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Abstract 

This work proposes a Linear-Time-Invariance (LTI) notion to the Koopman analysis,  finding 

an invariant subspace on which Koopman modes are consistent and physically meaningful. It 

also develops the Koopman-LTI architecture---a systematic procedure to associate fluid 

excitation and structure surface pressure by matching Koopman eigen tuples, solving a 

longstanding problem for fluid-structure interactions. The architecture is data-driven and 

modular, accommodating all types of data and Koopman algorithms. Through a pedagogical 

demonstration on a prism wake and the rudimentary Dynamic Mode Decomposition algorithm, 

results show a near-exact linearization of nonlinear turbulence, with mean and rms errors of O-

12 and O-9, respectively. The DMD also approximated the Koopman modes with O-8 error. The 

LTI reduced the subcritical prism wake during shear layer transition II into only six dominant 

excitation-response Koopman modal duplets. The upstream and crosswind walls constitute a 

dynamically unified interface dominated by only two mechanisms. The downstream wall 

remains a distinct interface and is dominated by four other mechanisms. The complete 

revelation of the prism wake essentially comes down to understanding the six mechanisms, 

which Part 2 (Li et al., 2022) will address by investigating the physical interpretations of the 

duplets' in-synch, phenomenological features. Finally, the current analysis also revealed w's 

trivial role in this convection-dominated free-shear flow, Reynolds stresses' spectral 

description of cascading eddies, vortices' sensitivity to dilation and indifference to distortion, 

and structure responses' origin in vortex activities.   
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1. Introduction 

Recent advances in data science and computational hardware brought about practical 

resuscitations to several long-established mathematical wonders. The Koopman theory is a 

major one in fluid mechanics (Koopman, 1931; Koopman & Neumann, 1932). In essence, it 

proposes to compensate nonlinear losses by dimensional gains. Seven decades later, Mezić 

(2005) brought life to the theory by developing a data-driven approximation of the infinite-

dimensional Koopman operator on finite manifolds. Popular Koopman algorithms include the 

Generalized Laplace Analysis (GLA) (Mauroy & Mezić, 2012, 2013, 2016), the Ulam Galerkin 

method (Bollt & Santitissadeekorn, 2013; Froyland et al., 2014), the Dynamic Mode 

Decomposition (DMD) (Rowley et al., 2009; Schmid, 2010), the Spectral Proper Orthogonal 

Decomposition (SPOD) (Schmidt & Colonius, 2020; Towne et al., 2018), and some machine-

learning networks (Brunton et al., 2020; Lusch et al., 2018; M Raissi et al., 2019; Rudy et al., 

2017). Budišić et al. (2012) termed this collective effort as applied Koopmanism.  

Like any other data-driven technology, applied Koopmanism has algorithmic and analytical 

ends. The former works toward the idealization of methods, and the latter focuses on the 

interpretation of algorithmic outcomes. To date, most research is dedicated to algorithmic 

development, and the interpretation side is often left to individual efforts with less 

collectiveness and depth. The main reason is that Koopman/Fourier eigen tuples are input-

dependent, constantly changing with uncertain implications. The a posteriori evidence in this 

work suggests that upon finding an invariant Koopman subspace (pragmatic), Koopman mode 

shapes contain similar coherent structures, therefore, consistent, useful information.  

Specifically, the investigation was conducted through the scope of fluid-structure interaction 

(FSI). Until now, even with deterministic equations for macroscopic fluid motions, the Navier-

Stokes equations, FSI is still an unsolved problem, especially with turbulence (Pope, 2000; 
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Tennekes & Lumley, 2018). We usually find associating fluid excitations with structural 

responses immensely difficult. Although many have applied the Koopman analysis, or its 

algorithmic subordinates, the Dynamic Mode Decomposition (DMD), to FSI systems (Basley 

et al., 2013; Dotto et al., 2021; Eivazi et al., 2020; Garicano-Mena et al., 2019; Gómez et al., 

2014; Higham et al., 2021; Jang et al., 2021; Kemp et al., 2021; N.-H. Liu et al., 2021; Y. Liu, 

Huang, et al., 2021; Y. Liu, Long, et al., 2021; Ping et al., 2021; Sun et al., 2021; Yuan et al., 

2021), none tried establishing a fluid-structure relationship by matching Koopman tuples. It is 

now possible with consistent Koopman modes, and the relationship has tremendous value for 

understanding FSI. It supports the interpolation, extrapolation, and prediction of fluid dynamics 

regardless of technical finesse (He et al., 2022; Lusch et al., 2018; Maziar Raissi et al., 2019). 

It also bears implications in essentially every scientific discipline: acoustics and vibrations, 

hazards resilience, aeronautics, wind-hydro energy, cardiology, and so on.  

Summarizing experimental results, this serial effort proposes a Linear-Time-Invariance (LTI) 

notion to the original Koopman analysis, or the Koopman Linear-Time-Invariant (Koopman-

LTI) architecture. Its significance is summarized as follows: 

1. A new perception employing Koopman eigen tuples to associate fluid and structure for 

physical insights. 

2. A systematic procedure to acquire sampling-independent Koopman modes, relate the 

flow field excitation and structure surface pressure, and uncover underlying FSI physics.  

3. A spectral characterization and phenomenological study of the primary test subject, the 

prism wake, which bears broad pedagogical and engineering implications. 

The compositional sequence of this paper can be summarized as follows. Section 2 describes 

the Koopman-LTI architecture. Section 3 offers a practical rendering of the architecture and 

establishes the LTI notion. Section 4 spectrally characterizes the prism wake and underpins the 
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prominent fluid-structure relationships. Section 5 presents the summary. The follow-up work, 

as Part 2, studies the Koopman modes’ physical interpretations, analyzes the phenomenology 

of the fluid-structure duplets, and reveals the major FSI mechanisms.  

We also point out a limitation of this work. Its conclusions are based on empirical evidence 

and direct observations, and the mathematical underpinnings are beyond the authors’ expertise. 

On this note, we invite expert opinions and future efforts to grace the brute force results with 

mathematical elegance. 

2. The Koopman Linear-Time-Invariant Architecture 

2.1 The Koopman Operator Theory 

In early 1930s, B. O. Koopman (1931; 1932) outlined the possibility of representing a nonlinear 

dynamical system in terms of an infinite-dimensional Hamiltonian, which is a linear operator 

that acts on the Hilbert space of measurement functions of the system’s state (Brunton, 2019).  

Following Mezić (2005) and Rowley et al. (2009), one may consider a dynamical system in 

discrete time, 

y
i+1

 = f(y
i
), (1) 

where i∈ ℤ and f is a map from a manifold M to itself. The Koopman operator U is linear, 

infinite-dimensional, and acts on scalar-valued functions on M. For any scalar-valued function 

g:M→ ℝ, U maps g into a new function (Rowley et al., 2009), 

U g(y) = g(f(y)). (2) 

For a linear system, U is exact. For a nonlinear system, it is a linearization of nonlinearities. 

Conceptually, one may think of U as a discretization of a curve: as the total number of linear 
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segments approaches infinity, the linear approximation approaches continuity and perfection. 

Therefore, U is the globally optimal linearization. 

2.2 Data-Driven Koopmanism 

For its dimensionality, acquiring the full-order U is only a theoretical possibility. The works of 

Mezić and colleagues bear milestone significance precisely because they formulated a data-

driven approach to approximate the infinite operator on finite-dimensional subspaces---the 

practical realization of the promising theory (Budišić et al., 2012; Froyland et al., 2014; Mauroy 

& Mezić, 2013; Rowley et al., 2009; Sayadi et al., 2014). 

