100X, 32%, 16%, 5% and 

OX. Of course B significance level of 100% means that we always include the 

variable and a significance level of 0% means that we always exclude the 

variable from the model. We see that the common characteristic is that 

when le;l is small (depending on a) the GAle is better than just including 

all the variables. However if lei I is large the results become much worse. 

We can see that the overall behaviour (over all af) is worse than just 

including the variable. 

So from this figure we must conclude that the GAle will be better than the 

least·squares estimator from the full model, if there are enough 

parameters that are close to zero. So if some prior information about the 

parameters exists one can decide to perform a nonordered 

reduction or not. Of course, in case of ordered parameter 

Similar conditions hold, but in those cases it is more likeLy 

parameter 

reduction 

that they 

are satisfied since most impulse responses tend to zero or have 8 delay 

time. So in that region the parameters are cLose to zero. 

4.5 ALL FORMULAS CAN BE URONG 

In the beginning of chapel' 2, I said that the formulas that were going to 

be derived are based on the assumption that the modeL was selected without 

reference to the actual data. Furthermore we saw that almost all the 

selection criteria had their base in one or more of the derived formulas in 

section two. 

that it is 

For exampLe the Cp criterion is derived under the assumption 

a (unbiased) estimate of the MSE(x). However, since these 

selection criteria are used to select a model structure on the actual data 

the previous assumption can not be met, and so the derived formulas are 

invalid. 

To illustrate that the usuaL properties of the least squares estimator are 

invalid, consider the example in section 4.4.2 where we discussed the 

nonordered parameter reduction when U was orthonormal. let us suppose that 

the i-th variable is included into the final model structure according to 

the min AIC condition. According to the properties of the least squares 

estimator the estimate of the i-th variable in this model structure shouLd 

be unbiased. However if we calculate the actual expectation of the 

difference between the estimate and the actual 8 i we get, 

So we see that we get a biased estimator unless 

corresponds to taking all the variables in the final 

a=O, which 

model. 

(4.85) 

of course 

In a paper on this topic Miller (184) considered three types of bias that 

occures in the least squares estimator when the model structure is chosen 

upon the data. 



(1) omission bias 

(2) stopping rule bias 

(3) competition bias 
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The omision bias is 

estimator when we 

Stopping rule bias 

the 'normal' bias that we get in the least squares 

delete a variable from the full model (see 2.49). 

is the bias that we obtain when we are choosing the 

number of parameters to use. Competion biBS is the bias that we get when we 

are choosing between subsets of the same size. The bias in the previous 

example should be regarded as a combination of stopping rule bias and 

competition bias. 

The question is, how to eliminate these last two types of bias. Clearly a 

good solution would be to perform the model selection on one data set and 

to perform the estimation of the parameters on another data set, provided 

that the division of the data set into two halves is taken randomly. But of 

course in many fields, sample sizes are not large enough to make this 

method practical. Miller ('84) has mentioned some other solutions but it 

still remains a very difficult problem to tackle. 
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5. BIASED ESTIMATORS 

In this chapter the primary concern is to look at methods that have been 

developed for improving the least squares estimates of the impulse 

response. Since the least squares estimator is known to be a minimum 

variance unbiased estimator we are forced to consider the cLass of 

unbhsed estimators. We already discussed the James Stein estimator in 

chapter 3.8 Besides the James-Stein estimator there is class of 

estimators such as principal component regression and ridge regression 

where the object is to improve the least squares estimator when the matrix 

U suffers from multicollinearity, i.e. if there exists some near linear 

relationship between the columns of U. Because of the vast quantity of 

papers that exists in literature on these topics, the object is to discuss 

briefly some general ideas rather than to give an exhaustive review. In the 

following all results will be given under the assumption that the process 

is in the model set. 

5.1 CANONICAL FORMS 

In chaper 3.8 already discussed the orthonormal canonical form of the 

general linear regression model (3.130-3.132). In this chaper will 

present another canonical form which will be used for explanatory purposes. 

