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THE LINEAR UTILITY MODEL FOR OPTIMAL SELECTION 

GIDEON J. MELLENBERGH 

UNIVERSITY OF AMSTERDAM, AMSTERDAM 

WIM J. VAN DER LINDEN 

TXVENTE UNIVERSITY OF TECHNOLOGY, ENSCHEDE 

A linear utility model is introduced for optimal selection when several subpopulations of 
applicants are to be distinguished. Using this model, procedures are described for obtaining optimal 
cutting scores in subpopulations in quota-free as well as quota-restricted selection situations. The 
cutting scores are optimal in the sense that they maximize the overall expected utility of the 
selection process. The procedures are demonstrated with empirical data. 

Key words: culture-fair selection, threshold utility. 

Several models for culture-fair selection have been proposed: The regression model 

[e.g., Cleary, 1968], the constant ratio model [Thorndike, 1971], the conditional probabil- 
ity model [Cole, 1973], the equal probability model [e.g., Linn, 1973], the equal risk model 
[Einhorn & Bass, 1971], and the culture-modified criterion model [Darlington, 1971]. 
Petersen and Novick [1976], in an enlightening review of these models, have shown that 
some of these models are internally contradictory. Following Gross and Su [19751 they 

argue that the correct procedure in selection is the decision-theoretic maximization of the 
expected utility of the selection process. 

As Novick and Petersen have demonstrated, the only culture-fair selection models of 

those previously considered in the literature that are acceptable from a decision-theoretic 

point of view are the regression and equal risk model. As the regression model will turn out 

to be a special instance of one of the models in the present paper, it is recalled that the 
model can be described as follow: Suppose that in a selection procedure O subpopulations 

are to be distinguished, and that the regression of the criterion variable Y on the predictor 

variable X for the ith subpopulation is linear: 

E~(YIX) = ~, + [3,X (i = 1, 2 . . . . .  g), (1) 

where ~l and fli are the intercept and slope of the regression line. Denoting the predictor 
cutting score for subpopulation i by x~, the regression model says that a culture-fair 

selection is attained when the values of x~ are chosen such that the predicted values of the 
criterion Y~ are equal to the minimum level of satisfactory criterion performance y* for 
i = 1,2,. . . ,g.  

Gross and Su [1975] were the first to note that "fair" selection is a question of utilities. 

Whether a selection procedure is believed to be fair to the various subpopulations which 

can be distinguished depends on the utilities of those involved in the selection process. The 

only requirement a selection procedure has to meet to be culture-fair is that its utility 
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'I'ABLE 1 

Threshold Utility Function 

Predictor Score (X) 

Criterion 

Score (Y) X < x~ X > x; 

t < X* -%oo -~.ol 

~- -> Y* ~i10 ~111 

structure reflects these utilities, and that, given this structure, the selection decisions maxi- 

mize the overall expected utility. Gross and Su use a threshold utility function to show how 

their expected utility approach proceeds. Petersen 1"1976] provides a Bayesian version of 

this approach with solutions for the quota-free as well as the quota-restricted case. The 

threshold utility function i-s exemplified in Table 1. Note that the table gives the utilities for 

subpopulation i only and that when using threshold utility, a complete set of these utilities 

must be specified for each subpopulation. It is precisely this feature that sets the decision- 

theoretic approach to the culture-fair selection problem apart from other decision-theoretic 

problems. Cronbach and Gleser [1965], in their classical monograph Psychological Tests 
and Personnel Decisions, make a distinction between an institutional and an invididual 

selection problem. The culture-fair selection problem is neither of the two but something in 
between: several subpopulations are distinguished and for each subpopulation a separate 
utility function is specified representing the utility of the various decision outcomes for the 
subpopulation. 

It is the goal of the present paper to propose a linear utility function for use in the 
decision-theoretic approach to the culture-fair testing problem. A linear utility structure fits 

the problem of optimal selection from several subpopulations rather well and leads to 
comparably simple solutions for both the case of quota-free and quota-restricted selection. 

For a general introduction to additive utilities and utilities that are linear in the true state, 

the reader is referred to Raiffa and Sehlaifer (1961, pp. 97-207). 

An advantage of the linear utility model is the weakness of its assumptions. In all 
selection models mentioned earlier, it is assumed that the predictor and criterion variables 

are continuous with a bivariate normal distribution. The predictor is, however, usually a 

test or a test battery and will thus yield a discrete variable. In this paper the predictor is 
considered a discrete variable. Moreover, the model does not assume linear regression of 

criterion on predictor scores and normally distributed criterion scores. Linear regression is 
discussed as a special ease of a more general regression function. In many practical 

applications the assumptions of linear regression and normality are approximately valid or 
have little effect on the accuracy of utility calculations (Schmidt, Hunter, McKenzy, & 

Muldrow, 1979). A general model must, however, be preferred to special ones. Nothing is 

lost using a general model and special cases easily follow from the general model. 