As mentioned above, there are many algorithms for computing the finite-dimensional 

approximation and the Koopman eigen tuples (i.e., eigenfunctions, eigenvalues, Koopman 

modes). The GLA, with the prescription of eigenvalues, approximates the Koopman modes 

and eigenfunctions (Budišić et al., 2012; Mauroy & Mezić, 2013). The Ulam Galerkin method 

does so for the eigenfunctions and eigenvalues in the approximation of the Perron-Frobenius 

operator, which is the adjoint Koopman operator (Froyland et al., 2014). The DMD 

approximates the eigenvalues and Koopman modes with algorithmic simplicity and robustness 

(Tu et al., 2014; Williams et al., 2015). The SPOD, in mathematical essence, is the ensemble 

average of the DMD (Towne et al., 2018), so it inherits the Koopman implications. The list 

also includes all variants of the vanilla algorithms, and even some machine (Q. Li et al., 2017; 

Pan et al., 2021) and machine learning (Brunton et al., 2020; Lusch et al., 2018) techniques. 

2.3 The Koopman Linear-Time-Invariance Architecture 

Following its prelude (C. Y. Li et al., 2021), the present work constructs the complete, modular 

architecture of the Koopman-LTI (see figure 1). This architecture founds upon three core 

principles: 
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1. On an invariant Koopman subspace, where Koopman eigen tuples are independent of 

input samples, a mode’s bin-wise averaged coherent shape and a sufficiently resolved 

discrete spectrum contain meaningful physical implications. 

2. Linear quantities can be added, subtracted, and compared directly on the same 

Koopman subspace (discrete spectrum). 

3. The fundamental awareness that no matter how complex, unsolvable, or even 

undiscernible the governing equations may be, the fluid and the structure must 

somehow correlate to each other and conform to some consistent laws and underlying 

physics. This underlying message is embedded in the data and measurements. A 

sampling-independent LTI model is the globally optimal linearization of this 

information.  

On this note, the Koopman-LTI is not a new decomposition algorithm---we give full credit to 

the giants who have developed the theories and algorithms, and on whose shoulders we stand 

(Brunton et al., 2020; Brunton, Proctor, et al., 2016; Budišić et al., 2012; Koopman, 1931; Kutz 

et al., 2016; Mauroy & Mezić, 2013; Mezić, 2005; Rowley et al., 2009; Schmid, 2010). It is a 

mode of thinking, an analytical procedure set to manipulate, articulate, and interpret 

algorithmic outcomes. Its significance reflects on in-depth analysis of Koopman eigen tuples, 

which, for our specific agenda herein, enables a deterministic fluid-structure association and 

enhanced understandings of FSI. 

On a secondary level, the Koopman-LTI also introduces several methodical improvements: 

1. A set of evaluation metrics and practice guidelines to achieve sampling independence 

for the DMD, guaranteeing a temporally converged LTI model that captures all the 

long-term, recurring dynamics of the input data. 
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2. The dynamic Koopman mode shape, which not only includes phase information but 

also facilitates the in-synch comparison of the flow field excitation and structure 

response. 

The Koopman-LTI consists of five modules: Input Curation, Koopman Algorithm, Linearly-

Time-Invariance, Constitutive Relationship, and Phenomenological Relationship. 

2.3.1 Input Curation 

The Input Curation module sorts and pre-processes the input data. The input data, whether by 

field, experimental, or numerical techniques, can take in any representative variables as 

independent realizations. No prior processing is required to enhance the physical or algorithmic 

connections. Of course, the input data’s quality decides the modeling accuracy, which shall be 

best warranted. Noise treatment and interpolation may also be necessary for highly 

contaminated raw measurements. 

2.3.2 Koopman Algorithm 

The Koopman Algorithm module is the algorithmic staple and received the most attention. This 

stage performs the global linearization and decomposes the input sequences into linear 

superpositions of Koopman eigen tuples. The decomposition does not require the solution or, 

more impressively, any knowledge of the input system. And, theoretically, any algorithm 

approximating the Koopman eigen tuples works for this module (Budišić et al., 2012; Mezić, 

2005; Williams et al., 2015). The input data format shall adhere to the algorithm’s requirement. 

2.3.3 Linear-Time-Invariance 

The following modules are beyond algorithm development. The Linear-Time-Invariance 

module centers on the LTI notion, which is reflected by an invariant Koopman subspace, or a 

converged Koopman model that captures all the long-term, recurring dynamics. One shall 
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reckon the LTI does not abide the theoretical dogma outlined in Brunton et al. (2016). Instead, 

it adheres to the pragmatic, empirical observations and guidelines in Li et al. (2022a). 

Therein, the Linearity part refers to the Koopman linearization, its accuracy, stability, and 

causality. The Time-Invariance part refers to sampling independence. If the Koopman 

linearization is sensitive to input changes (pragmatic because true independence only exists in 

theory when discrete bins become continuous), the model captures only a part of the full state 

space. Whether captured portion is non-trivial to the overall slow subspace is also completely 

unwarranted (Williams et al., 2015). Therefore, sampling independence is an indispensable 

pillar to the ensuing fluid-structure association. 

A fitting analogy for the Koopman analysis is a photograph. It maps the nonlinear features onto 

a linear space as a combination of linear elements, the pixels. Photos are sensitive to angles 

(input-dependence). The LTI notion turns the photo into a 3D scan. With it, one captures all 

the steady dynamics regardless of the object’s translation and rotation, as long as the object 

stays the same (configuration-wise universal).  

2.3.4 Constitutive Relationship 

The constitutive relationship or fluid-structure constitution interchangeably refers to the linking 

of fluid and structure by Koopmanism’s inherent statistical correlations. The eigenfrequency 

of a Koopman tuple is like its DNA. When it matches that of another on the same, invariant 

Koopman subspace, the association is deterministic and spectrally warranted.  
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Figure 1: A schematic illustration of the Koopman Linear-Time-Invariance (Koopman-LTI) Architecture. It consists of the Input Curation, 

Koopman Algorithm, Linearly-Time-Invariance, Constitutive Relationship, and Phenomenological Relationship modules. Each module contains 

several submodules outlining the requirements or options. The Koopman-LTI is data-driven and modular, theoretically accommodating all types 

of input data and solution algorithms that approximate the Koopman eigen tuples. One may follow this perception and analytical procedure to 

establish fluid-structure relationships. The in-synch, consistent Koopman modes also bear meaningful implications, enhancing understanding of 

FSI mechanisms. 
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As we will shortly demonstrate, LTI models of different fluid and structure measurables have 

spectral distributions that conform to some astonishing agreements. The a posteriori consensus 

warrants fluid-structure constitution, and transform the complex stochastic process (i.e., 

inhomogeneous anisotropic turbulence) in the Euclidean space into a simple system in the 

Fourier space, facilitating some incisive characterizations. 

2.3.5 Phenomenological Relationship 

The term phenomenology is used here quite literally as the study of the phenomenon. This 

model visualizes the coherent structures of dominant fluid-structure duplets, analyzes their in-

synch behaviors, and underpins their FSI mechanisms. On this note, our discussions are limited 

to the phenomenological aspect of fluid mechanics. Nonetheless, as Roshko (1993) once 

pointed out, “the problem of bluff body flow (our test subject) remain almost entirely in the 

empirical, descriptive realm of knowledge.” Therefore, mode shapes---allegedly describing 

only relative behaviors----still bear profound insights. We will demonstrate the physical 

interpretations in Part 2.  

3. Practical Rendering of the Koopman-LTI (Modules 1-3) 

Following the architectural introduction, the upcoming sections present an illustrative, 

pedagogical demonstration of the Koopman-LTI via a canonical fluid-structure system. 

