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SUMMARY

The Llinear regression model is one of the most frequently used model in
statistics and there are applications of it in many different areas. In the
field of system identification this model is often used for impulse
response estimation. If the length of the actual impulse response is known
the corresponding least squares estimator is known to be a minimum variance
unbiased estimator. However, this is usually not the case and therefore it
is more common than rare that the wrong model structure is used. In this
report the consequences of (in)correct modelling will be studied. It will
be shown that the estimates can be improved if a smaller model structure is
chosen. Furthermore some criteria wWwill be given which can be used for the
selection of a model structure.

The asymptotic behaviour and sampling properties of these c¢riteria will be
studied in the case that the best out of two model structures (the true
model and a predefined smaller model structure) has to be chosen. It will
be shown that some criteria are asymptotically equivalent or will
asymptotically choose the right model structure. Furthermore it will be
shown that the risk involved with these criteria yield a range in the
parameter space where it is smaller than the risk of the least squares
estimator in the true model and a range where it 1is greater. AS an
exception to this rule a selection procedure will be given which is based
on the James-Stein estimator.

In this report some other selection procedure will be given which is
designed to improve the mean square error of estimating the impulse
repsonse. However, simitations will indicate that it is not superior to a
common used similar model selection criterion.

Besides model structure selection some other ways are briefly investigated
te improve the least squares estimator in the true model structure. Among
them are principal component selection and ridge regression. Unfertunately
they improve the least squares estimator only for a limited range in the
parameter space, However, a class of biased estimators will be given,
which wWill, under certain conditions, be uniformely better than the least
squares estimator.
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NOTATIONAL CONVENTIONS

OPERATORS

arg min f{z) :value of z that minimizes f{2)

z
cov(z) tcovariance matrix of random vector z
plim :probability limit
E{ :expectation
tr{ A } :trace (sum of diagonal elements) of the matrix A
Al :transpose of matrix A
At rinverse of matrix A
At sea'ay ta!
1z} znorm of a vector = Jz'z

SYNBOLS USED IM TEXT

d :dimension of the largest to be considered model structure
d,. :dimension of the true model structure

e ivector of process disturbances (except in section 3.7.2)
1 :1dentity matrix (except in section 3.7.2)

L{ ) :Loss function

LHC ) :Likelihood function

M :model structure

MSE( ):Mean Square Error function

n :number of output samples

p :dimension of the current model structure

p{ ) :{joint) probability density function

p{ | Ytconditional {joint) probability density function
RM( ) :Risk Matrix function

sf ishrinkage factor

u tknown design matrix

W :vector of model residuals

X :vector of undisturbed output samples

Yy tvector of disturbed cutput samples

4 :transformed U, used in canonical forms

ttransformed 8, used in canonical forms
svector of process parameters
tvector used to parametrize models

: :variance of process disturbances

Q &= O ™

. tused to indicate that this is an estimator
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1. INTRODUCTION

The linear regression model is one of the most frequently used medels in
statistics and there are applications of it in many different areas. In
matrix notation the model can be expressed as:

y=Ug+w 1.1

where,
y: n-vector of observable random variables
U: known matrix of dimension n*d
¥: p-vector of unknown regression coefficients
n-vector of unknown random variables
(disturbances)

In the field of system identification the linear regression model is often
used for impulse response estimation. The model is especially usefull when
there is no prior information about a relationship between the markov
parameters. Let the input-cutput behaviour of a process be given by :

d.-1
ylky= Z h{ijuCk-i) + e(k) (1.2)
i=0
here,

y(k): disturbed output

u{k): undisturbed input

e{k): disturbance

h : impulse response

d : length of (correct) impulse response

Then, given the data set { y(1),..,¥{n),u(2-p),..,u(n) ) of measured input-
output samples, we can write the input-output relation of the process in
the following form :

y(1) u(1) u(z-p) e(1)
. h{0) .
. - u(l) . .
. = . . . + . €1.3)
u{n-p+1) . hip-1) .
y(n) uin) uln-p+1) e(n}
y = U8 + e
Y:x#e

So we see that U is filled with the input samples and becomes a Toeplitz
matrix. It is assumed that there are encugh output samples (n 2 d.). The
input signal is supposed to be sufficiently rich, so that U has full rank.
The vector y consists of the output samples and €& becomes the unknown
impulse response., The n-vector x denotes the undisturbed output.

Throughout this report it is assumed that the disturbances e; are



independent, have zero mean, have variance ¢! and are normally distributed
(for some definitions see eppendix AY. Thus,

e: € N(O,o1) (1.4)

i
so,
e € N(D,a%1) (1.5
y € N{Ue,g?l ) (1.6
Here I, denotes an identity matrix of dimension n*n.

n

The objective is to use this linear regression model (1.1) to estimate the
impulse response €. One wusually estimates this impulse response by
minimizing the difference between the measured output y and the estimated
output x. This results in an estimator of the following form:

h ] -1, +
8= (UUL) 'uy=1Uy (1.7)

When the length of the actual impulse response is known this estimator is a
minimum variance unbiased estimator of 8. But in practice the length of the
impulse response is unknown, in fact it may be infinite. In such situations
we are forced to estimate the dimension of the model. Then we are usually
dealing with an incorrect model.

The aim of this study is to investigate what the consequences of incorrect
modelling are and to evaluate criteria for selecting & model. Furthermore |
will briefly mention some ways to improve the Least square estimator. Then
it is assumed that the process is in the model set.



2. CONSEQUENCES OF (IN)CORRECT MODELLING

In this chapter I will introduce the least squares estimator, define some
functions that are going to be used to measure the performance of an
estimator and discuss the properties of the least squares estimator when
the process is (in)correctly modeiled. The properties that will be derived
are dependent on the assumption that the model 1is selected without
reference to the actual data. However, since this is normally not the case
the results should be used with caution. I will return to this point Llater.

2.1 THE LEAST SQUARES ESTIMATOR

As already mentioned, the objective is to obtain an estimation of the
unknown markov parameters., Throughout this chapter we restrict ourselves to
the estimator of © that minimizes the residual sum of sgquares (RSS):

RSS= (y-x)' (y-x) (2.1)
Here ; denotes the estimated undisturbed output x ( §=Ué Y. Thus given the
model y=U%+w, where & is left ss a variable and w is the corresponding
vector of rcesiduals (so RSS=w'w), minimizing of RSS results {in the
optimizing condition:

§RSS 7 ¢ = 2(u'we-2u'y = 0 2.2)
When U has full rank this teads to the optimizing vector,

- [ =1, +

8 =(Uu)y Uy-=1Uy (2.3
We call the estimator given in (2.3) the least squares estimator of 8 (

under the loss function RSS).

2:2 PERFORNANCE MEASURES

I¥f one has some estimate of O, say é, it is desirabte to know how good
that estimator is. I will now discuss the form of functions that are to be
used in evalusting the performance of an estimator. Although there are
many alternatives, ! wWill only discuss the mean sguare errer (MSE)
function and the risk matrix (RM).

First of all I will discuss the mean square errar function for measuring
the distance between the actual impulse response and the estimated impulse
response.

Let the squared difference between & and & be denoted as L(B).

Thus;

L(e) = (8-8)'(0-0) (2.4)
Then the corresponding mean square error function is

T

MSE{@®)=E{ L(B) 3 (2.5)



Rewrite MSE(O) as,
MSE(®)= (E{@)-0) (E{0)-8) + E{ (©-E{08)) (0-E(0)) )} (2.6)

Thus uwe see that this loss function consists of a bias part (first term)
and a varisnce part {(second term).

Sometimes, for example when prediction is the objective, it is desirable to
measure the performance of an estimator by loocking how well the undisturbed
output x has been estimated. In that case the MSE function will be defined
as follows.

Let the squared difference between i and x be denoted as L(x).

Thus:

LO) = (eex) ' (x-x) (2.7)
Then the corresponding mean square error function is,

MSE(x) = E { L{x}) ) (2.8)

Similar to (2.6) we can split this function into a bias part and a
variance part.

To establish a relation between (2.5) and (2.8) let us consider the risk
matrix of the estimator 8.

RM(8) = E{ (8-8)(8-8) ) (2.9)
Then it can be seen that,

MSE(8)

tr{ RM(®) 3} (2.10)

MSECX) = tr{ U*RM(®)*L' } z.11)

Suppose that there are two estimators 8, and 8, of 8. Then we say that for
a given performance measure 8, is a better estimator than 8 when the
following condition holds,

a: for MSE(8) if MSE(8,8,) < MSE(8,0,) (2.12)
b: for MSE(x) if MSE(x,X,) < MSE(X,x) (2.13)
c: for RM(B) if RM(8,8,)-RH(8,8,) is positive (2.14)

semidefinite (p.s.d) and nonzero.

1t is easy to see that if condition (2.14) is true, then conditions (2.12)
and (2.13) are also true (because of (2.10) and (2.11)). But the reverse
doesn't hold. 1If condition (2.12) andfor (2.13) are true, the conditicn
(2.14) doesn't have to be true. Thus the condition (2.14) is much more
severe than condition (2.12) and (2.13).



2.3 THE PROCESS 1S IN THE MODEL SET

I will now discuss some properties of the least squares estimator when the
process is in the model set. Suppose that the length of the actual impulse
response s dC (the supcript ¢ stands for correct). Let the length of the
impulse response in the model be equal to p where p 2 d
Write,

cr Then we can

process y = UyB.+e = UB+U.@.+e Wwith 8.=0 (2.15)
model 1Y Ugdetw Ud+U & +w

here,

Ug=(U UL) is an n*p matrix

U = n*d, matrix

U= n*(p-d.) matrix

0y = (& er')‘ and #¢= (&' ﬁr')‘ are p-vectors

@ and & are d_-vectors

er=g and #. are (p-d.)-vectors
Since 0 is not known we leave it in the model as a variable (#¢). Then w
is the corresponding n-vector of residuals.

CASE { p=d. }:

First, let us assume that p=d. so ©;=®. Because the process is in the
model set and we assumed to know the exact probability density function of
e, We can derive the maximum likelihood estimator (MLE) of @&.

Because,
y € N(Us,o*1.)
we can write the probability of obtaining the observed vector y as,
-nf2 1
pi{y;0,01)=(270%) exp { -(y-U®8) (y-ue)/20% > (2.16)

Because 8 is unknown we leave it as a variable (%). Then we obtain the
likelihood function LH(#|y) for ©,

LHCE|y)= ply; &) 2.17)

To obtain the maximum Llikelihood estimator of ©® we have to optimize
L(#|y). This results in:

-1 +
OnL = arg max LH(#|y) = (U'U) W'y = Uy (2.18)

¥

Thus We see that the MLE of © is equal to the least squares estimator of &
{under the Lloss function Ly). Because the process is in the model set the
following properties of the LSE ® = U’y can be derived:



10

PROPERTIES
a: unbiased, E( e )= e (2.19)
b: cov(®) = E{ (8-EC © I)(8-EC 6 3} ) = arqu'u)”] (2.20)
c: minimum variance unbiased estimator (2.21)
(see Arnotd 'a1)
d: é € N(e,a'(U'U)°1) because é is a Linear combination (2.22)

of y and (a) and (b) hold.

Thus our performance measures become

e: MSE(8) = attef (V'UY 1 ) (2.23)
f: MSEC(x) = arerC UCu'uy 0" 3 = ard, (2.26)
g: RM(8) = gr(u'uy”] (2.25)

In the derivation of the maximum likelihocod estimator of & we assumed that
the variance of the noise o? was known. In practice, this is usually not
the case. Then we have to estimate ¢2. The likelihood function (LH) for @
and ¢ can be written as:

LHC®,0% |y)=p(y;¢,8") £2.26)

Here 6 and clare left as variables & and 2!. To find the maximum
liketihood estimator of @ and o? we have to optimize (2.26).Thus,

©,5° = arg max LH(¥,07|y) (2.27)
8,9

This Leads to the optimizing estimators:

. . ; . ..
& =Uy and & = (y-x) ty-x)/n = e'e/n (2.28)

The with the estimator e corresponding residuals will be denoted as e. Thus
the estimate of 8 remains the same. The estimate of 0! can be written as,

+
gt = |tI,-uuay|i/n 2.29)

Here |x|* is defined as x'x. Then we see that &! is a biased estimate of
o? because,

m
-~
o
-
ol
1

+
EC Jyl® - Juu y)* 3/n

+
EC {y]* ¥/n - EC Juu y]t 3/n

gi(n-d_3/n (2.30)
Consider now the following estimate of ¢?,

+
ot = &'n/(n-d ¥ =}l -00 dy]?/(n-d) (2.31)

This estimator has the following properties,
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a: unbiased (see (2.30) and (2.31)) (2.32)

b: minimum variance unbiased estimator (2.33)
(see Arnold '81)

c: ¢ and @ are independent, hecause (2.34)

e=(In—UU+)y and é=U+y are normally distributed

with covariance EC (w-ECW))(8-ECO)' 3 = 0 4

Let P=(xn-uu*). Because P is a orthogonal projector on the null space of
u', it has (n-d_.) eigenvalues which are one and d. eigenvalues which are
zero. Therefore e'Pe can be written as e'V'TVe, where V is an n*n
orthonormal matrix and T is an n*n diagonal matrix whose diagonal elements
are the eigenvalues of P. If we rewrite e'v'TVe as r'Tr, where r ¢
H(0,o'l_), it can be seen that {n-d_)o?/fo! is distributed as a Chi?-
distribution (for some distributions see appendix A) with {n-d_) degrees of
freedom, thus

(n-d )at/a? € Chit(n-d,) (2.35)

CASE { p > d. J:

Sofar we discussed the case when the length of the actual impulse response
was known. Let us now discuss what happens when the model is chasen tao
large, thus n > p > d In that case our estimator of ©; = (&' 8. ')
becomes,

e

8¢ = Wil Tupy (2.36)
This estimator has the following properties,

PROPERTIES

a: unbiased, E{ éf } = 8 (2.37)
b: cov(éf> = a*(Uf'Uf)'1 2.38)
c: éf € N(Bf,a’(ufluf)'1) ,because of (a) & (b) (2.39)
d: MSECB) = o' trd (Ug' U 2 (2.40)
e: MSE(x) = oip (2.41)
f: RM(85) = o2 qus'up)”] (2.42)

However, this estimator is no longer a minimum variance estimator, because
if we compare the covariance matrix of the estimator

8¢ = C (Uty)' 0 ) (2.43)

given by,
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-t
gt(u U 0
d.,p-d
c'P % (2.44)

0 0
p-d.,d. p-d.,p-d.

(see previous section), with the covariance matrix of 6; as given in
(2.39), We see that the difference between these two matrices,

) ) wruoswtun' -wtue
cov(Bs)-cov(Bg) = a? (2.45)
-seutu )’ B

1 (see appendix B)

. _ ] + -

with B=(U. (1,-UU JU)

is at Lleast positive semidefinite, since B is assumed to be positive
definite (Ug has full rank).

The estimator of o (see (2.31)) where U and d. are replaced by Us and p is
in this larger model stiil unbiased and independent of @;, but alsc in this
case it is no longer a minimum variance estimator because of reasons
similar to (2.45).