Consider the general model as given by, 

y= ue + e (5.1) 

Let us rewrite u'U as (see 3.83) 

u'u = WTW' (5.2) 

Here W is orthonormal and T is a positive definite diagonal matrix with 

diag(T)=(t1, .. ,t~) t, 2: 2:td >0 where the diagonal elements are the 

eigenvalues of U U. Define now, 

Z U'W (5.3) 

, 
p = W 9 (5.4) 

Then we have the transformed model, 

y = ZtJ + e (5.5) 

Where, 

p = Z'y = 
, . 

= W 9 (5.6) 

So we see that in the fJ space the parameters are independent, but they 

don't have equal variance. Furthermore it holds that, 

E{ (P-P)'(p·P) } = E{ (9·e)'(9·e) } = MSE(e) (5.7) 

Thus a comparision between two estimator according to the MSE(9) function 

can also be done in the fJ space. 
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5.2 JAMES STEIN ESTIMATORS 

From chapter 3.8 we know that the positive James-Stein estimator, 

9 = max(O,Sf)* e (5.8) 

with 

Sf = [1-{c/(v+2»v*q'/ex'x)] 

v=(n-d) • 0 ' = RSSd/(n-d), d!: 3 

will be uniformly better than e according to the loss function MSE(x) if, 

o < c < 2(d·2) (5.9) 

But how does this estimator perform under MSEeS). Judge and Bock (178) 

proved that this estimator will be uniformly better than the least squares 

estimator if, 

o < c < 2< tr{ (U'U)-1 >/tmax - 2 ) (5.10) 

tmax is the largest eigenvalue of (U'U)-1 =(1/0d )' 

provided that tr{ (U'U)-1 ) > 2tmax. This means that we can always improve 

our estimator in MSE(x) sense and in some cases in MSE(9) sense. 

5.3 PRINCIPAL COMPONENT SELECTION 

Let us consider the canonical form as decribed in (5.5), 

y = ZIJ + e (5.11) 

The columns of 

length of the 

Z, z1"zd are called the principaL components and the 

i·th principal component corresponds with the i-th largest , 
eigenvalue of U U, thus zi'zi = tj. Since the mean square error of the 

least squares estimator can be given by, 

(5.12) 

small eigenvalues in T have a large contribution in the variance of e. 

Since small eigenvalues mean small lengths of the corresponding columns of 

Z, the idea is to drop these columns out of the model (5.11). let us now 

partition Z into two parts Z1, to be retained, and Z2, to be deleted. 

Deleting of components in Z2 means that the parlmeters ~2 (~ is also 

partitioned into two parts) have implicitly been set to zero. The remaining 

parameters in ~1 are estimated with the least squares estimator. So, 

+ 
Pl = Zl Y and (5.13) 
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This means that back in the original parameter space, 

9 = ~ p = [ ~1 ~2 l P = ~1 z; y [5.14) 

This estimator has the properties that, when w2
1

a is indeed equal to 0, it 

is unbiased and has a mean square error of gltr{ T1- 1 } where T1 =z,'z,. 

Which is smaller than the original one. However, when this condition is not 

true, then over a large range in the parameter space this estimator is 

inferior to the least squares estimator. 

5.4 RIDGE REGRESSION 

As we saw in (5.12), the least squares estinator has a large variance when 

U'U has small eigenvalues. As a ablution to this problem Hoerl and Kennard 

(170) proposed the concept of ridge regression. The ridge estimator is 

found by solving a slightly modified version of the normal equations. 

Specifically, the ridge estimator is defined as the solution to, 

(5.15) 

or 

(5.16) 

Where Ic!:O. The rfdge estimator can be seen as a linear transformation of 

the least squares estimator since, 

Q9 (5.17) 

Therefore since E{ 8 ) = 08, the ridge estimator is biased. Furthermore it 

has varfance alOU+(QU+) I = qZQ(u'U)-1 Q. Thus the mean square error can be 

written as, 

(5.18) 

d 

qJ E ti/(ti+k)Z + k~*e'(U'U+Ie*ld)-2e 

i = 1 

(5.19) 

, 
where ti. i=1..d, are the eigenvalues of U U. 

