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Abstract

We investigate the viscous instability of a miscible displacement process in a recti-
linear geometry, when the viscosity contrast is controlled by two quantities which
diffuse at different rates. The analysis is applicable to displacement in a porous
medium with two dissolved species, or to displacement in a Hele-Shaw cell with two
dissolved species or with one dissolved species and a thermal contrast. We carry out
asymptotic analyses of the linear stability behaviour in two regimes: that of small
wavenumbers at intermediate times, and that of large times.

An interesting feature of the large-time results is the existence of regimes in which
the favoured wavenumber scales with t−1/4, as opposed to the t−3/8 scaling found
in other regimes including that of single-species fingering. We also show that the
region of parameter space in which the displacement is unstable grows with time,
and that although overdamped growing perturbations are possible, these are never
the fastest-growing perturbations so are unlikely to be observed. We also interpret
our results physically in terms of the stabilising and destabilising mechanisms acting
on an incipient finger.

Key words: viscous fingering; instability.

1 Introduction

The instabilities which occur when a fluid of high mobility displaces a fluid of
low mobility represent a classic fundamental problem in fluid mechanics with
important practical applications (see, for example, the review by Homsy [1]).

∗ Corresponding author. Tel: +44(0)141 548 3819; fax: +44(0)141 548 3345.

Preprint submitted to Elsevier 9 January 2009



Such instabilities occur under a variety of conditions, of which the simplest
and most paradigmatic is flow in a homogeneous porous medium or the closely
analogous system of a Hele-Shaw cell [2]. This problem is relevant to many
industrial processes, in which instability and the subsequent fingering of one
fluid into the other are typically undesirable effects, and considerable ingenuity
has been devoted to eliminating them. In particular, efforts are often made
to reduce the mobility of the displacing fluid below that of the fluid that it is
displacing, by modifying either its temperature or its chemical composition.
In nature, too, fingering instabilities may be relevant in controlling the mixing
of fluids in porous rocks, and thus may affect the geochemical processes which
take place and the consequent evolution of formations such as aquifers and oil
reservoirs.

The earliest studies of viscous fingering (e.g. that by Saffman & Taylor [2])
considered immiscible displacements, where the displacing and displaced fluids
are separated by a sharp interface; in practice capillary forces often act on this
interface and provide an important stabilising mechanism. Immiscible viscous
fingering is relevant to the economically important process of enhanced oil
recovery, in which oil is displaced from a porous medium by water that has
been made more viscous by the addition of dissolved polymers [3,4]. In some
other contexts, however, there is not a sharp interface between the displaced
and displacing fluids. For example, in both freshwater aquifers and geothermal
reservoirs, resident water may be displaced by injected or otherwise invading
water carrying different dissolved species. (The viscosity of water can be sig-
nificantly affected just by the concentration of common salts in solution. For
example, seawater at a salinity of 35 and temperature of 25◦ is around 9%
more viscous than pure water at the same temperature: see [5], §§6-182 and
14-15.) As the management of these resources becomes more important, it is
likely that techniques developed in the oil industry will have to be applied, for
example to extract fresh water rapidly from an aquifer or to drive incompati-
ble invading water from a geothermal system before scaling can occur. Flows
which are in some respects similar occur when warm (and thus less viscous)
fluid displaces colder and more viscous fluid, for example as fresh magma
invades a dyke. In all these contexts, the essential destabilising mechanisms
leading to viscous fingering are the same as in immiscible fingering, but a key
stabilising mechanism is the thermal or molecular diffusion of the fluid prop-
erties which control viscosity. The present study is therefore concerned with
miscible displacements.

Most studies of miscible displacement have assumed that the viscosity contrast
between the displaced and the displacing fluids is entirely controlled either by
the presence of a single dissolved species or by the temperature of the fluid.
However, in many contexts — for example, in the recharge of geothermal reser-
voirs [6] — the resident and injected fluids differ both in temperature and in
composition: heat and solutes dissolve at different rates, and so the exchange
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of properties between them cannot be described in terms of a single diffus-
ing quantity. Similar double-diffusive effects may occur when injected water
is made more viscous by dissolving long-chain polymers in it (see e.g. [3,4]).
Large polymer molecules have a substantially lower molecular diffusivity than
other dissolved species (such as salts) which also affect the relative properties
of the ambient and injectate, so in this situation too the effects of double diffu-
sivity must be considered. The known complexity of gravitationally unstable
displacements in double-diffusive and reactive–diffusive systems [7–9] suggests
that these effects may not be simple to identify or to analyse. The object of
the present study is to provide some insight into these effects by investigating
the fundamental mechanisms of double-diffusive viscous fingering.

In a previous study [10], we investigated viscous fingering on a radially spread-
ing displacement front in a porous medium, where both thermal and solu-
tal components contributed to the viscosity contrast. In a porous medium,
thermal signals are advected more slowly than the fluid because heat must
be shared between the fluid and the porous matrix: the system is therefore
‘double-advective’ as well as double-diffusive [11], and spatially separated ther-
mal and compositional fronts develop. The separation between these fronts
controls how strongly they can stabilise or destabilise each other. By contrast,
displacement processes in a well-insulated Hele-Shaw cell are ‘iso-advective’
and double-diffusive, and when the viscosity contrast depends on two dif-
ferently diffusing dissolved species, the transport even in a porous medium
becomes iso-advective. In this study, we therefore consider only iso-advective
displacements: for simplicity, we phrase our discussion in terms of a displace-
ment in a Hele-Shaw cell with a thermal and a compositional contrast, but we
bear in mind that our results can be applied more generally.

A comment should be made about the validity of the Hele-Shaw flow model
and its relevance as an analogue for porous media. It is key to the model that
the spatial scale of all flow features is much greater than the gap width b̂ of
the Hele-Shaw cell, and that the Peclet number defined in terms of the gap
width, the displacement velocity and the solutal concentration is not large. If
these criteria are not satisfied then the flow becomes fully three-dimensional
[12] and the gap-averaged equations defined below are no longer valid: the
three-dimensional Stokes equations must be considered instead, leading to
significantly different stability results [13]. Our analysis below will generally
deal with relatively large length- and time-scales so this restriction is not
crucial, but it should be borne in mind throughout.

A further difference between the present study and the earlier study by Pritchard
[10] is that we consider a rectilinear rather than a radial displacement process.
The radial geometry is particularly convenient from a mathematical perspec-
tive, since both the radius of the front and its streamwise width grow as t1/2:
it is therefore possible to eliminate the time-dependency of the basic state
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by transforming to similarity variables (see e.g. [14]). In other geometries, this
mathematical coincidence does not occur, and it is necessary to investigate the
stability of a basic state which is evolving as the perturbation develops. (Note
that this issue does not arise in some analogous problems, such as reaction–
diffusion systems, where a steadily translating base state is available [8].) The
standard approach is to ‘freeze’ time at some instant, and consider perturba-
tions to the quasi-steady state at that instant (see e.g. [15]). However, Ben,
Demekhin & Chang [16] have recently argued that this approach is not justified
because — especially at early times — the perturbations grow on timescales
comparable to the timescale over which the basic state changes. Ben et al. de-
veloped a spectral method which could be used to obtain asymptotic results for
the stability of long-wave perturbations, and we will adapt their method here.
We consider rectilinear displacements, which are the simplest non-degenerate
geometry available, and we believe that the insight obtained here may be more
widely applicable.

This study is structured as follows. In §2 we formulate the governing equations.
In §3 we carry out a linear stability analysis; we then develop asymptotic
results for the growth rate of perturbations in two limits: that of long waves at
intermediate times (§4) and that of long times (§5). Finally, in §6 we summarise
our findings and their implications. Before proceeding, however, it is helpful
to develop some simple hypotheses about the stability of the front, which will
give us a baseline against which to compare our analysis.

1.1 Some heuristic criteria for instability

When double-diffusive viscous fingering occurs during a radial displacement,
there are at least some cases in which a stabilising thermal gradient can sta-
bilise an unstable concentration gradient [10]. It is not clear that this will be
true for fingering of a rectilinear flow: the wavenumbers m are not restricted in
this case to be integers, so in principle, instability at any m > 0 will be enough
to trigger fingering. (It is generally found in stability analyses of viscous fin-
gering that perturbations with very low wavenumbers are marginally unstable:
this will be discussed further when we consider the spectral decomposition of
perturbations in the streamwise direction.)

The most interesting situations occur when the temperature and compositional
differences across the front contribute in different senses to the overall viscosity
contrast, so one tends to stabilise and one to destabilise the front. The question
is then whether the stabilising component can ever completely stabilise the
front. Physical and heuristic reasoning supplies three arguments which predict
substantially different results.
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(i) If solute and temperature diffuse at different rates, the fates of the two
fields may become decoupled. This should mean that if either component
promotes fingering then fingering will occur.

(ii) For the single-species problem, in the long-wave limit the growth rates
are the same as in the immiscible case [16,1]. This suggests that for the
two-species problem it should be the aggregate viscosity contrast which
controls at least the marginal instability of the front.

(iii) It is also intuitively plausible that instability will occur if any part of the
front is potentially unstable. In other words, if the global viscosity con-
trast across the front is stable but the viscosity profile is not monotonic,
there will be a region within the front where less viscous fluid is dis-
placing more viscous fluid, and instability may be expected. This agrees
with some previous results [17,18] for single-species fingering where the
viscosity–concentration relation is non-monotonic.

We will return later to these arguments, and to the analogy with single-species
fingering, in the light of our stability analysis.

2 Governing equations

We will present governing equations for flow in a Hele-Shaw cell with a temper-
ature and a compositional contrast between the injected and ambient fluids:
these equations are identical to those for the transport of two differently dif-
fusing solutes in a porous medium, to within the limitations of the model as
noted above.

