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The Linear Two-Point Boundary-Value Problem

on an Infinite Interval

By T. N. Robertson

Abstract. A numerical method, using finite-difference approximations to the second-order

differential equation, is given which tests the suitability of the finite point chosen to represent

infinity before computing the numerical solution. The theory is illustrated with examples

and suggestions for further applications of the method are presented.

1. Introduction. Consider the linear two-point boundary-value problem on an

infinite interval

(1) Ly =  -y" + p(x)y' + q(x)y = fix)    with y(a) = a, y(co) = 0.

More general boundary conditions will be considered later.

A typical method is to apply the second boundary condition at a finite point

or at several finite points and observe the variation of the solutions (Fox [2]). The

basic objective is to obtain an accurate numerical solution in a relatively small finite

interval starting at a. The proposed method, involving finite-difference approxima-

tions, finds a solution over such an interval and also produces values b and ß such

that the solution of (1) on [a, b] is given by the solution of

(2) Ly = /    with y(a) = a, y(b) = ß.

Thus a finite two-point boundary-value problem is derived for which solutions can

be sought by application of any appropriate method.

The procedure here proposed is to examine y(m(x), the solution of

(3) Ly = /    with y(a) = a, y(b'm) = 0

under conditions which ensure that y(N)(x) —» y(x) where y(x) satisfies (1).

2. Preliminaries. The existence and uniqueness of the solution of the two-point

boundary-value problem for Ly = / on a finite interval is guaranteed if p, q and /

are continuous with q > 0 (Keller [3]). Thus these conditions are sufficient for y(m(x)

to exist for any sequence of points {bŒ)}.

The asymptotic behavior of solutions of second-order differential equations is

discussed in Bellman [1]. In particular, the two independent solutions of an equation

of the form

y" - (1 + <p(x))y = 0

(A) with 4>(x) —> 0 as x —> °o and

/     |0(/)|" dt <  co , for some n,
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have asymptotic expansions which are exponential functions, one with a positive

and one with a negative exponent. Since Ly = —y" + py' + qy = 0 can be trans-

formed into (4) under very broad conditions, we can state for our problem that if

(5)        0 < ß* < q(x) < Q*    and    \p(x)\ < P*.    \f(x)\ < F*    on [a, œ)

then the general solution of Ly = / can be expressed as

y(x) =   Ay Ax) + By2(x) +   Y(x)

where y^(x) —> 0 and y2(x) —> °° as x —> °° and Y(x) is a particular solution.

Thus for y(!f)(x) satisfying (3) we can write

yiN)(x) =  Amy¿x) + B(my2(x) +  Y(x)

where we require that Y(x)/y2(x) —> 0 as x —» m. Now applying the boundary con-

ditions

a = /»\a) =   A{myi(a) + BiN)y2(a) +   Y(a),

we have

y™(bim) =  Awyi(bŒ)) + BlN,y2(b(m) +  Y(blm),

A<m = (« -   Y(a))y2(b'N)) +   Y(b'm)y2(a)

yi(a)y2(biN)) - yi(bŒ))y2(a)       '

,m _       (a -   Y(a))yi(bm) +   Y(bw)yi(a)
BK"' = -1

yi(a)y2(biN)) - yi(b{N))y2(a)

so that AiN) -> (a - Y(a))/yi(a) and B'm -^ 0 as N -+ «,, and

y(x) = lim /*>(*) = a~   Y(a) y Ax) +   Y(x)
jv^«. yAa)

satisfies Ly = j and y(a) = a, X°°) = 0.

3. Numerical Method.    For some initial choice of h and N define a uniform net

*,- = a + /A,    for j - 0, 1, 2, • • • , N,

and let ü(N) be the solution of the finite-difference approximation, for which a typical

choice is

^«r = -"f+i~2"> +Ui-1 + fa) lh^\rJ^1 + a(Xiwr
(6) h 2h

= fix,)   for 7 = 1,2, --• , N,

with tC = a and u¿1\ = 0.
Under the conditions (5) and assuming that p, q, j and thus y(N)(x) are sufficiently

smooth, the stability of the linear difference operator is assured (Keller [3]) and the

difference equations have a unique solution with

Wr - yŒ\x<)\ = o(h2).
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We write the system of equations (6) in the form

(7)

where

.(¡V) _(W)
A     u

AlN) =

b>

a2 b2

OW-l    bff-i   CaT-1

aN    bn

«a

l"¡vJ

dm =

dx

IrfyJ

with

,2

bj =  1 + — q(Xj),

c¡ = ~2\X ~ 2p^Xiy '

for j = 2, 3, • • • , N,

for j = 1, 2, 3, ■•• , N,

for 7 = 1, 2, •

<*i = "J 1(xi) — axa    and    rf,- = — /(*,),    for / = 2, 3,

N-l,

N.

Now replace (7) by the equivalent system

(8)

where

p(W)_W)    _   gCW)

p1-"' =

Pi — Po

?2 — Pi

Pn-i Pn-2

Pn

leN

with

CjPj + bjPi-i + a,Pi-2 = 0,    for j — 1, 2, • • • , N,

cfij — a&i-i = —diPi-x ,       for j = 1, 2, •• -, N,

defining p_Y = 0, p0 = 1, e0 = a and c^ = a^.

Here we are following the algorithm proposed by Olver [4] for the solution of

second-order difference equations. Evidently ü{N) is readily obtained by back sub-

stitution from (8) but a more important point is that we can test the suitability of N

without computing ûim.
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For, suppose N is replaced by N + 1 so now

/n\ n(W+l) -(JV+l) -<Ar+l)        ,„u   . (iV+l) (AT+l) n
(9) 7"        « = e where «0 = a. "^+2     — 0.