The Linear Utility Model 

Petersen [1976] has pointed out that the threshold utility function can be unrealistic 
for the culture-fair testing procedure. In this model it is supposed that, for instance, for all 
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accepted subjects with criterion performance above y*, the amount of utility is constant no 
matter their actual criterion performance. It seems more realistic to suppose that for 
accepted subjects with performances above y* the utility is a monotonically increasing 
function of criterion performance. Novick and Lindley [1978] have described a normal 
ogive utility function which might be adapted for use with the culture-fair testing problem. 

In this paper a simpler linear utility function is used. Van der Linden and Mellenbergh 
[1977] used a linear loss function for determining optimal cutting scores on mastery tests. 
This function is restated as a utility function for subpopulation i in the present problem: 

U,=U~(Y)=~b°i(Y*-Y)+a°~ for X < x ~  boi, bl~>0, i = l ,  2 . . . .  ,g, (2) 
[ b u ( Y - y * ) + a l i  for X > x ~  

where x; is the integer valued cutting score on the predictor variable in subpopulation i. The 

condition boa, bl~ > 0 is needed for the mathematical derivations given below; it is not 
really restrictive in applications. Examples of this function are given in Figure 1. 

The parameter aoi is a constant for all rejected subjects from subpopulation i; it can, 
for example, represent the utility of testing, which will be mostly negative because costs of 
testing are involved. The parameter a~t is a constant for all accepted subjects from sub- 
population i; it can, for example, represent the costs of testing and the cost of an educa- 
tionalprogram. Both boi(y* - Y) and b, t(Y - y*) represent amounts ofutility dependent on 
the criterion performance. These are proportional to the difference between the criterion 

(a) (b) 

U u i 

x >  x i 

, ," . i -"  - <  

X < x :  
1 

X> x~ 
-- 1 

, , , I  

<'. 
X < x ' .  

1 

(c) 

- l 

X <  x' 
1 

FIOURE 1 

(d) 

vi x > x[ 

X<x: 
1 

Examples of Linear Utility Functions: (a) b01 = bt~, a0~ = at~ (b) bo~ = bti,  ao~ ¢ a l t  (c) bo i¢  bti ,  aot = ati (d) 

b0~ # b,~, aoi # all 
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performance of a subject and the minimum level of satisfactory criterion performance. The 

parameters b0~ and bl~ are constants of proportionality in subpopulation i. The values ofao~ 

and ali should be chosen relative to each other and to bo~(y* - Y) and bl,.(Y - y*), in such 
a manner that the resulting utility function represents the psychological, social and econ- 
omic consequences of the decisions for subpopulation i. 

The parameter values of the linear utility function Formula 2 should also be chosen 

such that the resulting utility structure is "fair" to each subpopulation involved. Suppose, 

for example, that subpopulationj is considered more advantaged than i. In choosing values 
of the parameters of the linear utility function this can be taken into account by requiring 
that incorrect decisions (wrongly accept and wrongly reject) are considered worse for 

subpopulation i than for j, while correct decisions (rightly accept and rightly reject) are 

considered more valuable for i than for j. This amounts to choosing values of the slope 

parameters of Formula 2 under the restriction bo~ > boj and b1~ > b~.  Such consequences 

should be realized. Utility models require utility statements for each subpopulation, and 

these statements should result from a public discussion with all interested parties partici- 

pating in the debate [Petersen & Novick, 1976]. 

Since the predictor variable for the optimal selection problems considered in this paper 

is mostly a test scored according to the number right rule, it is realistic to assume that the 

possible scores on the predictor variable are integers, ranging from 0 to n. The expected 
utility of a randomly selected applicant from the ith subpopulation for the linear utility 

function Formula 2 is: 

E(U,) = ~ J-o~{b°~Y* - Y) + ao,}k~X, Y) dY 
X = O  

+ {bl,(Y - y*) + a~,}k,.(X, Y) dY, (3) 
X = x i  t oo 

where k,~X, Y) is the joint probability density of the predictor and criterion variable in 

subpopulation i. Although the criterion is conceived as a continuous variable it can also be 

considered a discrete variable. Substituting the summation sign for the integral sign in 
Formula 3 will not alter the derivations given below. In Formula 3, it is assumed that the 

optimal selection rule for subpopulation i takes the form of a cutting score on the test, or, in 
other words, that the decision problem is monotone. It should be noticed that for the utility 

function Formula 2 this entails the condition of monotone likelihood ratio of Y given X for 

subpopulation i [cf. Ferguson, 1967, chap. 6]. From now on, it will be assumed that this 