We consider a Hele-Shaw cell with gap width b̂; fluid is driven through it in the
x̂-direction at a constant displacement velocity û0. The continuity and Darcy
equations are

∇̂.û = 0 and û = −K̂
µ̂
∇̂p̂, (1)

where K̂ = b̂2/12 is the effective permeability of the Hele-Shaw cell, and where
the viscosity µ̂ depends both on the temperature T̂ and the concentration Ĉ
of some solute. The transport equations for T̂ and Ĉ are

∂T̂

∂t̂
+ (û.∇̂)T̂ = κ̂T ∇̂2T̂ and

∂Ĉ

∂t̂
+ (û.∇̂)Ĉ = κ̂C∇̂2Ĉ. (2)
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The (idealised) boundary conditions can be expressed as

T̂ → T̂0, Ĉ → Ĉ0 and
∂p̂

∂x̂
→ − µ̂0û0

K̂
as x̂→ −∞; (3)

T̂ → T̂1, Ĉ → Ĉ1 and
∂p̂

∂x̂
→ − µ̂1û0

K̂
as x̂→ ∞. (4)

(The subscript 0 denotes a downstream and the subscript 1 an upstream quan-
tity.) Following previous studies from [15] onward, we take the viscosity to be
given by

µ̂ = µ̂0 exp
[

β̂T (T̂ − T̂0) + β̂C(Ĉ − Ĉ0)
]

. (5)

To non-dimensionalise, we define

T =
T̂ − T̂0

T̂1 − T̂0

, C =
Ĉ − Ĉ0

Ĉ1 − Ĉ0

, (x, y) =

(

x̂û0

κ̂C
,
ŷû0

κ̂C

)

,

u =
û

û0

, t =
t̂û2

0

κ̂C

and p =
p̂K̂

µ̂0κ̂C

. (6)

The viscosity equation becomes

µ̂ = µ̂0µ(T, C), where µ(T, C) = eβT T+βCC

and βT = β̂T (T̂1 − T̂0), βC = β̂C(Ĉ1 − Ĉ0), (7)

and we note that the signs of βC and βT are not necessarily the same as those
of β̂C and β̂T .

The governing equations become

∇.u = 0 and u = − 1

µ
∇p, (8)

∂T

∂t
+ (u.∇)T = Le∇2T and

∂C

∂t
+ (u.∇)C = ∇2C, (9)

where the Lewis number Le ≡ κT /κc. If we take T and C to refer literally to
heat and solute concentration, we expect that Le � 1; however, if we allow
them to refer to concentrations of two dissolved species, we could have a much
wider range of values. Without loss of generality, we will take ‘temperature’
to refer to the more rapidly diffusing field, and consider Le > 1.

Finally, the boundary conditions become

T → 0, C → 0 and
∂p

∂x
→ −1 as x→ −∞; (10)

T → 1, C → 1 and
∂p

∂x
→ −eβT +βC as x→ ∞. (11)
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3 Linear stability analysis

We will seek perturbations to a basic state in which the displacement front
is uniform in the y-direction, and widens diffusively in the x-direction. It is
useful to define the moving co-ordinate X = x− t and the self-similar variable
ξ = X/

√
4t; we may then write the basic state as

Cb(X, t) =
1

2
+

1

2
erf(ξ) and Tb(X, t) =

1

2
+

1

2
erf

(

ξ√
Le

)

. (12)

The total viscosity contrast across the front is given by β = βT +βC . However, if
sign(βT ) 6= sign(βC), the gradient may not have the same sign as β everywhere.
By symmetry, we know that the maximum ‘contrary’ gradient must occur at
ξ = 0. We have

d(log µb)

dξ

∣

∣

∣

∣

∣

ξ=0

=
βC + βT/

√
Le√

π
, (13)

so the viscosity gradient will be non-monotonic if

(βC + βT )

(

βC +
βT√
Le

)

< 0, i.e. 1 < −βT

βC

<
√
Le. (14)

This is of interest because Manickam & Homsy [18] found that instability
occurred whenever the viscosity profile in their system was non-monotonic,
although it sometimes occurred only after a finite ‘waiting time’. We will
compare this criterion with our results below.

We seek perturbations to the basic state, writing

u = 1 + εU1(X, t)e
imy, v = εV1(X, t)e

imy, p = pb(X, t) + εP1(X, t)e
imy,

(15)

T = Tb(X, t) + εT1(X, t)e
imy, and C = Cb(X, t) + εC1(X, t)e

imy, (16)

where 0 < ε� 1. A little manipulation yields the perturbation equations

∂T1

∂t
+ U1

∂Tb

∂X
= Le

∂2T1

∂X2
− Lem2T1,

∂C1

∂t
+ U1

∂Cb

∂X
=
∂2C1

∂X2
−m2C1 (17)

and
∂2U1

∂X2
+

(

βT
∂Tb

∂X
+ βC

∂Cb

∂X

)

∂U1

∂X
−m2U1 = m2 (βCC1 + βTT1) . (18)

Substituting in the expressions

∂Cb

∂X
=

1√
π

e−ξ2 ∂ξ

∂X
=

e−ξ2

2
√
πt

and
∂Tb

∂X
=

e−ξ2/Le

2
√
πLe t

, (19)
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the perturbation equations become

∂T1

∂t
+

e−ξ2/Le

2
√
πLe t

U1 = Le
∂2T1

∂X2
− Lem2T1,

∂C1

∂t
+

e−ξ2

2
√
πt
U1 =

∂2C1

∂X2
−m2C1

(20)

and
∂2U1

∂X2
+

(

βT
e−ξ2/Le

2
√
πLe t

+ βC
e−ξ2

2
√
πt

)

∂U1

∂X
−m2U1 = m2 (βCC1 + βTT1) .

(21)

We now transform the independent variables to (ξ, t), defining the rescaled
perturbation quantities χ = 2

√
πtC1 and θ = 2

√
πLe tT1, to obtain

t
∂θ

∂t
= LTθ −m2Le tθ − e−ξ2/LetU1, where LT =

(

1

4
Le

∂2

∂ξ2
+

1

2
ξ
∂

∂ξ
+

1

2

)

,

(22)

t
∂χ

∂t
= LCθ −m2tθ − e−ξ2

tU1, where LC =

(

1

4

∂2

∂ξ2
+

1

2
ξ
∂

∂ξ
+

1

2

)

, (23)

∂2U1

∂ξ2
+

(

βT
e−ξ2/Le

√
πLe

+ βC
e−ξ2

√
π

)

∂U1

∂ξ
− 4tm2U1 =

2βTm
2
√
t√

πLe
θ +

2βCm
2
√
t√

π
χ.

(24)

The boundary conditions that the perturbations must satisfy are

θ → 0, χ→ 0 and U1 → 0 as ξ → ±∞. (25)

3.1 Spectral decomposition method

Ben, Demekhin & Chang [16] developed a spectral approach to miscible fin-
gering when only a single diffusing species needs to be considered. The key to
this method (see also [19], §8.3), is to consider the behaviour of perturbations
in the long-wave limit m = 0. In this limit, U1 = 0 is the only solution satis-
fying the boundary conditions (25), and the evolution equations for θ and χ
reduce to

t
∂θ

∂t
= LT θ and t

∂χ

∂t
= LCθ, (26)

with solutions which can be expressed in terms of the eigenfunctions of the
operators LT and LC: these solutions essentially represent how a perturbation
is damped by streamwise diffusion alone. The eigenfunctions of LC are φn(ξ) =
Hn(ξ)e−ξ2

with eigenvalues σn = −n/2 for n = 0, 1, 2 . . . , where Hn are the
Hermite polynomials. The corresponding eigenfunctions of LT are therefore
ψn = Hn(ξ/

√
Le)e−ξ2/Le with the same eigenvalues.
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The crucial point is that the operators LT and LC have discrete eigenspec-
tra, and the only non-negative eigenvalue in each case is zero, so the only
streamwise mode which does not decay under streamwise diffusion is the zero
eigenfunction. (It can be shown that this zero eigenfunction corresponds to an
infinitesimal change in the spatial origin of the basic solution: see [19], §8.3.)
Therefore, at least for small positive values of the wavenumber m, we expect
that the streamwise structure of the perturbation will continue to be domi-
nated by the zero modes φ0(ξ) and ψ0(ξ), at least after an initial decay time of
order 1. Hence to investigate possible instabilities of the system it should be
sufficient to consider only the projection of the perturbation equations (22)–
(24) onto these dominant modes. We may carry out such a projection using
the inner products

〈f(ξ)〉C =
1√
π

∫ ∞

−∞
f(ξ)dξ and 〈f(ξ)〉T =

1√
πLe

∫ ∞

−∞
f(ξ)dξ, (27)

so that 〈ψn〉T = δ0n = 〈φn〉C .

Substituting in the approximations χ ∼ A(t)φ0(ξ) and θ ∼ B(t)ψ0(ξ) and
taking the appropriate inner products, we obtain

dA

dt
= −m2A−

〈

e−ξ2

U1

〉

C
and

dB

dt
= −m2LeB −

〈

e−ξ2/LeU1

〉

T
, (28)

while the equation which governs U1 becomes

∂2U1

∂ξ2
+

(

βT
e−ξ2/Le

√
πLe

+ βC
e−ξ2

√
π

)

∂U1

∂ξ
− 4tm2U1 =

2βCm
2
√
t√

π
A(t)e−ξ2

+
2βTm

2
√
t√

πLe
B(t)e−ξ2/Le. (29)

The explicit dependence of equation (29) on t, as well as the ξ-dependence of
the left-hand side, means that we are unable to obtain an explicit solution to
the perturbation problem in general. Following [16] we can, however, obtain
asymptotic solutions which are valid, effectively, at intermediate and at late
times, and from them we can obtain some insight into the general behaviour
of the system.

