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The stability of two-dimensional infinitesimal disturbances of the inviscid Karman 
vortex street of finite-area vortices is reexamined. Numerical results are obtained for 
the growth rate and oscillation frequencies of disturbances of arbitrary subharmonic 
wavenumber and the stability boundaries are calculated. The stabilization of the 
pairing instability by finite area demonstrated by Saffman & Schatzman (1982) is 
confirmed, and also Kida’s (1982) result that this is not the most unstable disturbance 
when the area is finite. But, contrary to Kida’s quantitative predictions, it is now 
found that finite area does not stabilize the street to infinitesimal two-dimensional 
disturbances of arbitrary wavelength and that it is always unstable except for one 
isolated value of the aspect ratio which depends upon the size of the vortices. This 
result does agree, however, with those of a modified version of Kida’s analysis. 

1. Introduction 

We consider the stability of two-dimensional infinitesimal disturbances of the 
steady inviscid incompressible flow produced by infinite rows of finite-cored vortices. 
The undisturbed flow in a frame of reference moving with the vorticity is described 
by a stream function Y(x, y) with the property that Y(z+Z, y) = Y(x,y), and 
Y(x, co) = U ,  y, Y ( x ,  - co) = U, y. There are two cases: (i) wake-type flows in which 
U, = U, = U ,  say; and (ii) mixing-layer-type flows with U, = - U, = U. In the first 
case there is no net vorticity ; the canonical flow is that of the Karman vortex street 
of two infinite straight parallel staggered rows of point vortices of equal and opposite 
circulation r, with separation 1 parallel to the rows, distance h between the rows, and 
each vortex opposite the midpoint of vortices in the other row. In the second case, 
there is net vorticity and the canonical example is a single straight infinite row of 
point vortices of equal circulation r separated by distance 1. 

Infinitesimal disturbances to these flows are described by a perturbation e Y ( x ,  y, t )  
to the stream function, where e is infinitesimal and by Floquet or Bloch wave theory 
the perturbation is a sum of modes of the form 

00 

‘y‘ = e2nipxll X qbn( y) e2ninxlz 
n--m 

It follows from the Euler equations that the perturbation satisfies the linear partial 
differential equation 
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Substitution of ( 1 . 1 )  into (1.2) and requiring that Y’ be bounded gives an eigenvalue 
problem for the unknown growth rate u as a function of the undisturbed flow and 
p .  Notice that p is an arbitrary real number, which clearly without loss of generality 
may be taken in the range 0 Q p Q 1 or -+ < p < +, since adding an integer to p is 

simply equivalent to relabelling the eigenvector r$n. If p = 0 the disturbance has the 

same spatial period 1 as the undisturbed flow, and will be called a superharmonic 
disturbance. If p + 0 the disturbance has in general a component of wavelength 1/11 

or I / (  1 - p ) ,  which is larger than 1, and will be called subharmonic. The case p = i, 
in which the disturbance wavelength is double that of the undisturbed flow, has 
attracted particular attention in flows of mixing-layer type, where it is called the 
pairing instability. 

If u is pure imaginary for all values of p ,  the disturbance does not grow with time 
and the flow is said to be stable. (Strictly speaking, i t  is only stable to infinitesimal 

disturbances, but the behaviour of finite-amplitude disturbances is an open and 
difficult question and will not be considered here.) If u has a positive real part for 

some value of p ,  then the flow is unstable. 
The case of point vortices has been investigated in detail by many workers; Lord 

Kelvin and J. J. Thomson studied the single row in the form of a circle (for a complete 
treatment see Havelock 1931). Karman worked out the stability of the double row; 
Lamb (1932) provides an account of this work and describes the stability of the single 
row, which is always unstable. The staggered double row is likewise unstable, except 

when h/1 = K, = (cosh-l2/2)/~ = 0.280 550, at which value Re (u) = 0. 
Recently, owing partly to the availability of large-scale computing resources, the 

case in which the vortices are of finite size has attracted attention. Saffman & Szeto 
(1981) examined the single row of uniform finite-size vortices, where the vorticity ,is 

constant inside each vortex and zero outside. The stream function is continuous and 
has continuous first derivatives, but the second derivatives have simple jumps across 

the boundaries of the vortices. They calculated steady shapes numerically, and 
discussed the stability to two-dimensional disturbances by global energy methods, 
which have the advantage that they are not limited to infinitesimal disturbances. 
They concluded that superharmonic disturbances are stable when the vortices are 

not too large, but there exists a critical size a t  which superharmonic disturbances 
become unstable. This provides another mechanism for the evolution of a single row 

which goes under the name of ‘ tearing ’ (Moore & Saffman 1975). The analysis showed 

that the pairing instability would not be eliminated by effects of finite size, but the 
qualitative global analysis could not determine whether the growth rate increased 
or decreased. (Closed-form quantitative solutions for the case of hollow vortices 
suggested that the effect of size on the pairing instability is small ; see also Baker, 
Saffman & Sheffield (1976).) Numerical solutions by Pierrehumbert & Widnall(l981) 
for the so-called Stuart vortices show similar behaviour (this paper also contains 
results for three-dimensional disturbances, which are outside the scope of the present 
work). 

The effect of finite core size on the stability of the Karman vortex street was 
considered by Domm (1955), but his undisturbed flow was neither an exact solution 
of the Euler equations nor of the Navier-Stokes equations. As will be emphasized 
below, the question of the stabilization by finite size is rather delicate, and Domm’s 
conclusion that finite size does not stabilize is of uncertain significance. The first 
consistent calculation was carried out by Saffman & Schatzman (1982), who 
calculated the values of u for superharmonic disturbances to a double row of uniform 
vortices and the subharmonic pairing-type instabilities for p = a. They formulated 
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the problem exactly in terms of a nonlinear integro-differential equation based on 

the ‘water-bag’ method (see Deem & Zabusky 19781, whose solutions give the steady 
shapes and whose Frechet derivative gives the linear eigenvalue problem for the u. 
These equations were solved numerically, thereby giving approximate solutions to 

an exact formulation. It was found that superharmonic disturbances were stable, as 

can also be predicted by a global argument, and that the pairing instability could 
be stabilized by finite size for a range of values of the aspect ratio h/l  around K , .  

Saffman & Schatzman argued on the basis of a symmetry argument that the pairing 
disturbances were the most unstable, a t  least for small vortices, and i t  was therefore 

not necessary to  consider p $. + with regard to the stability to general disturbances. 
Unfortunately, as will be discussed below, this conclusion is false. 

The problem was considered independently by Kida (1982) in a rather different 

way. He developed a perturbation expansion in the size of the vortices to obtain 

approximate equations for the motion of the vortex centroids. In  order to do this, 
i t  is necessary to calculate the deformation of the vortex cores, which respond 

quasi-steadily to the motion of the centroids on timescale 1 2 / 1 ‘ ,  and can oscillate freely 
on the much shorter timescale 1/w = A / T ,  where A is the core area and w is the 

magnitude of the vorticity in the core. A ‘coarse-graining ’ approximation is made 
which neglects the high frequencies and produces approximate equations for the 
vortex centroids which contain the finite-size correction terms of order A2/14. The 

approximate equations were solved exactly for disturbances of arbitrary subharmonic 
wavenumberp. Kida found for the casep = +that  his results agreed closely with those 

of Saffman & Schatzman, despite the claim by the latter authors based on an analysis 
of their results that  a consistent calculation of the finite-area stabilization around 

h/l = K ,  required retention in the dynamical equations of terms of order A4/ls. More 
important, however, was Kida’s prediction that the most unstable disturbance does 
not occur for p = + but for a value of p differing by order A2/14, in contradiction to 
the Saffman & Schatzman symmetry argument. He did find, however, that  the street 
was still stabilized by finite area. 