3.1 Module 1: Input Curation 

3.1.1 Test Subject 

This work employed the most fundamental yet sufficiently challenging case to assess 

Koopman-LTI’s capacity and encourage intellectual resonance with the broadest audience-- 

the subcritical free-shear prism wake (see figure 2). This paradigmatic configuration is 

geometrically simplistic, phenomenologically complex (Bai & Alam, 2018; Z. Chen et al., 
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2020),  and we have fair knowledge about its phenomenology, so the fluid mechanics does not 

overshadow the demonstrative purpose (Bai & Alam, 2018; Z. Chen et al., 2021; Lander et al., 

2016; Paidoussis et al., 2010; Rastan et al., 2021). The prism wake is also a popular test subject 

for fluid principles, for example, behaviors of inhomogeneous anisotropic turbulence (Lander 

et al., 2016, 2018) and the Kolmogorov hypotheses (Portela et al., 2017).  

Furthermore, we selected the subcritical regime with inhomogeneous anisotropic turbulence 

because success with this realistic stochastic system will tell volumes about Koopman-LTI’s 

generality. The Reynolds Number is Re=U∞D/υ=2.2×104, where U∞ is the free-stream speed, 

D is the prism side length, and υ is the kinematic viscosity, characterizing a vast neighborhood 

of phenomenological similitude during the shear layer turbulence transition II (Bai & Alam, 

2018). The free-shear family (i.e., jet, mixing layers, wakes, etc.) also shares many common 

features, broadening the applicability.  

The infinite spanwise length prevents undesired complications due to the end effects (Z. Chen 

et al., 2018; White, 2006), and an infinite stiffness reduces the complexity from a bi-directional 

feedback loop to a mono-directional case---a simplification ubiquitously adopted for external 

flows in large-scale or civil applications (Z. Chen et al., 2020, 2021; Rodi, 1997; Tse et al., 

2020; Xinyue Zhang et al., 2020; Xuelin Zhang et al., 2022).  
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Figure 2: Schematic illustration of the computational domain of the numerical simulation. 

 

3.1.2 Numerical Scheme 

High dimensionality is preferred for a better approximation of the infinite-dimensional 

Koopman operator, while noise is unfavorable, hence the selection of numerical data. The flow 

is simulated by the Large-Eddy Simulation with Near-Wall Resolution (LES-NWR), as defined 

by Pope (2000). The simulation adopts the DNS domain from Portela et al. (2017), except using 
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4D for the spanwise length instead of πD for computational ease in the Euclidean space (see 

figure 2).  

We employed a finite-volume, segregated, pressure-based solution algorithm for this low-

Mach-number incompressible flow. With second-order schemes for spatial and temporal 

discretizations and a stringent convergence criterion of O-6, numerical dissipation and 

dispersion are minimized. Moreover, the simulation evolved by a non-dimensional time 

interval t*,  

t*= 
t U∞

D
=1.61×10

-3, 
(3) 

where t is the physical time step. The Courant-Friedrichs-Lewy criterion CFL<1 is always 

satisfied, eliminating the time marching issues when solving partial differential equations.  

To avoid repetition, we direct the readers to our previous work (C. Y. Li et al., 2022a) for 

comprehensive simulation details, grid assessment, and case validation. In short, the numerical 

accuracy is comparable to several DNS renderings (Cao et al., 2020; Portela et al., 2017; Trias 

et al., 2015).  

3.1.3 Inventory Measurables 

In total, 18 field and wall measurables have been sampled as independent realizations (see table 

1). Readers may find the relevant definitions in Li et al. (2022b). The subsequent text refers to 

the upstream (AB), top (BC), downstream (CD), and bottom (DA) walls according to the 

orientation in figure 3. After Liu (2019), this work also refers to the vorticity-based vortex 

identification criterion, namely |ω|, as the first-generation vortex field, the eigenvalue-based 

criteria, namely q and λ2, as the second-generation, and the ratio-based criteria, namely Ω and 

Ω̃R, as the third-generation.  
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Figure 3: Orientation and location of the prism walls. 

 

Wall Pressure Flow Field Turbulence Field Vortex Field 

BC 

[Top wall] 

P 

[Total pressure] 

⟨u'v'⟩ 

[Reynolds stress from u' and v'] 

|ω| 

[Vorticity magnitude] 

Helmholtz (1858) 

DA 

[Bottom wall] 

u 

[x-velocity] 

⟨u'w'⟩ 

[Reynolds stress from u' and w'] 

q 

[q-criterion] 

Hunt et al. (1988) 

AB 

[Upstream wall] 

v 

[y-velocity] 

⟨v'w'⟩ 

[Reynolds stress from v' and w'] 

λ2 

[λ2-criterion] 

Jeong & Hussain (1995) 

CD 

[Downstream wall] 

w 

[z-velocity] 

⟨k⟩ 

[Turbulence kinetic energy] 

Ω 

[Ω-criterion] 

Liu et al. (2016) 

 
|U| 

[Velocity magnitude] 
 

Ω̃R 

[Ω-Liutex criterion] 

Liu et al. (2018) 

    

Table 1: Summary of the inventory consisting of 18 measurables. 
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3.2 Module 2: Koopman Algorithm  

This work selected the most ubiquitous Dynamic Mode Decomposition (DMD) among all the 

aforenoted algorithms to approximate the Koopman eigen tuples. The DMD has many variants 

to different advantages: the Arnoldi-based formulation, also known as the Koopman Mode 

Decomposition (Rowley et al., 2009), the companion-matrix formulation (Schmid, 2010), the 

similarity-matrix formulation (Tu et al., 2014), the sparsity-promoting variant (Jovanović et al., 

2014), the extended DMD (Williams et al., 2015), the randomized DMD (Erichson & Donovan, 

2016), the recursive DMD (Noack et al., 2016), and so on. We chose the rudimentary similarity-

matrix formulation for tractability and robustness with high-dimensional data (Kutz et al., 

2016). 

Since our focus is not on the algorithm, we layout only the most necessary information to 

preserve concision. Readers may refer to Tu et al. (2014) or Li et al. (2022b) for the complete 

formulation.  

The DMD deploys a data-driven, finite-dimensional mapping matrix A to approximate the 

Koopman operator U. A connects two time-shifted snapshot sequences, X1 and X2, of a 

particular measurable 

X2= AX1. (4) 

A is an unknown matrix that mimics the map f and Koopman operator U. Intuitively, the 

accuracy of A increases with the dimensionality, so too is the computational expense.  

X1 and X2, that are separated by a uniform time step Δt, 

X1={x1,x2,x3,…,xm-1}, (5) 
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X2={x2,x3,x4,…,xm}, (6) 

where xi ∈ ℂn are individual data snapshots in the vector form. n denotes the spatial dimension 

of the data sequence, which is capped by the maximum spatial resolution of a testing apparatus 

or numerical grid. m denotes the temporal dimension of the data sequence, which is capped by 

the sample size. Readers are reminded of a tacit assumption of the DMD: m<<n. 

By a Singular-Value-Decomposition (SVD)-based procedure, one arrives at a similar-matrix Ã 

that replaces A in equation (4). What can be done to the Ã matrix is limited only by the 

boundaries of linear algebra. This work adopts the default procedure, which is the 

eigendecomposition. 

An eigendecomposition by the Ritz method yields 

ÃW=WΛ, (7) 

where W contains the eigenvectors (Ritz vectors) wj, and Λ contains the corresponding discrete-

time eigenvalues (Ritz values) λj. 

The eigen tuples yield the exact DMD modes (Tu et al., 2014) as  

Φ=X2VΣ-1W, (8) 

where Φ contains the Koopman/DMD mode ϕj. Σ and V are outcomes of the SVD and contains 

the singular values σj and temporally orthogonal modes vj, respectively.  