4 Long-wave, intermediate-time asymptotics

Since the growth rate of perturbations reduces to zero at zero wavenumber
and must be negative for very large wavenumbers due to transverse diffusion,
it is natural to examine the regime 0 < m � 1 for evidence of (marginal)
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instability. In the following analysis we will do this while considering times
t = O(1); this latter criterion ensures that higher streamwise modes present
in the initial condition have decayed, leaving the perturbation dominated by
φ0(ξ) and ψ0(ξ) as required by (29).

Following [16], we also assume that |βT | and |βC | are sufficiently small that
we may neglect the terms proportional to them on the left hand side of (29).
Appendix A demonstrates that this is legitimate, and that for small viscosity
contrasts the corrections are of order (|βC | + |βT |)3. We then obtain

∂2U1

∂ξ2
− 4tm2U1 ∼

2βCm
2
√
t√

π
A(t)e−ξ2

+
2βTm

2
√
t√

πLe
B(t)e−ξ2/Le (30)

with solution

U1(ξ, t) =
1

4
me2m

√
tξ



βCA(t)em2t
(

erf
(

ξ +m
√
t
)

− 1
)

+ βTB(t)em2Le t

(

erf

(

ξ√
Le

+m
√
Le t

)

− 1

)





− 1

4
me−2m

√
tξ



βCA(t)em2t
(

erf
(

ξ −m
√
t
)

+ 1
)

+ βTB(t)em2Le t

(

erf

(

ξ√
Le

−m
√
Le t

)

+ 1

)



+ O
(

(|βC| + |βT |)3
)

. (31)

Expanding this for m� 1, we have

U1(ξ, t) ∼ −1

2
m (βCA(t) + βTB(t)) +

m2

√
π



A(t)βC

(

e−ξ2
√
t +

√
πt ξerf(ξ)

)

+B(t)βT

(

e−ξ2/Le
√
Le t +

√
πt ξerf

(

ξ√
Le

))



. (32)

We may therefore evaluate the inner products approximately as

〈U1φ0〉C ∼


−βC

2
m +

√

2t

π
βCm

2



A(t) +



−βT

2
m + βT

√
t

√

1 + Le

π
m2



B(t)

(33)
and

〈U1ψ0〉T ∼


βC

√
t

√

1 + Le

π
m2 − βC

2
m



A(t) +





√

2Le t

π
βTm

2 − βT

2
m



B(t).

(34)
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Substituting these into equations (28), we obtain the amplitude evolution
equations

d

dt







A

B





 =







E11 E12

E21 E22





 .







A

B





 , (35)

where the components of the matrix E are given by

E11 = −m2 +
βC

2
m−

√

2t

π
βCm

2, E12 =
βT

2
m− βT

√
t

√

1 + Le

π
m2,

E21 =
βC

2
m− βC

√
t

√

1 + Le

π
m2, E22 = −m2Le +

βT

2
m−

√

2Le t

π
βTm

2.

(36)

The eigenvalues of E, and thus the growth rates of perturbations, are given by

σ± =
1

2
(E11 + E22) ±

1

2

[

(E11 − E22)
2 + 4E12E21

]1/2
. (37)

The structure of the corresponding perturbations is given by the ratio of the
solutal to the thermal perturbation amplitude,

(

B

A

)

±
=
E22 − E11 ±

√

(E11 − E22)
2 + 4E12E21

2E12
. (38)

4.1 Reduction to the single-species case

For the particular case βT = 0, the problem reduces to that of single-species
miscible fingering, as considered by [16]. The predicted asymptotic growth
rate at early times is then equal to E11. This has the same form as the growth
rate predicted by Ben et al.’s analysis (their equation (45)), but it differs by a
factor of

√
π in the final term. This appears to be due to an algebraic error in

equation (33) of the earlier paper, where a spurious factor of e−ξ2

is introduced.

It is interesting to note that in dimensional terms, the growth rate of pertur-
bations for disturbances of long wavelength scales as

σ̂ ∼ 1

2
m̂û0 log(µ̂1/µ̂0) = m̂û0

µ̂1 − µ̂0

µ̂1 + µ̂0
+ O





(

µ̂1 − µ̂0

µ̂0

)2


 , (39)

so for small viscosity contrasts the predicted growth rate is identical to the
classic result of Saffman & Taylor [2] for immiscible fingering. Ben et al. de-
scribe this as a ‘fortuitous coincidence, since the omission of higher streamwise
eigenfunctions is only possible in the presence of diffusion’. The ‘coincidence’
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may be because in this limit the front is sharp relative to the perturbation
lengthscale m−1, and so can be approximated as the perfectly sharp interface
assumed in [2]; similarly, the perturbations φ0(ξ) and ψ0(ξ) correspond to in-
finitesimal advances or retardations of the front, which were the perturbations
treated in the original analysis. We note, though, that the predictions of the
current model deviate from those of Saffman & Taylor [2] at higher order in
m as the dependence of E on t becomes apparent.

4.2 Properties of the eigenvalues σ±

We are in general interested in the behaviour of the growth rates σ± in the
regime m � 1. A first question which arises is whether complex values of σ±
are possible in this regime, giving an oscillatory instability (cf. [10], §5.3.2).
The discriminant of σ± is given by

(E11 − E22)
2 + 4E12E21 =

1

4
(βC + βT )2m2 + O(m3), (40)

so for sufficiently small m, the eigenvalues σ± are real and there is no reason
to expect oscillatory instabilities.

To investigate the long-wave limit, it is instructive to expand σ± in powers of
m. We find that

σ± =
βC + βT

4
m± 1

4

[

(βC + βT )2
]1/2

m + O(m2) (41)

∼ βC + βT

4
(1 ± sgn(βC + βT ))m. (42)

This means that, if the total mobility contrast βtot ≡ βC + βT > 0, we have
σ+ ∼ 1

2
βtotm and σ− = O(m2), whereas if βtot < 0, we have σ+ = O(m2) and

σ− ∼ 1
2
βtotm.

In the regime 0 < βtot � 1, then, the front is unstable in the long-wave
limit regardless of how the total mobility contrast βtot is made up. In the case
βtot < 0, we need to consider terms of order m2. Carrying out the expansion,
we obtain, for βtot < 0,

σ+ =
−1

βT + βC



βT + LeβC + βTβC

√

2t

π

(

1+
√
Le−

√

2(1 + Le)
)



m2 +O(m3).

(43)
A long-wave instability will therefore occur if the quantity in square brackets
is positive, i.e.

βT + LeβC + βTβC

√

2t

π

(

1+
√
Le−

√

2(1 + Le)
)

> 0. (44)
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The quantity in round brackets is negative for all Le > 1. We rewrite the
instability condition as

βT + LeβC > βTβC

√

2t

π

(

√

2(1 + Le) − 1 −
√
Le
)

; (45)

If βC < 0 and βT < 0, the condition is trivially not satisfied since the LHS < 0
while the RHS > 0. If βTβC < 0 (i.e. exactly one component is destabilising),
the instability condition becomes

1

βC

+
Le

βT

<

√

2t

π

(

√

2(1 + Le) − 1 −
√
Le
)

. (46)

This implies that if 1/βC+Le/βT ≤ 0, the front becomes unstable immediately;
while if 1/βC + Le/βT > 0, the front becomes unstable only after a time tcrit
which is given by

tcrit =
π (βT + LeβC)2

2β2
Tβ

2
C

(√

2(1 + Le) − 1 −
√
Le
)2 . (47)

This is reminiscent of the critical time required for a diffusively spreading ther-
mal front in a porous medium to become gravitationally unstable: compare,
for example, [20] or [21]. It is also reminiscent of the destabilisation of initially
stable displacement processes with non-monotonic viscosity profiles predicted
by [22] and by [18].

It is important to note that although the analysis we have presented shows
that the front cannot become unstable before some critical time, we have not
formally shown that such a critical time exists. This is because the critical time
predicted by (47) is of order |βTβC |−1 � 1, and we have previously assumed
that t = O(1). However, the result is at least suggestive. (Note that we have
retained terms of order |βTβC | in the expansion: as long as |βC | and |βT | are
of comparable magnitude the retention of these terms is legitimate since the
small-viscosity contrast approximation is valid to second order in |βC |+ |βT |:
see appendix A for details.)

Figure 1 summarises the stability behaviour of the front as predicted by our
analysis. It is instructive to compare the criteria obtained above with one of
our heuristic arguments for the stability criterion, which is that instability
should occur when the viscosity profile has an increasing region somewhere
[18]. We recall that this occurs if 1 < −βT/βC <

√
Le: this boundary is plotted

as the dotted line in figure 1, and we note that it does not provide a good
guide to the stability of the front.
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βT

βC

βT =
√

LeβCβT =−βC

βT =−LeβC

Regime (a)

Regime (b)

Regime (c)

Fig. 1. Schematic showing the predicted stable and unstable regions of the (βC , βT )
plane for Le > 1, m

√
t � 1 and |βC |, |βT | � 1. The dashed line represents

βT + βC = 0; the solid line represents βT + LeβC = 0. The dotted line represents
βT +

√
LeβC = 0, i.e. the cases where an inflection point occurs in the viscosity

profile. In regime (a) (white), the front remains stable for all time. In regime (b)
(gray), the front becomes unstable immediately. In regime (c) (hatched), the front
is stable at t = 0 but may become unstable as it spreads.

4.3 Discussion and interpretation

In the limit m→ 0, the eigenvector corresponding to σ+ is given by

(

B

A

)

+
=
βT − βC +

√

(βC + βT )2

2βT
+ O(m). (48)

If βC + βT > 0, then this simplifies to

(

B

A

)

+
∼ 1, (49)

so the fastest-growing mode is a ‘sinuous’ perturbation (cf. [23]; [10], §3), with
the temperature and concentration fields perturbed in the same sense. Note
that in this regime, we can see from (32) that the velocity perturbation U1 is
of order m in amplitude.