2.4 THE PROCESS IS NOT IN _THE MODEL SET

In the previous section we discussed the situation that the process is in
the model set. Let us now assume that the process is not in the model set.
Thus we assume that the dimension of the model is chosen too small. Then we
QEt r

process y= U 0,+U;0,+e = Udte (2.46)
model y= Ugdqg+n = UgdgtUsstw = Ul+u so #53=0

Here we assume that:

YU=(U, Up) is an n*d, matrix
Yy is an n*p matrix
Uy is an n*{d.-p) matrix

8=(6,' 8,')" and #=(#;' #,')' are d-vectors
8¢ and &, are p-vectors
8, and #5=0 are {d_ -p)-vectors

Although one may argue about the type of estimator to use in this
situation, we take the least squares estimator as an estimate of 8,, since
we are investigating the consequences of incorrect modelling when using
this estimator, thus,

= (wlu.yt

[ + -

so,
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@ = (8 0 ) (2.48)

Then the following properties can be derived:

PROPERTIES
. + .

a: biased, E(e1)= 91+U1U292 E(ez)= Q (2-‘9)

b: coviBq)= o7 (Ut (2.50)

1

- + -
Cr By € N(B +UqU,85, 01 (UqU)" ) (2.51)

Thus our performance measures become now,

d: MSE(®) = |8,]t + [UjU,8,]7 + ortrC (WiupT! ) (2.52)
+
e: MSE(x) = [(1,-Uquqdus8s]2 + o?p (2.53)
f:
] _1 + + N + N
01(U1 U1) +(U1U292)(U1U292> 'U1U29292
RH(8)= (2.54)

+ 1 '
'92(“10292) 9292

(see appendix B)

He will now investigate the effect of the too small model on the estimate
of 7. Suppose ¢? is estimated with the estimator given in (2.31), where U
and d, are replaced by Uy and p. Then, in our incorrect model o is
estimated by,

- +
gt = 1(ln-U1U1)y|! / (n-p) (2.55)
But because,

- +
EC o 3 = |(I,-UquqdUp85F° /in-p) + a? (2.56)

we see that this estimator is normailly upwards biased.

2.5 EVALUATION

In the previous sections we considered the consequences of (in)correct
modelling. The aim of this section is to evaluate these consequences.

Suppose our estimated model is too large. As we saw in (2.46), the
difference between the covariance matrices of the too large model and the
correct model is positive semidefinite (and is non zero). Thus, although
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too big a model set leads to unbiased estimates, one pays with greater
variance. Consequently, since in this case the risk matrices are equivalent
with the covariance matrices, our three performance measures (2.5) (2.8)
and (2.9) will prefer the estimators from the correct model.

Let us now suppose that the chosen mode{ is too smatli. If we compare the
estimate of €& in the too small model (®) with the estimate of 8 in the
cerrect model (8 = Uy ) we can see that the difference between the risk
matrices of both models is given by,

+ + +
) ) UyUa€07B-0505)(UqUy) ' ~UjUp{o?B-08,85)
RM(8,0) - RM(8,0) = (2.57)
1
-(01B-9,85) (VU (018-8,0;)

+ - .
with B=(Uj(1,-UqU1IU5) V' (see appendix B)
Kere we see that uwhen,
(01B-9,05) is p.d., (2.58)

thus when the covariance matrix of estimating 6, in the correct model
minus the bias matrix of 83 is p.d., the difference between the risk
matrices is at least p.s.d.(see appendix B). The condition (2.58) is
equivalent to,

(018-0,05) is p.d. <==> 838 e, / ot < 1 €2.59)
(see appendix B)

1f condition (2.59) is true, it means that our three performance measures
indicate that wWe can get a better estimate in the incorrect model
structure. But even when (2.59) doesn't hold our estimates can become
better in the incorrect model structure according to the mean square error
functions if,

MSE(®,8) - MSE(®,8) =

1

Jes )t + |u;u292|= vorC tre (U Y yerrc T 2y <0 (2.60)

or,

HSE(x,;) - MSE(x,;)

+
I(In'U-lUll)UzezI! + Uz(p'dc) < 0 (2.61)
From these evaluations we can conclude that too large a model atways gives
worse estimates because of the increasing variance, but too small a wmodel
can give better estimates when the introduced bias is smaller than the

ammount of decreasing variance.

Qur primary goal was to get a good estimate of the impulse response
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according to a particular performance measure. Thus, ei{though the tength of
the sctual impulse response may be known, it may be better to choose a
smaller model. In that case we define the best model as the model that
minimizes:

MSE(E) 1 [op]t + JUiUney]t + ottrc (Uiup Tl (2.62)
MSE(x) : |<1n-u1u:>uzez|r + op (2.63)
1¥f the performance measure is the risk matrix, it is more difficult to
define a best model. Therefore we will define a set of 'good' models rather
than a best model. This set is defined as follows,
Let dmax be the dimension of the modet with,
RM(S,ép)-RM(e,édmax) is p.s.d. and non zero for p > dmax
Let dmin be the dimension of the model with,
RH(e,ép)-RM(e,édmin) is p.s.d. and non zero for p < dmin
Where ép édmax and édmin are the estimates of ® as given in (2.48) in the

model with dimension p, dmax and dmin. Then the set of 'good' models is
defined as the set of models with dimension dmin 2 p £ dmax.

Since we wused the least square estimator to estimate 6y, all above
"optimal modeis" are confined to the class of least square estimates.

In order to find the best model we have to cope with the fact that the
actual impulse response is unknown. Logically, because that is what we
wanted to estimate. Thus we are forced to consider estimates of the
dimension of the model. In the next chapters I will discuss some criteria
that have been proposed for finding an 'optimat model"‘.
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3. CRITERIA FOR SELECTING AN ‘OPTIMAL' MODEL STRUCTURE

in this chapter 1 will present a review of criteria that have been
proposed for selecting the dimension of a linear regression model,

3.1 MOTATION

Throughout this chapter we consider a set of possible model structures.
This set consists of models with increasing dimension. Let the highest
dimension to be considered be d. Then there are d+1 possible models which
vary in dimension from 0 to d. Furthermore it is assumed that the length of
the actual impulse response (d_.) is smaller than d. Let the dimension of
the varying model be denoted as p, then we write,

process: y=UB+e=U0,+U385+e where elements of
e, may be zero (3.1

. + .
modet : ysUq fq+u with 8y = Uqy and e =(In'u1u;)y
where
Us=(uq Uy is an n*d matrix
Uy is an n*p matrix
U, is an n*(d-p) matix
o=(8," 92')' is a8 d-vector

8, is a p-vector
=P is a (d-p) vector

Let the residual sum of squares (RSSp) in the model with dimension p be
defined as,
- - - - +
RSSp = e'e = (y-x) (y-x) = |(I,-UqUu¥]" (3.2)

Since in practice ot is usually not known, ! will define & different
estimates of ¢ when working with a model of dimension p.

8: a’(p) = RSSp/{n-p) (3.3)
b: of(p) = RSSp/n (3.4)
c: ot(d) = RSSd/(n-d) (3.5)
d: o'(d) = RSSd/n (3.6)

ALl these estimators and é1 are independent (see 2.364). The estimators (b}
and (d) are the MLE estimates of o! when the dimension of the model is
respectively p and d, provided that d 2 p >d,. The estimators (a) and (c¢)
are the corrected estimates of ¢? (see 2.31) in the model of dimension p
and d. As we already saw the estimator (a) is usually upwards biased for p
< d. (see 2.47).
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3.2 MODEL STRUCTURE SELECTION

In the field of system identification it is very popular to perform a
whiteness test of the residuals or to look at the behavieur of the
residuals Lloss function in order to select a model structure. These
methods can be decribed as subjective ones because the outcome of these
methods highly depend on the interpretation of a particutar plet, For
example, in case of linear regression models a frequently used plot is the
plet of R; versus p. Here RB is the squared multiple correleation
coefficient and it is defined as,

RE = 1 - RSSp/(y'Y) (3.7)
This plot may yield a locus of maximum R! which remains quite flat as p is
decreased and then turns sharply downward. The value of p at which this
‘knee' is, is used to indicate the dimension of the selected model.
Unfortunally this knee isn*t so c¢lear when the signal to noise ratio is
bad. Then it becomes very difficult to determine an ‘'optimal' model.
Another 'subjective' method is the plot of the residual mean square (RMSp)
versus p, where

RMSp=  RSSp/(n-p) = @*(p) (3.8)

As we saW in the previous chapter the expectation of RMSp s egual to o?
when the process is in the model set. If not, it is usually biased
upwards. When interpretating this plot the choice of p is based on (see
Hocking '76):

a: minimum RMSp
the value of p such that RMSp = RSSd

c: the value of p where the RMSp increases sharply
for further reduction of p

An unfortunate aspect of these two measures 1s that they do not consider
the gain of improved estimation when using an incorrect medel.

In the remainder of this chapter I will only discuss procedures for
selecting the dimension of a Llinear regression model which vyield a
solution that 1is free from interpretation. This means that the model
structure is chosen that optimizes a particular criterion.

In the last two decades, many criteria have been proposed for medel
structure selection (for good reviews see Hocking '76, Thompsen '78,
Amemiya '80, Judge et al. 'B0). The aim of this chapter is to summarize
some of these criteria to have some guidelines for deciding where to cut
off the tail of an impulse response.

Most of the selection procedures to be discussed have a very different
background. There are criteria which are designed on hypothesis arguments,
on prediction arguments, information theoretic arguments, bayesian
arguments, cross-validation arguments or on Stein arguments. In the
following I will discuss each of these arguments.
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3.3 HYPOTHESIS ARGUMENTS

3.3.1 CONFIDEMCE INTERVALS

As we already saw in chapter 2, the following holds for the full model.
y £ N(Ue,a'ln)
8 € N(B, ot Uy )

(n-d)o*(d)/a? ¢ Chiz{n-d) (3.92)

Thus we see that,
(6-8) ' (U'U)(8-8)/07 € Chil(d) (3.9b)

because ¢! is unknown and we estimate it Wwith RSSd/{n-d}. Since RSSd/(n-d)
and & are independent, we get from the ratio of 3.%a and 3.9b,

(6-8)' (u'U)(8-8)/dat(d) ¢ F (d,n-d) (3.10)
where F (d,n-d) denotes a F-distribution with d and n-d degrees of freedom

(see appendix A).

Suppose we estimate the markov parameters from the full model. If we are
only interested in the last (d-p) parameters, Wwe can see that,

(85705 (U U5)(8,-8,)/((d-proi(d)) € F (d-p,n-d) (3.11)
it is now possible to derive a 100(1-a)% joint confidence region for 65,
This region is defined as the region in which 85 lies with probability
100¢(1-a)¥%. Because of (3.11) we see that a 100(1-a}% confidence region of
8, ( R(83) ) can be defined as,

R(B,) = € 03 | (85-0,) (UpUp)(8,-853/((d-pYat(d)) < F% (d-p,n-d) )

(3.12)
here FY (d-p,n-d) is the solution of

P( x < F® {(d-p,n-d) } = 1-a (3.13)

X € F (d-p,n-d}

It is not difficult to construct a joint confidence region for 2
parameters, but {if the number of parameters exceeds 2 the problem is
somewhat harder to solve.

3.3.2 HYPOTHESIS TESTING

Let us assume that we estimate the parameters in the full model and we
wish to test if ©85=0, so that a smaller model structure can be used to
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estimate ©. Thus we have the following hypothesis,
HO 8,=0
H1 8,<>0
In hypothesis testing we assume that the null hypothesis (HO0) is true
unless there is a convincing evidence that the hypothesis H1 is true. We
should like to make a decision between HO and H1 such that the risk of

rejecting HD when it is true is less than a certain number a.

A commonly used test in system identification ( see S&derstrdm '77) is the
F-test, Suppose that HO is true, thus 85=0. Then we see wWith,

+ *
RSSp-RSSA=] (I -U U dy|?-]C1,-0U Dy]?
+ +
=fuu yi? -yl
+
=|aa"y|? (3.14)
with A=(1,-UqU)U, (see appendix A)
that (RSSp-RSSd)/o? is distributed as,
(RSSp-RSSd)/o? € Chit(d-p} (3.15)
And because RSSp-RSSd and RSSd are independent we see that,
(RSSp-RSSA)/((d-plat(d)) € F (d-p,n-d) (3.16)
Wwhen HO is not true this expression is distributed as a noncentral F
distribution. In this F-test we accept HO and thus take the smaller modei
structure to estimate 8 if,
(RSSp-R$Sd)/((d-prot(d)) < F¥ (d-p,n-d)
or eguivalently,
+* -
[AA y]® 7 ((d-prai(d) < % (d-p,n-d) (3.17)

This test is called a partial F-test, because it measures the contribution
of regressor ©, given that the other regressor 8y is in the model set.

In the previous section we defined the joint confidence region of 8, when
we estimated @ in the full model. Testing if o, could be set to zero by
looking if the null-veceor belongs to the joint confidence region of 8 can
reduce the number of parameters, however, @, would still be estimated in
the full model. To establish a relation between the partial F-test and the
joint confidence region, let us consider the following. A necessary
condition for ©,=0 to belong to this region is (see 3.12),

8, € R(83) if  8,UsUx8, / ((d-ploitd)) < F% (d-p,n-d)  (3.18)
and thus if,

+ .
Claa yl? + Juguiusa’y]? 3 7 (td-pot(d)y < F® d-p,n-d (3.19)
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because, . R R
CHuza |2 3 = € [CI-uquDULA vt + JUqUTULA v)? 3 (3.20)

This means that wWhen 8,=0 belongs to the joint confidence region of 85 the
condition (3.17) holds and thus HO is accepted. But the reverse is hot
true. 1f HO is accepted according to condition (3.17) it does not have to
meah that 85 belongs to this joint confidence region. This is only true is
when U is orthogonal.

How can wWe use this partial F-~test in the selection of a model. A
possibility is to take the smallest value of p as the final dimension of
the model for which the test (3.17) holds. Thus we have to determine the
largest dimension of the vector &, for which the partial F-test gives
satisfactory results.

An impoertant problem with hypothesis testing is that a value for a has to
be chosen. A small a causes many parameters to be deleted from the full
model. A large a causes many parameters to be included. The most widely
used value of a is S-10%.

3.4 PREDICTION ARGUMENTS
3.4.1 MWALLOWS® Cp

Let us suppose that our main concern is to get a good prediction of future
responses. Considers the prediction of future responses from the same
design matrix U as is used in the estimation. As a measure of the goodness
of this prediction consider the mean square error of prediction {(MSEP).

MSEP(vp)= E{ (yp-xp) (yp-xp) ¥ (3.21)
here yp denotes the vector of real future responses, ip denctes the vector
of estimated future responses. Because we consider prediction from our
current matrix U we can Write,

xp=x

and thus MSEP can be written as,

MSEP(yp) = EC (x-x)'(x-x) )} + no?

MSE(x) + no? (3.22)

Thus minimization of MSEP means in this case that we would Llike to
minimize MSE(Xx). As wWe already saw in (2.53) we can write MSE{x) as,

+
MSE(x) = JCI,-UqUqdU85]F + po? (3.23)
Consider now the expectation of the residuals sum of squares.
+*
EC RSSp ) = [(1,-UqU )U585]% + (n-plo? (3.246)

As an estimate of MSE(x)/o? Mallows ('73) considered the following
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function,

Cp = RSSp/a? + 2p-n (3.25)

Here &' is some estimate of o!. The most practible estimates of o7 are
;=(d) and ;'(d). When &'=&‘(d) Cp is an unbiased estimate of (3.23). S¢ the
model structure that minimizes Cp should be chosen. Mallows pointed out
that it is better to inspect a plot of Cp versus p than blindly choose the
model that minimizes Cp. Models leading to smaller Cp are prefered, but
points close to the line Cp=z=p are likely to be for models with a small
biaes. In view of our performance measures we see that this model selection
procedure is clearly an procedure that 1is designed to improve the
performance measure MSE(x).