This conflict led us to reexamine the problem and tackle the case of general p .  We 
will present arguments and results to  show that Kida’s claim that the most unstable 

disturbances of the Karman vortex street is for p + $ is indeed correct and that the 
Saffman & Schatzman symmetry argument was flawed, a t  least for this case. (It is 

correct for the single row.) On the other hand, we shall also discuss the accuracy of 
the perturbation expansions and the question whether neglecting terms of order A4/P 
in the dynamics is consistent. Our conclusions here are that it  is valid for determining 

the effects of finite area on the oscillation frequencies or growth rates of stable or 
unstable modes, but not for determining the change of stability properties a t  the 
critical spacing ratio K, .  In  fact, our calculations now predict, somewhat surprisingly, 
that  the street is always unstable, a t  least for small area, except for one particular 
value of h/l which depends upon the area. I n  other words, the qualitative stability 
properties of the point vortex configuration remains true for finite area except that 
the most unstable disturbance for h/l not equal to the special value is’not the pairing 

instability. 
Our numerical method is sufficiently general that many different flows can be 

examined with little extra work. We can therefore analyse other cases of interest such 
as the single row, the symmetrical double row, the circular row in which the vortices 
are a t  the vertices of a regular polygon (this provides a model of the effect of curvature 
on a shear layer), as well as the Karman vortex street. We can also handle the case 
in which the vortices in the street have different sizes in the two rows. It is, however, 

7-2 
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shown in Appendix A that the circulations of the vortices must be equal and opposite, 
so that steady motion of a composite wake-mixing-layer type flow in which U, =/= U, 
or U,  .I: - U,  is not possible, as is also suggested by the numerical calculations of 
Boldman, Brinich & Goldstein (1976).  We shall, however, limit the present paper to 
the staggered double row, and present results for the other cases in subsequent papers. 

After receiving a preprint of the present paper, Kida (private communication) has 
informed us that there are errors in the formulae (3.10)-(3.17) of Kida (1982). In 
Kida's notation, these formulae should be 

A ,  = A,  = S( -2EG+2IJ) ,  

B, = -S (E~+G'+I ' -FH) ,  

B, = -s(E2 + G2 + Z z  + J 2  + F H ) ,  

C, = C, = -sFK, 

D, = s ( ~ E Z - F L + ~ G J ) ,  

D, = s (2Ef+FL+2GJ) .  

where s = P2/2x2 = A2/2~214 in our notation. Further, the equation for the frequencies 
when found by evaluating exactly the determinant of the coefficient matrix given 
by Kida's (3 .8) ,  i.e retaining all terms of order A4, is then 

( A  f C0),+ ( A  & C0) [A,  + A ,  f (C, + C,)] 

+ [Bo + Bi k (Do +Di)l [Bo +B2 T (Do +O,)l+ ( A ,  k C1) ( - 4 2  & C,) = 0 

instead of Kida's (3 .29) .  When we refer below to analytical results of Kida, this new 
equation is implied. 

It needs to be emphasized that the modified result is not obviously consistent to 
order A4, because terms in the coefficients of the matrix (3 .8)  are only calculated to 
order A,. However, Kida does state (private communication) that it can be shown 
that terms of order A* in the coefficient matrix are not important. This statement 
is consistent with the agreement between our present numerical results and Kida's 
modified analysis. 

2. Consequences of symmetry 

We now examine some of the general properties that  can be established independ- 
ently of the details of the flow and follow from the structure of the Euler equations 
and symmetry of the flow. 

Because ( 1 . 1 )  is real, it  follows that, if !P' is a mode, so is its complex conjugate 
!P'*. Thus if (T is an eigenvalue, for a value p ,  CT* is an eigenvalue for - p  or 
equivalently 1 -p ,  and we have the eigenvalue-eigenvector sets 

Let us suppose further that  the undisturbed flow has fore-and-aft symmetry, i.e. it  
is possible to choose the origin so that  

Then the perturbation equation (1 .2)  is invariant under the transformation 
t - t - t ,  x + - x ;  and we therefore have an eigenvalue4genvector set 

-q> {Lz(!/)l> -P. (2 .4)  
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Taking the complex conjugate of (2.4) gives the set 

-a*, {4x?4}> P. (2 .5)  

We conclude therefore that for undisturbed flows with fore-and-aft symmetry, and 
this will include all the cases considered in the present paper, the eigenvalues for given 
p will come in pairs with a or - a* being an eigenvalue if the other is. It follows that 
the flow is unstable if a is not pure imaginary. We also conclude that there is a 

symmetry about p = 0 or p = i, since the eigenvalue for p is the complex conjugate 
of the one for -p or 1 -p .  Thus if a@) denotes the eigenvalue, unstable modes satisfy 

Re a@) = Re a( - p ) .  (2.6) 

There are also damped modes with growth rate - Re q5 satisfying the same equation. 
It must be realized, however, that a may be multivalued and the equality in (2.6) 
may refer to different branches. It was the failure to realize this possibility that led 
Saffman & Schatzman to an incorrect assertion about the most unstable modes of the 
Karman vortex street. 

When symmetry about the axis of the motion exists it gives information on the 
parity of the components of the eigenvectors but does not appear to give any further 
results about the eigenvalues themselves. Reflectional symmetry implies that  

- Y(x+d ,  -y) describes the same flow field, where d = 0 for the single row or 
symmetrical double row, and d = 4 for the staggered double row. The perturbation 
equation is invariant under the transformation x + x + d,  y + - y, Y +- Y, and hence 
there is an eigenvalu-igenvector set 

(2.7) 

For d = 0 the eigenvectors are therefore either even or odd in y, and for d = + they 
have a more complex symmetry. 

When the vortices are small, the modes of oscillation will correspond to those of 
an array of small circular vortices, and we expect therefore that the disturbances will 
be of two types. First will be the cooperative modes of arrays of point vortices, for 
which the characteristic frequencies are of order r/12, and second will be the 
oscillations of a single vortex, for which the characteristic frequencies are &nu, where 
w = T / A  is the magnitude of the vorticity inside the vortex of circulation r a n d  area 
A ,  and m is the angular wavenumber. These modes are readily distinguishable, a t  
least for small vortices, and provide a convenient way to group the normal modes. 