If βC + βT < 0, the eigenvector simplifies to

(

B

A

)

+
∼ −βC

βT
. (50)

When βC/βT < 0, so one component is destabilising, the dominant mode is
again sinuous, although it is now ‘lopsided’, with one field perturbed more
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strongly than the other. From (32), we see that in this regime the velocity
perturbation U1 is of order m2 in amplitude, significantly weaker than in the
regime βC + βT > 0. (In the double-stabilised regime βC < 0 and βT < 0,
the most slowly-decaying mode is varicose, with the perturbations to temper-
ature and concentration opposing each other and thus reducing the dynamic
stabilisation of the perturbation through the Saffman–Taylor mechanism.)

We can now relate the findings of our analysis to the heuristic arguments
proposed in §1.1. The argument (ii), that in the long-wave limit the growth
rates are the same as for the immiscible case, applies to the O(m) term in the
growth rate, which is unaffected by transverse diffusion: this is sufficient to
provide an immediately unstable mode wherever βT + βC > 0. There is also a
second mode of perturbation, however, in addition to the single mode in the
single-species case: in the regime βC > 0, −LeβC < βT < −βC , this ‘lopsided’
mode is able to grow, although the velocity perturbation is weakened and the
growth inhibited by the unfavourable thermal viscosity contrast. The growth
of this secondary mode was not predicted by any of our heuristic arguments.
The argument (iii), concerning the non-monotonicity of the viscosity profile,
is seen not to be relevant in this regime, while the results for critical times
suggest that argument (i) holds at large times (but we must confirm this by
a separate analysis).

5 Long-time asymptotics

The other natural asymptotic limit to investigate is that of long time, when the
front has spread considerably and — again following [16] — we may expect
perturbations to be strongly localised so that they are in effect embedded
within the front. The natural expansion variable is againm

√
t, and we consider

the regime m
√
t � 1, this time assuming that the parameters Le, |βT | and

|βC | are all of order unity.

Ben, Demekhin & Chang [16] develop an asymptotic representation of U1 in
this limit by assuming that, if the perturbation to velocity U1 is strongly
localised about ξ = 0 so that we need only consider values of |ξ| � m

√
t, then

the term e−ξ2

dU1/dξ in equation (24) may be approximated simply by dU1/dξ.
It is hard to justify this assumption, since the solution which they obtain
decays as e−ξ2

, in other words at the same rate as the function which they
expand about ξ = 0. (Their statement that m

√
t� ξ is formally meaningless,

since the boundary conditions on U1 must be applied at ξ = ±∞.) However,
by taking a slightly different approach we can develop solutions in the regime
m
√
t� 1 directly.
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We define the expansion variable M = m
√
t and write equation (24) as

d2U1

dξ2
+ f(ξ)

dU1

dξ
− 4M2U1 = M2g(ξ), (51)

where

f(ξ) = βT
e−ξ2/Le

√
πLe

+ βC
e−ξ2

√
π

and g(ξ) =
2βC√
πt
A(t)e−ξ2

+
2βT√
πLe t

B(t)e−ξ2/Le.

(52)
The important point is that f(ξ) and g(ξ) are both even in ξ and independent
of M .

We seek solutions of the form

U1(ξ) = U10(ξ) +
1

M2
U11(ξ) + O

(

1

M4

)

, (53)

and substituting this into equation (51) we obtain at O(M 2) and O(1) the
equations

U10(ξ) = −1

4
g(ξ) and

d2U10

dξ2
+ f(ξ)

dU10

dξ
− 4U11 = 0, (54)

giving us immediately the asymptotic solution

U1 ∼ −1

4
g(ξ) − 1

16M2

[

d2g

dξ2
+ f(ξ)

dg

dξ

]

+ O
(

1

M4

)

. (55)

(Note that because of the exponential decay in f(ξ) and g(ξ) these solutions
satisfy the boundary conditions as ξ → ±∞: this contrasts with the situation
in the small-M limit where the expansions were not uniform in ξ.) The first
term proportional to M−2 is even in ξ, while the second term is odd. This
means that when either of the inner products 〈φ0U1〉C or 〈ψ0U1〉T is taken,
only the first of these terms will contribute to the integral. Consequently, to
O(M−2), the form of f(ξ) is irrelevant so long as it is of order unity and even
in ξ. This explains the success of Ben et al.’s formally invalid approximation
of equation (24): had the asymptotic series been extended to O(M−4), or had
we required odd terms in ξ, then the approximation would have failed.

Substituting in for f(ξ) and g(ξ), we have

U1(ξ) ∼ − βC

2
√
πt
A(t)e−ξ2 − βT

2
√
πLe t

B(t)e−ξ2/Le

− 1

4m2t

[

βCA(t)√
πt

e−ξ2

(2ξ2 − 1) +
βTB(t)

Le3/2
√
π t

e−ξ2/Le

(

2
ξ2

Le
− 1

)

−
(

βT
e−ξ2/Le

√
πLe

+ βC
e−ξ2

√
π

)(

βCA(t)√
πt

ξe−ξ2

+
βTB(t)

Le3/2
√
πt
ξe−ξ2/Le

)]

. (56)
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We can now calculate asymptotic estimates for the inner products:

〈

e−ξ2

U1

〉

C
=
A(t)βC

2
√

2πt

[

−1 +
1

4m2t

]

+
B(t)βT

2
√

1 + Le
√
πt

[

1

2m2t(1 + Le)
− 1

]

;

(57)
〈

e−ξ2/LeU1

〉

T
=

A(t)βC

2
√

1 + Le
√
πt

[

1

2m2t(1+Le)
− 1

]

+
B(t)βT

2
√

2πLe t

[

1

4m2Le t
− 1

]

.

(58)

The evolution equation becomes

d

dt







A

B





 =







E11 E12

E21 E22





 .







A

B





 , (59)

where the components of the matrix E are given by

E11 = −m2 − βC

2
√

2πt

[

−1 +
1

4m2t

]

,

E12 = − βT

2
√

1 + Le
√
πt

[

1

2m2t(1 + Le)
− 1

]

,

E21 = − βC

2
√

1 + Le
√
πt

[

1

2m2t(1 + Le)
− 1

]

,

E22 = −m2Le− βT

2
√

2πLe t

[

−1 +
1

4m2Le t

]

. (60)

As before, the eigenvalues of E, and thus the growth rates of perturbations,
are given by

σ± =
1

2
(E11 + E22) ±

1

2

[

(E11 − E22)
2 + 4E12E21

]1/2
, (61)

while the structure of the corresponding perturbations is described by the
ratio of the solute to the thermal perturbation amplitude,

(

B

A

)

±
=
E22 − E11 ±

√

(E11 − E22)
2 + 4E12E21

2E12
. (62)

5.1 Reduction to the single-species case

It is useful to consider briefly the case βT = 0, so the growth rate is given
simply by σ = E11. Again, this has the same form as the growth rate de-
rived by Ben, Demekhin & Chang [16] (their equation 50), but the coefficients

17



are slightly different, apparently because of an algebraic error in Ben et al.’s
equation (49).

It is worth extracting some information from this case before proceeding. The
cut-off condition for marginal stability (assuming that the principle of ex-
change of stabilities holds) is given by

E11 = 0 ⇐⇒ m4 − βC

2
√

2πt1/2
m2 +

βC

8
√

2πt3/2
= 0. (63)

This has solutions

m2 = (mex
± )2 =

1

2







βC

2
√

2πt1/2
±




(

βC

2
√

2πt1/2

)2

− 4
βC

8
√

2πt3/2





1/2




 . (64)

Concerning ourselves for the moment only with the case βC > 0, we may write
these as

(mex
± )2 =

βC

4
√

2πt1/2



1 ±
(

1 − 2
√

2π

βC

1

t1/2

)1/2


 . (65)

We therefore have different scalings with t for the upper and lower boundaries
of the range of unstable wavenumbers:

(mex
+ )2 ∼ βC

2
√

2π
t−1/2 and (mex

− )2 ∼ 1

4
t−1. (66)

We conclude that the maximum unstable wavenumber scales as mex
+ ∼ t−1/4

while the minimum unstable wavenumber scales as mex
− ∼ t−1/2.

Meanwhile, the wavenumber at which the maximally unstable perturbation
occurs must be a stationary point, satisfying

dE11

dm
= 0 ⇐⇒ 2m =

βC

2
√

2πt

1

2m3t
⇐⇒ m = mst =

β
1/4
C

27/8π1/8
t−3/8. (67)

A further scaling with t is therefore involved, because the balance which de-
termines the maximum growth rate is different from those that determine the
cut-off wavelengths.

Note that an asymptotic expansion for the single-species problem that only
preserved the leading-order terms in t at any stage would be liable to fail, for
example by predicting maximum growth rates at m = 0. In the more com-
plicated double-diffusive problem, where we cannot readily solve explicitly for
cut-off and maximally unstable wavenumbers, some care is therefore required.

One manifestation of this care concerns the selection of the long-wave (small-
m) cut-off wavenumber. Recall that σ was derived in the limit m

√
t → ∞.
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This means that the asymptotic estimate for mex
+ is valid at large times, since

mex
+

√
t ∼ t1/4 → ∞ as t → ∞; similarly the asymptotic estimate for mst

is valid at large times, since mst
√
t ∼ t1/8 → ∞ as t → ∞. However, the

asymptotic estimate for mex
− is not formally valid, since mex

−
√
t = O(1) as

t → ∞. We will therefore consider only those quantities the wavenumbers of
which scale with t−1/4 or t−3/8, and accept that our expression for σ will not
provide a valid prediction of the long-wave cut-off wavenumber mex

− .