Every mode ϕj also corresponds to a physical frequency ωj in continuous time 

ωj=ℑ{log(λj)}/∆t, (9) 

and a growth/decay rate gj 
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g
j
=ℜ {log(λj)}/∆t. (10) 

This procedure for computing the exact DMD modes is an algorithm for finding the Koopman 

eigen tuples (Tu et al., 2014), and any incongruence between the modes is attributed to the 

artifact of the approximated Koopman operator (Rowley et al., 2009). Theoretically, an 

infinite-dimensional Koopman mode is perennially oscillatory with a zero growth/decay rate. 

 

3.3 Module 3: Linear-Time-Invariance 

Module 3 begins the analytical end by ensuring that the algorithm outcomes are accurate, stable, 

and sampling-independent, capturing all the long-term, recurring dynamics of the input system. 

3.3.1 Linearity 

Nonlinearity causes possible inequalities between a phenomenon’s forward and reverse paths. 

The directional bias makes fluid-structure constitutions extremely difficult, if not impossible. 

Module 2 effectively linearizes the nonlinearities and decomposes an input measurable into  a 

linear superposition  

𝒙Koopman,i= ∑ ϕ
j
 exp(ωjti)αj

r

j=1

. 
(11) 

where xKoopman,i  are the Koopman eigen tuples of different spatiotemporal weights, which sum 

into the Koopman reconstruction of the input data at instant i. r denotes the truncation order of 

Ã and αj denotes the coefficient of weight, or the modal amplitude. 

Instead of the conventional static DMD mode shape, we define an evolutionary, dynamic mode 

shape  
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Mj=ϕ
j
 exp(ωjt)αj, (12) 

in which  

t = {∆t, 2∆t,3∆t,...,(m-1)∆t}. (13) 

Mj contains a fragment of the total information that has been harmonically averaged over a 

prescribed frequency span (Rowley et al., 2009). They together formulate the globally optimal 

linearization. It is important to note that Mj is temporally orthogonal.  

3.3.2 Time-Invariance 

Time-invariance is the other critical aspect of the Koopman-LTI. Since the spatial dimension 

n is controlled by the number of measurement nodes and is typically fixed in practice, sampling 

independence is essentially a matter of temporal convergence. Our previous work found LTI 

for the DMD, identified four universal convergence states for pragmatic convergence, and 

established a best practice for engineering applications (C. Y. Li et al., 2022a). Accordingly, 

one may fulfill time-invariance by meeting the following conditions. 

Mean-Subtraction 

The first step is to supply mean-subtracted input. Although the original Koopman/DMD 

analysis does not impose the requirement, it is recommended because the mathematical origin 

of the Koopman analysis traces back to the Discrete Fourier Transform (DFT) or the Z-

transform. Chen et al. (2012) have formally demonstrated that the Koopman/DMD modes are 

equivalent to DFT modes for zero-mean data. Rowley et al. (2009) also pointed out that any 

incongruence between the Koopman/DMD and DFT modes is attributed to the artifact of 

approximating the Koopman operator. For these reasons, Towne et al. (2018) recommended 

mean-subtraction in practice to minimize the incongruence. 
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To understand the requirement, readers are reminded of the rudimentary Z-transform,  

𝓩{ x[k] } = ∑ 𝑥[𝑘]𝑧-k

∞

k=0

, 
(14) 

where k∈ ℤ+ yields a unilateral Z-transform and z=bℯjθ. One may think of the Koopman 

linearization as a dynamical sweep by sinusoids and exponentials. We found that the mean-

field mainly contains non-oscillatory dynamics (C. Y. Li et al., 2022b). Therefore, the 

fundamental justification for mean-subtraction is to prevent reluctant descriptions of non-

oscillatory dynamics by oscillatory descriptors. To this end, all 18 data sequences have been 

mean-subtracted. 

Statistical Stationarity 

The second step is to supply steady or statistical stationary data. Although the Koopman 

analysis does not limit its scope to stationary flows, but as one can imagine, the sinusoidal and 

exponential sweep is more suited for recurring, oscillatory dynamics. Accordingly, steady or 

stationary data substantially elevates a Koopman linearization’s stability. 

Stationarity is also critical to underpinning predominant dynamical contributors. As 

commented by Williams et al. (2015), on a particular subspace of the Koopman operator, one 

may capture the long-term dynamics of an input observable in a span of eigenfunctions 

associated with eigenvalues near the unit circle in discrete time. The span is known as the slow 

subspace. The opposite, the fast subspace, captures the transient dynamics that quickly emerge 

and dissipate. In the case of a fluid system, the substance of the slow subspace translates to 

steady or stationary phenomena, while the subspace per se facilitates a low-dimensional 

approximation of the Koopman operator, or, equivalently, the Navier-Stokes equations. As 

such, steady dynamics is also a major interest of engineering applications. Accordingly, the 18 

measurables have been sampled in the statistically stationary state.  
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Temporal Convergence 

The third step is temporal convergence, which refers to the condition that the mapping matrix 

A is independent of changes of X1 and X2. In this specific rendering, it refers to Ã being 

independent of m and Δt, or the sampling range and resolution, respectively. 

We define the grand mean l2-norm of reconstruction error to assess the temporal convergence, 

G‖e‖2
=

1

m
∑‖e‖2,ins,i

m

i=1

, (15) 

where ‖e‖2,ins∈ ℝ+  

‖e‖2,i=‖e‖2,ins =
1

n
∑ [(

𝑥Koopman,k,i-xk,i

xk,i

)

2

]

1
2⁄n

k=1

, (16) 

is the instantaneous, spatially-averaged, and l2-normalized reconstruction error, and ‖e‖2,rms,i∈ 

ℝ+ 

‖e‖2,rms,i= [
1

n
∑ (

xKoopman,k,i-xk,i

xk,i

)

2n

k=1

]

1
2⁄

, (17) 

is its root-mean-squared (rms) value. 

Our serial parametric study discovered four convergence states (see figure 4) by varying the 

sampling range m (C. Y. Li et al., 2022a, 2022b). The study considered both prism and cylinder 

wakes and observed the same behaviors. After analyzing the states’ spectral implications, it 

was concluded that temporal convergence corresponds to the resolution sufficiency of a 

spectrum’s discretization by Koopman modes, which appear as discrete frequency bins. 

Therefore, convergence states are universal to all DMD decompositions.  
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Figure 4: Grand mean error versus sampling resolution with the prism wake (top) and 

cylinder wake (bottom). Image reproduced with the authorizations of a Creative Commons 

Attribution 4.0 International License.  

Li, C. Y., Chen, Z., Tse, T. K. T., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X., Nonlinear 

Dynamics, 1–25, 10.1007/s11071-021-07167-8, (2022); licensed under a Creative Commons 

Attribution (CC BY) license. 

Li, C. Y., Chen, Z., Tse, T. K. T., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X.,, ArXiv ID: 

2110.06577, (2022); licensed under a Creative Commons Attribution (CC BY) license. 

To this end, the Stabilization state marks sampling independence. In practice, one can plot the 

grand mean error against the sampling range, and a sudden error drop after an initial 

accumulation signals the arrival of the Stabilization state. Care is needed because the 

Initialization state also appears with trivial errors, but the eigen tuples are highly unstable. In 
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addition to the grand mean error, one shall also examine ωj and gj with respect to m. If no 

apparent changes are observed, the Stabilization state is consolidated.  

The convergence of sampling resolution Δt, as well as its relationship with the range m, were 

assessed by another bi-parametric study. The iso-surface of the leading Koopman mode 

conveys the general message (see figure 5). The convergence conditions of range and 

resolution are disentangled and can be assessed independently. Specifically, the convergence 

of resolution indicates a sufficient the upper range for the discrete spectrum and projects only 

a mode-specific effect. For general practice, one shall resolve the periodicity of the dynamics 

of interest by no less than 15 frames per cycle. 
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Figure 5: The Strouhal number versus the sampling resolution 2SF versus the number of 

sampled cycles of Mode 1. Image reproduced with the authorizations of a Creative Commons 

Attribution 4.0 International License.  