For the single row (mixing layer), the small-vortex case, analysed by the method 
described in the preceding paragraph, indicates that there are two degrees of freedom 
for each type of mode, and the eigenvalues for each p will come in pairs, c1 and a2, 
where u2 = - a,* if the mode is unstable, and al and a2 are pure imaginary but unequal 
if the mode is stable. The symmetry about p = i also gives a further two eigenvalues 
a,* and a,* for 1 -p. If unstable, there are then two distinct branches, one with positive 
and the other with negative real part, which are not equal at p = f, and analyticity 
in p and (2.6) then implies that the growth rate of unstable modes is such that 

a, {eZxind/l $%( - y)}, p .  

d R e a  -- - 0  for p = $  
dP 

and that !Real is a maximum for the pairing mode. (It could in principle be a 

minimum but continuous dependence upon the size rules this out for small vortices, 
since i t  is a maximum for point vortices.) Also I m a  must be zero at p = for the 

unstable modes, as otherwise the eigenvalue will not be continuous. Note that p = 0 
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Re u 

FIGURE 1. Sketch of dependence of real and imaginary parts of the growth rate on wavenumber 
p for zero area and a typical value of K .  For K = K, the oval shrinks to a point and the imaginary 
parts form two crosses. 

is a singular limit as the disturbance wavelength is going to infinity, and hence (2.8) 

need not hold there. 
I n  contrast, for the double row (wake), the small-vortex analysis indicates that 

there are four degrees of freedom for each mode (each row, in effect, contributes two 

degrees of freedom to the system), and the eigenvalues for each p will come in quartets 
cl, u2, cr3, u4, where if unstable u2 = -a: and/or r4 = --a;. There are now four 
branches. The symmetry about p = 0 or p = f now implies that r : ( p )  = a3( -p ) ,  etc. 
(a:@) = a2( - p )  violates the continuity of Im u a t  p = f unless the imaginary part 
vanishes, and this is contradicted by the small-vortex results.) It does not follow 
therefore that Reg, is symmetrical about p = 0 or p = f when there is instability. 
For p = the quartet of eigenvalues will be such that u, c*, -u, and -u* are all 
eigenvalues, but the real and imaginary parts that  coincide come from different 
branches, and (2.8) does not necessarily hold. Contrary to the statement by Saffman 
& Schatzman, and in agreement with Kida’s results, the p = f disturbance will not 

be the most unstable disturbance. 
I n  figure 1 we show a sketch of the dependence of the four complex growth rates 

on p for the cooperative modes for zero area and general K. In  this special case the 
system is degenerate and there is symmetry about both u = 0 and p = t .  I n  addition, 
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FIQURE 2. Sketch of dependence o n p  of an unstable quartet of eigenvalues for fixed area and aspect 
ratio. The pairing mode is unstable, but is not the most-unstable disturbance. Note the form of 
the symmetry. 

for the exceptional value h/ l  = K = K,, the circle of instability reduces to  a point and 
the imaginary values of u meet in a cross. Figures 2 4  show how these curves may 
change when the area of the vortices is finite. Figure 2 is an example where the street 
remains unstable for p = $, but the pairing instability is not the most unstable 
disturbance. Figure 3 is a sketch of a possible behaviour in which the street is 
unstable, but the pairing instability with p = $ is stabilized by finite area. Figure 4 
is the case where finite area has stabilized the street. It can be seen that the symmetry 
of reflection about u = 0 and p = $ is satisfied, but the symmetry about the axes, 
which is true for zero area, breaks down when the area is finit,e. 

For K away from K~ it is clear that figure 1 will first change into figure 2 when the 
area becomes finite, and may later change into figures 3 and 4 when the area becomes 
larger. Note that these results depend upon fore-and-aft symmetry, but the sizes of 
the vortices in one row need not be the same as those in the other row. The task is 
to determine whether the special case of figure 1 for K = K~ changes into figure 2, 3 

or 4 when 01 = A/12 is finite for values of K very close to K,. There is also a fourth 
possibility that  for finite area there is an exceptional value of K,  which should depend 
upon area, such that figure 3 is degenerate, i.e the ovals shrink into points and the 
imaginary values meet in crosses. 

The high-frequency shape modes, which do not exist for point vortices, are found 
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P 

+ 

-t= P 

A I 

FIGURE 3. Sketch of dependence on p of an unstable quartet of eigenvalues when the pairing mode 
is stable. A degenerate case may exist in which the ovals shrink to two points and the imaginary 
parts form two crosses. 

FIGURE 4. Sketch of dependence of u on p when stabilization by finite area occurs 
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to be stable, provided that the vortices are not too large, and their oscillation 
frequencies, which will be modified by the interactions, are as in figure 4. 

We now concentrate on the staggered double row, and discuss the detailed problem 
of what should be calculated and how we shall proceed. 

3. The KarmAn street of small vortices 

The complex growth rates CT will be the eigenvalues of an infinite system 

M4 = 4 7  (3.1) 

where M will have an expansion of the form 

r 12 A A2 
- [- M-, +M, + -MI +F M, + . . .] . 
l2 A 12 

Invariance with respect to the sign of I requires that the expansion of M goes in powers 
of a and not in powers of at, although the detailed solution is an expansion in 1/1.  

The matrices Mi depend upon the aspect ratio K and the subharmonic wavenumber 
p .  The matrix M-,, which produces shape-deformation modes, is given by the simple 

calculation for the oscillations of an isolated circular vortex, while M,,, which 
produces the cooperative oscillations of the centroids, is found from the Karman 

calculation of point vortices. MI etc. have to be found by laborious algebra. The 
eigenvectors of M-, and M, are independent. I n  the absence of degeneracy, which 
occurs when two or more of the eigenvalues are equal, the eigenvalues will be analytic 
functions of the parameters. 

From the general symmetry arguments of $2, we know that the eigenvalues will 
appear in quartets, which will satisfy quadratic equations 

(3.4) 

where S,, S,, H ,  and H3 are real and dimensionless. The symmetry about p = 0 or 
p = f implies 

S,@,K,a) = -S I ( -P ,K>a) ,  H,(P,K,cr) = H,(-P,K,&). (3.5) 

Non-trivial degeneracy occurs if and when HI  and H3 vanish, and changes of 
stability, where u changes from complex to pure imaginary, can only occur a t  such 
points. With regard therefore to the main problem of the stabilization of the Karman 
vortex street by finite-area vortices, the interest is in the functions H ,  and H3 and 
their zeros. (It is shown in Appendix A that  a necessary condition for a steady street 
is that the circulation of the vertices in the different rows are equal and opposite. 
The areas can be unequal, but the symmetry arguments leading to (3.3) and (3.4) 

remain valid. Calculations for the case of different area are currently in progress.) 
These functions are known in the limit a = 0, which can be thought of as either 

finite-size vortices infinitely far apart, as is appropriate for the shape modes, or point 
vortices separated by a finite distance, as is appropriate for the cooperative modes. 
It appears from our present numerical calculations and those of Saffman & Schatzman 
that HI  and H,  are negative for the shape modes when a > 0 (but not too large), which 
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therefore remain stable, and we shall therefore concentrate on the cooperative modes. 
For these, 

H,(p, K ,  0) = H,(p, K ,  0) 

= an2 [2p( 1 - p )  - sech2 XK]'  

. (3.6) 

The equality of H ,  and H ,  when a = 0 means that for point vortices the eigenvalues 
occur in pairs such that --(T is an eigenvalue if -(T is. This is also a consequence of 
the fact that point vortices form a Hamiltonian system with x- and y-coordinates 

as conjugate variables. It is important to  realize that this additional symmetry is 
a consequence of a zero-area degeneracy and is broken a t  finite area. 