Our strategy will be to start with the short-wave end of the spectrum and
look at features which scale as m ∼ t−1/4 at large times. We will then consider
scalings with m ∼ t−3/8. It is helpful at this stage to introduce some shorthand
notation: we will consider regimes of behaviour in the (βC , βT )-plane, and refer
to the quadrants by the corresponding compass points, so that for example
the SE quadrant is the region βC > 0, βT < 0.

5.2 Long-time asymptotics: expansion capturing t1/4 scalings

We will start by trying to develop a consistent expansion in which the inter-
esting values of m scale with t−1/4. We will try to extract information about
the cut-off wavenumber(s) and the fastest-growing wavenumber, noting that if
we predict a short- or long-wave catastrophe of any kind, this suggests that we
can only obtain the relevant information from a different distinguished limit.

Formally, we consider the limit in which t → ∞ while the newly-defined
quantity µ = mt1/4 remains constant (i.e. of order unity). Substituting this
into (61) and expanding for large t, we find

σ+ =
σ1

t1/2
+ O

(

1

t

)

, where σ1 = −aµ2 + b +
√

(cµ2 − d)2 + e, for

a =
(Le+ 1)

2
, b =

βT + βC

√
Le

4
√

2πLe
, c =

(Le− 1)

2
,

d =
(βT − βC

√
Le)

4
√

2πLe
, e =

βTβC

4π(Le + 1)
. (68)

Note that σ+ ∼ −µ2 as µ → ∞, so large-wavenumber perturbations are al-
ways decaying. Whether unstable perturbations exist then depends on whether
<(σ+) > 0 for any finite µ.

5.2.1 Behaviour of σ1 as µ→ 0

The first bit of information to extract is how σ1 behaves as µ → 0. (This
is formally invalid, but provides a useful tool to determine the behaviour of
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σ1(µ) for finite µ.) In this limit we have

σ1(0) = b+
√
d2 + e. (69)

We first confirm that σ1(0) is always real. We may write

d2 + e =
β2

T

32πLe
+

(βC

√
Le)2

32πLe
+
βTβC

√
Le

32πLe

2(4
√
Le− 1 − Le)

(Le + 1)
. (70)

By the triangle inequality we know that β2
T + β2

CLe > 2|βTβC

√
Le|; a further

application of the triangle inequality then shows that

∣

∣

∣

∣

∣

2(4
√
Le− 1 − Le)

(Le+ 1)

∣

∣

∣

∣

∣

< 2 for Le > 1, (71)

and so we conclude that d2 + e > 0 and the predicted value of σ1 as µ→ 0 is
always real.

We now look at the sign of σ1(0). Clearly in the NE quadrant, where b > 0,
we must have σ1(0) > 0. We now look for places where σ1(0) = 0. We have

b +
√
d2 + e = 0 =⇒ b < 0 and b2 − d2 = e (72)

=⇒ b < 0 and
βTβC

4π
√
Le

(

1

2
−

√
Le

Le+ 1

)

= 0, (73)

so, recalling that Le > 1 so that the contents of the round brackets are non-
zero, we see that σ1(0) can change sign only where βT = 0 or βC = 0. It
remains to be determined in which quadrants σ1(0) ≷ 0. In the SW quadrant,
the condition

b +
√
d2 + e < 0, b < 0 ⇐⇒ βCβT

8π
√
Le

>
βCβT

4π(Le+ 1)
(74)

⇐⇒
√
Le

Le + 1
<

1

2
. (75)

Since this final condition holds for all Le > 1, we conclude that σ1(0) < 0
throughout the SW quadrant.

Finally, we note that since b < 0 ⇐⇒ βT < −
√
LeβC , the condition σ1(0) = 0

can be met only on the negative parts of the βC and βT axes, not on the upper
parts. We conclude that σ1(0) < 0 within the SW quadrant, that σ1(0) > 0
within the other three quadrants, and that σ1(0) = 0 on the axes βC = 0
and βT = 0. (This latter is unsurprising: if βC = 0 or βT = 0 then one
component does not affect the flow, so we are free to perturb this component
by an infinitesimal advance or retreat which will then not decay — the very
basis on which we have focused our attention on the leading-order streamwise
structure of the perturbation.)

20



We will now examine the behaviour for µ > 0, proceeding quadrant-by-
quadrant.

5.2.2 Behaviour of σ1 in the NE and SW quadrants: βCβT > 0

In these quadrants the behaviour of σ1(µ) is fairly easy to establish. Note that
we have e > 0, so σ1 ∈ R ∀µ ≥ 0. We now look for possible local maxima over
µ. We have

dσ1

dµ
=

−2µ
[

a
√

(cµ2 − d)2 + e− c(cµ2 − d)
]

√

(cµ2 − d)2 + e
. (76)

One stationary point therefore occurs at µ = 0, and seeking others we have
the condition

a
√

(cµ2 − d)2 + e = c(cµ2 − d). (77)

There are then no real solutions with µ2 < d/c; if µ2 > d/c then this equation
implies

(cµ2 − d)2(a2 − c2) = −ea2 < 0. (78)

Since a > c > 0 for all Le > 1, we conclude that in these quadrants the
only stationary point of σ1(µ) occurs at µ = 0. This must then be the global
maximum for µ ≥ 0 because of the behaviour we have already established in
the large-µ limit.

We conclude that in these quadrants a ‘long-wave catastrophe’ is predicted
when this asymptotic limit is considered: in fact, we will have to pursue the
t−3/8 expansion to locate the maximum. Two questions remain: is the maximal
growth rate positive or negative, and is there a well-defined range of growing
wavenumbers?

We deal with the maximal growth rate first. In the NE quadrant, we have
b > 0 and so σ1(0) = b +

√
d2 + e > 0, providing a well-defined and positive

maximum growth rate. In the SW quadrant, b < 0, so equation (69) confirms
that σ1(0) < 0 and thus that everywhere in the SW quadrant all wavenumbers
of perturbations are decaying (as physical intuition would suggest).

Now we consider whether there is a well-defined range of growing wavenumbers
in the NE quadrant. The condition for exchange of stabilities, σ1 = 0, becomes

aµ2 − b =
√

(cµ2 − d)2 + e,

and so







(aµ2 − b)2 = (cµ2 − d)2 + e if aµ2 − b > 0,

no solutions exist if aµ2 − b < 0.
(79)

The equation (aµ2 − b)2 = (cµ2 − d)2 + e becomes a quadratic in the variable
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µ2,

µ4 +

(

−βT − Le3/2βC

)

2
√

2
√
πLe3/2

µ2 +
βCβT (

√
Le− 1)2

8π(Le+ 1)Le3/2
= 0, (80)

which has solutions

µ2 = (µex
± )2 =

(

βT + Le3/2βC

)

4
√

2
√
πLe3/2

±

√

√

√

√

√

(

βT + Le3/2βC

)2

(4
√

2
√
πLe3/2)2

− βCβT (
√
Le− 1)2

8π(Le+ 1)Le3/2

(81)
Either of µex

± will provide exactly one real positive root for µ, if and only if
(µex

± )2 > max(0, b/a). Since σ1(µ) is monotonically decreasing, is positive for
µ = 0 and becomes negative for large µ, there can only be exactly one root of
the equation σ1(µ) = 0, and this root must be µ = µex

+ , since if (µex
− )2 > b/a

then (µex
+ )2 > b/a and we would have two roots and a contradiction.

We conclude that in the NE quadrant there is a well-defined set of unsta-
ble wavenumbers satisfying µ < µex

+ ; in other words, the shortest unstable
wavenumber satisfies m ∼ µex

+ t
−1/4.

5.2.3 Behaviour of σ1 in the NW and SE quadrants: βCβT < 0

In these quadrants e < 0, so it is no longer immediately apparent that σ1(µ) ∈
R ∀µ > 0.

The condition σ1 /∈ R corresponds to

(cµ2 − d)2 + e < 0 ⇐⇒ d−
√
−e

c
< µ2 <

d+
√
−e

c
, (82)

where we have used the fact that e < 0 in these quadrants.

In the NW quadrant, where βC < 0 and βT > 0, d > 0 and so the range
of wavenumbers where σ1 /∈ R includes at least some positive values of µ2.
(Note that from above we know that d2 + e > 0; when d > 0 this means we
can conclude that d−

√
−e > 0, so the condition (82) must define a band of

strictly positive values of µ2.)

In the SE quadrant, where βC > 0 and βT < 0, d < 0. Again using the result
that d2 + e > 0 so |d| >

√
−e, we conclude that the condition (82) cannot be

satisfied for any µ2 > 0; hence in this quadrant all values of σ1 are real.

The SE quadrant: βC > 0 and βT < 0. We will look first at the SE quadrant.
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First we will look for possible local minima and maxima. As before, we have

dσ1

dµ
= 0 ⇐⇒ µ = 0 or a

√

(cµ2 − d)2 + e = c(cµ2 − d). (83)

The latter equation has no solutions if µ2 < d/c; however, since d < 0 in this
quadrant this criterion never comes into play, and the sole condition required
for the validity of a root is that µ2 > 0. So we have

a
√

(cµ2) − d)2 + e = c(cµ2 − d) ⇐⇒ µ2 = (µst
±)2 =

d

c
± 1

c

√

−ea2

a2 − c2
. (84)

Since d < 0, the root (µst
−)2 < 0 and this is never a valid solution. So we have

one of two situations: either (µst
+)2 < 0, and the only stationary point of σ1

is at µ = 0, or (µst
+)2 > 0 and there is a second stationary point at µ = µst

+

(which must be a local maximum because we know that σ1 decays with µ for
large µ). The corresponding maximal growth rate is then given by

σ1(µ
st
+) =

Le3/2βC − βT

2
√

2π
√
Le(Le− 1)

− 1√
π(Le− 1)

√

−βCβTLe

Le+ 1
. (85)

To determine where this applies, we look for the limits of the region where
(µst

+)2 > 0. The condition µst
+ = 0 becomes

d+

√

−ea2

a2 − c2
= 0 ⇐⇒ β2

T + (2Le− 2
√
Le + 2)βCβT + β2

CLe = 0. (86)

This in turn has the solutions

βT = βT ± =
[

−1 +
√
Le− Le±

√

(−1 +
√
Le− Le)2 − Le

]

βC . (87)

The contents of the square root sign are positive, and the contents of the
square brackets are negative, for all Le > 1; consequently both values of βT

predicted for a given Le > 1 and βC > 0 lie in the SE quadrant.