3.4.2 AMENIYA'S PC

Amemiya ('80) also considered the problem of improving prediction. Suppose
we have a vector of future input samples u; and we want to_predict the
response to this input sequence. HWith the predictor xp=uf'e1, the mean
square error function of prediction can be written as,

EC (yg-xpd? ) = o2 [1+ugUqup " Tugd + tugre-ugruiuere (3.26)

p

Where Ya is the actual future response. Amemeiya suggested that one should
take further expectations of (3.26) regarding ug as the random variable
that satisfies,

EC upug' 3 = u'u/n (3.27)
Then we obtain,

EC (ya Xp)? 3 = U -UqUIUL8,]t/n +a (14p/m) (3.28)
Given this risk function he considered two criteria based on different
decision strategies. The first one he called the Prediction Criterion

(PCY. This criterion is obtained by replacing o? with its estimator ¢?(p)
and then minimizing the first term of (3.28) by putting it to zero. Thus,

PC= o2 (p)(1+p/n) = (1/n)*RSSp(1+2p/(n-p)) (3.29)

The second criterion is obtained by estimating the first term rather than
eliminating it. Because of relation (3.24) the first term can be estimated
with,

FCi,-uqudylt /n - ot(n-pi/n (3.30

When we substitute this in (3.28) the second criterion becomes,

RSSp/n + Z2po?/n (3.31)
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gecause we have to estimate ¢? we see that then g* is estimated with
o*(d} or oi(d) minimizing this criterion is equivalent wWith minimizing
Matlows Cp when the same estimator of o?! is used. However when g? is

estimated with o!'(p) wWwe see that this second criterion becomes exactly
PC.

Amemiya pointed out that his PC can be used as a selection critericn
either in Llinear regression models with the error term having a general
variance-covariance matrix or in the nontinear regression model.

3.4.3 THE FINAL.PREDICTIOI ERROR (FPE) CRITERION

In '69 Akaike introduced a procedure for fitting autoregressive models for
prediction. Akaike suggested to take the model which minimizes the FPE,
which is defined as follows,

FPE = V(8)( (n+#par)/(n-#par) ) (3.32)

here #par is the number of free parameters and V(8) is the residuals sum of
squares, This criterion reflects the prediction-error varjance that one
will obtain, on the average, when the model is applied as a predictor to
other datasets than those used for the identification. Although it was
originally designed for autoregressive model it has become a popular method
even in non autoregressive models. When we wuse thisz method in a linear
regression model we have,

FPEp = RSSp{ (n+p)/(n-p)} > = RSSp{ 1+2p/{n-p) } (3.33)

Thus we see that this method is equivalent with Amemiya's PC, besides a
factor 1/n.

3.5 INFORMATION THEORETIC ARGUMENTS

3.5.1 AKAIKE'S INFORMATEON THEORETIC CRITERION

Let us consider the general process where the probability of obtaining the
vector of observed output samples is given by, p(y;@). Here & denotes Ehe
unknown parameters of the process. Let us consider a set of estimates 9's
of the vector of parameters 6. The objective is to estimate & in such a way
that the a posteriori probabiltity density function (PDF) p(y:é) is as close
as possible to the real PDF. As a measure of agreement between the real PDf
and the estimated PDF consider the following function,

1(8,8) = E{ -tn{ p(y;0)/ply;@) } ¥ =

- j ply;®) tn ( p(y:é)/p(v:e) } dy (3.34)
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Here the expectation is taken with respect to y. We consider é as given and
thus independent of y. So (3.34) is in fact the a prieri expectation.
1(9,5) is called the Kullback-Leibler information distance and it has the
following properties,

a: I(G,é)

w

0 (3.35)
b: 1¢(8,8) = 0 if and only if 8=6 (3.36)

For an enhanced list of properties see Ponomarenkeo '81 _.Since there are
only n independent realizations Yi (i=1..n) available, the sample mean of
the log likelihood ratio is used to estimate [(8,8), thus

n
1(8,8) = - 1/n I In{ ply;;8)/p(y;;6) ) (3.37)
i=1

This is a consistent estimate of 1(8,8). If the objective is to minimize
(3.37) we see that this can be realized without knowing the true value of
8, giving the well known maximum likelihood estimator of ©,

Akaike ('73) proposed to minimize,

EC 2%1(8,8) 3 (3.38)
Here the expectation js taken with respect to the distribution of 6. Thus,
here we assume that 8 is no lenger a constant but actually depends on vy,
and therefore has a distribution. In order to calculate this minimum he
derived the following criterion (for some easier derivation than the
original one see Amemiya '80)},

AIC = -2Ln{ p(y;8) } + 2#par (3.39)

Where #par is the number of unknown parameters. This criterion is called
Akaike's Information theoretic Criterion (AIC).

1f we project these derivations on our preoblem it can be seen (see
appendix C),

21(6,8) = (x-x) (x-x) fa? (3.40)
and thus,
E( 2%1(8,8) ) = MSE(x) /o? (3.41)
Since,
-n/2 ]
pl{y;8) = (270%) exp { -(y-U8) (y-uU8)/20? } (3.42)

we can see that,
AIC = n*Ln(273 + n*tn{o?d + |y-y|* / o + 2p (3.43)

Minimizing the third term oj the AIC (within our model structure) leads to
the lLleast square estimator &, of 8. So when o' is known this AIC leads to
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g? known,

min AIC = min { RSSp/e? + 2p ) (3.44)

so it is equal to minimizing Cp (with known e¢?). When ¢? is unknown we
must use the maximum ljkelihood estimation of ¢! in that model. This means
that we should take g?{p) as an estimate of ¢?. In that case the AIC
criterion becomes,

! unknown,

min AIC = min { n*ln{ a2(p) > + 2p } (3.45)

I1f we don't take the maximum likelihood estimation of ¢!, thus we don't
foliow the AIC exactly, but some other estimator (see 3.3-3.6) we get the
following criteria,

;'(p) min { n*ln{ ;‘(p) Y+ p ) (3.45)
o'(d) min { RSSp/ot(d) + 2p 3 (3.47)
@:(d) min ¢ RSSp/ai(d) + 2p 3 (3.48)

Here we see that in the last two cases the criteria become equivalent with
the Cp criterion if the same estimate of the noise would be used.

3.6 BAYESEAN ARGUMENTS

In the preceding chapters we assumed that there was no prior information
about the actual impulse reponse. In this chapter it is assumed that there
exist some prior density function about 6. Under this assumption, it is
possibte to derive a model selection procedure using a bayesian framework.
0f course, since these methods are based on heuristic arguments the only
justification for them is through performance in practice. | will discuss
now a general model selection procedure based on bayesian arguments.

In our Llinear regression mocdel we are searching for the best model
structure out of d possible model structures. Assume that there exists a
probability function for the model structure. Let the model structure with
the dimension p be denoted as M The probability of the model structure M
is denoted as,

P P

d
p(Mp) with Z p(M;) = 1 (3.49)

p=1

p

Furthermore we assume that the prior probability density function of the

parameters (€,) in the model structure M is given by,

p

p(e1|np) (3.50)
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Let,
plyley,Mp) (3.51)

denote the usual probability density function of y conditional on the

model structure "P with its parameters 8.

Then with the retations,

p(yal) I p(y|91,ﬂp)*p(61|ﬂp) d8, (3.52

¥
M O

TP p(ylMp)*p(Hp) (3.53)

it is possible to derive the probability of the model structure Mp
conditional on y. Because,

PCYIMG) = Py, Mg) / p(Mp) (3.54)
and

PCMLly) = ply,My) / pCy) (3.55)
we can see that,
d
p(Mply) = ply|Mp) * pMpg) / 21 p(y|Mp)*p(Mp) (3.56)
p:

When we substitute the measured vy, then (3.56) is the a posteriori
probability for Mp. Finding the "p for which this a posteriori probability
is maximal yields the Bayes solution to this problem. For this maximization
problem p(y) is a constant and can therefore be skipped from (3.56).

When we assume that each model structure has equal probability we can see
that maximizing of p(Mp|y) is equal to maximizing p(yIMp).

There are several model selection c¢riteria developed on this generat
selection procedure or on a variant of it. In the following I will discuss
only a feuw.

3.6.1 AKAIKE'S BAYESIAN INFORMATION CRITERION (BIC)

Akaike ('77) derived a criterion based on a mixture of c¢lassical and
bayesian arguments. His suggestion may be interpreted as follows (see
Amemiya *80). Assume that the prior density function of 8y is given by,

8, € NCO,T2(uqU 1) (3.57)
Thus the covariance matrix of the prior is except for a factor equal to
the covariance matrix of the least-squares estimate of 8. It is assumed
that all model structures have equal probability.

Thus because,

Ply|81.M5) = N(U 8y, 0t 1m) (3.58)
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we have that,
peyimy) = NCO, ot Insriugcuiuyy Tu)) (3.59)
Akaike suggested to estimate o' and r? by maximizing (3.59). Substituting

these estimates in (3.59) and taking minus two times the logarithm of it,
he obtained,

BIC = ¢(n-p)*InC [t -UquDdy]? 7 (n-p) 2

p*ing Juquiylt 7 p (3.60)

The model that minimizes this BIC shoold be chosen.

3.6.2 SCHWARZ CRITERION (SC)

Schuwarz ('78) studies the asymptotic behaviour of Bayes estimators under g
special class of prior distributions, Because of the asymptotic nature of
his derivation this prior distribution needs not be known exactly. In the
large-sample Limit, the leading term of the Bayes solution turns out to be
the maximum likelihood estimator. In order to select a model Schwar:
proposed to minimize the following criterion,

SC = -2ln LH(B|Y) + #Hpar*lnin} (3.61)

Here k is the number of free parameters and L(®|y) is the Liketihood
function for ©. Just as in the AIC we can get for our problem two different
criteria dependent on the fact if ¢ is known or not.

so,

g? known

min SC = min{ RSSp/fe? + p*ln{n) ) (3.62)

o! unknown

min SC = minC n*tn{ at(p) ) + p*lndn) ) (3.63)

When we compare this criterion with the AIC we see that this criterion is
more parsimonious i.e. it deletes more parameters from the full model than
the AIC does because tn{n) is usually grester than 2 (for n > 7).
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3.7 CROSS-VALIDATION ARGUMENTS

A very common way to validate the selection of a subset of regressors is to
coltect additional data and to look how well this subset performs. Because
it is not always possible to cotlect additional data, the current data set
could be split into two groups. One fer analysis (subset selection and
estimation) and one for validation, Based on this principle some criteria
have been proposed for subset selection.

3.7.1 ALLAN'S PREDICTIVE SUM OF SQUARES (PRESS)

Allan ('74) proposed a criterion that simulates cross-validation. Suppose
we are working with a model of dimension p. Let,

Uq(/3) = Uq matrix without the i-th row.

ul(i) = the i-th row of U,

y{(/i) = output vector without the i-th output
y(i) = i-th ocutput

Here we use all but the i-th output samples to predict the i-th response.
Let the predicted response be denoted as yp(i). Then we can write for a
least squares prediction,

yplid = wlci)*u,zid® ye/i) ¢3.64)
Allan proposed to “predict" each output sample using the other n-1

output samples. The resulting "“errors of prediction” are squared and
summed to form PRESS(p). Here p stands for the dimension of the model.

n
PRESS(p) = £ { y(i)- Yp(i) i? (3.65)
i=1
The proposed procedure is now to choose the model that minimizes PRESS.

At first sight the criterion seems very complicated. Fortunally it is
possible to rewrite it in a more easier form. It can be proved (see
appendix D) that PRESS(p) is equivalent with,

-2
= 1
PRESS{p) upr ¥p (3.66)
Where,
+
Wp = (I, - WUy
D, = the diagonal matrix whose diagonal elements are

those of (In-U1U¥)
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3.7.2. STOICA'S C1{(m) and C2(m)

In the previous PRESS criterion the validation set consisted each time of
one sample. S$Stoica et al. ('85) discussed some more general cross-
validation criteria. For the sake of convenience | will adapt some
notations used in that article.

Let the interval I={ 1..n ) be divided in k-1 intervals of length m and 1
interval which is smaller than 2m, where k is the largest integer not
greater than n/m. Then the intervals Iv can be defined as follows,

Iv { (v-1)m+1,..,vm 3 v

it
-
-
.
-
bl
[
-

(3.67)

Ik

C (k-1m+1,..,n 2 v = k (3.68)

Furthermore Llet the residuals as a function of the model parameters ¢ be
denoted as e(t,%#) where t stands for the t-th residual. Let,

€ = arg min V(#) V(E) = 1/n T e!(t,®) (3.69)
3 tel

Stoica et al. assumed the following conditions to hold,

A1, e(t,®) is sufficiently smooth (sc its derivatives with
respect to § exist and are finite)

A2. Vaa(8) = 82 V(8) / 68" |  is positive definite
$=0

A3, The residuals e(t,®) and
eg(t, ) = & e(t,3) / 68
egp(t, ¥) = &7 e(t, #) / &¥°
are stationary and ergodic processes for any &. Moreover the

sample moments are assumed to converge te the theoretical moments
tas n tends to infinity) at a rate of order 9(1/J/n).

FIRST CROSS-VALIDATION CRITERION

For cross-validatory assessment of the model structure, the following
function is used,

k
;b= I I ei(1,8) (3.70)
v=1  tel,
with,
8, = arg min I e(t,#) v=1..k (.71
L 4 tel-I,

Thus each time m residuals are used to validate the estimate from the
other n-m residuals. Stoica et al. proved that when the assumptions A1-A3
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hold, for kX large enough the following relation (for the SISO case) holds,

t/nCp = Cp + OC1/7k*m) (3.72)
where,
- k - - -

61(m) = V(8) + 4/n* X uv(e)'v,,(e)‘1uv(e) (3.73)

v=1

with, . ) )
wv(e) = = e(t,8)eg(t,d) vel..k (3.74)

tel,

Therefore their first model structure selection rule was stated as
follows,

choase the model structure that leads to the smallest value of Citm).

SECOND CROSS-VALIDATION CRITERION

For the second cross-validatory assessment the following function is used,

k
;p = I ei(t,0,) (3.75)
vl tel-I,,
where,
8, = arg min T e’(t,#) val..k (3.76)
L 4 tElv

Thus in this function only m residuals are used to estimate @ and all n-m
other residuals are used to validate this estimate. Stoica et al. proved
that when A1-A3 are valid, for m and k large enough the following relation
(for the $1S0 case) holds,

1/0¢k=13n) €;; = Cp + 0C 1/minen,m3/2) ) (3.77)
where,
- k - -
Co(m) = V(8) + 2k/n? & wv(8)'Vyy(8) Twv(e) (3.78)
v=1
with, A . A
Wwvi{g) = I e(t,8)ey(t,9) v=1_.k (3.79)
tel,

The second cross-validation criterion is stated as follows,

Choose the model structure which leads to the smallest value of
Calm).
2
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The advantage of C4(m)} and Cp(m) is that they are much easier to compute
than C; eand Cy;, since in the last two criteria for each subset the 'new’
egtimate has to be computed. In Cqlm) and Co(m) wWwe use only one estimtate
(8).

In the following I will give the derivation of the two criteria when
projected on the linear regression model.

STOICA'S Cq(m) IN THE LINEAR REGRESSION MODEL

In the linear regression model ( y=u,84+e ) we have,
e(t,?) = y(t)-ul(t)¢ (3.80)

Here ul{t) is the t-th row of Uy and y{(t) is the t-th element of y. So we
have,

eg(t,®) = -ul(t) (3.81)
egg(t,2) = 0 (3.82)
and,
V(8) = (y-U#)'(y-Uq#) /n (3.83)
Vgg = 2U, Uy /n (3.84)

from these expressions we see that the assumptions Al1-A2 are valid. The
assumption A3 does not have to hold, since, for example, the statistical
properties of egz(t,%) depend entirely on the actual input. Therefore, when
giving the derivation of the cross-validation criteria for the Llinear
regression model and to establish the same asymptotic behaviour for those
criteria as given in (3.72) and (3.77), the assumptions made in A-3 Will be
given in terms of assumptions concerning the actual input.