The ( p ,  K)-plane for a = 0 is divided up into regions of stability and instability, and 
the boundaries look like a diagonal cross with centre a t  p = 4 and K = K , ,  where 

c o s h n ~ ,  = 2/2 (see Saffman & Schatzman 1982, figure 2). For K not close to K ,  the 
effect of finite area is to displace the boundaries of the stability regions, and the results 
are not of pressing importance. For small area the main interest lies in the behaviour 

of p close to 

1 X 2  [cash 2 X K p  - 2p cash ? ' t ~  cash (XK( 1 - 2p))]' 
-- 

4 cosh4 X K  

and K nearly equal to K , .  Let 

p ' = p - i ,  K ' =  K-K,, (3.7) 

then we need the expansion of H ,  and H3 for small p ' ,  K' and a. 
The numerical results of Saffman & Schatzman for p' = 0, our present arguments 

(see also the last paragraph of §4), the analysis of Kida and the numerical results 
of the present paper indicate that there are no terms in the expansion linear in a, 
and that the dominant terms of the expansion are 

H;(p,  K ,  a) = C, K" + C2p" + C 3 a 2 K '  & C401'p' + C 6 a 4  + . . . . (3.8) 

The first coefficient c, is positive, and the second one c2 is negative. Both are given 
analytically by the point-vortex theory. The third and fourth are given analytically 
by the Kida expansion. The last coefficient c5 can be deduced from the Saffman & 
Schatzman calculation, which demonstrated that i t  was negative (and also gives c3). 

These numerical results exclude an  a3 term. An a3p' or C C ~ K '  term could be present, 
but is unimportant compared with the a4 term in its effect on the stability boundary. 
Notice that Kida's expansion does not include all a4 terms consistently, since his 
calculation of the dynamics neglects terms of order a4, and hence his expression for 
the fifth term is incomplete. (As mentioned earlier, Kida (private communication) 
claims that the neglected terms are unimportant.) 

The numerical values of these coefficients determined by the earlier work are as 
follows. From the Karman expressions, 

C, == 12.1761, c2 = -0.700541. (3.9) 

From the results for the stability boundary for p = a given in equation (3.19) of 
Saffman & Schatzman, which relate the values of a and K for which H ,  or H3 vanish 
when p' = 0, we have the estimates 

C$ = - 12.88, C: = - 11.60. (3.10) 

From the analytical expression given by Kida's equation (3.29) (modified as described 

at the end of 3 1 ), we find that 

C: = - 13.5243, c," = 6.48793, c ~ K  = - 11.2663. (3.11) 
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It can be seen that the c3 and c5 are in reasonable agreement. This is consistent with 

Kida's statement that his results agree with those of Saffman & Schatzman for p = i, 
as will be discussed in more detail a t  the end of the section, see (3.20)-(3.22). 

The stabilization of the street is determined for small area by (3.8). We complete 

the squares and write (3.8) as 

(3.12) 

The stabilization or destabilization of the street by finite area therefore depends upon 

(3.13) 

If D is positive the street is made unstable by finite area in the vicinity of the zero-area 
point of stability. If D is negative the street is stabilized for a range of K of order 

a2 by finite area. 
If D = 0 then there remains an isolated point of stability in the (k,p)-plane, but 

the aspect ratio of the stable street is altered by a value of order a2. I n  this case i t  

would be necessary to go to yet higher order in 01 to determine the stability question. 
For a fixed a, the stability boundaries in the (K',p')-plane are given by the 

vanishing of (3.12), which gives two hyperbolae. The interiors of the hyperbolae, 
marked by cross-hatching, contain the unstable modes. There are two main possibilities 

depending upon the values of the c-coefficients. Figure 5 shows the stability 
boundaries for p close to + and K near K~ when D is negative. There is a region of 

stability bounded by the two hyperbolae with centres a t  K' = ha2 and p' = *pa2, 

where 

(3.14) 

The distance between the vertices giving the range of K for which there is 

(3.15) 

stability is 
6~ = ( -  D/cl): a2. 

I n  this case, finite area stabilizes the street for a range of aspect ratio. 

On the other hand, if D is positive, then the stability boundaries are as shown in 
figure 6. Now, there is always a value of p which gives an unstable mode and finite 

area destabilizes the street by removing the neutral case. If 

P > (-D/c,)i (3.16) 

there is a lens of stability along the p' = 0 axis, and the boundaries are as shown in 

figure 6. The pairing mode is then stabilized, but there is a range of unstable values 
of p of width 

8p = ( -  D/c2):a2 .  (3.17) 

If (3.16) is not satisfied the hyperbolae overlap and there is no stabilization of the 
pairing mode. 

If D = 0 the hyperbolae degenerate into crosses meeting at the points given by 
(3.14), and the street is stable for one special value of K equal to  ha^. 

Using Kida's modified values given by (3.11), we find that D = 0. Using Saffman 
& Schatzman's estimate of cg and c5, and Kida's value of c4, we have D = 0.037. It 

appears therefore that D is small and possibly zero, and the question of stabilization 
by finite area is delicate. Either a consistent perturbation expansion of order a4 should 
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FIQURE 5. Stability boundary in the (k’ ,  p‘)-plane when finite area stabilizes. Hyperbolae would 
cross a t  centres if D = 0. Cross-hatched areas denote instability regions for modes 1 and 3. Numbers 
in parentheses show corresponding figure for growth rate as function of p .  

FIQURE 6. Stability boundary in the (d,p’)-plane when finite area destabilizes. In the case 
shown the pairing instability p’ = 0 is stabilized. 



Xtability of vortex streets of finite-cored vortices 199 

be carried out, or a further numerical investigation be attempted. The algebra 
entailed in the former is heavy, although Kida now claims to have done it. Saffman 
& Schatzman did consider carrying out such an expansion for the simpler p = t case, 
but decided in favour of a numerical calculaton, and it was again decided when the 
present work was started in 1982 to go to a numerical approach. 

We discuss in §§4 and 5 our method for calculating the steady shapes and stability 
boundaries, which we use to investigate the stability of the cooperative modes. It 
also gives the high-frequency shape modes, and has the advantage that i t  is easily 
applied to a wider class of problems. With respect to the street stability, the numerical 
results indicate that D is actually zero to within the limit of numerical accuracy. 
Kida’s modified results agree with ours. However, as will be discussed later, our 
results appear to show that D = 0 for all a, not just to order a4. 

Kida’s expansion gives the coefficient of a2 exactly in closed form for all p and K .  

Away from the critical point, there will be values p, and K, a t  which the stability 
of point vortices changes. To determine the effects of finite area for these values, we 
require an expansion 

H,(P, K ,  4 = C1(K--Ks)  + C,(P-P,) + c3a2, (3.18) 

and a similar expansion for H,. Here c1 and c2 are known functions of ps which vanish 
for p ,  = f, and the same is true for c,, which is given by Kida’s results. For p, ?= $, 
(3.18) is sufficient for the determination of the stability properties for small a. 
However, the coefficients in (3.18) vanish when p ,  = f, and there the expansion (3.8) 

is required. 
The discussion of this section shows that from Kida’s expressions for H, and H ,  

correct to O(a2)  combined with the numerical or modified Kida results which give 
the coefficient c5, we can construct an expression for the effect of finite size on the 
stability boundaries which is uniformly valid to O(a2) for all p and K .  We have for 
the cooperative modes 

H , ( p ,  K ,  a) = ‘linear theory’ 
+ ‘Kida’ u2 

+ ‘ numerical or modified Kida ’ u4, (3.19) 

with Ha given by (3.5). Kida’s analysis also gives S,  and S, definitely correct to O ( a 2 ) ,  
and probably correct to O(a4). 