est imator, the chof ce of Ie should be such that 

variance term is greater than the increase in the 

Kennard prove~ the existence of a k > 0 for which 

than that of e. A sufficient condition ;s that, 

Ie < 2a Z /fJ-max 

When using this ridge 

the reduction in the 

squared bias. Hoerl and 

the MSE of e is smaller 

(5.20) 

where p-max is 

showed that for 

the largest element of p=w'e. (see 5.4). Theobald 

a general weighted squared error, E{ (e-9)'U(8-8) ) 

('74) 

where W is some positive definite matrix, a necessary condition is that, 

(5.21) 

The existance of a Ie for which the ridge estimator has smaller variance 

than the least squares estimator has encouraged many authors to derive some 
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estimate for k, since pmax or e are of course not known. For example. Hoerl 

and Kennard (~70) proposed to inspect the ridge trace, i.e. a plot of the 

elements of e versus k. However, this is a rather subjective method. 

MaLLows (,73) derived an biased estimate of the risk. involved with the 

ridge estimator. As an estimate for Ie. he suggested to minimize 

C5.22) 

where RSSk is the residuals sum of squares as a function of k. HoerL and 

Baldwin ('75) suggested to take, 

k = d*o'/9'Q C5.23) 

Here Ie is the sample analog of d*q'/9'9. which is the harmonic mean of k i 
= uti Pi (i=1..d)' Many other estimators have been proposed. For 8 good 

review see Hocking (176) or Judge et at. ('80). 

Since all suggestions for Ie. are based on the actual data. Judge ,:t al. 

(180) pointed out that the resulting ridge estimator improves upon e only 

for a limited range of the parameterspace, and the region of improvement 

depends on the unknown parameters 9 and (1'. However if we leave the ridge 

estimators of the form, 

C5.24) 

and consider the more general form, 

e = Cld • k*C)·l e (5.25) 

where C is a symmetric, positive definite matrix, 

derives a class of estimators that are better than 

estimators. One of his results is that the estimator, 

with, 

S=Cy·US)'CY·US)=RSSd 

o ~ a ~ 2(d"2)/{ (n"d+2)*tmax ) 

tmax is the largest eigenvalue of [S"'U'U] 

h ~ 0 , 9 ~ 2d/(n"p+2) 

strawderman (178) 

the least squares 

C5.26) 

is a minimax estimator (this means that it minimizes the maximum risk) 

under the loss function, 

Thus when we take S=l d , it holds that, 

MSE(e,e) ~ MSE(9,e) 

when the conditions given in 5.27 are fulfilled. 
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6. CONCLUSIONS 

The linear regression model is often used for impulse response estimation. 

When the actual length of the impulse response is known, the corresponding 

least squares estimator is known to be a minimum variance unbiased 

estimator. However, the actual length of the impulse response is usually 

not known. Therefore it is more common than rare that the wrong model is 

used. Although too large 8 model leads to unbiased estimates one pays with 

greater variance. Too small 

the estimates in this model 

a model Leads to biased estimates, however, 

can be better, according to SOme performance 

measure, than those in the correct model if the introduced bias is smaller 

than the amount of decreasing variance. 

Many criteria have been proposed for the selection of an loptimal l model. 

Most of the selection procedures have a very different baCkground. There 

are criteria which are designed on hypothesis arguments (F-test), 

prediction arguments Cp, PC, FPE) information theoretic arguments 

(AI C), Bayesian arguments (BIC, SC) or on cross-validation arguments 

(PRESS, C1(m) C2(m». Although some criteria are asymptotically equivalent 

( Cp, AIC, FPE, PRESS, C1(m) or choose asymptotically the right model 

structure ( BIC, SC, C2(m) their small sample properties are all 

different. 

If these criteria are used to select the best out of two modeL structures 

where the two model structures are the full model and some predefined 

smaller model structure) most of the criteria can be written in terms of 

an F-test with a particular significance level. A plot of the risk ( MSE(S) 

or MSE(x) ) involved with such an F-test yields a range in the parameter 

space where the risk is smaller than the risk of the least squares 

est imator of the full model and a range in the parameter SPace where it is 

larger. An exception to this rule is the positive Stein rule estimator. 

This estimator can also be seen as an F-test but in this case the 

estimates in the full model are shrunken if the hypothesis is rejected. 