Hence pkukK+1) - pt-iul1tu = ek,k = 1,2, ••• ,N + 1, and, from (8), pkuk

Pk-iUk+i = ek,k = 1,2, •■• , N. Therefore

(W+l) (N)    _   Pk-1   ,    (AT+1) <WK
"t uk        — (Uk+l wt + l^

Pk

Pa-

and since m^ = 0 we have that

W+l) (AT) Pk-1   ¿tf+l f        , ,     ~ a;    I     i
"4        — «t     =-»    for k =  1, 2, • • • , N + 1.

Pw  Pw+i

Thus to apply the criterion

H-,», _ s,jr+»)||  < e

a first test is simply to examine a^i" = eN+i/pN+1. If this is not small enough, set

N to N + 1 and continue. Then, when this is met also require that

max
litsA'

Pk-leN+l
<   t.

IPnPn+i

For the starting value of h, therefore, we are able to test that our finite replacement

for infinity is reasonable before computing the solution of the finite-difference ap-

proximation.

Now replace h by h/2 and apply a criterion based on difference corrections to

terminate the process. In our case, an 0(ä4) approximation is

«, b Ui(h/2) + §(h,(/i/2) - «,(*))

at points common to the mesh size h and A/2 and we have a theoretically justified

test of accuracy using repeated difference corrections (Pereyra [5]).

Moreover, at any point x, for which

(10) \ |«i(*/2) - Ui(h)\ < «

we can take ¿> = x, and ß = u,(h/2) in the derived finite two-point boundary-value

problem (2).

It will often be computationally difficult to refine the mesh size so that (10) is

satisfied at all points. But over the finite interval accurate solutions can be sought

using any appropriate method (including initial-value methods—shooting, back-

wards shooting—of high order) and refinement of the mesh size to give accurate

h —> 0 extrapolation can be achieved.

4. Numerical Results. A FORTRAN program for an IBM 1620 was prepared

and used to test the method. Two examples are presented:

(1) Ly = -y" - 2/ + 2y = e'2x with y(0) = 1, X00) = 0 for which the exact

solution ye(x) = \e'a'tV3U + \e~2x tends rapidly to zero.

With t = 10-8   and h  =    1     0.5   0.25

then        N =    9      18     34

so that   x =    10   9.5   8.75
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were the values produced to represent infinity.

These results are entirely reasonable since y£x) < 10~8 for x > 9.

(2) Fox [2 p. 91], gives the example Ly = -/' + (1 + l/x)y = l/x2 with y(l) =

y( co ) = 0 for which the solution tends to zero relatively slowly. The equation Ly = 0

can be transformed into the confluent hypergeometric equation.

With e = 10~4, Fig. 1 shows the numerical results on the interval [1, 10] showing

the effect of mesh size.

For   h =    2     1     0.5     0.25
N =    46   78    124     187

so that   x =    94   78   62.5   47

are the values at which the second boundary condition is applied. In particular, at

x = 9,

h 1 0.5 0.25

y(9) 0.011961 0.011958 0.011957

Av X 106 3 1

which illustrates (10) so that the derived problem could be taken as

Ly = -2    with    v(l) = 0,    v(9) = 0.011957.
x

Numerical results for this finite two-point problem were obtained using an iterative

difference scheme. These confirmed the values shown in Fig. 1.

5. Further Applications.

(a) More General Boundary Conditions. Consider

Ly = f    with    aiy(a) — ßiy'(a) = yly

ct2y(co) + ß2y'(co) = y2,

for a„ ßt è 0, i - 1,2, and a2 ^ 0.

Replacing y by y + y2/a2 gives boundary conditions in the form

aiy(a) — ßiy'(a) = a,

a2y(co) + j32/(») = 0.

Now, apart from additional complication, the verification that y(N)(x) —> y(x) goes

through as before.
Similarly, with the new more appropriate finite-difference approximation

Lhu, = /(*,),    for j = 0, 1, 2, • • -, N + 1,    and

Ui   —   U-i
otiUo — ßi-—- = a,

a   Ua+2       uN
a2uN+i — ß2-rr- = 0,

we have a tridiagonal system of N + 2 equations for u0, uu ■ • ■ , uN+i which is reducible

as before.
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(b) Systems of Second-Order Linear Equations. Finite-difference methods applied

to such a system produce, corresponding to the tridiagonal matrix A in (7), a block

tridiagonal corresponding to the matrix P in (8). Thus the suitability of the point at

which the second boundary condition is applied can again be tested before computing

the solution to the finite-difference approximation.

(c) Second-Order Elliptic Partial Differential Equations.

(i) On an unbounded region. As a guide for the choice of the finite position

of outer boundary (often taken to be a circular arc) we can set one of the spatial

variables equal to a constant and examine the resultant ordinary differential equation

by the present method.

(ii) On a semi-infinite region. Using five-point approximations in a rectangular

spatial mesh over the region

R: \x\ ^  K

the finite-difference approximation can be expressed in terms of a block tridiagonal

matrix (Varga [6])

where

Au = k

Bi       Ci

A2 t>2 C2

Ah-i Bfi-i Ctf-i

AN      BN

Here the square submatrices are of order n where n is the number of points along the

horizontal mesh lines and N is the number of horizontal lines in R. Thus the reduction

to a block two band matrix will again permit a test of N.
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