The behaviour of σ1 in the SE quadrant is therefore as follows.

• If βT < βT−(Le, βC) or βT > βT+(Le, βC), then the global maximum occurs
at µ = 0 and there are no local maxima; noting that σ1(0) > 0, the picture
here is then the same as in the NE quadrant, with a long-wave ‘catastrophe’
and a cut-off wavenumber µ = µex

+ for unstable perturbations.
• If βT−(Le, βC) < βT < βT+(Le, βC), then the stationary point at µ =

0 is a local minimum, the global maximum occurs at µ = µst
+ > 0, and

perturbations with µ > µex
+ are stabilised.
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The NW quadrant: βC < 0 and βT > 0. In this quadrant, a > c > 1 as
before, d > 0, e < 0, and b can be positive or negative. Recall that the key
feature of this quadrant is that there is a range of wavenumbers, given by (82),
in which σ1 /∈ R. Perturbations within this range are overdamped and may
oscillate in sign while either growing or decaying (cf. [10], §5.3.2).

We will first seek stationary points of <(σ1(µ)). If µ is within the range where
σ1 /∈ R, then <(σ1) = −aµ2 + b, so d<(σ1)/dµ = −2aµ < 0. Consequently
we can never find a maximally growing perturbation with some oscillatory
behaviour (unless the choice of values of µ is somehow restricted, for example
by lateral boundaries to the flow).

If µ is within the range where σ1 ∈ R, then we may proceed as before. There

are stationary points at µ = 0 and where a
√

(cµ2 − d)2 + e = c(cµ2 − d), and

the condition for a solution to be valid is now that µ2 > d/c > 0. Of the two
solutions to this equation, only one satisfies this condition, and it is given by

µ2 = (µst
+)2 =

d

c
+

1

c

√

−ea2

a2 − c2
. (88)

We must therefore consider whether this local maximum, which occurs for
higher values of µ than the range defined by (82), can ever dominate the
maximum at µ = 0.

Substituting µ = µst
+ into σ1, we find

σ1(µ
st
+) =

bc− ad

c
−
√

−e(a2 − c2)

c
. (89)

Now

bc− ad =
Le3/2βC − βT

4
√

2πLe
< 0 in this quadrant. (90)

Meanwhile, we recall that σ1(0) > 0 in this quadrant, so µ = 0 remains the
global maximum predicted by this asymptotic expansion. (In reality, as usual,
this means we must refer to a different asymptotic expansion to locate the
minimum.)

We now look for the cut-off wavenumber µ = µcrit at which <(σ1) = 0. The
expression which determines this will depend on whether σ1(µcrit) is real or
not: if σ1(µcrit) ∈ R then µcrit = µex

+ defined by (81) (which is valid as long as
(µex

+ )2 > b/a); while if σ1(µcrit) /∈ R then <(σ1) = −aµ2 + b and so µ2
crit = b/a.

Since <(σ1) is a continuous function and we have already shown that there
is only one root, µcrit must vary continuously with the parameters of the
problem. This means that the boundaries of the region where the exchange of
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stabilities holds are the same as the boundaries of the region where µ = µex
+

is a valid solution of σ1 = 0. These boundaries are given by

βT = βex
T± = Le

[

−(Le + 1 −
√
Le) ±

√

(Le + 1 −
√
Le)2 − Le

]

βC = LeβT±

(91)

where the last stage can be checked by referring to (87).

The behaviour of σ1 in the NW quadrant is therefore as follows.

• Everywhere in this sector the highest growth rate occurs for µ → 0, i.e.
we need to consider different asymptotics to pick out the fastest-growing
wavenumber.

• If LeβT+ < βT < LeβT− then the principle of exchange of stabilities does not
hold: here the marginally unstable perturbations become unstable through

an overdamped instability, and the cut-off wavenumber is µ =
√

b/a. (Note

that the line b = 0, i.e. βT = −
√
LeβC , lies below the boundaries of this

sector.)
• If βT < LeβT+ or βT > LeβT− then the principle of exchange of stabilities

does hold, and the cut-off wavenumber is µ = µex
+ as before.

5.3 Long-time asymptotics: expansion capturing t3/8 scalings

The analysis in the previous section suggests that, except in a particular sector
within the SE quadrant, the scaling m ∼ t−1/4 fails to capture the maximally
unstable wavenumber. Motivated by this and by the scaling of the maximum
in the single-species case, we now consider features of σ+ whose location scales
as m ∼ t−3/8.

We substitute into σ+ the ansatz m = νt−3/8 and expand for large t, assuming
ν = O(1). This gives

σ ∼ σ1ν

t1/2
+
σ2ν

t3/4
+ O(t−1), (92)

where

σ1ν =
βT +

√
LeβC

4
√

2π
√
Le

+

√

√

√

√

(

βT −
√
LeβC

4
√

2π
√
Le

)2

+
βCβT

4π(Le+ 1)
(93)

and σ2ν = pν2 + q/ν2, where

p = −(Le + 1)

2
+

[

(βT −
√
LeβC)2 +

8LeβTβC

Le + 1

]−1/2
(Le− 1)

2
(−βT +

√
LeβC)

(94)
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and

q = −
[

βT + Le3/2βC

16
√

2πLe3/2

]

+

[

(βT −
√
LeβC)2 +

8LeβTβC

Le + 1

]−1/2

×
[

−(βT + LeβC)2

16
√

2πLe3/2
+

βTβC

16
√

2π

(

Le + 1

Le
+ 2

(1 + Le2 − 6Le)√
Le(Le + 1)2

)]

. (95)

Note that σ1ν is independent of the wavenumber, so we immediately obtain
a leading-order estimate of the maximum growth rate, and this estimate is
identical to the estimate of σ(0) obtained using the m = µt−1/4 scaling, equa-
tion (69). Crucially, we also inherit the result that this growth rate is real,
σ1ν ∈ R. The same result shows that the contents of the square root sign in
σ2ν are always non-negative, so σ2ν is also real.

To locate the maximum, we need to consider the next-order term, σ2ν . There
will be a global maximum corresponding to dσ2ν/dν = 0 if and only if p <
0 and q < 0. Some intricate but straightforward algebra (omitted here for
clarity) indicates that q = 0 only if βC = 0 or βT = 0, and sampling points
in the four quadrants then confirms that q > 0 in the SW quadrant (βC < 0,
βT < 0) and q < 0 everywhere else. Since we expect growth rates to be
negative in the SW quadrant in any case we will not worry further about
the behaviour here. Similarly, solving p = 0 and sampling shows that p < 0
everywhere except in the sector of the SE quadrant bounded by the values
β = βT ±(βC) defined in (87). We conclude that in the three quadrants where
growth is possible, we can locate a well-defined maximum growth rate at a
wavenumber which scales either with t−3/8 (outwith the ‘anomalous’ sector)
or with t−1/4 (within the ‘anomalous’ sector).

Outwith the SW quadrant and the ‘anomalous’ sector, then, the maximum
growth rate is therefore predicted to occur at

ν = νst ∼
(

q

p

)1/4

, where σ = σmax ∼ σ1ν

t1/2
+

2(pq)1/2

t3/4
. (96)

5.4 Summary of long-term asymptotic behaviour

Figure 2 summarises the findings of the asymptotic analysis presented in the
previous sections. For convenience we have also marked on the regime bound-
aries from figure 1: their position relative to the other boundaries is valid for
all Le > 1, though it should be remembered that they are strictly valid only
for |βC,T | � 1.

The (βC , βT ) parameter space divides into seven sectors, with five distinct
regimes of long-time behaviour available.
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βT

βC

βT =LeβT−

βT =LeβT+

βT =−βC

βT =βT+

βT =βT− βT =−LeβC

Regime A

Regime B

Regime C

Regime D

Regime E

Fig. 2. Schematic of the stability regions in the (βC , βT )-plane, as predicted by the
analyses using m = µt−1/4 and m = νt−3/8. The dashed lines represent the regime
boundaries in the small-m, intermediate-time regime (§4). See text for discussion of
regimes.

Regime A. In this regime, the growth rates are always real and negative: the
analysis with m = µt−1/4 gives σ1 < 0 ∀µ, while the analysis with m = νt−3/8

breaks down. Because the viscosity contributions from both components are
negative, in this regime more viscous fluid is displacing less viscous fluid and
there is no fingering instability.

Regime B. In this regime, the growth rates are always real. There is a cut-off
wavenumber m ∼ µex

+ t
−1/4 such that all perturbations with higher wavenum-

bers than this are stable. The maximum growth rate is positive, and occurs at
m = νstt−3/8. Although there may be a small-m stability cut-off, the asymp-
totic analysis presented here is not able to capture it.

Regime C. In this regime, it is possible for the growth rate to be complex
for some wavenumbers, but this does not affect either the location of the cut-
off wavenumber or the wavenumber corresponding to maximum growth rate;
these are the same as in regime B. All perturbations with m & µex

+ t
−1/4 decay,

but the decay may be oscillatory in nature. Although there may be a small-m
stability cut-off, the asymptotic analysis presented here is not able to capture
it.