For the special case of disturbances withp = $, p‘ = 0, Saffman & Schatzman found 
that for small area the street was stabilized for aspect ratios in the range 

(3.20) - 0 . 5 8 3 ~ ~ ~  < K’ < 1 . 6 4 4 ~ ~ ~ .  

According to (3.8) the range of values is 

-bla2 < K‘ < b2u2 ,  (3.21) 

where C ,  = Cl(bl-b2), c5 = -C1b,b2. (3.22) 

Kida’s values of c3 and c5 give b, = 0.55, b, = 1.67; which agree reasonably with the 
values found by Saffman & Schatzman. 

4. Calculation of steady shapes 

We describe the method here in the context of the staggered double row. 
Modifications for other flow configurations are simple and easy to implement. Saffman 
& Schatzman employed a boundary-integral method. This has the advantage that 
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i t  can be employed for finite area, but i t  suffers from the disadvantage of being rather 
hard to implement for disturbances of arbitrary wavenumber (although this possibility 

is under investigation) and also being hard to check analytically. The method we 

employ here follows one suggested by Dr Javier Jimenez, and is based on an 
expansion in inverse powers of 1. This can be thought of as an expansion in core radius 
or $, but we choose to  keep the area of the vortices finite and suppose the separation 

1 to be large, with h / l  kept fixed. In  principle, the algebra can be done and a consistent 
perturbation expansion developed, but this is beyond our present resources (even with 

the aid of symbolic-manipulation programs), and we do the algebra arithmetically. 
Unfortunately, the detailed approach does not allow the retention of high-order terms 
in a completely uniform manner, so checking with Kida’s perturbation results suffers 
from uncertainty. 

The shape of a vortex in the first row is assumed to be described by the exterior 
conformal map of the unit circle 151 = 1 : 

Vortices in the second row have the expansion 

These series may fail to converge before the solutions actually break down by vortices 

coming into contact, but we assume that there is convergence for a finite range of 
area. 

Our first task is to  calculate the velocity field induced by a single vortex containing 

vorticity w1 of shape (4.1). To do this, we employ (following Jimenez) the so-called 

Schwarz functions, which are analytic functions of z equal to z* on a contour. To find 
the Schwarz function for the contour (4.11, we expand the expression conjugate to 

(4.1), remembering that [* = 1/[ on the contour, 

z* = RF/<{l + a: [+a,* 6 + . . .> (4.3) 

as a Laurent series in z ,  giving an expansion 

(4.4) 

The complex velocity u- iv induced by the vortex is analytic outside the vortex, and 
such that u - iv + iiw, z* is analytic inside the vortex. It follows by inspection that 

the exterior velocity field is 

The interior velocity field, which can be expressed in terms of the f, etc., is not 
required. It remains to describe how the g, are found in terms of the a,. 

To do this, we multiply (4.4) by zn and integrate around a contour in the z-plane, 
giving 

dz 

z*zn z = coefficient of [-’ in product 

when (4.1) is substituted for z and (4.3) for z*. 
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Similarly 
dz* 

(4.7) 
ZZ*n dg 

gf = - coefficient of in product 

the minus sign arising from reversal of the sense of the contour. 

the vortex. Since 

There are alternative expressions for the g, in terms of moments of the shape of 

-i dx’ dy’ 

27t 

it follows t,hat 

(4.9) 

where the integral is over the vortex. In  particular, go is the area/x, and g1 is 
proportional to  the displacement of the centroid relative to the z-origin. 

Similarly, we obtain an expression for velocity induced by the vortex (4.2) : 

where the h, are related to the b ,  by the formula analogous to (4.6). 

We also obtain the conjugate velocity 

(4.10) 

(4.11) 

and similarly for the second vortex, where the g: are related to the a, and a: by (4.7). 

An expression can now be written down for the complex velocity produced by the 
two staggered rows. The origins in the first row will be supposed to be a t  the points 
ml, - co < m < co, and in the second row at the points ml -l(d +k). The separation 
1 need not be real; its phase determines the angle between the x-axis and the 
direction of the rows. Indeed, i t  proved convenient in the actual calculations to take 
1 to  be pure imaginary. The relative stagger d and the aspect ratio K are real. For 

the KBrman vortex street, d = t .  For the symmetrical double row, d = 0. Arbitrary 
values of d may be considered, but we shall not do so. Then at a point with coordinate 

z relative to a vortex in the first row 

hn + U-iV,  (4.12) 
iw, O0 x c .  _- 
2 ,no m--m (z-ml+Z(d+iK))n+l 

and a t  a point with coordinate z relative to a vortex in the second row 

_ _  iw, O0 O0 Sn + U-iV. (4.13) 
2 n=Om=-m ’ ’ (x-ml-l(d+iK))n+l 

U and V are components of the velocity a t  infinity which balances the self-induced 
motion of the street and brings the vortices to rest. 

Expressions for the conjugate velocities u+iv are obtained by replacing i with -i, 

gn with g:, h, with h:, and 1 with l*. 
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For steady motion the shapes of the vortices are given by the condition that their 
boundaries are streamlines, i.e. u - iv is parallel to the tangent dz/ds. This is expressed 
by the equation 

dz dz* 
R(g) = (u-iv)[-+(u+iv)y-= 0 

dC dC 
(4.14) 

when 161 = 1, to be satisfied on the first and second vortices, i.e. with u-iv given by 
(4.12) and z given by (4.1), and u-iv given by (4.13) and z given by (4.2), and the 
appropriate conjugate expressions, respectively. This provides equations for the 
unknown coefficients R,, an, R,, b,, and the translation velocity Q = U-iV and 
q* = U+iV. 

It is expected that locally unique (isolated) solutions will exist if the areas of the 
vortices, the positions of the centroids, and the strengths of the vortices are given. 
The question to be discussed now is the actual procedure to be employed. 

The straightforward way, and the one that is implicit in the present formulation, 
is to develop a series expansion in a, the solution for a = 0 being known. It is 
convenient to suppose that the vortices have finite areas and strengths, and that the 
limit a = 0 is obtained by letting l+m. Then we can develop the velocity by 
expanding the terms in (4.12) and (4.13) and their conjugates as power series in 111 
and calculate the unknowns as series in the same variable. This is feasible in principle, 
but impossible in practice at present, especially when it is remembered that the 
stabilization problem requires retention of terms of order 1-9 in order to retain 
consistently effects of order a4. An alternative approach, and the one that we 
employed, is to use the computer to do the algebra arithmetically as follows. 

We pick two integers N and L. The series (4.1), (4.2) and their conjugates are 
truncated to keep the first N +  1 terms, i.e. we include a,, b,, a: and b:. Newton 
iteration will be employed to find the values of these (in general) complex numbers. 
For this purpose we then calculate numerically, starting with a first guess for the 
2N+ 2 unknowns R,, a,, . . . , aN,  R:, a:, . . . , a:, from (4.6) and (4.7), the values of go, 
91 9 . . ., g N ,  g,*, g:, .. ., gg .  I n  fact, go and go* are put equal to the given area A ,  of the 
vortex divided by .n, and the difference between the values calculated from (4.6) and 
(4.7) are used as a check on the accuracy of the calculation. Similarly, we calculate 
the hn and h,*. For reasons that are important for the stability calculation and will 
be made clear later, we treat quantities and their conjugates as independent variables, 
e.g. R, and R: are regarded as independent complex numbers. Of course, the solution 
will not be physically sensible unless the final answers are complex conjugates of each 
other. So far, we then have 4N+4 complex unknowns. 