Li, C. Y., Chen, Z., Tse, T. K. T., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X., Nonlinear 

Dynamics, 1–25, 10.1007/s11071-021-07167-8, (2022); licensed under a Creative Commons 

Attribution (CC BY) license. 

To avoid repetition, readers may refer to our previous works (C. Y. Li et al., 2022a, 2022b) for 

more details about temporal convergence. We also disambiguate that the de jure time 

invariance translates to the discrete-continuous transition of the spectral discretization, which 

is only possible as m approaches infinity and is clearly impractical. Therefore, our discussions 

here are limited to a pragmatic scope. 

Truncation and Interpolation 

Users are also advised against truncation because it, even by a single order, notably weakens 

the stability of the Koopman eigen tuples. the singular-value-based truncation criterion may 

neglect some low-energy states vital to the overall dynamical content, hampering the modeling 

fidelity (Noack et al., 2008; Schmid, 2010).  

It is also essential to upkeep the m<n condition if one deploys the DMD algorithm because 

otherwise, the algorithmic outcomes become completely degenerate (C. Y. Li et al., 2022b). 

High-order pre-decomposition interpolation is recommended to increase n for experimental or 

field data, which are often inherently low-dimensional in space. However, one shall reckon that 

interpolation inevitably adds synthetic dynamics into the original system. High-order schemes 

simply better prevent the entanglement between the artificial and original content. 
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3.3.3 Accuracy and Stability 

Meeting all the aforenoted requirements, this practical rendering sampled 500 snapshots for 

each of the 18 measurables in the 3D numerical domain with the inter-snapshot step ∆t = 400t*. 

The independent, mean-subtracted realizations were sampled in the stationary state. The range 

m spans 20 oscillations cycles and meets the Stabilization state. The resolution ∆t also resolves 

the prism wake’s predominant shedding cycle at St=0.127 by 25 frames per cycle. No 

truncation and interpolation were performed on the data sequences. 

The immediate fruit of the LTI is some astonishing accuracy and stability improvements. 

Figure 6 presents the instantaneous mean and rms reconstruction error of the 18 LTI systems. 

The maximum mean and rms errors are O-9 and O-6, respectively. Excluding the singularities, 

the maxima further reduce to O-12 and O-9, which are basically numerical zeros. The virtually 

non-existent error is extraordinary by any standard: it means the Koopman linearization is 

infinitely close to exact. Compared to the non-LTI systems generated in our previous efforts 

(C. Y. Li et al., 2020a, 2020b; Zhou et al., 2021a, 2021b), the improvement is by as much as 

several orders of magnitude.  

 

a) 
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b) 

Figure 6: (a) Mean reconstruction error and (b) root-mean-square reconstruction error of the 

18 Koopman-LTI systems versus nondimensional time t*. 

 

On the other hand, stability measures of how well a Koopman system behaves with regularity. 

It also reflects how well periodic descriptors, the sinusoids and exponentials, depict the input 

dynamics. The 18 LTI system’s Regions of Convergence (ROCs) are presented in figure 7 to 

assess their stability. For the idealistic, infinite-dimensional Koopman operator U, its eigen 

tuples, or poles, are perfectly oscillatory, perpetually stable, and sit exactly on the ℜ2+ℑ2=1 

unit circle.  

Two key observations are derived from the ROCs. First, all poles lie infinitely close to the unit 

circle, showing their near-perfect oscillation, hence stellar stability. This attests to the adequacy 

of the Dynamic Koopman modes to describe input dynamics and, more importantly, the slow 

subspace. Moreover, the growth/decay rates gj presented is the numerical index that quantifies 

stability. A perfect linearization yields gj = 0. The maximum gj in figure 8 is in the order of O-

8. Excluding the case of the upstream wall AB, the maximum reduces to O-12. Again, the 

numerical zero testifies for the LTI models’ extraordinary stability. 
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Figure 7: The Region of Convergence of the 18 Koopman-LTI systems (left) and zoomed-

in (right) near ℜ(λj)=1 and ℑ(λj)=0. 

 

 

Figure 8: Growth/decay rate of the Koopman-LTI modes of the 18 Koopman-LTI systems 

versus mode number Mj. 
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The second observation is that the ROCs (in mint green) are characteristic of acausal systems. 

Acausality guarantees a system’s behavior does not depend on past input but only on future 

ones (Oppenheim et al., 1997). A concomitant interpretation is that the current sample 

sufficiently captures all the major (or even minor) dynamical contributors, so the entire slow 

subspace. Again, this is concrete evidence of sampling independence.  

At the end of Module 3, it is worth mentioning that Modules 1, 2, and 3 forms an iterative, 

input-decomposition-assessment feedback loop. The process is analogous to the training 

process of a neural network, and the grand mean error and growth/decay rates resemble 

rudimentary residual metrics. This similarity even motivated several Koopman-inspired neural 

networks (Q. Li et al., 2017; Lusch et al., 2018), which may well serve the role of the Koopman 

algorithm in Module 2. These extensions are attractive directions for future endeavors. For our 

particular scope, we reiterate the importance of a sampling-independent model and will shortly 

demonstrate its vast analytical. 

4. Constitutive Relationship (Module 4) 

Another observation from figure 7 is remarkably inspirational---the Koopman-LTI modes for 

all 18 systems superpose exactly onto one another. It implies that all systems consist of the 

same Dynamic Koopman modes Mj or have been discretized into an identical set of 

eigenfrequencies. This is a pivotal disclosure: the LTI distributes input dynamics across a 

uniform set of equidistant, discrete frequency bins, over which the temporal content is 

orthogonal, and the spatial content is bin-wise averaged. 

We emphasize the fundamental awareness that no matter how unsolvable or even indiscernible 

the governing dynamics are, fluid and structure must conform to some overarching laws and 

physics deeply embedded in the data. Extending this thought, if the input measurables, through 
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which the LTI models are generated, appropriately represent the fluid and the structure, then 

the extracted eigen tuples quintessentially represent the linearized, orthogonally disentangled 

principles of FSI. Accordingly, one may exploit the Koopman-LTI to deterministically 

associate a structural response with its corresponding fluid excitation by frequency-matching, 

forming the constitutive relationship. Module 4 demonstrates the realization of this perception. 

4.1 Intra-Group Dynamics 

Although the frequency bins Stj are universal, the coefficients of weight αj are vastly different, 

implying disparity in the measurables’ spatiotemporal content. Our intention to assess the 

disparity fostered the definition of the normalized modal amplitude, as 

-1 ≤|α̃j|∈ ℝ ≤1.  (18) 

The ranking of Mj in their respective Koopman-LTI systems directly reflects the spatiotemporal 

disparity, as summarized in table 2. Besides αj, readers are also reminded of several other 

criteria (Jovanović et al., 2014; Kou & Zhang, 2017; Sayadi et al., 2014), each to their pros and 

cons, for user selection. Selecting the ten most dominant eigen tuples for each measurable 

(highlighted in table 2) results in precisely 30 across the entire inventory. The upcoming 

analysis categorizes the measurables by their origin and assesses their intra-group dynamics. 

For each measurable, |ᾶ1| = 1 for the most dominant tuple. 