This witl assure us that, under certain conditions, the risk involved with 

this estimator wi II always be smaller than that of the least squares 

estimator in the full model. 

Since most criteria are designed to improve prediction and thus MSE(x) 

another crjterion has been proposed (Np). However, although it was designed 

as an unbiased estimate of the MSE(9), it could not prove its superiority, 

in simulated test cases, to the Cp criterion (in MSE(e) sense), which was 

designed as an (unbiased) estimate of MSEex). 

Improving the least squares estimator if the true model structure is known 

means that we have to consider biased estimators. Some biased estimator 

such as principal component selection and ridge regression only improve the 

least squares estimator for a limited range in the parameter space. There 

exists, however, a class of biased estimators, such as the James-Stein 

estimator and the Strawderman estimator, which are, under certain 

conditions, uniformely better (in MSEeS) sense) than the least squares 

estimator. 
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APPENDIX A 

This appendix contains some elementary mathematics that have been used in 

this report. 

ALGEBRA 

Suppose, 

U = [ U1 U2 ] = n*d matrix and has full rank. 

U, p*n matrix 

U2 = (d-p)*n matrix 

Then is. 

and 

with, 

u+ [::J . e 
where, 

11 = p:" matrix 

'2 A is a (d-p)*n matrix with 

We can see that, 

+ 
uu+ = u,U; + AA 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

let P=UU+ than we see that P is an orthogonal projector since the 

following conditions hold: 

and P = P 

Let P be the orthogonal projector on a space spanned by the columns of U, 

then J-P is the orthogonal projector on the null space of the matrix U'. 
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POSITIVE <SEMI )DEFINITE 

A matrix H is said to be positive definite if 

for all x#o, x'H x >0 and H = H 

A mat r i x H is said to b. positive semidefinite if, 

for all x#o, x' H x • a and H = H 

I f H is p.s.d then T H T is also p. s.d 

, 
If H is p.d then T H T is also p.d. provided that for 

T holds that Tx=O ==> x=O. Otherwise it is p.s.d. 

DERIVATIVES 

Let l be a scalar and 8 be a d-vector. Then SL/le and 

defines 8S follows, 

6 L / 69, 

6 L / 69 = 

6' L / 69, 69, 

DISTRIBUTIONS 

(A-S) 

(A-6) 

(A- 7) 

(A-S) 

6 1 L/6e 69' are 

(A-9) 

(A-'O) 

We say that Xi is normally distributed with mean #i and variance (11 if Xi 

is a continuous random variable with density, 

and we denote this as, 

(A-12) 

Let x be 8 random vector with, 

E{x}=Jl (A-13) 
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and, 

(A-14) 

Then we say that the vector x is normally distributed if, 

(A-1S) 

where det(e) is the determinant of C. We denote this as, 

X f N(ll,e) (A-16) 

let r be a linear combination x, thus 

Where the matrix Q denotes the linear transformation. Then r is normally 

distributed with mean OJ' and covariance matrix QCQ
I

• Thus, 

r ( N(Ql',QCQ') (A-18) 

Let x""xn be independent random variables such that xi ( N(O,1). Define, 

n 

y = E xi' 

i = 1 

(A-19) 

then we say that y is distributed as 8 Chi l distribution with n degrees of 

freedom. Thus, 

Y E Chi'(n) 

Let z be dhtributed as a Chi' distribution with m 

Then we say that, 

yIn 

v = 

z/m 

(A-20) 

degrees of freedom. 

(A-21) 

is distributed as an F distribution with nand m degrees of freedom and we 

denote this as, 

vEF(n,m) (A-22) 
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APPENDIX B 

This appendix contains the calculation of the risk matrix and 

some related topics. 

let us now assume that the following relation holds, 

Where U has full rank. Then with, 

we get that E{ cSp'S)eep-s) } is equal to 

[ 

, -, + + ' 
.'(U,U,) +(U,U 29 2 )(U,U 29 2 ) 

+ , 
-92 (U,U 29 2 ) 

Then with e = u+y we get that E{ (9-8)(8-8) } 

So with reLation (A-2) we see that, 

-U,U2(8.'-929~) 
+ ' ] 

(8.'-9292) 

If we rewrite (B-2) as, 

[ 

+ J -U,U2 

I (d-p) 