We now expand (4.12) as a power series in 111, retaining terms of order l P L .  This 
gives a triple series 

where B(p, n) is the coefficient of zp in the binomial expansion of (1 +z)-".  The 
vorticities are o, = T/Al and w, = -T/A,. The sums with respect to m can be done 
in closed form; see Appendix B. We now substitute the truncated expansion (4.1) 
into (4.15) and obtain u-iw evaluated on the boundary of the vortex as a series of 
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positive and negative powers of 5. Differentiation of (4.1), etc., gives a series in 5 for 
dz/d5, etc., and substitution into (4.14) gives a series of positive and negative powers 
of 6 with complex coefficients which are analytical functions of d and K ,  contain 
inverse powers of 1, and are numerical functions of the 4N+4 unknowns R,, a,, etc. 
They also contain the two unknown complex velocities Q = U - i V and Q* = U + i V ,  
which will also be regarded as independent complex unknowns. 

To obtain equations for these 4N+ 6 unknowns we calculate the coefficients of 5" 
in the expression (4.14) for values of n in the range - N  < n < N, for vortices in the 
first and second row, and denote these 4N+ 2 complex quantities (2N+ 1 for each 
row) by E,(n) and E,(n). We obtain 4N+2 equations for the unknowns by requiring 

El(n) = 0, E,(n) = 0 (--N < n < N ) .  (4.16a, b )  

We have not yet said anything about the position of the origins inside the vortices, 

from which the separation K is measured. It is convenient to require that the centroids 
coincide with the origins. These constraints upon the variables are equivalent to the 
four equations 

g1 = g; = h 1 1  = h* = 0. (4.17) 

Two further equations are found from the condition that the vortices have given 

A, = xR1 R; { 1 -u,u,* - ~u,u,* - . . . - ( N -  1) aNa$}, (4.18) 

and a similar expression for A,,  which are correct when starred quantities are complex 
conjugates, and which are identical with go = g,* = Al/x in this case, we have two 
further equations. 

Thus altogether we have 4N+ 8 equations for 4N+ 6 unknowns. The equations are, 
however, not independent. First E,(O) and E,(O) are identically zero, and secondly 
there are two independent constraints on the E,(n) and E,(n). The reasons are as 
follows. 

area. Defining the area by 

On the surface of the vortex 

(u-iv)dz = (u,+iu,)ds, (4.19) 

where us and u, are the tangential and normal components and ds is the element 
of length. Also g = exp (i0). It follows that 2u,ds = R(5) do. Now the velocity field 
that we construct above is an exact solution of the Euler equations, and hence must 
automatically satisfy the equation of continuity. Thus automatically 

u,ds = 0 = R(lJ d0 = 2 ~ E ( 0 ) ,  (4.20) 

and hence the vanishing of E,(O) and E,(O) are just consistency checks and not 
independent equations. 

P lo2" 

Next consider the consistency condition (A 6) derived in Appendix A. Since 

j j ( u  k iv) dx dy = (x k i y )  u, ds P 

s, 
we can rewrite this equation for constant vorticity as 

w l ~ l ( z k ~ * ) R ( 5 ) d 0 + u 2  (zkz*)R(g)dB = 0. (4.21) 

Thus we have two constraints relating the components of R(5) on the two vortices 
which are imposed by kinematics. Since z is given by (4.1), etc., the relations are 
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between all the E,(n) and E,(n), but, since the dominant terms in the expansions are 
the leading ones, it  is expected that it suffices to throw away the equations for E,(1) 
and E,( - 1). The existence of (4.21) will ensure that the converged solution will make 

these quantities zero automatically, and in fact the accuracy of the solution can be 
monitored by their values. 

To summarize, we now have 4 N + 4  independent complex equations from (4.17) 

(4 equations), (4.18) (2 equations), ( 4 . 1 6 ~ )  with n = 0 excluded (2N equations), and 
(4.166) with n = 0, n = 1 and n = - 1 excluded (2N-2) equations). However, we still 
have 4N+6 complex unknowns R,, anl, R,, an2, their conjugates, and the two 
complex velocities. Two further equations are therefore required. These are obtained 
by noting that the phase of f is arbitrary, and that this can be fixed by specifying 

the phases of R, and R,. We do this by requiring that in the final solution 11, and 
R, should be real, which is imposed by the two complex equations 

R, = R:, R, = R,*. (4.22) 

The number of equations and unknowns is now equal. The test that the counting 
has been done consistently is the non-vanishing of the Jacobian of the system. (The 

constraints embodied in (4.21) were in fact discovered numerically by the vanishing 
of the Jacobian when the n = f - 1 equations of (4.166) were not excluded.) 

For given values of the parameters, a first guess was taken, usually the circular 
vortex approximation, and solutions were calculated by solving the system with 
Newton iteration. It is necessary to decide on suitable values of Nand L. Taking L = 1 

gives circular vortices, since the induced velocity in the neighbourhood of a vortex 

is then constant. To calculate deformation consistently to order a, it  is necessary to 

take L = 2, and it is then sufficient to take N = 2, which gives vortices of elliptical 
shape. This corresponds exactly to what can be called the elliptical-vortex approxi- 

mation (Saffman & Szeto 1981). The exterior velocity induced by a uniform vortex 
of elliptical shape differs by terms of relative order a2 from that of a circular vortex 
of the same circulation, so a t  this order the cooperative behaviour, i.e. translation 
velocity and stability properties, will be the same as for point vortices. This explains 
why there are no terms linear in 01 in (3.8). The first significant effect of area comes 
with L = 5 ,  which gives a consistent calculation of O ( a 2 )  effects. The value of Nshould 
be a t  least L,  and there is little point in taking larger values. The accuracy of the 

solution can be tested by comparing with the results of Saffman & Schat,zman (1982) 

and the steady solutions correct to order 0 1 ~  given by Kida. Unfortunately, the 
numerical method does not ignore smaller terms, and results obtained with L = 5 
cannot agree exactly with Kida’s, but the difference should be of order a4. For the 
investigation of stability, a t  least near the critical value of K = K ~ ,  i t  is necessary to 
take L = 9 and N = 8 or larger to ensure retention of all.terms O(a4).  

5. Stability 

We wish to consider the stability to infinitesimal two-dimensional disturbances of 
the steady shapes calculated by the method described in $4. It is assumed that the 
boundaries are deformed by disturbances and that the vorticity inside the vortices 
remains constant. There is of course a continuum of oscillations associated with 
changes of the vorticity distribution, but these are not relevant to the intrinsic 
stability of the street to disturbances produced by motion of boundaries or the action 
of conservative forces. We suppose now that the coefficients of the expansions (4.1), 

etc., are perturbed by infinitesimal functions of time, which are denoted by primes. 
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The linearized unsteady boundary condition that the vortex boundaries are material 

boundaries gives the equation 

dz'* dz dz' dz* dz dz * dz' dz'* 
- 6- + - 5- = (u' - iv') 6- + (u' + iv') 6- + (u - iv) 6- + (u + iv)  6- 

dt d{ dt d5 d6 d5 d6 d6 

(5.1) 

to be satisfied on each vortex of the rows. Unprimed quantities denote the 
undisturbed steady state. 