Regime D. In this regime, the growth rate is always real and there is a
cut-off wavenumber m ∼ µex

+ t
−1/4 such that all perturbations with higher

wavenumbers than this are stable. The maximum growth rate is positive, and
occurs at m ∼ µstt−1/4. Although there may be a small-m stability cut-off, the
asymptotic analysis presented here is not able to capture it.
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Regime E. In this regime, there is a cut-off wavenumber m ∼ (b/a)1/2t−1/4

such that all perturbations with higher wavenumbers than this are stable; at
and around this wavenumber overdamped (oscillatory) perturbations occur.
The fastest-growing perturbations have m = νstt−3/8, and their growth rate
is real so they do not exhibit overdamped behaviour. Although there may be
a small-m stability cut-off, the asymptotic analysis presented here is not able
to capture it.

5.5 Discussion and interpretation

5.5.1 Structure of dominant perturbations

Substituting m = νt−3/8 into the expression for (B/A)+ and expanding for
large t, we obtain

(

B

A

)

+
=

√
Le+1

2
√

2LeβT

[

βT −
√
LeβC +

√

(βT −
√
LeβC)2 +

8LeβTβC√
Le+1

]

+O
(

1

t1/4

)

.

(97)
We find that (B/A)+ > 0 in all except the SW quadrant, so wherever growing
dominant modes with this scaling are possible they are sinuous perturbations.

Substituting m = µst
+t

−1/4 into the expression for (B/A)+ and expanding for
large t, we obtain

(

B

A

)

+
=

√

− βC

LeβT

+ O
(

1

t1/2

)

, (98)

where we have used the fact that this expression is relevant only in the SE
quadrant where βC > 0 and βT < 0. We conclude that the preferred mode
of instability here is again a ‘lopsided’ sinuous perturbation, so the dominant
perturbations everywhere in parameter space are sinuous in this asymptotic
limit. These results agree with those of Pritchard [10], who found that in
the radial case sinuous perturbations were preferred even when the viscosity
contributions of the two components were opposed.

5.5.2 Physical interpretation of growth rates

In dimensional form each entry in the evolution matrix E has the dimension
of a growth rate (i.e. inverse time). We can write these dimensional quantities
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as follows:

Ê11 = − κ̂C

λ̂2
+

1

2
√
π

βC û0

(2κ̂C t̂)1/2
− 1

4
√
π

βC û0λ̂
2

(2κ̂C t̂)3/2
,

Ê12 =
1

2
√
π

βT û0

((κ̂C + κ̂T )t̂)1/2
− 1

4
√
π

βT û0λ̂
2

((κ̂C + κ̂T )t̂)3/2
,

Ê21 =
1

2
√
π

βC û0

((κ̂C + κ̂T )t̂)1/2
− 1

4
√
π

βC û0λ̂
2

((κ̂C + κ̂T )t̂)3/2
,

Ê22 = − κ̂T

λ̂2
+

1

2
√
π

βT û0

(2κ̂T t̂)1/2
− 1

4
√
π

βT û0λ̂
2

(2κ̂T t̂)3/2
. (99)

Here λ̂ = 1/m̂ is the wavelength of the perturbation.

To interpret these terms, we note the following points. First, since isotropic
diffusion tends to favour structures with comparable lengthscales in both direc-
tions, the streamwise and transverse extents of an incipient finger (a localised
perturbation to the variables) are both of order λ̂. Second, in this regime the
condition m

√
t � 1 means that the perturbation is embedded within the

‘front’ region over which the viscosity changes. This means that instead of
being driven by the total viscosity contrasts (µ̂1 − µ̂0)/µ̂0 ∼ βC,T associated
with each component, the perturbation is exposed to a fractional contrast
∆µC,T ∼ βC,T λ̂/(κ̂C,T t̂)

1/2. Third, the classic scaling for the growth rate asso-

ciated with the destabilising Saffman–Taylor mechanism is σ̂ ∼ ∆µû0/λ̂ (cf.
equation (39)).

Three distinct scalings are present in the terms in equations (99): each may
be interpreted as the contribution of a different physical effect, and we will
consider each in turn. (It is interesting to compare the results of the heuristic
analysis by Loggia et al. [22], which also found that the effects of different
mechanisms combined additively in the long-wave limit: note, however, that
Loggia et al.’s results contained only the first and second of the three types of
term present in our analysis.)

The first terms in both E11 and E22 are straightforward to interpret: they rep-
resent the stabilising influences of solutal and thermal diffusion respectively.
We will label terms of this type

σ̂diff ∝ κ̂

λ̂2
, (100)

where κ̂ may represent κ̂C , κ̂T or some suitable combination of these, depend-
ing on context.

The second terms in E11 and E22 and the first terms in E12 and E21 all scale
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as

σ̂ST ∝ βû0

(κ̂t̂)1/2
∼ ∆µû0

λ̂
. (101)

As the notation suggests, these represent the destabilising Saffman–Taylor
mechanism, adjusted to allow for the fact that the perturbations are ‘embed-
ded’ within the diffusing front.

The final terms in each of (99) have the form

σ̂tran ∝ βû0λ̂
2

(κ̂t̂)3/2
=

∆µλ̂

(κ̂t̂)1/2
× û0λ̂

(κ̂t̂)1/2
× 1

λ̂
(102)

The first factor represents the scaled mobility gradient in the transverse di-
rection (which is related to that in the streamwise direction by a factor cor-

responding to the aspect ratio λ̂/
√
κ̂t̂); the second factor is the transverse

velocity obtained by continuity, ∂û/∂x̂ = ∂v̂/∂ŷ and hence v̂ ∼ λ̂û0/
√
κ̂t̂;

and the third factor is the perimeter of the finger (through which flux occurs)
divided by the area into which this flux occurs. These terms, then, represent
the transverse flow into a finger which is required because of the variation of
streamwise velocity along that finger: this brings in less mobile fluid from the
sides and tends to dilute and stabilise the perturbation.

Equipped with these scalings, we can demonstrate how the characteristic scales
for the cut-off and favoured wavenumbers arise. A balance between σ̂ST and
σ̂diff gives

βû0

(κ̂t̂)1/2
∼ κ̂

λ̂2
and thus λ̂2 ∼ κ̂3/8 t̂1/4

β1/2û
1/2
0

; (103)

it is this balance that controls the scaling of the cut-off wavenumber for short
waves. A balance between σ̂ST and σ̂tran gives

βû0

(κ̂t̂)1/2
∼ βû0λ̂

2

(κ̂t̂)3/2
and thus λ̂ ∼ (κ̂t̂)1/2. (104)

This is the scaling suggested by our analysis for the cut-off wavenumber for
long waves, but we recall that the asymptotics are not valid in this limit.
Finally, the most unstable perturbations occur when the two destabilising
mechanisms are roughly equal, σ̂diff ∼ σ̂tran, so

κ̂

λ̂2
∼ βû0λ̂

2

(κ̂t̂)3/2
and thus λ̂ ∼ κ̂5/8t̂3/8

β1/4û
1/4
0

. (105)

We note that this is not quite the full story: although these scalings allow us
to interpret the results of the full stability analysis, they do not predict where
in parameter space they can apply. In particular, they give no indication in
themselves that a region exists in the SE quadrant where the transverse flow
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term is unimportant (because of the competing thermal and solutal gradients)
and so both the cut-off and the favoured wavenumbers are controlled by a
balance between diffusion and Saffman–Taylor terms, with the characteristic
t−1/4 scaling emerging as a result.

6 Summary and conclusions

We have examined the stability to viscous fingering of a miscible rectilinear
displacement front in a porous medium or Hele-Shaw cell, when the viscosity
contrast across the front is controlled by two components which diffuse at
different rates. Both the growth rates of instabilities and the boundaries of
instability change as the front widens and the difference between the length-
scales associated with the two components grows. At early times and for very
long waves, the two components interact strongly, so the stabilising influence
of one component may compensate for the destabilising influence of another.
At later times the front becomes unstable if either component is destabilising,
regardless of the other, but the interaction between the two components still
controls the growth rates and preferred wavenumber of the instability.

In the long-wave, intermediate-time regime, there is an initially unstable region
of parameter space which gradually expands into initially stable regions. This
loss of stability as the front diffuses was also remarked upon by Manickam
& Homsy [18] for single-species diffusion with a non-monotonic viscosity–
concentration relation. The different roles of the slower- and faster-diffusing
components show up in this regime as an asymmetry in the criteria for imme-
diate instability (figure 1), and no simple criterion based solely on the aggre-
gate viscosity profile across the front is able to predict the stability boundary
accurately.

In the long-time limit, throughout the unstable region of parameter space
we find that the shortest marginally unstable perturbations have wavenum-
bers that decrease as t−1/4, in agreement with the single-species case [16].
Throughout most of parameter space the most unstable perturbation occurs
at a wavenumber that decreases as t−3/8; there is, however, a region in which
the competing effects of the stabilising and destabilising components produce
a favoured wavenumber that decreases as t−1/4. The difference in scalings is
not large but reflects a different balance between the stabilising and destabil-
ising mechanisms acting on an incipient finger. Growing oscillatory perturba-
tions are possible when the faster-diffusing component is destabilising and the
slower-diffusing is stabilising, as in the radial geometry considered in [10], but
they are always outpaced by non-oscillatory perturbations at lower wavenum-
ber. (In principle it might be possible to observe oscillatory perturbations in
a laterally confined channel, so the wavenumbers are restricted as in [10]. In
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this case, it must also be borne in mind that the front will eventually be sta-
bilised as the cut-off wavelength for instability increases beyond the width of
the channel.)

The eventual fate of the displacement front is likely to depend both on how the
instability is excited and on whether or not fingers are able to grow to reach
the nonlinear regime before either the front stabilises or growth rates decline
at long times. Nevertheless, these results may provide a useful starting point
for the consideration of the dynamics of viscous fingering, and in particular
of the tendency for fingering patterns to coarsen over time as the instability
mechanism prefers longer and longer disturbances.