(8-1) 

( 8 - 2 ) 

then we see that if (8ql_8
2

82
1

) is 

least p.s.d. (see A-B). A necessary 

that B must be p.d. let us rewrite B 

p.d., the matrix given in (8-2) is at 

condition for (sul-azai> to be p.d is , , 

be p.d •• The second term has 

value 8,28- 18 2/a z (eigenvector 

the following relation holds, 

as B=WDD W then must, 

rank 1, and -, , 
o "92 )-

<==> 

the only nonzero eigenvalue has 

Thus because of condition (A-6) 
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APPENDIX C 

PROVE THAT, 

2*1(9,9) = 
, -

(x-x) (x-x) I (/1 

Proof: 

Let, 

1(9,1) J p(y;9) In < P(y;')/p(y;9) ) dy (C - 1) 

with, 

p(y;') 
-n/2 , 

(2T(1') exp { -(y-Ut) (y-Ut)/2ql ) (C-2) 

Then we have, 

& tn{ pCY;') }/ St = -(U'U)t/2a ' + U'y/2a l (C-3) 

6
' 

In{ pCy;') }/ &1 61' = -(U'U)/ql ( C - 4 ) 

and all higher derivatives are zero. 

minimizes 1(9,') ( thus 8m=9 ). Then, 

series and (C-1)-(C-4), we can write, 

let 8m be the value of t that 

because of the Taylor expansions 

1(9,9) = ICe,8m) + (a-8m)' 6 ICS,9m) 169m 

+ 1/2*(9-9m)'* 6' 1(8,8m) I SSm Gem' *(e-8m) 

o + 0 + l/2-CO-8m)· 6 ' 1(9,em)/S9m Sem ' ·CS-8m) 

But since, 

6' ICe,Bm) 169m G9m' 

6' - J p(y;9) In ( p(Y;')/p(y;9) } dy 

J p(y;9) U'Ulo' dy U'UJa' 

we have that, 

Q _ E.D. 
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APPENDIX D 

PROVE THAT, 

wi th, 

Proof: 

n 

PRESS(p) = 1: [yei)- Ul(i)*U,(/i)+YC/i) ]1= Wp'Dp·2wp 

i = 1 

U,(fi) U, matrix without the i - th row. 

u 1 ( i ) 

y(f i) 

y( i ) 

= the i - t h row of U, 

= output vector wi thout the i - th output 

i-th output 

the diagonal matrix whose dissonel elements are 

those of (In-U,U;) 

Let us consider the i-th term of PRESS and let us write, 

A = [U,(!1)' u1(i)']' :: [XI b l 
]1 

Where A is just another ordering of the rows of U. Then we can write this 

i-th term as, 

PRESS(p,i) = [y(i) - bX'y(/i)] 

Let us now consider the l-th term of wp' We can write, 

Wp(i) = yei) - bA+ Y 

Where y = ( ye/i)' yei)' ). is just another ordening of y. Since, 

H (0-') 

we can write, 

so, 

. -
bA Y bMX'y(/i) + bMb'y(i) 

and, 
• AA = ( XI bl]IM [ XI bll 

-, 
Thus the j-th component of Wp'Dp wp can be written as, 



+-
y( i) - bA y 

(l-bMb') 
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y(i)-bMb'y(i) - bMX'y(/i) 

bMX'y(fi) 

= y(i) - -----------

(l-bMb') 

But since (see D-l), 

bMX'y(/i) = [bV-bVb ' { l+b'Vb }-'bV]X'Y(/i) 

(1-bMb') = (1-bVb
' 

+ bVb'{ l+b'Vb }-1 bVb'] 

With V=(X'X)-'. Because {1 + b'Vb > is a scalar we can see that if we 

multiply the last two expressions with it, 

bMX'y(/i)*{l+b'Vb} = bVX'y(/i) 

(l-bMb') *(l+b'Vb) 

So, 

bMX'y(fi) 

---------- = bX+ yell) 

(l-bMb') 

But this means the i-th component of 

Thus PRESS(p) and w ,o-2w are equal. p p 

-2 
wp'Dp wp is equal to the PRESS(p,i). 