4.1.1 Prism Walls 

As shown below, figure 8 presents the |ᾶj| versus Stj spectra and the discrete Koopman modes 

of the four wall measurables. |ᾶj| of the top (BC), bottom (DA), and upstream (AB) walls, 

collectively referred to as the on-wind walls, share a remarkable similarity. The most dominant 

energy concentration, or peak, appears at St=0.1242. Its broadband content also spreads across 

several frequency bins in the neighborhood St=0.1-0.15. A secondary narrowband peak resides 
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at St=0.0497 and has ~25%|ᾶ1|. Other peaks are also faintly visible, for example, at St=0.2422 

with ~10%|ᾶ1|, but are deemed trivial under the overwhelming first two. For clarification, each 

peak on the spectrum corresponds to a natural flow structure (Hussain, 1986), and |ᾶj| 

allegorically represents the energy associated with it. Equivalently speaking, the peak 

amplitude inversely represents the energy required to excite a natural structure---the greater the 

|ᾶj|, the more natural the structure. 

In contrast to the similitude of the on-wind walls, the downstream wall (CD) exhibits a 

fundamentally different distribution. Although the most dominant broadband peak still appears 

at St=0.1242, the secondary peak at St=0.0497 is buried. Instead, several other peaks, at 

St=0.0683, 0.0745, 0.1739, 0.1925, 0.2422, and 0.3664 with 37.6%, 42.0%, 55.6%, 40.6%, 

32.6%, and 37.2%|ᾶ1|, respectively, overtake its dominance. An interpretation suggests more 

complications underlie the downstream wall, making it utterly different from the on-wind walls.   

Moreover, the difference between the primary |ᾶ1| and other |ᾶj| is marked reduced from ~75% 

to 44.5%, implying the interwoven physics' undermining of the predominant mechanism. The 

observations allude to the findings of several works on the negative base pressure, which results 

from the tumultuous vortex activities and entrainment in both the stream- and span-wise 

directions inside a turbulent wake (Lander et al., 2016; Luo et al., 1994; Unal & Rockwell, 

1988). Based on this analysis, we refer to St=0.1242 as the primary peak, St=0.0497 as the 

secondary peak, and all others as the ancillary peaks in the subsequent text. 
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(a) 

 

(b) 

Figure 9: (a) |ᾶj| versus St of the wall measurables (BC, DA, AB, CD); (b) discrete Koopman 

modes in linear scale and St=0-0.3 (left), linear scale and St=0-1.5 (right top), and log scale 

and St=0-1.5 (right bottom). 
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Table 2: Summary of 30 dominant modes and their respective |ᾶj| ranking in each Koopman-LTI system (Highlighted: 10 most dominant). 

Mode - Frequency 

Input Data 

Primary Measurable Turbulence Vortex Identification Criteria 

Wall (P) Flow Field Reynolds Stress TKE 1st Gen. 2nd Gen. 3rd Gen. 

BC DA AB CD P u v w |U| 〈u'v'〉 〈u'w'〉 〈v'w'〉 〈k〉 |ω| q λ2 Ω Ω̃R 

M1 - St1=0.1242 1 1 1 1 1 1 1 26 1 11 20 19 1 1 1 1 1 1 

M2 - St2=0.1180 2 2 2 3 2 2 2 11 2 14 19 20 3 2 4 4 3 3 

M3 - St3=0.2422 14 13 19 9 5 3 5 42 4 19 40 41 10 4 2 2 2 2 

M4 - St4=0.1304 3 3 3 11 3 4 3 31 5 23 21 23 5 8 6 7 5 7 

M5 - St5=0.0497 4 4 4 14 4 5 8 1 3 5 8 8 2 3 5 5 7 5 

M6 - St6=0.0745 10 17 15 4 8 6 13 4 6 13 12 12 19 5 15 16 14 10 

M7- St7=0.0683 11 21 17 6 10 7 12 14 8 10 11 11 31 7 8 8 11 9 

M8 - St8=0.1428 5 6 5 8 6 8 4 6 7 27 23 22 4 9 17 18 8 11 

M9 - St9=0.1739 17 11 21 2 9 9 11 24 11 25 28 27 7 6 3 3 10 8 

M10 - St10=0.1118 6 5 6 10 7 10 6 25 10 21 18 18 6 16 20 22 13 18 

M11 - St11=0.1366 7 8 7 18 11 11 7 21 9 24 22 21 23 15 25 28 15 19 

M12 - St12=0.1056 8 7 8 38 12 13 10 22 13 20 17 17 27 17 31 30 19 24 

M13 - St13=0.1925 23 27 29 5 13 15 9 28 15 22 31 31 11 11 7 6 6 6 

M14 - St14=0.1553 9 16 9 24 16 16 20 17 21 26 25 26 21 18 10 11 29 25 

M15 - St15=0.0559 20 9 10 12 15 19 28 23 16 9 9 9 17 10 26 25 25 21 

M16 - St16=0.3664 37 33 46 7 25 34 15 64 27 45 59 60 16 39 29 26 23 15 

M17 - St17=0.0994 24 10 13 29 17 14 21 18 17 18 16 16 12 20 37 37 21 20 

M18 - St18=0.0373 13 44 20 25 24 20 24 2 14 7 6 6 9 19 34 34 26 29 

M19 - St19=0.0311 25 30 30 19 29 21 32 3 19 6 5 5 14 13 36 36 40 35 

M20 - St20=0.1677 26 32 32 21 33 25 22 5 32 28 27 28 32 27 60 58 34 28 

M21 - St21=0.0807 16 12 11 30 14 12 16 7 12 15 13 13 8 12 16 15 16 14 

M22 - St22=0.0248 35 20 26 27 30 26 42 8 23 4 4 4 22 21 48 48 41 34 

M23 - St23=0.0124 33 42 34 43 42 32 41 9 31 2 2 2 26 29 58 63 37 36 

M24 - St24=0.0435 28 19 27 41 26 17 27 10 20 8 7 7 20 14 23 24 18 17 

M25 - St25=0.0062 45 39 36 53 43 29 30 12 29 1 1 1 28 37 63 64 38 42 

M26 - St26=0.0186 34 24 25 36 35 31 34 13 28 3 3 3 25 28 49 52 36 39 

M27 - St27=0.0621 12 38 16 22 19 22 26 20 22 12 10 10 13 22 30 29 31 31 

M28 - St28=0.4161 50 40 55 45 52 53 56 67 52 62 66 68 53 43 9 9 54 51 

M29 - St29=0.2236 27 22 23 15 23 30 14 36 33 37 36 37 34 31 12 10 9 12 

M30 – St30=0.2484 32 35 37 26 22 27 25 40 25 29 39 39 18 32 22 21 4 4 
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4.1.2 Flow field 

We proceed to the field measurables |U|, P, u, v, and w (see figure 10). Except for w, the 

distributions of |U|, P, u, and v exhibit a remarkable resemblance to the on-wind walls, 

especially the predominance of the primary peak |ᾶ1|and the secondary peaks ~30%|ᾶ1|. The 

ancillary peaks of considerably higher |ᾶj| also appear at St=0.0683, 0.0745, 0.1739, and 

0.1925, increasing from ~8-13%|ᾶ1| to ~15-30%|ᾶ1| herein. St=0.2422 even increased from 

~10% to ~25%|ᾶ1|. The consistency foreshadows the fluid-structure constitution, which will 

be demonstrated in section 4.2. 

 

(a) 
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(b) 

Figure 10: (a) |ᾶj| versus St of the primary field measurables (|U|, P, u, v, w); (b) discrete 

Koopman modes in linear scale and St=0-0.3 (left), linear scale and St=0-1.5 (right top), and 

log scale and St=0-1.5 (right bottom). 

 

Continuing with intra-group dynamics, among the three velocity components, the distributions 

of u and v are comparable to that of |U|, though the resemblance of the former is better than the 

latter. The observation is attributed to the convection-dominance of free-shear flows (Pope, 

2000). Being in alignment with the free-stream, u best embodies convection and overwhelms 

the substance of |U|. For this, even with w displaying a fundamentally different distribution, 

|U| remains insensitive to w and akin to the distribution of u.  