We now have to handle the problem that for subharmonic disturbances the 
oscillations of each vortex may be different, so that we appear to be faced with 
infinitely many equations for infinitely many unknowns, irrespective of any truncation 

that is employed. This difficulty is overcome as follows. The velocity induced by a 
vortex is an analytic function of the coefficients. Let ( ~ - i v ) ~  denote the velocity 

induced by the vortex centred a t  ml. Then, for example, the change in this velocity 
a t  a fixed value of z produced by the perturbation ah, is 

d(u-iv) , 
(u' - iv')m = an. m J  

dan 

where u-iv is given by (4.5) as a function of the undisturbed coefficients. Because 
of the periodicity of the undisturbed motion, the derivative in ( 5 . 2 )  is the same 
function of z-ml for every vortex in the same row. Expressions similar to  ( 5 . 2 )  hold 

for the conjugate velocity and the velocities induced by the vortices in the other row. 

It follows therefore that normal-mode solutions of (5.1) can be obtained by restricting 
attention to one vortex in each row, namely the vortices given by (4.1) and (4.2), 

and supposing that the perturbations of the other vortices are related to the 
perturbations of these vortices by relations 

ah, = ah eimf, = a'*cimf, Ri,m = Rieimf, Rirm = Ri*eimf, ( 5 . 3 )  

b h , m  = bheimf, b z  = b: eimf, Ri3 = Ri eimf, Rirm = Rk*eimf, (5.4) 

where f is related to the subharmonic wavenumber p by 

f = 2np. (5 .5)  

Notice the subtle point that, although the undisturbed solution must have the 

property that a, and af ,  etc., are complex conjugates for it to be physically sensible, 
this need not be true of infinitesimal perturbations. There is no contradiction here, 
as will be explained in more detail later. It is of course just the manifestation in the 

present context of the fact that the eigenfunction of a real problem may be complex. 
The perturbed velocity u'-iv' can now be calculated. We have the undisturbed 

velocity induced by the vortices as given by (4.12): 

Then 
h' eimf 

d(u-iv) iw, O0 O0 gheimf -_ iw, O0 n ' Z  u' - iv' = z'-- ' x 
dz 2 n=o m=-m (z-mlfn+l 2 n=o (x-mZ+l(d+iK))n+l ' 

where 
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and gk, etc., are the perturbations for the vortices (4.1) and (4.2), and are obtained 

from (4.7), etc. The differentiation with respect to z in (5.7) is done because the 
velocity has to be evaluated on 161 = 1, and the boundary condition (5.1) will be 

evaluated in terms of 5. 
The boundary condition is now linear in all the perturbations and solutions are 

searched for in which all primed quantities are proportional to exp (at). If we denote 
the variables R;, a;, R;*, a:,*, Ri, biRi*, bi* by a vector 4, the boundary condition gives 

an eigenvalue equation of the form 

4 = w> (5.9) 

where, a t  least in principle, M and N are known functions of the undisturbed shape 

and the subharmonic wavenumber p .  (The infinite sums with respect to m in (5.7) 
can be done in closed form; see Appendix B.) 

Again in principle, the eigenvalue cr can be developed as a series in inverse powers 
of 1, but the algebraic complexity is fearsome, and numerical methods were employed. 
Corresponding to a steady solution with some N and L,  the same truncation was 
applied to the perturbations, i.e. terms with suffix greater than N were discarded. 

This gives a column vector with 4N+4 rows for 4. The forms like (4.15) were 
employed for the calculation of the velocity and its perturbation, which leads to an 

expression of the boundary condition as a series of positive and negative powers 
of <. 4 N + 2  equations are obtained by equating the coefficients of cn to zero for n 

in the range - N < n < N for each vortex. Two further equations are obtained by 

fixing the phase by requiring 

(5.10) 

The problem has now become one of calculating the eigenvalues of a generalized 
complex eigenvalue equation of order 4N-k 4, which can be approached in standard 
ways. No difficulty was found in accomplishing this. 

Some comments are in order. First it  will be noted that the boundary conditions 

for the unsteady calculation are different from those of the steady flow. I n  the latter 
case i t  is necessary to ensure that the equations are independent. This is unnecessary 

for unsteady calculations, where all that  is needed is to ensure that the equations 
are not inconsistent. Therefore any integral constraint that  leads to dependence of 

steady equations will be automatically satisfied by a consistent evolution equation. 
We therefore retain the equations that come from the terms independent of 5 and 
the coefficients of 5 and 5-l for the second vortex. Satisfaction of the <-independent 

terms is equivalent to conserving area in unsteady flow, and i t  can be verified from 
the computer results that  all modes with cr + 0 keep the area constant. Indeed this 
provides a check on the accuracy of the eigenvalues and eigenvectors. As described, 
the calculation keeps o1 and wf  constant. There is a neighbouring equilibrium state 
in which the velocity of the array is the same ( Q  and Q* are not perturbed) and the 
strengths and sizes of the vortices are altered. We expect corresponding to this state 
that  there will be two zero eigenvalues in which the eigenfunction does not conserve 
area. These are indeed found. They could have been eliminated by imposing area 
conservation to reduce the number of unknowns, but this would have been less 
convenient. The retention of (5.10) gives two infinite eigenvalues, and it  proved easier 
to  make the eigenvector satisfy (5.10) throughout the calculation and actually solve 
a (4N+2)-order eystem. This gives N quartets of eigenvalues, one of which is the 
cooperative mode and the others are the first N-1 oscillation modes, and the two 
neutral modes in which area changes. 

R’ - - R’* , Ri = RL*. 
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* Secondly, we find perturbations that contain components like a; eutfimf and 
6heut+imf for the mth vortex, and these are not complex conjugates of each other. 
Toavoid confusion, wedenote the perturbation tea: by&;. They produce contributions 
to  z& and 22 which are respectively 

(5.11) 

(5.12) 6; fi: 5"-i eu(f)t+imf, 

Now change f into - f (or 2x -A. We get the contributions to z& and z2 : 

yn-i 3 
(5.13) 

'3 

6; R: 5"-i eu(-flt-imf (5.14) 

Because of the symmetry expressed by (2.2), cr( -A = a*(f), and a;( -A = (6;(f))*, 

where the star here denotes actual complex conjugate. Thus (5.11) is the complex 
conjugate of (5.14), and (5.12) is the complex conjugate of (5.13). Physically realistic 
perturbations are therefore obtained by adding (5.11) and (5.13) for the disturbance 
to  z,, and (5.12) and (5.14) for the dishrbance to 2;. 

6. Results 

Steady shapes were calculated for a range of a and K using the method of $4, and 
the stability of these shapes to  infinitesimal disturbances was calculated using the 
method of $5 .  For the majority of the calculations, the value of N = 8 and L = 9 were 
chosen. Results were checked in two ways. First, calculations were done with N = 16, 

L = 17, and N = 32, L = 33. Secondly, an alternative code which employed the 
'interior' mapping of the exterior of the vortex into the interior of the unit circle 
was employed instead of (4.1). This method was used with L = N = 12. For a less 
than 0.1 there was no significant difference between any of the results. Calculations 
using N = 8 and L = 9 required about 15 minutes of CPU time for the computation 
of the steady shapes, and about the same time for the computation of the eigenvalues 
on a VAX 11/750 computer. Most of the time went for the calculation of the Jacobian 
and the matrices. A large amount of data was amassed. Here we summarize the salient 
features. 