Because of (3.71),(3.8%),(3.82) and the Taylor series expansion it can
written that,

2

§/6% 1/n % el(t, &) |
tel-1, #=0,

T Va(B,) - 2/n E e(t,8,)e,(t,8,)
tel,

= Vg(®) + Vg (8)(8,-0) +

-2/ T e(t,0)ey(t,8) - 2/n T ey(1,8)e,(t,0)'(0,-0)
tel,, tel,,

= 2/n Uy'Uy (8,-8) + 2/n Uv'ev - 2/n Uv UV (8, @)

= 2/n Us'Us (8,-8) + 2/n uv'ev (3.85)
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where Uv is a matrix whose rows are the vectors ul{t) for tel, and ev is
the corresponding vector of residuals. Us is the matrix U1l without the rows
ul{t) for tel, . Because of relation (3.85) wWe can wWrite,

(8,-8) = -(Us'Us) ! Uv'ev { = 0C1/kvm) > (3.86)
v

This relation is exact. ( For the order determinmation, Stoica et al. made
use of the following,

1/m E e(t,8)ey(t,8) = EC e(t,B)ey (t,8) 3 + 0(1/ym) =
tel,

1/n 2 e(t,0)e (t,8) + 0C1/4n) + OC1//m) = 0C1//m)
tel

because of assumption A-3. In our linear regression model we have,

1/m T -e(t,8)e4(t,8)
tel,

=1/m Uv'iev

and

1/h £ -e(t,8)e,(t,8) = -1/n Uy'(1-UqUTdy = 0
tel

Although the Llast expression is equal to zero this does not have to mean
that -1/mUv'ev is of order 0¢1//m). However, if we assume that ev is a
vector With white noise (and thus assume that the process is in the model
set, which is usually the case when n tends to infinity), averaging the
vector ev by -1/mUv'ev makes it to decrease with order O(1/Jm). Thus when n
tends to infinity it is likely that the assumption that -1/muv'ev is of
order 0(1/J/m) is true.}

In (3.86) the inverse of Us'Us has to be computed for each subset. To
decrease the computational task Stoica et al. used, ih terms of our linear
regression model, the following approximation,

Approximation-1 :
L (3.87>
(8,-8) = -quyu” " uv'ev + 0C1/k?Vm)

Translating the assumptions (A-3) mede in this approximation in terms of
conditions on the actual input, it is assumed that,

ws'us)™! = uaupt + ocasn?y (3.88)

Let us now evaluate Cy. It can be Wwritten that,

el1(t,8,) = eI(t,8) + 2 e(t,B)e (t,0)" (8,-6) +
(8,-8)"ey(t,8)eq(t,8)" (6,-8)

= e'(t,8) - 2 e(1,0)ul(t)(8,-8) =+
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(8,-8) Ui Ct) 'ul(t)(8,-8)

so,
T oef(t,8,) = I ( e(r,8) - ul(t)(8,-8) )? (3.89)
tslv tel,
and,
k
Uncp = 1/nE T e (t,8,) =
v=1 tel,
k -
1/nT T  e(t,8) - ul(t)(8,-6) > (3.90)
v=1 tel,

This relation is exact. Houwever, in the derivation of the first cross
validation criterion Stoica et al. approximated (3.90) with,

Approximation-2

k
1/n € = 1/n T & { e3(t,8) -2e(t,8)ul(t)(8,-0) ) (3.91)
v=1 tel,,
¢ 001/k7m)

Since (év-é) is of order 0(1/kJ/m) (see 21). When the approximations 1 and
2 are combined, we obtain the criterien,

k
1/n €y = 1/n T E (e'(1,8)-2e(t,8)ul(t)*
v=1 tel,,
-uiup " uv'ev + 0c1/kzyml 3
¢ 0(1/krm
k
= 1/n S (eviev +2eviuviUiug " uv'evd « ocizkim)
v=1
- k - - -
= V(8) + 4/n? T uv(8)'Vey(®) Tuv(e) + 0(1/kim)
v=1
= Cq + 00V /kim) (3.92)

Thus in the linear regression model the first cross validation ¢riterion is
stated as follows,

Choose the model structure that minimizes,

k
Cq(m) = 1/n Z ( eviev + Zev'Uv(Ujuyd tuv'ev )
v=1
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The first approximation gives clearly a computational improvement compared
to the real cross validation criterion, but the second approximation does
not seem to give any computational improvement. Therefore we can consider
to delete this approximation. This results in the following relation,

k
/ncp = 1/n T | ev+ uviuqup Tuv'ev [t o+ oCi7krm)
v=1

(3.93)

The difference between the real cross validation c¢riterion and the
approximated one remains of the order 0(1/k?m), so in order to approximate
1/n ¢ it does not make any difference if we use approximation 2 ofr not ¢(

Although minimizing the first right term of (3.93) and C; can lead to
different model structures).

Stoica et al. showed that under certain conditions the first cross
validation criterion 1is asymptotically equal to AIC. For the Llinear
regression model, this can be seen as follows,

k
1/n Z eviev + Zev'Uv(U;U1)'1leev =
v=1

k
V(B) + 2/n%tr{ (UjUp 1 * I uv'eveviuv ) (3.94)
v=1

If we assume that, when n tends to infinity, ev becomes a vector with

white noise samples (with approximated variance V(6)), the last expression
can approximated wWith,

k
. R -1 ' -
v{a) + 2tr{ (U1U1) * 1/n* Z U“r V(B)lmUV =

v=1

veey + 2/n v(e) tre (uup ! wylup ) =

V(@) + 2p/n V(8) = V(@) [1 + 2p/n 1 (3.95)
So for large n we have,

Ln{ V(e {t+2p/n] )

Ln{ V(8) > + in{ 1+2p/n >

Ln{ V(8) )} + 2p/n = AIC/n (3.96)
(see 3.45)

When n tends to infinity the model is usually overestimated and thus the
condition that ev is a white noise vector is fulfilled.
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STOICA'S Co{m) IN THE LINEAR REGRESSIOM MODEL

For the second cross-validation criterion with (3.76) ,(3.81) and (3.82)
the following holds,

0= I e(1,8,0e,0t,8,)
tel,
= E e(1,8)e,(t,0) + 2/m I ey(t,B8)e (t,8)1(8,-8)
tel,, tel,
= -us'es + Us'Us (8,-8) (3.97)
So,
(8,-8) = (us'us)" ! us'es (= 0C1/Vm) 3 (3.98)

where Us is the matrix whose row” are the vectors ul{(t) for t¢l, and es is
the vector of the corresponding residuals. In (3.98) it is assumed that
Ustes = 0(/m) (see (3.86)).

To decrease the computational task Stoica et al. used, in terms of our
linear regression model, the following approximation of (3.98),

Approximation-1 :
' (3.99)
(8,-6) = n/m (UUd " Us'es + OC1/m)

Translating the assumptions (A-3) made in this approximation in terms of
conditions on the actueal input, it is assumed that,

(us'usy 1 = ny/moccuqu T ¢ ot/ ¢mym) (€3.100)
Let us now evaluate Cy,,
e’(t,év) = et(t,8) + 2 e(t,é)e‘(t,é)' (év-é) +
(8,78) 1 (t,8)e,(1,0)1(8,-0)
= e?(t,0) - 2 e(t,8)ul(1)(8,-8) +

(8,-8)'u1(t) 'ul(t)(8,-6)

¢ elt,8) - ul(t)(e,-8) >’ ¢3.101)

Se,
k -
1/¢(k-13n) Cyy = 1/(Ck-1}n) 2 z el (t,0,)
v=1 tel-1,

k
17¢(k=1)n) T  e(t,8) - ui(1)(6,-0) >* =
vl tel-I,
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k
1/¢(k-1)n) I I e?(t,8) =+
v=1 teI~lv

k
1/¢(k-1)n) 2 I -2e(t,0)ul(t)(e,-0) +
v=1 tel-lv

k

1/¢¢k-1)n) & E (0,-8)'ul(t)'el(t)(8,-8) =
v=1l tel-1,

V(8) + T2 + T3 (3.102)

First let us consider term T3.

k
T3 = 1/0(k-1)n) = I (8,-9)'ul(t)'ul(t)(8,-8)
v=1 tel-1,

k
= 1/(Ck-1)n) T (8,-8) Uv Uv(8, -0) (3.103)
v=1

Here Uv denotes the matrix U, without the rows ul(t) for tel,. Stoica et
al. used the following approximation of T3,

Approximation-2

k
T3 = 1/((k-130) 5 (8,-8)'U; Uy(8,-8) (3.104)
v=1

+ 0{1/n)

Where it is assumed that,

1/n uv'Uv = 1/n U 'U1 + 0(m/n) €3.105)

Let us now consider term T2,

Kk
T2 = -2/((k-1)n) Z £ e(t,8)ut(t)(8,-8) =
v=1 tel-Iv
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k
-2/¢(k-1>n) I I e(t,8)ul(t)(8,-8)

v=1 tel

k -

¢ 2/Ctk-1IM) I T e(t,8)ul(1)(6,-8) .

val tel,

k - - -
2/¢¢k-1)n) T I elt,0)ul(t)(8,-9) (3.106)

vzl telv

Stoica et al. used the follewing approximation,

Approximation-2
(3.107)
T2 = 0(1/M)

Because (év-é) is of order O0(1/Jm). Since (év-é) is of order 0¢1/J/m), 13 is
of order 0¢1/m) and thus much larger than T2 when n tends to infinity.

When we use the approximation-1 of (év-é), T3 becomes,

k

1/ ((k-1In) T {n/m (UqUq)°
v=1

{n/m (U;U1)'1Us'es + 001/m))

1

13 Us'es + 0C1/M)dIUq U, *

+ 0¢1/n)

k
1/¢(k-13n) & n*/m* es'Us (Uquqd~ ! us'es
v=1

+ 0¢1/m/m) + 0C1/n)

k
= k/n Z es'Us (U'U)'1 Us'es + 0¢1/min{n,m/m))
v=1
k
= 2k/nt T wv'Vae Tewv ¢+ 0(1/minCn,m/m)) (3.108)
v=1

Because of this last approximation and with approximation-2 it can be
written that,

1/((k-13n) C;; = Cp + G(1/min{n,m/m) (3.109)

with,

=

€, = V(@) + k/nt I Hv'v,§'1uv
v=1
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Thus the second cross-validation criterion for the linear regression model
can be stated as,

Choose the model structure that minimizes,

k
C, = 1/n T es'es + k es'Us (w'uy ! us'es
v=1

We see that this criterion is essentially the same as Ci. The only
difference is that that second term in C; has a different weight factor.
Therefore and for reasons similar to (3.95-3.96), it can be seen, as Stoica
et al. proved, that this criterion is asymptotically equivalent to a
generatized AIC. Since for targe n and m,

C2 = In{ V(8) ) + kp/n (3.110)

SOME REMARKS

As already mentioned, the assumption A-3 does not have to hold for the
linear regression model. However, in order to derive the cross-validation
criteria for the Llinear regression model and to establish the same
asymptotical behaviour of those criteria as given in (3.72) and (3.77), we
projected the assumptions made in A-3 on conditions about the actual input
(see 22,32 and 37). However, this means that the assumptions are all fairly
weak, If the order of approximation is semewhat different as those given in
(3.88), (3.100) and (3.105) it will only affect the order of approximation
given in the two cross-validation criteria and not the general ideas.

The procedures given above depend on m, and the choice of this parameter
should be discussed. Although no precise rules on how to choose m can be
given, Stoica et al. gave some ideas about the value of m. For the first
cross-validation criterion m should be chosen so as to indicate on how many
future sampling points wWwe intend to use our model. Suppose Wwe wish to use
the estimated model at some, say f, future time instants. Then we may
¢choose m such that,

m/{n-m) = f/n (3.111)

However, since m/{(n-m) must be small for Ci(m) to be a good approximation
of CI, C1{m) can be used to select a good ‘'short term' model.

For the second cross validation criterion Stoica et al. remarked that a
good choice for k may be k=ln(n), since for this value C2(m) becomes
asymptotically equivalent to the well known Schwarz criterion (SC) and
therefore it will choose, as we will see, asymptotically the right model
structure.
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3.8 STEIN RULE ARGUMENTS

So far I discussed only the 1least squares method fer obtaining an
estimator for ©. 1t was said that when the process is in the model set,
this estimator is a minimum variance unbiased estimator. Thus if we are
willing to improve our estimator we have to restrict ourselives to the
class of unbiased estimators,

Suppaose we observe n independently normally distributed varisbles, ry..r,
with unknown means By..Bp and knewn variance ¢?. It is common to estimate
y. By by rq-.r,. However, Stein ('56) proved that this estimator is
admissable for n<3 and inadmissable for nz3 under the loss function,

NSE(g, 1) = EC (p-#)'Ca-p) ) (3.112)

{ An estimator § of g is said to be inadmissablte if there exists an
estimator 6' for which MSE(u,S') & MSE(u,8) for all p with strict
ineguality for some pu. An estimator is admissable if it is not
inadmissable. }

James and Stein ('61) exhibited an estimator that is unifermly better than
the least squares one. For a review on this topic see Draper and Van
Nostrand ('79) or Judge and Bock ('78).

Suppose that we have,

rspg+e e € N(O,G'In) (3.113)
As an estimator of g we take r ( so ﬁ=r ). Then wWe have,

EC Ju]* 3 = {u]® + n*er (3.114)

Here we see that when n*g?/u'uy is large we would be over-estimating g by a
very targe amount., Thus in order to improve cur estimator it suggests that
the least squares estimator could be improved by shrinking it (=
multiplying it by a scalar). This shrinking factor ($f) shouid be small
when n*s?*/u'y is large and should be nearly 1 when n*e?/u'y is small. Of
course, g is unknown. When taking its estimate the previous discussion
suggest that we should consider estimates of the followng form,

; = [1 - ca'/;'ﬁ]* ﬁ = [1 - cot/r'rl* r (3.115)

Where ¢ is some constant. James and Stein proved that when a® is known the
estimator 4,

g = (1 - cotfprpl* g (3.118)
0 < ¢ < 2(n-2) c-optimal = (n-2)

is uniformly better, in the sense that MSE(u.;) < HSE(u.ﬁ) for all values
of p , than the least squares estimator for nz3. The optimal value for c is
(n-2). When ¢ is not known they proved that with an independent
estimator of o? (o), where o¢?*v must be distributed as ¢! times a Chi?
distribution with v degrees of freedom {thus be unbiased), the estimator
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B2 [l - C(n-2)/(v+2)Iv*ai/p'gl* g (3.117)
0 < ¢c < 2(n-2) c-optimal = (n-2)

is also uniformly better than the least squares estimator wunder the
quadratic loss function (3.112) for n23.

In 3.117 we used the origin as the place to shrink to. This is not
necessary. Although the notation conceals it, we may choose any other
point to shrink to. The estimator of the mean given by the James-Stein
estimator in the following general form,

[1 - €C/qv+2)Iv¥a?/(E-0)'(2-0)31* (4-0) + o

®
1l

$fCo)* (g-0) + o (3.118)

il

(n-2) X
degrees of freedom in ¢o?
new origin to shrink to

is also wuniformly better than the least squares estimator. Thus a
researcher can choose a value ¢ that he thinks that u should be near. He
then computes ; with (3.118). 1f he is correct, his estimater wWwill be
bette( than x, but even when he is wrong , his estimator will be better
than pg.