Of the three heuristic arguments presented in §1.1, none entirely captures the
fingering process. Argument (i), that if one component promotes fingering then
it can occur eventually, is valid for long times. Argument (ii), that it should
be the aggregate viscosity contrast that matters, is valid at short times when
the more rapidly diffusing component is destabilising, but it fails to recog-
nise the more localised perturbations that can develop when the more slowly
diffusing component is destabilising. Argument (iii), that the monotonicity of
the viscosity profile is crucial, does not provide a good guide to this problem.

It is also interesting to compare these findings with some previous studies of
single-species fingering with a non-monotonic viscosity–concentration relation.
The earliest analysis was due to Hickernell & Yortsos [17], who examined the
stability of a step concentration profile in the absence of any dispersive effects:
their analysis concluded that instability would occur if there was any segment
of decreasing mobility within the mobility profile. This is essentially our heuris-
tic criterion (iii), and as we have seen it does not capture the behaviour of the
system investigated here, either at intermediate or at long times.

The subsequent analysis by Manickam & Homsy [18] incorporated dispersion,
but employed a frozen–time approximation. They found that in the long-wave
limit the growth rate of perturbations was

σ ∼ 1

2
Λm+ O(m3/2), where Λ = −





dµ
dc

∣

∣

∣

c=0
+ dµ

dc

∣

∣

∣

c=1
µ(1)
µ(0)

+ 1



 , (106)

and where the O(m3/2) correction term was time-dependent. Thus if Λ > 0 the
flow was always unstable at small wavenumbers, and if Λ < 0 the flow was ini-
tially stable at small wavenumbers but could later become unstable: numerical
simulations suggested that all non-monotonic profiles became unstable even-
tually, even if Λ < 0. The obvious application of this idea to our problem
with the chosen exponential dependence of µ on T and C yields Λ = βT +βC ,
so in this case it is simply a measure of the aggregate viscosity contrast (our
heuristic criterion (ii)); however the long-time numerical findings recall our
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heuristic criterion (iii).

Finally, a heuristic extension of Hickernell & Yortsos’s work by Loggia et al.

[22] obtained results that echoed those of [18]; however, the key parameter
in their results was an integral expressing the aggregate behaviour of the
mobility profile, rather than its limiting behaviour as c → 0 and c → 1. In
broad terms this is consistent with our findings, in that there is no simple and
intuitive criterion that determines the stability; however there is no obvious
resemblance between the details of the present analysis and that of [22].

Overall, it appears that the stability properties of double-diffusive miscible
displacement are distinct from those of non-monotonic single-species displace-
ment, despite the similarity of the mobility profiles. (We note that our most
successful heuristic criterion (i) has no direct equivalent in a single-species
displacement.) It would be an interesting exercise to apply the asymptotic ap-
proach employed here to the latter problem and to compare the results with
the previous studies referred to above.

In conclusion, perhaps the key lesson from the study of this problem is that
to predict the occurrence of viscous fingering in a multi-component fluid, it
is necessary to take into account not merely how the aggregate properties of
the fluid vary across the front, but also how these properties may be subject
to differential thermal or molecular diffusion. In more mathematical terms, it
also provides a fresh illustration, complementary to those from double-diffusive
and reactive–diffusive convection [7,9], of the complexity that is possible when
instabilities with different preferred scales occur simultaneously and are inti-
mately linked.
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A Iterative approach to the velocity equation for small m

We wish to solve equation (29), subject to the conditions that U1 → 0 as
ξ → ±∞. Unfortunately we cannot write down a closed-form solution to this
equation; but intuitively, if |βC | and |βT | are small, so that we can neglect the
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terms proportional to βC and βT on the LHS of (29), we should be able to
develop a series solution in βC . (This was proposed, although its validity was
not confirmed, in [16].)

We set βC = bCβ and βT = bTβ, where |bC | + |bT | = 1 and 0 < β � 1. We
then postulate an expansion

U1(ξ) =
2βCm

2A(t)
√
t√

π

∞
∑

n=0

βnbnCfn(ξ) +
2βTm

2B(t)
√
t√

πLe

∞
∑

n=0

βnbnT pn(ξ) (A.1)

and, substituting this into (29), we obtain a sequence of equations:

∂2f0

∂ξ2
− 4tm2f0 = e−ξ2

,
∂2p0

∂ξ2
− 4tm2p0 = e−ξ2/Le, (A.2)

∂2

∂ξ2











fn

pn











− 4tm2











fn

pn











= −
(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

∂

∂ξ











fn−1

pn−1











(A.3)

for n = 1, 2, . . .

Now, the equation
∂2f

∂ξ2
− 4tm2f = g(ξ) (A.4)

admits solutions

f(ξ) = F [g(ξ)] ≡ −e2m
√

tξ

4m
√
t

∫ ∞

ξ
e−2m

√
txg(x)dx− e−2m

√
tξ

4m
√
t

∫ ξ

−∞
e2m

√
txg(x)dx,

(A.5)
and as long as g(ξ) is well-behaved as ξ → ±∞, this solution satisfies the
boundary conditions f(ξ) → 0 as ξ → ±∞. We therefore have

f0(ξ) = F
[

e−ξ2
]

and fn(ξ) = F
[

−
(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

∂fn−1

∂ξ

]

(A.6)
for n = 1, 2, . . . , and

p0(ξ) = F
[

e−ξ2/Le
]

and pn(ξ) = F
[

−
(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

∂pn−1

∂ξ

]

(A.7)
for n = 1, 2, . . .

If g(ξ) is odd / even then F [g(ξ)] is also odd / even respectively; this means
that U1n(ξ) is even / odd when n is even / odd respectively. This fact is

relevant because when we take the inner product
〈

e−ξ2

U1

〉

C
, only the even

terms in the series will contribute anything.
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We also have

∂

∂ξ
F [g(ξ)] = −1

2
e2m

√
tξ
∫ ∞

ξ
e−2m

√
txg(x)dx +

1

2
e−2m

√
tξ
∫ ξ

−∞
e2m

√
txg(x)dx.

(A.8)

Consider the sequences of functions defined by











gn+1(ξ)

qn+1(ξ)











= −
(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

∂

∂ξ











F [gn(ξ)]

F [qn(ξ)]











(A.9)

with g0(ξ) = e−ξ2

and q0(ξ) = e−ξ2/Le, so that fn(ξ) = F [gn(ξ)] and pn(ξ) =
F [qn(ξ)]. We wish to show that these sequences are convergent, and to do so
we will proceed iteratively. We will obtain a convergence criterion for gn(ξ);
since the recurrence relations for gn and pn are identical, this will also be the
convergence criterion for pn.

Suppose that |gn(ξ)| ≤ Cne−ξ2

+ Dne−ξ2/Le for some constants Cn ≥ 0 and
Dn ≥ 0, and for convenience define M = m

√
t. We then have

|gn+1(ξ)| ≤
(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

1

2

∫ ∞

−∞
e−2M |x−ξ| |gn(x)| dx (A.10)

≤ Cn

(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

1

2

∫ ∞

−∞
e−2M |x−ξ|e−x2

dx

+Dn

(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

1

2

∫ ∞

−∞
e−2M |x−ξ|e−x2/Ledx (A.11)

= Cn

(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

h(ξ,M)

+Dn

(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)√
Le h

(

ξ√
Le
,M

√
Le

)

,

where h(ξ,M) =

√
πeM2

4

[

e2Mξ (1−erf(M+ξ)) + e−2Mξ (erf(M−ξ)−1)
]

.

(A.12)

The maximum of h(ξ,M) over ξ occurs at ξ = 0, and the maximum of h(0,M)
over M occurs at M = 0; we conclude that

|gn+1(ξ)| ≤
[

Cn

(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)

+Dn

√
Le

(

bCe−ξ2

√
π

+
bT e−ξ2/Le

√
πLe

)]

h(0, 0)

(A.13)

=

[

Cn

(

bCe−ξ2

2
+
bT e−ξ2/Le

2
√
Le

)

+Dn

√
Le

(

bCe−ξ2

2
+
bT e−ξ2/Le

2
√
Le

)]

.

(A.14)
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We can therefore define the upper bounds at the next iteration as







Cn+1

Dn+1





 =











bC
2

bC
√
Le

2
bT

2
√
Le

bT
2











·







Cn

Dn





 . (A.15)

The eigenvalues of the matrix are λ = 0 and λ = (bC + bT )/2. Thus, substi-
tuting our upper bound into (A.1), we find that

|U1(ξ)| ≤
2m2|βCA(t)|

√
t√

π

∞
∑

n=0

βn|bc|n|fn(ξ)|

+
2m2|βTB(t)|

√
t√

πLe
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βn|bT |n|pn(ξ)|

≤ 2m2|βCA(t)|
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∣
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∣
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∣
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∣

∣
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πLe
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∣

∣

∣

∣

βbT (bC + bT )

2

∣

∣

∣

∣

∣

n

|p0(ξ)|. (A.16)

We conclude that the series converges if

∣
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∣
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∣
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∣
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∣

< 1 and

∣

∣

∣
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< 1, (A.17)

where we have used the condition that |bC | + |bT | = 1.

Finally, noting that when we calculate
〈

e−ξ2

U1

〉

C
and

〈

e−ξ2/LeU1

〉

T
the odd-

numbered terms in the series vanish, we conclude that when βC and βT satisfy
the convergence conditions (A.17), we have

〈
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,
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T
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π

〈
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πLe
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e−ξ2/Lep0(ξ)
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+ O

(
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)

.

(A.18)

In other words, for sufficiently small values of |βC |+ |βT |, the solution that we
obtain by neglecting the first derivatives of U1 on the LHS of (29) is accurate
to second order in (|βC| + |βT |).
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