The behaviour of the shape modes showed no surprises. I n  fact, the effect of finite 
area on the oscillation frequencies was generally insignificant. The modes were all 
stable, and what small change there was due to finite area was consistent with the 
symmetry requirements. 

The interest lay entirely in the behaviour of the cooperative modes, and, in 
particular, the effect of finite area on the stability boundaries in the ( p ,  K)-plane for 
fixed area. A typical set of results is shown in figure 7 .  These are for the case a = 0.05. 

The ratio of vortex radius to longitudinal separation is 0.1262. The solid lines show 
the stability boundary in the vicinity of the critical point. The dashed lines are the 
stability boundary according to equation (3.30) (non-modified) of Kida (1982). It will 
be seen that the numerical results indicate that the stability boundary is the 
degenerate case of figures 5 and 6, in which the hyperbola is a pair of straight lines 
meeting a t  the centre p x ,  K x .  I n  this case, the dependence of growth rate u on p for 
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K = K , would be the degenerate case of figure 3 in which the ovals shrink to two points 
a t  p , and 1 - p  x .  The existence of the cross is confirmed by the plot in figure 8 of 
the difference in the values of p on the stability boundary versus K very close to p ,  

and K x .  The numerical points were found to  lie on two straight lines which met a t  
a value of the difference indistinguishable from zero. Similar results were found for 

all other values of a employed. In  fact, some runs were done for the relatively large 
value of a = 0.1854 (using N = 32), and showed the same behaviour. These results 
imply that the street is always unstable except for the special value K = K , . 

The arguments of $3 imply that p - and K - K,  should be proportional to  a2. 
Resulhs are given in table 1 and shown in figure 9. It was found that p: was closer 
to quadratic than K: , which deviated considerably for the larger a. Assuming to a 
first approximation that K: and p $  are quadratic plus cubic in a, we have from the 

results for a = 0.005 and a = 0.0125 that  h = 0.557 and p = 4.63. It follows from 
(3.14) that 

The existence of the crosses implies that  D = 0, and hence from (3.13) 

c3 = - 13.6, c4 = 6.49. (6.1) 

c5 = - 11.2. (6.2) 

The agreement of these values with those now calculated by Kida (see (3.11)) is very 
good. 
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a = 0.05 

K 

FIGURE 8. Distance between upper and lower branches of the cross near K and p for 
a = 0.05. Similar results hold for values of a up to 0.2. 

LY 0.005 0.0125 0.025 0.05 0.0927 0.1854 

K: 1.38(-5) 8.50(-5) 3.25(-4) 1.19(-3) 3.33(-3) 7.96(-3) 

p: 1.16 ( -4)  7.27 (-4) 2.95 ( -3 )  1.20 ( -2)  4.15 (-2) 1.52 ( - 1 )  
h 0.552 0.544 0.520 0.476 0.388 0.232 
p 4.64 4.65 4.72 4.80 4.89 4.42 

TABLE 1 

A strange property of our results is that there was no sign for any value of a of 
the crosses breaking up into hyperbolae. This implies that the functions H I  and H3 
are for finite area, and not just to O(a4), of the form 

H ( p ,  K ,  a) = D 1 k - K  x )z -D& - p  x 12, (6.3) 

where D, and D, are functions of p ,  K ,  a, and K x ,  p are functions of a only. A general 

result of this kind should be capable of simple proof, and not require extensive 
computation. 

It is known experimentally that the observed values of K in the vortex-street wake 
of a cylinder increase with downstream distance, as presumably does the area due 
to viscous diffusion. It would be of interest to determine if the variation of K and a 
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FIQURE 9. Position of the centre of the cross for various a. Solid lines show p $  
and k$ versus a. Dashed line is tangent at origin. 

were such as to keep the street in the state of stability as described by the plot in 
figure 9, but this is a t  present difficult to do as the size of the vortices is not easily 
estimated from the data. 
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Appendix A. Kinematic constraints 

Consider the double row with vortices of strengths r, and r, in two parallel 
horizontal rows. Suppose that the velocity at infinity is U,, V above the top row and 
U,, V below the bottom row. Conservation of mass requires that V is the same above 
and below. The equivalence of circulation and vorticity flux gives the relation 

U 2 - U ,  = (fl+f2)/l ,  (A 1) 

where 1 is the distance between neighbouring vortices in the same row. We note the 
vector identity 

u x w  = v ( y ) - u - v u .  (A 2) 
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Further, for two-dimensional flow, w = wk, where k is normal to the plane. Then, 

using Green's theorem, 

u x w d x d y  = - k x  uwdxdy s 
= ~ $ 2 n  ds - [u(u.n) ds 

s 
= i vq Uz - u, ) + j  $Z( u: - u",) , 

where the integral is over one wavelength of the flow. 

vorticity centroid, and this is zero if the flow is steady. Hence in this case either 
Now the left-hand side of (A 3) is proportional in magnitude to the velocity of the 

U 1 = - U 2 ,  v = o  (A 4) 

or u, = u,, r, = -r,. (A 5 )  

The former case is the mixing layer, where the speed of the vortices is the arithmetic 
mean of the speeds on the two sides. The latter is the wake, where the vortex speed 
is not the arithmetic mean and the circulations are equal and opposite. These results 
show that there cannot be a continuous family of steady solutions going from wake 
to mixing layer with U ,  changing continuously from U ,  to - U,. 

Of importance for our numerical method is the fact that, for the wake where (A 5) 

holds, the right-hand side of the identity (A 3) vanishes, and hence generally, writing 
separately the contributions to  the left-hand side from vortices in each row, we have 

J uwdxdy+J uwdxdy = 0, (A 6) 
1 2 

which is a consequence of the kinematic relation between velocity and vorticity. Thus, 
whenever the vorticity field is chosen so that  one part of (A 6) vanishes, as is required 
for the solution to be steady, the other side must also vanish automatically. Hence 
equating separately to zero the parts of (A 6)  in a calculation of steady flow does not 
give independent equations. This is the justification for dropping the equations for 
the coefficients of < and <-l on the second-row vortices. 

Appendix B. Sum formulae 

The calculation of the steady shapes and stability requires the evaluation in closed 

where s is an arbitrary complex number, f is an arbitrary real number and n is a 

positive integer. If s = 0 the term with m = 0 in the sum is excluded. 
It is convenient to deal separately with s = 0 and s =+ 0. For the first case, we have 

for n = 1, by direct summation or the elementary theory of Fourier series, 

i(n-j) (0 < f < 2n), 00 eimf 

I: -= {  
m--a, m 0 (f= 0 or f = 2n). 

Values outside this range are obtained by applying periodicity in f. For n > 1 we 
integrate (B 2) n- 1 times with respect t o  f ,  choosing the arbitrary constants so that 
the resulting expression is 2n-periodic in f .  
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For 5 =I= 0 we have the formulae 

Differentiation n - 1 times with respect to s gives the sums for arbitrary n. Note that 
it is only for n = 1 that the sum is not a continuous function off. 

The processes of integration and differentiation are easily automated, and can be 
evaluated by symbolic-manipulation programs. 
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