How can we use these properties in model selection? We first have to make
an assumption. Let us assume that the U matrix is column orthogonal with,

VU= 1y /L (3.119)

here | is some number (which only depends on n). This would approximately
be the case when U is filled with white noise and n »>> d. Then We can see
that @ is independently normally

distributed. Thus,

& ¢ N(B,la’lp (3.120)

tet now take & the place of g4 in the previous derivations. This means that
according to (3.118) the estimator,

[

[1 - {c/(v+2)Iv*a?/@'81*

8 = (3.121)
@ = sf* @
Wwith,
0 < ¢ < 2¢(d-2) c-optimal = (d-2)
gt = (*RSSd/v { = L*ai(d) } va(n-d)

(which is independent from 8 ) is a uniformly better estimstor than @ feor
dz3, according to the loss function MSE(®). I will call this estimator the
James-Stein estimater of . An important point is that the James-Stein
estimator itself is also not admissable. In relation (3.74) we can see that
St <1.nlf $f > 0 then © will be shrunken towards zero. However when Sf < 0
then @ will be shrunken past zero. Sclove ('68) mentioned that the
estimator
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8 = max(0,$f)* @ (3.122)
Wwith } ..

Sf=[1-Cc/(v+2)Iv* ot /01 8] (3.123)

D < ¢ < 2¢d-2) v=n-d

is unifermly better the James-Stein estimator (with the same value of c).
I willt call this estimater the positive James-Stein estimator. In this
positive James-Stein estimator there exists no optimal value for ¢, but if
c lies between 0 and 2(d-2) it gives better results than the least squares
estimator.

The property (3.122) is an interesting property for hypothesis testing.
Suppose the parameter set is divided, witheut reference to the data, into
two subsets. One subset which is assumed te be important and another subset
which 1is assumed to be unimpertant. Because all the parameters are
independent we can shrink the subset, which is supposed to be unimportant
tewards zero. Then,

i (81 et
e = . with e = | (3.124)
max(0,5f2) (8)2 (8)2

where
SF2=[1-Cc/(v+2)3Iv*ai/ (8127 (8)2]

(é)1 is a p-vector
(@)2 is a (d-p)-vector

0 < c < 2(d-p-2) vazpn-d

is uniformly better estimater than é , under MSE(®), if (d-p) 2 3. This
last retation suggests that we can set the {ast (d-p) parameters to zero if
s$f2 < 0,

In this case (u'u=14 /i) a normal F-test would conclude that the last
(d-p) parameters could be set to zero if (see (3.17)),

(8)2'(8)2 /((d-prai(d)} < F% d-p,n-d (3.125)

1f we look at retation (3.124) we see that in the James-Stein case we set
the last (d-p)} parameters to zero if,

(8)2'(8)2 7{(d-p)e? (d)) < c*L*v/{(v+2)(d-p)) (3.126)

Thus the positive James-Stein rule can be seen as a F-test with a
particutar value of a. However, the main difference is that when the
hypothesis is rejected, the subset will be shrunken towards zero instead of
maintaining their original values. This witi{ assure us that, unlike in the
F-test case, we will get a uniformly better estimate [ will return on this
point later.
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The previous derived results for the parameter space only hold when 'y =
4 /L. What can we do when U this relation does not hold?
Let us consider the general model y=UB+e=x+e. Rewrite U as,

u=vzu' {singular value decomposition) (3.127)
Here V and W are column unitary and orthonormal, and £ is a n*d diagonal
matrix with diag(x)=(a1,..,ad), and g4 2..2 o4 > 0. (since we assumed that
U had full rank). Therefore we can write,

-

U™ = W Vv (3.128)
v'u = wz'zw' = wiw' = wopw' (3.129)
Where x* is a d*n diagonal matrix with diag(z*)=(1la1,..,1lod). D is a d*d
diagonal matrix with the same elements as E. From this last expression we

can see that the columns of W are the eigenvectors of u'U and the diagonal
values of T are the corresponding eigenvalues. Let us define,

e (3.130)

Z = U*WDp’
B= Wow'* ® €3.131)
Then We can rewrite the general model as,

y = 28 + e (3.132)

This model will be called the orthonormal canonical form of the general
model. In this canonical form the teast squares estimator of 8 is given by,

g=cz'zytz2'y=2'"y =upw' o (3.133)
because of (3.27-3.29). Since 2'2 = I4 we see from this expression that,

B e NCB, a1y (3.134)
Thus in the B space the least squares estimate of f is independently
nermally distributed. This means that we can apply the results from 3.122
directly on them, So,

B = max(0,5f) B (3.135)
with

Sf = [1-(c/(v+2)Iv*a?/x*x)

(since é'ﬁ = ;';)

vs(n-d) o?=RSSd/v 0 < ¢ < 2(d-2)
is a uniformly better estimator than ﬁ according to the loss function,

EC (B-8) (B-8) 3 = EC (x-x) (x-x) ) (3.136)

for d 2 3. This means that the shrunken estimator in the original
parameter space,
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@ = W '8 = max(0,s6)* @ (3.137)
gives uniformly better results than é according to the performance
function MSE(x). Since the estimator in the B space was independently
normatly distributed, we can test if some subset of § parameters can be
set to zero according to the previous given method. However, although it
can lead to a reduction in the B space, it does not lead to a reduction in
the @ space because of the transformation (3.131). Thus a real modetl
reduction cannot be achieved.

The estimator in (3.137) is better than ® under the loss function MSE(x).
8ut how does it perform under MSE(®)? This problem will be discussed in
chapter 5.
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4. EVALUATION OF SELECTION CRITERIA

4.1 ASYMPTOTIC PROPERTIES

In this section I will derive the asymptotic properties of a general
criterion that is based on RSSp. When taking this derivation as an example,
it is possible te say something about the asymptotic properties of
particular criteria. I do not claim that this derivation is & good one, but
1 think it gives some insight into what happens when n tends te infinity.
Let the criterion be given by,

€ = (x-X)'(x-x) + § = RSSp + § (4.1)
Here 5 is a monotonically increasing function of p, that ts built-in to
penatize large models., For example in the Cp case § is 2po?. Suppose wWe

have two models A and &,

model A : y=Uq8y + UsB8y; + e dim U = n*d
(4.2)

model B : y=U.8; + e dim U, n*p

We take that model as our fipnal model that minimizes C. Our goal is to
investigate what happens in our selection as n tends to infinity. This
Wwill we done in two cases. In one case | assume that model A is true and in
the other case ! assume that model B is true. First let us suppose that
model A is true. Let,

+
RSSp-RSSd = JAA y|* with As(I -Uu]IU, (4.3)

See (3.14). Rewrite A as,

=
n

VIW' ( singular value decomposition ) (4.4)

Here V and W are column unitary and orthonormal, and Z is an n*(d-p)
diagonal matrix with diag(Z)=(el,..,a(d-p)), where ol1z..20(d-p). Then it
follows that,

+

*
A = WI V! (4.5)
+

KA = yTV (4.6)
Here z* is a (d-p)*n diagonal matrix with diag(z*) = (1/0t,..,1/0(d-p) and
T is an n*n diagonal matrix whose first (d-1) diagonal elements are 1 and
the rest 0. Let us reuwrite T as

T = DD' with D = '(d-p) 01' = n*(d-p) matrix (4.7)
Then with the following definitions,

r=p'vie { r=(d-p)-vector = noise vector) (4.8)

b=D'Z MW'®, ( b={d-p)-vector = 'bias' vector) (4.9)

where
£oE NGO, 0t Dy, ) (4.10)
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because r is a linear combination of normally distributed variables and E(
r )=0 and cov{ r 2= l(d-p)' We c¢an rewrite (4.3) as,

|AA+y|' = |VEW'e,|t + Ze'vIu'e, + [vbD'v'e|?
= |ZW'@;]* + 2e'vDD'EW'®, + |D'V'e]?
2 2
= |b}* + 2r'b + |r|? 6.1
Here,
Irlz /ot € Chit (d-p} 4.12)
2r'b / J{4o?b'b) € NCO,T) (4.13)

Let us now investigate the asymptotic behaviour of the selection criterion.
fFirst we have to make an assumption. In the feoliowing it is assumed that,

+

Jelt = Jei,-uquiduyes)? (4.14)
increases proportionally with n. We say that this factor is of order n { =
0(n) 3. This means that future input samples must contain enocugh
information and that the input power dees not change in time. Let us now
investigate what happens with the selection of a model when n tends to
infinity. Let Ca and Cb denote the value of the criterion Wwith model A and
B. Then Wwe can write,

+

Cb-Ca = |AA y|? + sb-Sa (4.15)
Here Sb-Sa < 0. When Cb-Ca is positive we cheose model A, Thus when,

Cb-Ca > 0 <==>

btb + 2r'b + r'r + Sb-Sa > ¢ <z =3

b'b fF + 2b'r /F + r'r J/F + (Sb-Sa) /F » © (4.16)

Wwith F =2 (4o*b'b) (= 0(n) ) we see that,

b'b /F = 1/40% > 0 (6.17)
plim 2b*'r /F = plim NCO,1) / JF = D (4.18)
Nao n-ao

ptim r'r /F = plim Chi? (d-pi*e? 7 F =10 (4.1
Neso Ny

and finally,

plim Cb-Ca > 0 if and only if
]

plim (Sb-Sa) / F > -174q} (4.20)
P
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Thus we see that when model A is true and n tends to infinity the right
model is chosen if the order of Sb-Sa is smaller than 0O(n).

Let us now assume that model B is true. Because 8,=0 we have,
Cb-Ca = r'r + Sb-Sa (4.21)
When this factor is negative, model B8 is chosen. Thus,

plim €b-Ca < 0 if and only if
e

plim r'r + $b-%a < 0 (4.22)
N

Here we see that when Sa-Sb is an increasing function of n such that
relation (4.22) is true, we asymptotically choose the right model,

Let us take an example. Suppose,
C= RSSp + 2po? (4.23)

This is the Cp or AIC when ¢? is known. First assume model A is true. Then
we see that conditon (4.20) is satisfied because,

Lim 2¢p-d)g? / F = 0 (4.24)
Nup

However when model B is true the condition (4.22) cannot be satisfied
because 2{(d-p)e? is not an increasing function of n. Although n tends to
infinity there always exists a risk,

P(C r'r > 2¢2(d-p) ) = P( Chi? (d-p) > 2(d-p) ) (4.25)
that the wrong model is chosen.
Although we obtained this result for the case in which we had to made a
choice between two model structures, we can say that in the general case in
which we have d possible model structures the Cp criterion is not
consistent as an estimator of the true model. There is always a risk that
we overestimate the true model dimension.
Let us now investigate the SC criterion and assume ¢? is known. Then,

Ch-Ca=b'b + 2b'r + rtr +g?2ln{n)(p-d) (L.26)

Here wWe see that the last term has order O{Ln{(n)). Thus suppose model A is
the right one. Then with,

Lim ln(n)/n =0 (4.27)
N

we see (4.20) that,

plim Cb-Ca > O (4.28)

Nep®
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Thus the right model is chosen. When model B is true we see that,

plim Cb-Ca = plim r'r + gtln{n)(p-d) < ¢ (4.29)
N Nuy™

So also in this case the SC chooses the asymptotically the right medel. By
similar reasons it can be shown that Akaike's BIC also chooses
asymptotically the right model,

In Llitereture, some authors have studied the asymptotic behaviour of
several criteris. Nishii ('84) showed that AIC, Cp, FPE and PRESS are all
asymptotically equivalent. Furthermore he proved that the SC gives a
consistent estimator of the true model structure. Shibata ('8%1) proved that
when the number of parameters is infinite or increases with the sample size
his criterion,

Sn(p) = {n+2pIRSSp/n = {n+2p} a'(p) (4.30)

is an asymptotically optimal criterion, in the sense that it attains a
lower bound for MSE{(x). He showed that the Cp, AIC and the FPE are all
asymptotically equivalent to this criterion. Furthermore he showed that in
this case the SC is not asymptotically optimal in his sense.

4.2 F-TEST INTERPRETATIOM

In chapter 3 | discussed some criteria that have been proposed for model
selection. Atthough some of them are known to be asymptotically
equivalent, their small sample properties are all different. Since most of
these criteria are simple functions of the resjduals sum of squares (RSS)
it is interesting and informative to interpret them through the F-test
statistic.

First, let us consider two models A and B with,
process YU 8y + Us8,; + e
model A: y=Uqdy + Uxd; + W (4.31)
model B: y=U &y + w

fFrom chapter 2 (2.58-2.61) we know that,

a: Under the mean square error function in the fparameter pace' the
model B gives better results when,

1

leals + Jujuse,0% + o2 ¢ trg Cugud™? d-trg W'Y Y > ) <0 (4.32)

b: Under the mean square error function in the 'measurement space!
the model B gives better resutts when,

[€1,-Ugu U85 + o2(p-d) < O (4.33)
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c; Under the risk matrix the model B gives better results when,

[¢1,-Uqu U85 - ot < 0 (4.34)

Let us look at condition {4.32). befine,
- ' . +
H = UZ (In U1U1)U2 (4.35)

H is positive definite (since U has full rank) and therefore we can
rewrite it as,

H=wgz'w = DD' with D = WS (4.36)

Where W is orthonormal and I is & positive definite diagonal matrix. So D
has full rank. Then we can write,

8510, + 851 (UTU,)  (UTU,d0, =
8, ¢ | + (uiusy utusy de, =
2 (d-p) 1Yz Y2 2 ©
-1 + [, -t ¢ _
8,0 ¢ D710 gy + WU iUy 207 ) e, =
8,'D( G D8, ¢4.37)

with,
- ] - ]
6= 071 Iogopy * WiU) Wiuy 2T (4.38)

Because G is symmetric it holds that,

max X'GX fx'X = tmax {(4.39)
x#0

Where tmax is the largest eigenvalue of G. Therefore,
8,°0( G IDO, 5 tmax ©,'0DD '8, = tmax ©,'He, (4.40)
This means that for all possible @, the condition (4.32) will be true if,

1€, UqUs U8, 1t < 07¢ trg (VU Y 3-trd "W 3 3/ tmax (4.4

When in the conditions (4.33), (4.34) and (4.41) ©; and ¢ are replaced
with their estimators (B, and RS$5d/(n-d) ), we can see that these
conditions the can be stated in terms of the F-test statistics associated
with testing 8,;=0. Sec with,

F = {(n-d)*{(RSSp-RSSd} / {(d-p)*RS$Sd)

(4.33) (4.34) and (4.41) become respectively,
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F < 1 (4.62)

F < 1/¢(d-p) (4.43)
and

1

Fo<ore trd qup ! a-trc cu'vy™ 3 )/ tmax (4.44)

tet us now look at some of the criteria of the previous section. Then we
see that model B is selected when the following conditions hold,

F-test : F < ¥ (d-p,n-p) (4.45)
Mallows' Cp (with &'(d) )y : F < 2 (4.46)
Amemiye's PC (=FPE) : f < 2n/{(n+p) (46.47)

Akaike's AIC (g! unknown) :

F < fexp{ 2(d-p)/n ¥} - 11*[{n-d)/(d-p)} (4.48)
Schwarz' SC
o! known
F < LnCn) (4,49)
¢ unknown :
F < [exp{ In{nX(d-p}/n } - 11*[{n-d}/(d-p] (4.50)

For BiC and PRESS no such expressions can be derived. Since most of the
discussed criteria can be seen as an F-test with a particular value of e it
is interessing to study the sampling properties of such a F-test. This will
be done in the special case that U'U=l ( which would approximately be the
case when U is filled with white noise ).