Q _E _D_ 



Eindhoven Universit of Technolo Research Re orts 
aculty of lectrical Engineerlng 

ISSN 0167-9708 
Coden: TEUEDE 

(171 ) 

(172 ) 

(173) 

(174 ) 

Monnee, P. and M.H.A.J. Herben 
MULTIPLE-BEAM GROUNOSTAT~FLECTOR ANTENNA SYSTEM: A preliminary study. 
EUT Report 87-E-171. 1987. ISBN 90-6144-171-4 

Bast1aans, M.J. and A.H.M. Akkermans 
ERROR REDUCTION IN TWO-DIMENSioNAL PULSE-AREA MODULATION, 
TO COMPUTER-GENERATED TRANSPARENCIES. 
EUT Report 87-E-172. 1987. ISBN 90-6144-172-2 

Zhu Yu·Cai 

WITH APPLICATION 

~A BOUND OF THE MODELLING ERRORS OF BLACK-BOX 
EUT Report 87-E-173. 1987. ISBN 90-6144-173-0 

TRANSFER FUNCTION ESTIMATES. 

Berkelaar~ M.R.C.M. and J.F.M. Theeuwen 
TECHNOLOGY MAPPING FROM BOOLEAN EXPRESSIONS TO STANDARD CELLS. 
EUT Report 87-E-174. 1987. ISBN 90-6144-174-9 

(175) Janssen, P.H.M. 

(176) 

(177 ) 

FURl HER RESULTS ON THE McMILLAN DEGREE AND THE KRONECKER INDICES OF ARMA MODELS. 
EUT Report 87-E-175. 1987. ISBN 90-6144-175-7 

Janssen, P.H.M. and P. Stoica, T. Soderstrom, P. E~khoff 

MODEL STRUCTURE SELECTIONrl1iR MULTIVARIABLE SYSTEM BY CROSS-VALIDATION METHODS. 
EUT Report 87-E-176. 1987. ISBN 90-6144-176-5 

Stefanov~ B. and A. Veefkind, L. Zarkova 
ARCS IN CESIUM SEEDED NOBLE GASES RESULTING FROM A MAGNETICALLY 
FIELD. 
EUT Report 87-E-177. 1987. ISBN 90-6144-177-3 

INDUCED ELECTRIC 

(178) Janssen, P.H.M. and P. Stoica 
ON THE EXPECTATION OF T~DUCT OF FOUR MATRIX-VALUED GAUSSIAN RANDOM VARIABLES. 
EUT Report 87 -E -178. 1987. ISBN 90-6144-178-1 

(179) Lieshout, C.J.P. van and L.P.P.P. van Ginneken 
GM: A gate matrix layout generator. 
EUT Report 87-E-179. 1987. ISBN 90-6144-179-X 

(laO) Ginneken, L.P.P.P. van 
GRIOLESS ROUTING FOR GENERALIZED CELL ASSEMBLIES: Report and user manual. 
EUT Report 87-E-180. 1987. ISBN 90-6144-180-3 

(181 ) Bollen, M.H.J. and P.T.M. Vaessen 
~NCY SPECTRA FOR ADMITTANCE AND VOLTAGE TRANSFERS MEASURED ON A THREE-PHASE 
POWER TRANSFORMER. 
EUT Report 87-E-181. 1987. ISBN 90-6144-181-1 

(182) Zhu Yu-Ca; 
BLACK-BOX IDENTIFICATION OF MIMO TRANSFER FUNCTIONS: Asymptotic properties of 
prediction error models. 
EUT Report 87-E-182. 1987. ISBN 90-6144-182-X 

(183) Zhu Yu-Ca; 

(184 ) 

(1 B5) 

(186) 

( 187) 

~THE BOUNDS OF THE MODELLING ERRORS OF BLACK-BOX MIMO TRANSFER FUNCTION 
ESTIMATES. 
EUT Report 87-E-183. 1987. ISBN 90-6144-183-8 