On a different note, w is a peculiarity. Though still visible, the dominance of the primary peak 

St=0.1242 is much less prevailing compared to its peers. The z-component velocity also weakly 

reflects the secondary and ancillary peaks. It is to say w only marginally contribute to the 

structure’s dominant reactions, or it is dynamically trivial. The observation is lucid on the 
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broadband spectrum (St=0-1.5), particularly in the log scale. Peaks are buried amidst an 

overarching trend that allegorically appeals to the wavenumber spectrum of the Richardson-

Kolmogorov notion (Pope, 2000). To this end, the bleak presence of w justifies the selection 

of several previous efforts, which had studied the three-dimensional prism wake by their planar 

counterpart (Braza et al., 2006; Ong & Wallace, 1996). 

4.1.3 Reynolds stresses 

The Reynolds stresses display no resemblance to those of the prism walls nor the flow field, 

but a remarkable consistency between themselves (see figure 11). |ᾶj| unanimously displays an 

inverse proportionality with Stj in a largely steady exponential decay. To rationalize the 

observation, readers are reminded of the implication of the Reynolds stresses---they are the 

averaged deviatoric components of the stress tensor that accounts for the turbulent fluctuations 

of fluid momentum. Conceptually, they constitute a measure of an infinitesimal fluid element’s 

distortion, therefore an index quantifying its tendency toward turbulence, or inversely, 

laminarization.  

This knowledge motivates a critical revelation. The spatiotemporal content of the Reynolds 

stresses metaphorically depicts the eddies. The largest eddies, corresponding to the smallest 

wavenumbers, extract kinetic energy from the mean-field and channel it into turbulence 

through production processes. They are, however, the most unstable and vulnerable to 

distortion. Their highest tendency toward turbulence grants them the greatest spatiotemporal 

dominance. Although the nonlinear inter-scale transfer can be both forward and inverse, the 

overall energy balance is negative (Pope, 2000; Portela et al., 2017). So, as the large, more 

energetic eddies break down into smaller, more abundant ones, |ᾶj| decays exponentially.  
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(a) 

 

(b) 

Figure 11: (a) |ᾶj| versus St of the Reynold stresses (⟨u'v'⟩, ⟨u'w'⟩,⟨v'w'⟩); (b) discrete 

Koopman modes in linear scale and St=0-0.3 (left), linear scale and St=0-1.5 (right top), and 

log scale and St=0-1.5 (right bottom), best curve gradient -1.059. 
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However, at least from a statistically perspective, this depiction is not exactly the cascade nor 

the inter-scale transfer in the inertial subrange. A best-fit linear regression yields 

|α̃j,⟨u'v'⟩ |= ec St,  (19) 

where c=-1.059, 0.997, and 1.008 for ⟨u'v'⟩, ⟨u'w'⟩, and ⟨v'w'⟩, respectively. To our best 

knowledge, c does not appeal to any known tenet (e.g., -5/3, 4/5, 4/3). Further explorations of 

this observation deserve a dedicated investigative scope. Interestingly, amidst the 

overwhelming trend, only peaks in ⟨u'v'⟩, though far less standout, suggest the presence of the  

dominant excitations. 

4.1.4 Vortex Fields 

The turbulence kinetic energy ⟨k⟩ displays more similarity with the vortex fields than the 

Reynolds stresses (figure 11). ⟨k⟩ is the mean kinetic energy per unit mass of eddies derived 

from the stress tensor’s isotropic components (Kundu, 2004; Pope, 2000; White, 2006). So, 

the empirical observation here is vastly interesting: the dilatory stress components resemble 

vortex fields more than their deviatoric cousins. Conversely, vortex dynamics are driven by 

dilation rather than distortion.  On this note, the prominent peak at St= 0.1242 of ⟨k⟩ is less 

acute, and the ancillary ones are 15-30% more energetic than those of the prism walls and flow 

field.  

The first- and second-generation vortex fields are energetically weaker than ⟨k⟩, while the third-

generation is more. An emanating remark is that the dynamics of the third-generation criteria 

are more entwined than those of the others, or its primary peak is less prevailing than its peers. 

This may have to do with its ratio-based definition (C. Liu, 2019). Another interesting 

observation is, except for |ω|, all other measurables locate the second peak at St=0.2422 instead 

of St=0.0497. Inspection reveals this is driven by u (figure 9) or the stream-wise convection. 
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In addition, all vortex fields exhibit mild peaks at St=0.0683 and 0.0745, while they are 

particularly distinctive in ⟨k⟩. Finally, despite minor differences, the vortex and flow field 

measurables generally agree with spectral locations of the energy concentration, namely at 

St=0.0497, 0.0683, 0.0745, 0.1242, 0.1739, 0.1925, and 0.2422. 

 

 

(a) 

 

(b) 
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Figure 12: (a) |ᾶj| versus St of the turbulence kinetic energy and vortex identification criteria 

(⟨k⟩, |ω|, q, λ2, Ω, Ω̃R); (b) discrete Koopman modes in linear scale and St=0-0.3 (left), linear 

scale and St=0-1.5 (right top), and log scale and St=0-1.5 (right bottom). 

4.2 Inter-group constitution 

The intra-group dynamics, while pinpointing the singularities of w and the Reynolds stresses, 

unveiled a remarkable consensus between the natural structures of fluid excitation and 

structural response. By studying the inter-group dynamics, this section confirms the 

constitutive relationship to underscore a significant step towards understanding FSI.  

4.2.1 Fluid-structure correspondence 

To begin, figure 13a presents the |ᾶj| versus Stj spectra of representative wall and field 

measurables. To facilitate a clearer message, we also present the ten most dominant modes of 

all 18 LTI models on the discretized spectra. In figure 13b, colors (blue, orange, green, and 

maroon) distinguish the four groups, and the color darkness and marker radius figuratively 

illustrate the spatiotemporal dominance of a mode. Previous conclusions are reaffirmed: except 

for w and the Reynolds stresses, all other measurables reflect the primary peak at St=0.1242, 

the secondary peak at St=0.0497, and the ancillary peaks to different degrees.  

Most importantly, the direct constitutive relationship between the fluid and structure is lucid 

by mere inspection. The responses of the on-wind walls are primarily excited by the broadband 

primary peak at St=0.1242 and the narrowband secondary peak at St=0.0497. The 

correspondence is highlighted in sky blue and named Class 1. The structural response of the 

downstream wall, while still dominated by the primary peak, reflects several subsidiary 

excitations, namely the ancillary peaks of descending dominance at St=0.1739, St=0.0683, 

St=0.1925, and St=0.2422. The correspondence is highlighted in lavender and named Class 2. 

Other peaks from figure 13a without unanimous agreements from figure 13b are filtered out. 
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(a) 

 

(b) 
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Figure 13: (a) |ᾶj| versus St of structure (BC, DA, AB, CD) and representative field (|U|, P, 

q, Ω) measurables; (b) 10 modes with the highest |ᾶj| versus St of the 18 Koopman-LTI 

systems. 

4.2.2 Implications and Significance 

Unearthing from the observations is a crucial revelation. In the moderate subcritical regime 

during the shear layer transition II, the morphology of the prism wake, allegedly entangled by 

millions of dynamical components, reduces to only six dominant contributors (Class 1 and 

Class 2). The three geometrically distinct on-wind walls converge to a single, dynamically 

unified fluid-structure interface, which is excited by only two predominant mechanisms. As a 

distinct interface, the downstream wall is excited by a whole different class of four fluid 

mechanisms. The complete revelation of the prism wakes comes down to the issue of 

understanding the six mechanisms. 

The a posteriori evidence also facilitates the notable capacity of the Koopman-LTI. It 

substantiated our intuition that certain laws and principles relate and govern the fluid and 

structure, extract them from data, and store them explicitly in the linear, time-invariant 

mapping matrix. Though solving the governing equations is still a whole different story, the 

tangible possession is already a huge step forward.  