Suppose we have a general F-test where model B is chosen when F is smaller
than a certain number ¢ and where model A is chosen when F is greater than
¢. The objective is now to investigate the mean squared error of estimating
e of the F-test as a function of the length of 8;. Since this MSE(®) can be
written as,

MSE(8)

EC (87-81) (8,-8;) J+EC (8,-85) ' (85-05)
= p*o? + MSE(©,) (4.51)
When ¢=0, so model A is always chosen, then HSE(83)=(d-p)o? and

MSE(®) = d*g*. From Sclove ('72) and Judge and Bock ('78) we know that for
c<>D,

MSE(8,) > (d-p)*o? if lex1t » (d-pr*a? (4.52)
MSE(B3) < (d-p)*o? if lezlt < (d-pr*avs2 (4.53)
MSE(85) = (d-ple?*L  if le;1* =0 (4.56)

where L=P{ Chi?(d-p+2)/Chi?(n-d) > c*(d-p)/(n-d) )
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Furthermore as 8,'6, increases and approaches (infinity, the MSE(85)
approaches the risk of the least square estimator.

Knowing these properties a plot of MSE’95) versus the length of 6, will
yield the following characteristic (see Judge and Bock ('78)).

b ° -
f . .,’ "‘\_
MSE(@;) . A ‘.\
, '\‘
” -~
—pyo? ’ rrraeraa-,

(d-ploe?f....... P R

” .

4
” -
”
(d-pirs2 (d-p) jes| /10t =

Figure 1: MSE(8) versus [8,]%/0t for the F-test.

From figure 1 we c¢an conclude that the F-test performs better than the
least squares estimator (c=0) if the fault made in the hypothesis is
small, but over a ltarge range in the 6, parameter space it is inferior to
the least squares estimator.

In section 3.8 1 discussed the positive James-Stein estimator and said
that under certain conditions it can be used in hypothesis testing. It was
said that in those cases the estimator is uniformiy better than the least
squares estimator.,

Sclove ('72) combined the normal F-test with the positive James-Stein rule
and constructed a modified F-test of the following form,

choose model B when F £ ¢ ’ (4.55)
choose model A when F > ¢ and estimate 6, by

67 = [1- {a(d-p-2)/(n-d+2))*FRSS/8,'8,1* O,
where 0 < a 5 2

He proved that this estimator is uniformly better, in MSE(®) sense, than
the normal F-test with decision level ¢ (in this case where Ur=l,3.

If we combine the results from the F-test, positive James-Stein estimator
and the modified F-test in one plot we get the following characteristics
{see Judge and Bock '78),
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Figure 2: MSE(Bjy) versus [83]1/07; azF-test, b=po|iti§e
James-Stein estimator, c=modified F-test.

Conclusion;

In this section we saw that most criteria can be written in terms of F-
test statistics with a particular value of a. We studied the sample
performance of such a F-test in the case that we had to select the best
out of two models and that the general design matrix U was orthonormal. A
plot of the risk involved with such a8 F-test yields a range of the
parameter space where the risk is smaller than the risk of the Lleast
squares estimator of the full model and a range where it is greater,

But even when U is not orthonormal there is a range in the parameter space
where the risk (MSE(®)) is smaller than the risk of the least squares

estimator of the full mode! and a range where the risk is greater. (See
Judge and Bock '78).

An exception to this general rule is the positive James-Stein estimator.

Here the risk will, under certain conditiens, be uniformly better than that
of the LSE.
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4.3 THE PARAMETER SPACE

As already mentioned, most of the discussed model selection procedures are
simple functions of the residuals sum of squares and can be seen as
criteria that are designed for improving the prediction and thus MSE(x).
However, wWhen parameter estimation is the object, for example for
controlling purposes, we have to improve the estimators by looking at
MSE(®). When U is orthonormal minimizing of MSE(x) is equal to minimizing
MSE(®). But when U is not orthogonal they are not the same. Noticing this
difference between MSE(x) and MSE(®) it is possible to derive another c¢lass
of ad hoc procedures for model selection.

4£.3.1 THE NODIFIED Cp

As we saw, Mallows derived his Cp by giving an estimate of the MSE(x).
Following his derivation it is possible to derive an
unbiased estimate of MSE(8). We can write MSE(®) as (see 2.52).

MSE(O) = [o,]7 + [Utuses]? + ottr ¢ cujup Tt ) (4.56)
Since L] is unkown we replace it with its unbiased estimate. Let 62 denote

the estimate of 85 from the full model. First, let us look at the estimate
of 8 in the full model.

5 1 T

6 =1 =yt y = y (4.57)
Here

T = U; - U:UZTZ is a p*n matrix

Ty = At is a (d-p)*n matrix

A = (I,-UUU,  is a n*(d-p) matrix

(see appendix A)

So if we estimate 8, by éz from the full model we see that,

EC 18,1 3 = |8y]% + ottr T,T, (4.58)
EC JUjue,]? 3 = fuluge,]teortrccud-T,3 ' ul-143) 4.59)

With these relations and with the estimate RSSd/(n-d) = &'(d) of ¢! we get
that,

1851 + JUTU.8,1% « atcdrvtre (Uquqd ! )
]

st trd ThT, 3+t -t wi-T 3 ) (4.60)

is an unbiased estimate of MSE(8). When we add the following constant term
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(constant in the sense that it does not depend on the dimension of the
model p),

2eJute]r - 2%gt(d)*trc (V'L (4.61)

te (4.60) we get an easier to handle unbiased estimate (Np=3'New' Cp
criterion) of MSE(9),

Np = | 8, = B¢ |5 + atte)*( trg 20Uy d-trc w'nyTt 3
= Qutcr-uudiy]r ¢ ot tre 2nuqup T ditec cu'vdTt o hLe
with
) &4 vivl .
ep = = = & of model with dimension p
0 0

8; = Uy = 8 of full model

Se this Np criterion looks very like the original Cp criterion. When v'u =
I/l minimizing of WNp is equalt to minimizing Cp.

Since the Np criterion is especially designed to minimize MSE(®) the
question arises if it is indeed better than Cp or not. As a measure of
performance we should calculate the risk of estimating ® involved with
these two criteria. However, this can be a very complicated, problem. For
example, (et us assume that we use Np and Cp to select the best out of 2
possible model structures where,

process: y=U8 + e

model A: y=U& + w

model B: y=w thus all parameters are set toc zero
and assume that ¢? is known. Then we choose model B when,

Np criterion

Ln=Juty]? - 2% tr¢ 'y 3 s 0 (4.63)
Cp criterion

teslylr - Jci,-uu™ayl? - 20%¢d) £ 0 (4.64)

ctherwise wWe choose modet A. To obtain the risk involved with each of
these criteria we have to compute,

Np criterion
MSE(Np,B)= E{ max{0,-sign{tn))*|e]* > + E( max(0, sign(Ln))*|e-éf|l b

(4.65)
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Cp criterion

MSE(Cp,8)= EC max(0,-sign(Le)I*|@|* } + EC min(0, sign(Le))*|e-84]" >

(4.66)
where,
signth) = 1 if h>»0
sign(h) = -1 if h=0
Let us try to calculate MSE(Cp,®) when 8=0. Define,
U=VZW' (s.v.d.) 4.67)
s0,
y*=yzv' (4.68)
Then we see that MSE(Cp,0) becomes.
EC e'vI'Ww'Wzv'e 3 . (4.69)

under the conditon that e'VEHIUZV'e >2dg?

Define IZ = DD', with D=[ I4 0]* is a n*d matrix, and £'E=DTID' where T is a
d*d positive definite diagonal matrix. Then with,

n=b'v'e & N(O,071y) (4.70)
we get,
MSE(Cp,0) = E{ n'Tn )} for n'n > 2do? (4.71)

Similar for MSE¢(NpP,0) we get
MSE(Np,0) = E{ n'Tn }» for n'iTn » 202tr{ T )} (4.72)

From these equations we see that they are equivalent when d=1. For d » 2
these functions are very difficult to compute. Let us study the case when
d=2., Although the area of the ellips formed by n'Tn = 2¢! tr{ T ) is
greater than that of the circle n'n = 2de?, the calculation of MSE(Np,0) is
performed over an area where the values of F(n)=(a*ny? + b*nZ’)*p(n1)*p(n2)
(here diag(T)=(a b) ) are greater than those of the area in calculation of
MSE(Cp,0). To illustate this I have made a 3-dimensional plot of the areas
that have to be computed for some a and b (see figure 3). Simulations for
various combinations of a and b confirmed this. All the simulations in this
report were done with the package PC-Matlab. Some other simulations for d >
2 also indicated that MSE(Cp,0) = MSE(Np,0). So in this ad hoc derivation
we saw that MSE(Cp,0) = MSE(Np,0)
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Figure 3: Some 3-dimensional plots of the risk
computation {f 8=0

Since these results only hold for 820 we expect that the calculations of
the risk for 8<>0 will not become any easier. Because an evaluation of the
risk involved by choosing the best out of d possible model would complicate
the calculation again we are forced to make some comparison between these
criteria by means of more simulations.

This has been done. 1 have done two types of simulations. First 1
simulated the MSE(®) for the Np and the Cp criterion assuming that thers
had to be made a choice between the full model and the model with
dimension 0, This MSE has been simulated as a function of the Length of 9.
Secandly 1 simulated the MSE(®) for the Np and the Cp criterion assuming
that there had to be made a choice between 10 possible model structures
(dimension 0 to 9). This MSE has again been simutated as a function of 8.
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SIMULATIONS-1:

First I simulated the MSE as defined in (4.65) and (4.66) as a function of
the length of ©, assuming a fixed orientation for @&. In that simulation I
took some predefined matrix U, calculated the undisturbed output x and
disturbed it with a noise vector. From the resulting vector y, I ltet the Np
and the Cp criterion decide what model structure to take. From that chosen
model structure I calculated the resulting error between the actual & and
the estimated ®. To obtain reasonable results, the resulting MSE has been
averaged over 200 simulations. This procedure has been done for 100
different values of the length of 8.

The preceding procedure has been done for two different orientations eof ©.
In hoth cases the U matrix was the same. The difference between the two
cases was that in one case the norm of the undisturbed cutput vector x was

greater than that in the other case (for equal length of 8).

values:

us10/3*

C o~ = O
- s O O
BT = R~ Y

¢ with trg (u'u)”? 3=0.1454 ) , a2=1

case 1 case 2
] a*f1 1 11 af1.5*(1 0 -11°
x'x at*189 at*33.4

RESULTS:

The results are shown in figure 4a and 4b for case 1 and in figure 5a and
b for case 2. In these figures I plotted the simulated mean square error
as a function of the squared length of ©. This is done for the Wp
criterion, the Cp criterion and for the case that always the fuil model
{FM) would be chosen.

In figure 4a-4b we see that when ©'® is small ( <0.08 ) both the Np and Cp
criterion give better results than the FM., The difference between Np and Cp
is relative small in this region. But we see that for a small value of €'®
the Cp criterion is slightly better than the Np criterion and when 8'8 is
increased the Np criterion becomes slightly better. However, if the squared
length is further increased ( >0.08) we see that both the Cp as the Np
criterion give worse results than the FM {compare it with
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Figure 5: Case 2, MSE(8) for Np(-) Cp(-.) FM(..)

the characteristic in figure 1). But we see that in this region the Np
criterion gives much worse results than the Cp criterion.

To have an impression of the goodness of the 200 simulations per value of
8, we can compare the theoretical value of the MSE for the full model
(=0.14) with the simulated MSE. We see that the simulated M$E varies around
this value.

When we look at case 2 {(figure 5a and 5b) we see that there is a clear
preference feor the Cp criterion for small squared lengths of 8. However
when ©'0 is increased the Np criterion turns cut to be better although
they both give much worse results than the full model,
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From the previous figures we may conclude that for smell values of 8'6 the
Cp criterion gives better results than the Np criterion. But if &' is
increased it depends on the orientation of & which criterion witl be
better. If (x'x)/(©'®) is 'small' the Np criterion turns out to be better,
if not the Cp citerion turns out to be better.

Thus we can not say that one criterion is better than the other since
there are always points in the parameter space where the reverse holds,
but the Cp criterion has the advantage that for small '8 it is always
better than the Np criterion.

SIMULATIONS-2

In the previous section the Np-Cp criterion had to make a choice between 2
model structures. In this section the Np-Cp criterion has to make a choice
between 10 different model structures.

I contructed several 16*% matrijces U in such a way that | could control
the condition number (= largest singular vaiue/smallest singutar value of
U) and the sum of squared elements (! define this as the 'signal power') of
it, Furthermore I considered twoc different orientations of ©. Per
orientation [ considered 21 different lengths of the actual @. With a
particular U and 8 [ calculated the undisturbed output x and disturbed it
Wwith white noise to obtain the output vector y. As the full model I took
the true model (So the highest to be regarded dimension of the model is the
dimension of the true model = 9). From the vector y | calculated in each of
the 10 possible model structures (dimension 0 to 9) the value of some
criteria. The model structure with the smallest value was chosen according
to that criterion.

In this chosen model structure the difference between the actual and the
estimated @ was calculated. The simulated MSE(®) was approximated by 100 of
such simulations.

Besides the Cp, Np and the FM (=always chosing the full model) criterion
{as in the previous section) | considered two other criteria. In each model
structure 1 calculated the squared difference between the actual and
estimated ® (thus I assumed that © was known). The model structure with the
smallest squared difference between the actual and estimated ® ( =tL(8) )
was chosen. This has alsc been done for the sguared difference between the
actual and estimated x ( =L(x) ). These last twe criteria can not be
calculated in practice since the actual @ or x are not known. They are only
computed to have some idea about the lower bounds.
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VALUES:

The two orientations of the impulse responses where defined as follows.
(see table 1 and figure &)

Table 1: Impulse responses

impulse response A impulse response B

h¢iy=a*exp(-0.25%i) h(i)=a*(-1) exp(-0.25%i)

won L

impulse reponses: A="-"; B="- -
T T —

Figure 6: The two orientations of the impulse
response

The U matrices were constructed in the following way. First | took a
matrix and filled it with white noise samples. To control the condition
number 1 added the same constant term to each elememt of it and finally |
multiplied the matrix in such a way that 1 would obtain the desirable
signal to neoise ratio { = sum((uij)*)lna' Y. The varience of the noise
(o) was set to 0.01 and the signat to noise ratio was set to 180. 1
considered & different U matrices. For some characteristics of these
matrices see table 2. In this table is also the ratio (x'x)p/{x'x}g given,
which is the ratio of the norms of the undisturbed output x with the
impulse response A and B (for equal length of ©(A) and 8(8}).

Tabie 2: U characteristics
case 1 case 2 case 3 case &
tre u'uy V| 7oses {1140 153.0 331.6
condition 2.868 4.658 38.80 50.55
numbher
(x*tx3,/{x'x)g 1.776 D.8648 11.92 14.30
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RESULTS:

For each matrix U I made a plot of the MSE(8) (as a function of @'@ } for
the two orientations of 6. As already mentioned these plots were made of 21
different values of ©'® and each value of MSE(®) was approximated by 100
simulations. For the results of case }-4 see figure 7a,7b-10a,10b,

In each figure the MSE(®) was simulated for the Np,Cp,FM,L{x), and L(8)
criterion. The MSE(®) in the L(8) criterion is the lowerbound for the
MSE(8) which can be achieved with a criterion.

0.1 — 0.1 '
0.08
0.06}
0.04
0.02f,
% 5 10 0 5 10
e'e o'e
Figure 7a: impulse response A Figure 7b: impuise response 8
Figure 7: Case 1, MSE(8) for L{@){- - =) L{X)(=aw—) Cp(...)