Kadete, H. 
~EMENT OF HEAT TRANSFER BY CORONA WIND. 
EUT Report 87-E-1B4. 1987. ISBN 90-6144-6 

Hermans, P.A.M. and A.M.J. Kwaks, I.V. Bruza, J. D8~b 
THE IMPACT OF TELECOMMUNICA~ON RURA~AS IN ELOPING COUNTRIES. 
EUT Report B7-E-185. 1987. ISBN 90-6144-185-4 

Fu Yanhong 
THE INFLUENECE OF CONTACT SURFACE MICROSTRUCTURE ON VACUUM ARC STABILITY AND 
ARC VOLT AGE. 
EUT Report B7-E-186. 1987. ISBN 90-6144-186-2 

Kaiser, F. and L. Stok, R. van den Born 
DESTCN AND IMPLEMENiAfION OF A MODUrr-IIBRARY TO SUPPORT THE STRUCTURAL SYNTHESIS. 
EUT Report 87-E-187. 1987. ISBN 90-6144-187-0 



Eindhoven Universit of Technola Research Re arts ISSN 0167-9708 
Coden: TEUEDE acu ty a ectrlca nglneerlng 

(188) Jozwiak, J. 
TRE FuLL DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE STATE AND OUTPUT 
BEHAVIOUR REALIZATION. 
CUT Report 88-E-188. 1988. IS8N 90-6144-188-9 

J. 
for wafer yield analysis. 

-E-189. 1988. ISBN 90-6144-189-7 

(190) Siuzdak, J. 
OPTICAL COUPLERS FOR COHERENT OPTICAL PHASE DIVERSITY SYSTEMS. 
EUT Report 8B-E-190. l'B8. ISBN 90-6144-190-0 

(191) Bastiaans, M.J. 
LOCAL-FREQUENCY DESCRIPTION OF OPTICAL SIGNALS AND SYSTEMS. 
EUT Report 88-E-191. 1988. ISBN 90-6144-191-9 

(192) Worm, S.C.J. 
AiMULTI-FREQUENCY ANTENNA SYSTEM FOR PROPAGATION EXPERIMENTS WITH THE 
OLYMPUS SATELLITE. 

( 193) 

EUT Report 88-E-192. 1988. ISBN 90-6144-192-7 

Kersten, W.F4J4 and G.A.P. Jacobs 
ANALOG AND DIGITAL SIMULATI~LINE-ENERGIZING OVERVOLTAGES AND COMPARISON 
WITH MEASUREMENTS IN A 400 kV NETWORK. 
EUT Report 88-E-193. 1988. ISBN 90-6144-193-5 

(194) Hosselet, L.M.L.F. 

(195 ) 

( 196) 

MARTINUS VAN MAftUM: A Dutch scientist in a revolutionary time. 
EUT Report 88-E-194. 1988. ISBN 90-6144-194-3 

Bondarev, V.N. 
ON SYSTEM IDENTIFICATION USING PULSE-FREQUENCY MODULATED SIGNALS. 
fUT Report 88-E-195. 1988. ISBN 90-6144-195-1 

Liu Wen-Jiang, Zhu Yu-Cai and Cai Da-Wei 
MOITEL BUILDING fOR AN INGOT HEATTNG PROCESS: Physical modelling approach and 
identification approach. 
fUT Report 8B-E-196. 1988. ISBN 90-6144-196-X 


	Summary
	Contents
	Notational conventions
	1. Introduction
	2. Consequences of (in)correct modelling
	2.1 The least squares estimator
	2.2 Performance measures
	2.3 The process is in the model set
	2.4 The process is not in the model set
	2.5 Evaluation
	3. Criteria for selecting an "optimal" model structure
	3.1 Notation
	3.2 Model structure selection
	3.3 Hypothesis arguments
	3.4 Prediction arguments
	3.5 Information theoretic arguments
	3.6 Bayesian arguments
	3.7 Cross-validation arguments
	3.8 Stein rule arguments
	4. Evaluation of selection criteria
	4.1 Asymptotic properties
	4.2 F-test interpretation
	4.3 The parameter space
	4.4 Ordered-nonordered parameter reduction
	5. Biased estimators
	5.1 Canonical forms
	5.2 James Stein estimators
	5.3 Principal component selection
	5.4 Ridge regression
	6. Conclusions
	7. References
	Appendix A
	Appendix B
	Appendix C
	Appendix D