The practical realization of the Koopman-LTI is also straightforward by the procedure from 

figure 1. The staple is the linear-time-invariance notion. With it, the input data can be 

independently sampled, the algorithm can be as simple as the vanilla DMD, and identifying the 

fluid-structure constitution is as easy as inspection. 
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4.2.3 Disambiguation 

On a different note, several other intriguing observations arise from figure 13. Among the 

vortex fields, ⟨k⟩ and |ω| miss, though to different degrees, some ancillary peaks, such as the 

ones at St=0.1739 or 0.1925. However, the second- and third-generation vortex fields capture 

all the pertinent modes. Besides making them the optimal identifiers, the observation also 

suggests that structure responses are closely associated with, if not directly instigated by, vortex 

dynamics. In practice, if one finds the calculations of vortex fields cumbersome or their 

interpretations less intuitive, the |U| and P fields generally suffice. The adequacy of u in the 

present work is attributed to the dominance of convection, therefore, case-specific. 

Some may argue that the user-defined threshold of ten modes might oversimplify the dynamics, 

artificially constraining the configuration to only six dominant mechanisms. The doubt is 

reasonable and deserves clarification. Figure 13a presents the untruncated spectra, and we 

further supplement figure 14 with 20 and 50 dominant modes. Per an increase from 10 to 20, 

the most apparent change is the widening of existing peaks, symbolizing the enhanced 

broadband content (figure 13a). Moreover, some Class 2 mechanisms begin to show, though 

minor in extent, effects on the on-wind walls, for example, the ones at St=0.0683, 0.1739, and 

0.2422.  

The new additions are highlighted in gold. There are no new, isolated peaks on the on-wind 

walls. Perhaps only the downstream response at St=0.2236 qualifies because four vortex fields 

illustrate its presence. However, its dominance is relatively bleak. The other two peaks at 

St=0.2987 and 0.3664 are only sporadically identified by individual measurables. To this end, 

the six dominant mechanisms are the most prevailing excitations of the prism wake. 
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Figure 14: (a) 20 most dominant modes and (b) 50 most dominant modes versus St of the 

18 Koopman-LTI systems. 

The analysis also exposes another intriguing point. Some mechanisms, like the one at 

St=0.3664, though deemed as trivial by |U| (ranks the 27th), q (ranks the 29th), and Ω̃R (ranks 

the 15th), projects an overwhelming influence on the downstream wall (ranks the 6th). The 

opposite is also true. For example, the mechanism at St=0.2484 is deemed prominent by both 

Ω and Ω̃R (ranks the 4th), but instigates only trivial reactions from the structure (ranks >25 for 

all walls). Even after the global linearization, the interactive mechanisms between fluid and 

structure are still anything but simple. The transfer of energy demands further investigation. 

Thereafter, figure 14b illustrates the change when the dominant modes are increased to 50. All 

measurables unanimously include the low-frequency spectrum. This is a consensus on the 

dominance of the low-wavenumber, more energetic eddies. Even for outliers like w and the 

Reynolds stresses, turbulence’s energy preference and natural structures clearly persist. The 

universal image also attests to the capture of all the important dynamics. 

4.2.4 Connection to Fourier Transform 

The preceding analysis illustrate some resemblance between the Koopman and the Fourier 

analyses. For zero-mean data taken from linearly independent snapshots, Chen et al. (2012) 

had formally formulated the mathematical relationship between the DMD and the Discrete-

Fourier transform (DFT). Although real flows can rarely meet this condition, but as pinpointed 

by Towne et al. (2018): 

Mezić (2005) showed that for any dynamical system with a Borel 

probability measure, the growth/decay rate is zero and Koopman modes 
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are equivalent to Fourier modes. Stationary flows possess an ergodic 

measure by definition, so their Koopman modes are simply Fourier modes. 

The stationary, mean-subtracted data in this work mimics the perennially oscillatory Koopman 

modes, and the non-zero growth/decay rate is the artifact of the approximation. As seen in 

figure 8, the numerical zero growth/decay rate (O-12 ) suggests that the DMD, Koopman, and 

DFT modes are practically identical. 

The mathematical connection motivated the subsequent empirical comparison between the 

Koopman-LTI and the power spectral density (PSD) analyses in figure 15. This work performs 

the standard PSD with seven data series, four pressure series at the geometric center of each 

wall and another three u series at Points 1, 2, and 3, which characterize stagnation, shear layers, 

and the wake, respectively (see figure 3). In some respects, extracting pointwise series from a 

full-scale, three-dimensional numerical field is a cumbersome process per se.  

The typical PSD characterization is local, so the capture of a system-wise representative trend 

is somewhat fortuitous. Apart from BC and DA, the primary peak at St= 0.1242 is unclear for 

all other five series (see figure 15b). As readers may sympathize, the PSD in practice is often 

trial-and-error based and depends heavily on data selection, hence a user’s experience. Due to 

these limitations, one can hardly deduce a fluid-structure constitution from it. The visualization 

of Fourier modes is also uneasy. The Koopman-LTI bypasses the constraints of locality, 

esotericism, and visualization by generating a globally optimal characterization. However, the 

price is an exponential increase in computation cost. On this note, we clarify that the intention 

is not to adjudicate the superiority of one technique over the other. We merely advise users to 

make informed decisions about the compromises between locality and computation.  
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(a) (b) 

Figure 15: (a) |ᾶj| versus St of selected Koopman-LTI systems on log scale; (b) power-

spectral analysis of selected data series of prism walls and u-velocity field. 

 

5. Conclusions 

This work focused on the analytical end of the Koopman analysis. We proposed the Linear-

Time-Invariance (LTI) notion, or the Koopman Linearly-Time-Invariant (Koopman-LTI) 

modular architecture, to study fluid-structure interactions. In the pedagogical demonstration on 

the prism wake, the LTI models, generated from 18 structure and field measurables, captured 

all the recurring dynamics, so the Koopman linearization yielded remarkably trivial mean and 

rms errors of  O-12 and O-9, respectively. With the LTI notion, the vanilla DMD also accurately 

approximated the Koopman modes, rendering an error of O-8. To this end, the LTI models 

provided a near-exact linearization of the original nonlinear fluid dynamics. 
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This work also facilitated a pathway to deterministically associate the fluid and structure. By 

the LTI models, the prism wake undergoing the shear layer transition II was reduced to only 

six dominant excitation-response mechanisms. The fluid-structure constitution classified the 

upstream and crosswind walls as a single interface, which is dominated by merely two 

mechanisms at St=0.1242 and 0.0497. The downstream wall is a distinct interface and is 

dominated by four other mechanisms at St=0.0683, 0.1739, 0.1925, and 0.2422. The solution 

of the prism wake essentially comes down to the matter of understanding the six mechanisms, 

which Part 2 will address. 

The spectral content of the 18 measurables has been elucidated. Apart from the dynamical 

independence of the downstream wall, the z-component velocity is also trivial in this 

configuration. The velocity and pressure fields are convection-dominated. The Reynolds 

stresses describe the energy of eddies, so they are irrelevant for system characterization. The 

turbulence kinetic energy matches the vortex fields, showing the close association of vortex 

dynamics to dilation or their indifference to distortion. The vortex fields also best characterize 

the wall pressures, attributing structure responses to the origin of vortex activities. 

The merit of the Koopman-LTI most avidly reflects on its data-driven nature and modular 

architecture. It accommodates all data types and Koopman algorithms. Our success with the 

most rudimentary DMD on inhomogeneous anisotropic turbulence also attests to its broad 

replicability. Finally, this work highlights the equal importance of the Koopman analysis’s 

analytical end, which is often overshadowed by the zeal toward algorithmic development. 
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