Np(-.-.) FM(—¥=)

02 T 02 :
0.15 015
0.1 0.1
0.05 0.05§
0 - 0
0 50 ... 100 0 0 .. 100
Figure 8a: impulse response A Figure 8b: impulse response B

Figure 8: Case 2, MSE(O®) for L(B)(- - -) L{x){ =) Cp(...)
Np(-.-.) FM{ -~}
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Figure 9a: impulse response A Figure 9b: impulse response B
Figure 9: Case 3, MSE(®) for L(B)(- - =) L{x){—=——) Cp(...)
Np(-.-.) FMR{ =)

0 i 0 1
0 50 e'e 100 0 50 6o 100
Figure 10a: impulse response A figure 10b: impulse response B
Figure 10: Case 4, MSE(@) for L(@)(- - -) L{x)}{(—) Cp(...)}
Np(-.-.) FM(—W)

In figure 7a-7b we have a matrix with a tow condition number (=2.868) and
we see that for both the impulse reponse A and 8 the Cp criterion gives
better results than the Np criterion (for the given range in the parameter
space). In figure Ba-8b we have another matrix with a low condition number
(=4.658), but the range in the parameter space is enlarged. Here we see
that for small values of ©'8 the Cp criterion gives better results for both
the actual impulse response A and B, but if 8'® is large it depends on the
impulse response which criterion is better. However, this behaviour could
be expected. In the previous section We saWw that the Np criterion gave
better results (in choosing between two model structures) when the norm of
x was relative small. In this case where when ©'6 is large not many
parameters can be deleted. S50 wWwe are in fact chosing between the full model
with dimension 9 and the model with dimension 8 (or yet one dimension
Llower), Since (x'x), is lower than (x'x)g we can therefore expect that the
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Np criterion can be better than the Cp criterion with impulse response A,
In both the figures 7a-7b and B8a-8b we see that there is not much
difference between the L(8) criterion and the L{x) criterion.

In figure 9a-9b we have a matrix with a large condition number {(=38.80) and
in these figures we see that for low values of 8'@ the Cp criterion gives
better results and for large 8'8 it depends on the actual impulse response
which criterion is better. In this case we alsoc see a lLarge variation
between the L(8) criterion and the L(x) criterion,

In figure 10a-10b we have another matrix with a Llarge condition number
(=50.55), Here we see that, for both the impulse response A and 8, the Cp
criterion is better than the Np criterion (for this range of the paremeter
space) and that there is a small difference between the L(8) and L{x)
criterion,

From these figures we see that for small vaiues of ©'8 the Cp criterion
gives better results than the Np criterion. If 8'8 is large it depends on
the actual impulse response which criterion gives better results (and thus
how Long Cp remains better).

Conclusions

from the previous simulations it turns out that this Np criterion, which
was based on the idea that it might be better to base a selection criterion
on the parameter space rather than on the measurement space, does not give
a clear improvement above the Cp criterion. In fact, the results may become
much worse.

Simulations indicated that when the actual parameters are indeed near zero
the Cp criterion seems to be superior to the Np criterion. But even when
the parameters are large the Cp criterion seems to be a good choice in many
cases.

Therefore, if in practice the full model is chosen in such a way that the
model is chosen too large and thus the Llast parameters are indeed near
zero, the Cp criterion seems to be a good choice,

So evaluating these results 1 think that we can conclude that it is not
advisable to use this Np criterion because ot the following reasons,

(1) it could not prove its superiority to Cp
(2) it requires more computation than Cp
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4.4 ORDERED-NONORDERED PARAMETER REDUCTIOM

Sofar I only discussed the case in which we didn't have any idea about the
length of the actual impulse response and thus were forced to choose a
mode! according to a certain criterion. However, the criteria in chapter 3
can also be used in other situations. For example for estimating the delay
of an impulse response. In both cases we are testing if we can set of
ordered parameters to zero. I will call this manner the ordered parameter
reduction.

A further step would be to test if we could set any single parameter to
zero. In that case we shouid choose the best subset of parameters according
to a criterion. I will call this manner the nonordered parameter reduction
(or subset selection). The aim of this chapter is to mention some topics
that are highly related to nonordered parameter reduction.

4.4.1 COMPUTATIONAL PRCBLENS

Suppose the aim is to select the best subset out of d possible parameters.
Then there are,

2d (6.73)

possible subsets to examine. The subset that minimizes a certain criterion
(for example Cp of AIC) should be chosen. There are some algorithms for
efficiently handling the computation of all possible subsets (for a review
on this topic see Hocking '76). The underlying idea of most of these
algorithms is to perform the calculation of all possible subsets in such a
way that sequential subset models differ by only one variable.

Another idea is to use branch and bound techniques. Suppose we are
searching for the best subset (in R$S sense) of dimension p. Thus we have
to delete (d-p) parameters from the full model. For example let (d-pl)=4 and
let RSS(a,b,c,d) denote the residuals sum of squares when parameters
a,b,c,d are deleted from the full model. The underlying idea of these
branch and bound algorithms is that if RSS(e) 2 RSS(a,b,c,d) then, for
every set of parameters where & is involved is RSS(e,?,?,?) 2 RSS(a,b,c,d)
and thus Wwe should not search in that direction. However when RSS(e) <
RSS({a,b,c,d) additional subsets have to be evaluated. After finding the
best subset for each dimension it is possible to select the overall best
subset according to one of the previous discussed selection criteria.

When the number of parameters is large it is wusually not feasible to
examineg all possible subsets. Therefore various methods have been developed
for evaluating only a small number of subsets by either adding or deleting
parameters one at a time. These methods are generally referred to as
stepwise methods. The basic ideas behind these methods are called forward
selection (FS) and backward elimination (BE)}.
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FORWARD SELECTION,

First we start with a model with no parameters., Then we select the
parameter which gives the greatest reduction in the residuals sum of
squares sense. When this reduction is smaller than a predefined value Fin
the procedure is stopped. When not, Wwe include this parameter in our model
and we check if we can add another parameter in the model. Of course the
number of variables included highly depends con Fin. One way of choosing Fin
is to assume that the i-th variable is the last to enter variable. Then is,

RSSp - RSSpti
F= e F (1,d-p-1) 4.74)
RSSp+i/¢n-p-1)

where RSSp+i denotes the RSS of the model where the i-th variable is
included. Then the i-th variable is included if

F> Fin = FT ¢1,d-p-1) t4.75)

0f course we should again choose a value for a. Another possibility is to
take Fin = 2 which is in accordance with the Cp rule.

BACKWARD ELIMINATION

This procedure is the reverse of the FS, In this case we start with all
possible parameters and we check if we can delete some parameters one at
the time. At any step the variable wWwith the smallest reduction of the
residuls sum of squares is chosen. Then

the i-th variable is deleted from the model if,

RSSp-i - RSSp
F= < Fin (4.76)
RSSP/(n-p)

Where RS5Sp-i is the RSS of the model without the i-th variable. The same
values for Fin as in FS can be used as a stopping rule.

Based on these two procedures several other procedures have been proposed
such as the forward stepuwise selection procedure, which is essentially the
same as the FS procedure but now at each stage the possibility of deleting
a variable is considered, or the backward stepwise selection procedure,
which is essentially the same as the BE procedure but now at each stage the
fncluding of a variable is considered,

It should be noted that none of the stepwise methods assure us that we get
the best overall subset. However there is a feeling that these methods wWill
reveal subsets that are near optimal. The obvious advantage of these
methods is that in the worst case only t+(t-1)+(t-2}..+1 = t{t+1)/2 subsets
have to be calculated.
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4.4.2 PRIOR KNOUWLEDGE

In this section 1 uWwant to discuss the prier conditions which have to be
met to assure us that the method of searching for the best subset will
indeed give better results than tsking all the parameters in our final
model. This will be done in the simple case in wWich the U matrix is
erthogonal and the variance of the noise is known. It is assumed that,

1
vustrag 4.77)
Thus We can see that,
8 € N(©,0%1,4/1) (6.78)

Let us denote s*=co!/l as the variance of the noise in the parameter space.
As a selection criterion consider the generalized AIC criterion,

GAIC = min RSSp + a?l*¢g? (4.79)

This means that a variable is included in the model if its contribution to
the decreasing of the RSS exceeds a'*g?’. Ffor the parameter space this
condition means that a variable is included if,

é;éi > at*gl/k = giwg? (4.80)

If this condition doesn't hold, the wvariable is excluded from the model.
Because of the simplicity of the distribution of the parameters it is
possible to calculate the resulting mean square error. Let us write,
d . Cod
MSE(8)= X E(8; - 8;) = I MSE(®;) (4.81)
i=1 i=t

Let MSE(®;) denote the mean sguare error of the i-th variable. S$ince we
don't known what the exact value of 95 is we leave it as a wvaiable.
Because of the normal distribution of © we can calculate MSE(®;) as
follows,

i

MSE(®@;)=

as as

j 8,7 p(8;-8;) do, + s - j (8,-8,)? p(8;-0;)d8; =
-as -as

(8;7-52){ F(a)-F(-a)} + s +

(as-8;)s¥p(as-8;) + (as+8;)siplac+®;) (4.82)
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where,
pet) = 1/J4(2%s?) exp{ -t /(2s%) } (4.83)
t
t) = (4.84)
Fee J plr) dr
-0
When we plot this MSE(8;) versus 8; in a figure we get the following

results (see figure 11).

MEAN SQUARE EmmOR RIGMA=)
—— A=A~ _— ABA=4
————— ASA=] ——p—e ASA=]INF.
———— ARAmD
T ¥ 1 I I Ll L] L | | 1
2.4
1.8
-
1.2 -‘
Q.6
-
Q.2

~6 -4 -2 @ 2 9 [

THETA

Figure 11: MSE(9;)} versus |8;[|* for a’=0, a'=1, at=2,
at=4,al=sinfinity

In this plot it is assumed that s? is equal to one, but this is not a
severe restriction since the characteristics remain the same for a generatl
s?*. In figure 11, MSE(8;) was plotted for five different values of a,
namely 0,1, 2, & and infinity, In this application these values correspond
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with a hypothesis test with significance level a of 100%, 32X, 16%, 5% and
0%. Of course & significance level of 100X means that we always include the
variable and a significance level of 0X means that we always exclude the
variable from the model. We see that the common characteristic is that
when |8;| is small (depending on a) the GAIC is better than just including
all the variables. However if |8;]| is large the results become much worse .
We can see that the overalt behaviour (over all 8;) is worse than just
including the variable.

So from this figure we must conclude that the GAIC will be better than the
least-squares estimator from ¢the full model, if there are enough
parameters that are close to zero. S0 if some prior information about the
parameters exists one can decide to perform a nonordered parameter
reduction or not. Of course, in case of ordered parameter reduction
simitar conditions hold, but in those cases it is more likely that they
are satisfied since most impulse responses tend to zero or have a delay
time. S0 in that region the parameters are close to zero.

4.5 ALL FORMULAS CAN BE MRONG

In the beginning of chaper 2, ! said that the formulas that were going to
be derived are based on the assumption that the model was selected without
reference to the actual data. Furthermore wWe saw that almost all the
selection criteria had their base in one or more of the derived formulas in
section two. For example the Cp criterion is derived under the assumption
that it is a (unbiased) estimate of the MSE(x). However, since these
selection criteria are used to select a model structure on the actual data
the previous assumption can not be met, and so the derived formulas are
invalid,

To illustrate that the usual properties of the least squares estimator are
invalid, consider the example in section &4.4.2 where we discussed the
nonordered parameter reduction when U was orthonormal., Let us suppose that
the i-th variable is included into the final model structure according to
the min AIC condition. According to the properties of the least squares
estimator the estimate of the i-th variable in this model structure should
be wunbiased. However if we calculate the actual expectation of the
difference between the estimate and the actual B; we get,

< -as
E{ e.i 'ei } = I (e'ei) p(el'ei) dei + -[ (Si-ei) p(ei-ei)dai
as -®
= g¢i{ p(as+8;) - p(-as+8;) ? (4.85)
S0 We see that we get a biased estimator unless a=0, which of course
corresponds to taking all the variables in the final model.
In a paper on this topic Miller ('84) considered three types of bias that

occures in the least squares estimator when the model structure is chosen
upon the data.
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(1) omission bias
(2) stopping rule bias
(3) competition bias

The omision bias is the 'normal' bias that we get in the least squares
estimator when we delete a variable from the full model {see 2.49).
Stopping rule bias is the bias that we cbtain when we are choosing the
number of parameters to use. Competion bias is the bias that we get when we
are choosing between subsets of the same size. The bias in the previous
example should be regarded as a combination of stopping rule bias and
competition bias.

The question is, how to eliminate these last two types of bias. Clearly a
good solution would be to perform the model selection on one data set and
to perform the estimation of the parameters on another data set, provided
that the division of the data set into two halves is taken randemly. But of
course in many fields, sample sizes are not large encugh to make this
method practical. Miller ('84) has mentioned some other solutions but it
still remains a very difficult problem to tackle.
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5. BIASED ESTIMATORS

In this chapter the primary concern is to look at methods that have been
developed for improving the Lleast squares estimates of the impulse
response, Since the least squares estimator is known to be a minimum
variance unbiased estimstor we are forced to consider the c¢lass of
unbiased estimators. We already discussed the James Stein estimator in
chapter 3.8  Besides the James-Stein estimator there 1is c¢lass of
estimators such as principal component regression and ridge regression
where the object is to improve the least squares estimator when the matrix
U suffers from multicollinearity, i.e. if there exists some near Llinear
relationship between the columns of U. Because of the vast quantity of
papers that exists in literature on these topics, the object is to discuss
briefly some general ideas rather than to give an exhaustive review. In the
foltowing all results will be given under the assumption that the process
is in the model set.

5.1 CANONICAL FORMS

In chaper 3.8 [ already discussed the orthonermal canonical form of the
general linear regression model (3.130-3.132). In this chaper 1 will
present another canonical form which will be used for explanatory purposes.
Consider the general model as given by,

y= U8 + e (5.1)

Let us rewrite U'U as (see 3.83)
] t

U U = WTW (5.2)
Here W is orthonormal and T is a positive definite diagonal matrix with
diag(T)=(t1,..,t b ty = .. zty >0 where the diagonal elements are the
eigenvalues of U U. Define now,

Z = U*W (5.3)

e (5.4)

8

Then we have the transformed model,

y =28 + e (5.3)
Where,

B

ty=1V2'y=w'e engor T (5.6}

So we see that in the 8 space the parameters are independent, but they
don't have equal variance. Furthermore it holds that,

EC (B-8)'(B-8) > = E{ (6-8)'(8-8) ) = MSE(®) ¢5.7)

Thus a comparision between two estimator according to the MSE(®) function
can also be done in the B space.
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3.2 JAMES STEIN ESTIMATORS

From chepter 3.8 we know that the positive James-Stein estimator,
8 = max(0,5f)* @ (5.8)

with A .
Sf = [1-{e/(v+2)Iv*a? f{x'x}]

v=(n-d) , o! = RSSd/(n-d), d 2z 3
will be uniformly better than ) according to the loss function MSE(x) if,

0 < ¢ < 2(d-2) (5.9)
But how does this estimator perform under MNSE(@). Judge and Bock ('78)

proved that this estimator will be uniformly better than the least squares
estimator if, )

0 <c<2Ctrf u'uy ! 3/tmax - 23 (5.10)
tmax is the largest eigenvalue of (u'uy! =(1l/foyi?

provided that tr{ (U'U)'1 } » 2tmax. This means that we can always improve
our estimator in MSE(x) sense and in some cases in MSE{©) sense.

5.3 PRINCIPAL COMPOMENT SELECTION

Let us consider the canonical form a&s decribed in (5.5),
y = 28 + e (5.11)

The columns of 2, z4..z43 are called the principal components and the
length of the i-th principal component corresponds with the i-th Llargest
eigenvatue of U'U, thus z2;'z; = ty. Since the mean square error of the
least squares estimator can be given by,

MSE() = ottre ('Y 1 3 = ot trec 771 3 (5.12)

small eigenvalues in T have a large contribution in the variance of é.
Since small eigenvalues mean small lengths of the corresponding columns of
2, the idea is to drop these columns out of the model (5.11). tet us now
partitien 2 into two parts Z1, to be retained, and Z2, to be deleted.
Deleting of components in Z; means that the parameters B2 (B is also
partitioned into two parts) have implicitly been set to zero. The remaining
parameters in ﬂ1 are estimated with the least squares estimator. So,

) B4 3y
51 = 2: ' and

k-1
i)
n

(5.13%)

B2 0
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This means that back in the original parameter space,
8 =W A=W W) 8=y 2]y (5.14)
This estimator has the properties that, when uz'e is indeed equal to O, it
is unbiased and has & mean square error of o?tr{ 1171 } where T1 =Z1'Z1,
which is smatler than the original one. However, when this condition is not

true, then over a large range in the parameter space this estimator is
inferior to the least squares estimator.

5.4 RIDGE REGRESSION

As we saW in (5.12), the least squares estinator has a large variance when
u'y has smatl eigenvalues. As a solution to this problem Hoert and Kennard
('70) proposed the concept of ridge regression. The ridge estimator is
found by solving a slightly modified version of the normal equations.
Specifically, the ridge estimator is defined as the solution to,

wiuekrr) 8 = u'y (5.15)
or

1

e = wurerr gy lo'y (5.16)

Where k20. The ridge estimator can be seen as a linear transformation of
the least squares estimator since,

1 -1 1
8 = (U U+k*ld) U v
] .1 ] Iy -
= (U U+sk*14) (U e = o8 (5.17)
Therefore since E{ 5 } = Q8, the ridge estimator is biased. furthermore it
hes variance otou*(ou*y' = o'OCU'U)'la. Thus the mean sguare error can be

written as,

WSE(®) = attr¢ aqu ) e d+kive’ (u'uskrig) %0 (5.18)
d
=0t T ti/(t;+k)t + kive'u'Urk*14) "% (5.19)

i=1

where ti, i=1..d, are the eigenvalues of u'v. When using this ridge
estimator, the choice of k should be such that the reduction in the
variance term is greater than the increase in the squared bias. Hoerl and
Kennard proved the existence of a k > 0O for which the MSE of & is smaller
than that of . A sufficient condition is that,

k < 20 /8-max (5.20)
where pB-max is the largest element of p:u'e. (see ?.4). Theobald ('74)
showed that for a general weighted squared error, E{ (8-8)'W(8-8) 2}
where W is some positive definite matrix, & necessary condition is that,

k < 202/8'® (5.21)

The existance of a k for which the ridge estimator has smalter variance
than the least squares estimator has encouraged many authors to derive some
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estimate for k, since fmax or © are of course not known. For example. Hoerl
and Kennard ('70) proposed to inspect the ridge trace, i.e. a plot of the
elements of ® versus k. However, this is & rather subjective method.
Mallows ('73) derived an biased estimate of the risk involved umith the
ridge estimator. As an estimate for k he suggested to minimize

C, = RSSk/20% -n + 2 + 2trqucu'uskr1 gy T’ (5.22)

where RSSk is the residuals sum of squares as a function of k. Hoerl and
Batdwin ('75) suggested to take,

k = d*a?/6'8 (5.23)
Here k is the sample analog of d*ot/8'®, which is the harmonic mesan of k;
= o'/ By (i=1..d). Many other estimators have been proposed. For a good
review see Hocking ('76) or Judge et al. ('80).
Since all suggestions for k are based on the actual data, Judge et al.
('80) pointed out that the resulting ridge estimator improves upon @ only
for a limited range of the parameterspace, and the region of improvement
depends on the unknoWwn parameters 8 and ¢!. However if we leave the ridge
estimators of the form,

=~ [ -1, [T I

8 = (UU+ k*ld) Uy = (!d+ k*{U U) ) e (5.24)
and consider the more general form,

8= (ly+ kcy ' s (5.25)
where C is a symmetric, positive definite matrix, Strawderman ('78)

derives a class of estimators that are better than the Lleast squares
estimators. One of his results is that the estimator,

© = (1 4+ asBU'U /¢ B'U'UE + gs + h > 17 @ (5.26)
with,

$=(y-U8) ' (y-U8)=RSSd

0 2 a = 2(d-2)/{ (n-d+2)*tmax }

tmax is the largest eigenvalue of 8" Tu'uy
hz0, g2z 2d/(n-p+2)

is a minimax estimator (this means that it minimizes the maximum risk)
under the toss function,

L(8,a) = (1/a7)(8-a)'B 1(8-a)
Thus when we take B=1,, it holds that,
MSE(6,8) < MSE(®,8)

when the conditions given in 5.27 are fulfilled.
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6. CONCLUSIONS

The linear regression model is often used for impulse response estimation.
Wwhen the actual length of the impulse response is knoun, the corresponding
least squares estimator {is known to be a minimum variance unbiased
estimator. However, the actual length of the impulse response is wusually
not known. Therefore it is more common than rare that the wrong model is
used. Although too large a model leads to unbiased estimates one pays with
greater variance. Too small a model Lleads to biased estimates, however,
the estimates in this modei can be better, according to some performance
measure, than those in the correct model if the introduced bias is smaller
than the amount of decreasing variance.

Many criteria have been proposed for the selection of an 'optimail' model.
Most of the selection procedures have a very different background, There
are criteria which are designed on hypothesis arguments (F-test),
prediction arguments ( Cp, PC, FPE) , information theoretic arguments
(AIC), Bayesian arguments (BIC, SC) or on cross-validation arguments
(PRESS, Ci{m) C2(m)). Although some criteria are asymptotically equivalent
( Cp, AIC, FPE, PRESS, C1(m) ) or choose asymptotically the right model
structure ( BIC, SC, C2¢(m) ) their small sample properties are all
different.

1f these criteria are used to select the best out of two model structures
( where the two model structures are the full model and some predefined
smaller model structure ) most of the criteria can be written in terms of
an F-test with a particular significance level. A plot of the risk ( MSE(®)
or MSE(x) ) involved with such an F-test yields a range in the parameter
space where the risk is smaller than the risk of the Lleast squares
estimator of the full model and a range in the parameter sSpace where it is
larger. An exception to this rule is the positive Stein rule estimator.
This estimator can also be seen as an F-test but in this case the
estimates in the full model are shrunken if the hypothesis is rejected.
This will assure us that, under certain conditions, the risk involived with
this estimator will always be smatler than that of the least squares
estimator in the full model.

Since most criteria are designed to improve prediction and thus MSE(Xx)
another criterion has been proposed (Np). However, although it was designed
as an unbiased estimate of the MSE(©®), it could not prove its superiority,
in simulated test cases, to the Cp criterion (in MSE(®) sense), which was
designed as an (unbiased) estimate of MSE(xX).

Improving the teast squares estimator if the true model structure is known
means that we have to consider biased estimators. Some biased estimator
such as principal component selection and ridge regression only improve the
least squares estimator for a limited range in the parameter space. There
exists, however, a class of biased estimators, such as the James-Stein
estimator and the Strawderman estimator, which are, under certain
conditions, uniformely better (in MSE(©®) sense) than the least squares
estimator.
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APPENDIX A

This appendix contains some elementary mathematics that have been used in
this report.

ALGEBRA
Suppose,
U=1[Uy Uyl = n*d matrix and has full rank
Ug = p*n matrix
Uy = (d-p)*n matrix
Then is,
] 1
. U1U1 U1Uz
vu = (A-1)
[} ]
UsUy  UgU,
and
1 -1 - + ] -
o uqup T uiuyeuiuy) - (UjU,B)
(4 u) = (A-2)
SUMIPY PN B
with,

B= (U1, -Uu U T and ul=cuqugrtyg

so with U= 't W' we get,

+ +
. T1 U1 'U1U2T2
U = = (A-3)
T2 T2
where,
T = p:n matrix

T, = A is 8 (d-p)*n matrix with A=(1,-Usu]U,

We can see that,

+
ULt = UguT + AR (A-4)

Let P=uu* than we see that P is an orthogonal projector since the

following conditions hold:

pZ = p and P' = P

Let P be the orthogonal projector on a space spanned by the columns of U,
then 1-P is the orthogenal projector on the null space of the matrix u'.
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POSITIVE (SEMI)DEFINITE

A matrix H is said to be positive definite if
for all x#0, x'H x >0 and H' = H (A-5)

A matrix H is said to be positive semidefinite if,

for all x#0, x'H x > 0 and H = B (A-6)
1f H is p.s.d then T'H T is also p-s.d (A-7)
If H is p.d then T'H T is atso p.d. provided that for CA-8)

T halds that Tx=0 ==> x=0, Otherwise it is p.s.d,

DERIVATIVES

Let L be a scalar and 8 be a d-vector. Then 5L/68 and 6iL/60 68' are
defines as follows,

s L/ 88
§L /60 = . (A-9)

§L/ 59y

—

§2 L /8@y 88y . .. & L/ &8y S0,

5§ L J é8 d8!

8§t L / d91 S8y .. §* L / d8y é8y
(A-10)
DISTRIBUTIONS

We say that x; is normally distributed with mean ky and variance a? if x
is &8 continuous random variable with density,

i
P(x;) = 1740270 exp{ ~(xj-#;)t/{20%) } (A-11)
and we denote this as,
x; € N(p;,0) (A-12)

Let x be a random vector with,

EC x ) = & (A-13)
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and,
E{ (x-pd)(x-u)*' > = C (A-14)

Then we say that the vector x is normally distributed if,

p(x) = (21 2w 0det())® vexpl ~%ex-p) € Tix-p) 3 (A-15)
where det(C) is the determinant of L. We denote this as,

X € N(p,C) (A-16)
Let r be a linear combination x, thus

r = @x (A-17)

Where the matrix @ denotes the linear transformation, Then r is normally
distributed Wwith mean Qu and covariance matrix aca’. Thus,

r e N(@g,oC0") (A-18)

Let xq,..x, be independent random variables such that x; ¢ N(0,1). Define,

n 1

Yy = I x;? (A-19)
then We say that y is distributed as a Chi? distribution with n degrees of
freedom. Thus,

y € Chi?*{n} (A-20)

Let z be distributed as a Chi? distribution with m degrees of freedom.
Then we say that,

y/n

(A-21)
z/m

is distributed as an F distribution with n and m degrees of freedom and we
denote this as,

v € f (n,m) (A-22)
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This appendix contains the calculation of the risk matrix and
some related topics.

Let us now assume that the following relation holds,
y= U8 + e = U8y + U8y + & e € N(O,a'ln)

Where U has full rank. Then with,

we get that E¢ (ép-e)(ép-e)' } is equal to

(T TP R DTN - O ¥ (AT T S {TMTPY- FOT-]4
{(B-1)
+ 1
Then with @ = U*y we get that E{ (8-8)(8-8)' 3 = grqu'uy™ 1.
So with relation (A-2) we see that,
EC (8-@)(e-8)' 3 - EC (ep-a)tép-e>' y =
+ 1 + 1 + ]
U1U2(Ba'-9282)(U1U2) 'U1U2(Bﬂ"8292)
(8-2)
1] ]
- (Ba?-8585) (UjUy) (Bo?-8,8;)
1f we rewrite (B-2) as,
[]
+ +
'U1U2 . 'U-‘Uz
[ Bo? '9292 ]
Ted-p) led-p)

then we see that if (Bo'-ezezl) is p.d., the matrix given in (B-2) is at
least p.s.d. {(see A-8). A necessary condition for (Ba'-ezeé) to be p.d is
that B must be p.d. Let us rewrite B as B=WDD'W' then must,

1 - 170t Te'e,e m0 7]
be p.d.. The second term has rank 1, and the only nonzerc eigenvalue has

value 958'192101 (eigenvector = D"H'ez). Thus because of condition (A-6)
the following relation holds,

(Bo?-8,05) is p.d <==> 0,8 l@y/0t < 1
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PROVE THAT,

2%1(8,8) = (x-x)'(x-X) / ot

Proof:
Let,

1(6,%) = - j P(Y;8) Ln ¢ p(y;#)/p(y;0) } dy
Wwith, -hy2 ,

ply;%) = (270%) exp { -(y-uUd) (y-U&)/20% )

Then Wwe have,
S InC ply;e) 3/ §& = -(u'ures2g7 + u'ys2e?

51 Ln{ ply;3) 3/ 68 §&' = -qu'uy/se®

and all higher derivatives are zero. Let ©&m be the

value of @

(c-1)

(C-2)

(C-3)

(c-4)

that

minimizes 1(©,%) { thus em=8 }. Then, because of the Taylor expansions

series and (C-1)-(C-4), we can write,

1(8,8) = 1(8,8m) + (8-6m)' & 1(8,8m) /&6m

+ 1/2%(8-8m)'* &% I(@,8m) / 46m &Om' *(&-em)

But since,

§* 1¢0,0m) /66m S6m' =

5t - j Ply;8) Ln { ply;#)/p(y;®) > dy /66m Sem'

j ply;@) U'uso? dy = U'y/o?
we have that,

2%1(8,0) = (8-0)U'U(B-8)/0% = (x-X) (x-x)/a?

2.E.D.

0+ 0+ 1/2%(8-8m)* §* 1(8,8m)/50m 58m'*(8-6m)
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PROVE THAT,

n
PRESS(p) = & [ y(id- wl(id*Uy¢/i) yC/id 11wyt 2

p
i=1
with,
Uq¢/i) = Uy matrix without the i-th row.
ul(i) = the i-th row of U,
y(/1) = output vector without the i-th output
yeid = i-th output
wp = (I - ULy
D, = the diagonal matrix whose diagonal elements are
+
those of (I -UqUq)
Proof:

Let us consider the i-th term of PRESS and let us write,
A = [UC/73 wiCidr)r = L X b 1Y

Where A is just another ordering of the rows of U. Then we can write this
i-th term as,

PRESS{p,i) = I[yti) - bx'y(/i)}

Let us now consider the i-th term of Mp- We can write,

Wpli) = y(i) - bA” y

Where ; = { y{/i)'" y(i)' 3! is just another ordening of y. Since,

(a'ay Tt = oxhoTt - adhoT prarspd X T ey Teex i

=M (D-1)
We can uWrite,
AY = M [ X' B")
50,
+ -
bA y = bMX'y(/i) + bMb'y(i)
and, .
AA = [ X' b*1'M [ X* b*]
+ _ + _
(4117} )ii = (AA )I'!l‘l = bMb!

Thus the i-th component of up'Dp'1Np cah be written as,



Y4

- -
y{i) - bA y y{i)-bMb'y(i) - bMX'y(/i)
(1-bMb*') {1-bMb"')
bMX*'y( /i)
= yli) = mr—mmee e
(1-bMb')

But since {(see D-1),
bMX'y(/i) = [bV-bVb'{ 1+bivb 3~ TbVIXty(/i)
(1-bMb') = [1-bVb' + bVvb'{ 1+b*Vb 3" 1 bvb')

With V=(X'X)'1. Because {1 + b'Vb ) is a scalar we can see that if we

multiply the last two expressions wWith it,

BMX'y(/i)*C1+4b' Vb)Y = bVX1y(/i)

(1-bMb') *{1+b'Vb} = 1
So,
bMX 'y (/i)
__________ = bx* yesid
(1-bMb*)

But this means the i-th component of wp'o -2y is equal to the PRESS(p,i).

P "p
Thus PRESS(p) and wp'n'zup are equal.
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