(rather mild) condition is fulfilled for all subpopulations. 
Using the properties that ki(X, Y)=q~(YIX)h~(X), S~-® q i (Y IX)dY= 1, and 

~-® Yqi(Y IX) dY = E~(Y IX), (qi(Y IX) is the conditional density of the criterion variable 
given the predictor variable, h~(X) the probability density of the predictor variable, and 
E~(YIX) the regression function of the criterion variable on the predictor variable in 

subpopulations i), it follows that the expected utility of selection for a random applicant 

from subpopulation i is" 

x~ t - -  1 

E(UI) -- ~ [bo~{y* - E~(YIX)} + ao,]h,(X) 
X = 0  

- ~ [b~,{y* - E,(YIX)} - a~,]h,(X). (4) 
X = X l  p 

The selection process is viewed as a series of separate decisions, each of which involves 

one random applicant from the total population, and it is assumed that the overall expected 
utility of the selection process is the sum of the expected utilities of the applicants. Thus, the 
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overall expected utility of the selection process is: 

0 

E(U) = ~ p, E(U3, (5) 
i = 1  

where p~, ~ =  ~ p~ = 1, is the proportion of applicants from subpopulation i in the total 

population of applicants. The problem is to find integer values for the predictor cutting 
scores x} that maximize the overall expected utility of Formula 5. 

Optimal Cutting Scores in Quota-Free Selection 

In quota-free selection there is no restriction on the number of applicants that can be 

accepted. Therefore, Formula 5 is maximized if the expected utility of a random applicant is 

maximized. This is done by maximizing Formula 4 for every subpopulation separately. 
Formula 4 is equivalent to: 

E(U,) = ~, [bo,{y* - E~YIX)} + ao,]h~X) 
X=O 

- ~ [(bot + b13{y* - E~(YIX)} + (ao, - a~x)]h~(X). (6) 
X = X¢ 

Since (box + bt3 > 0, and eliminating the constant term from Formula 6, E(Ux) is maximal 
for the cutting score that minimizes: 

n 

E(U;) = E [(box + b~3{y* - E~YIX)) + (aox - atx)]h~(X). (7) 
X = XI, 

The density h~(X) is equal to or greater than zero for all values of X. If the sign of the term 

(b0~ + blx){y* - El(Y IX)} + (aox - atx) (8) 

from Formula 7 changes only once from positive to negative in the sequence x; = 0, 1 . . . . .  

n, then E(U~) is maximal for the cutting score for which Formula 8 is negative for the first 
time. If the sign of Formula 8 changes more than once in the sequence x~ = 0, 1 . . . . .  n, it is 

necessary to compute E(U~) for all values of x~; the optimal cutting score is the value of x~ 
for which E(U;) is minimal. In these ways optimal cutting scores can always be determined 
for all subpopulations. 

An interesting special case of  the linear utility model is aot = atx = a~ (i = 1, 2 . . . . .  g). 
The utility function is: 

U~=~b°x(Y*-Y)+ax for X < x ~  boi, b l l > 0 ,  i = 1 , 2  . . . . .  g. (9) 
( .b l i (Y -y*)+at  for X>_x~ 

For this function the last term of Formula 8 vanishes. If the  sign of Formula 8 changes 

only once from positive to negative then Formula 8 is negative for the first time that 
Ex(YIX) is greater than y*. Therefore, the optimal cutting score is that value of  x~ for which 

E~(Y IX) is greater than y* for the first time. If the sign ol ~ Formula 8 changes more than 
once, the optimal cutting score is the value of x~ for which E(U;) is minimal. Because 

(hot + bli) is a positive constant E(U~) is minimal for the value ofx~ for which 

{y* - E~YIX)}h,.(X) (10) 
X = x ¢  

is minimal. In both cases box and bl~ are not necessary for determining the optimal cutting 
score for subpopulation i. If the amount of constant utility is equal for an accepted and a 

rejected applicant, then there is no need to choose values for box and b~.  It should be noted, 
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however, that although the optimal cutting score for population i is the same for all values of 

bo~ and bat when ao~ = aa~, this does not imply that the cutting scores for all subpopulations 
are equal. The cutting scores also depend on the distributions of (X, Y) and these are in 
general not the same for all subpopulations. 

A special case of the regression function is the linear regression function of the criterion 

variable on the predictor variable: 

Ei(YIX) =cci + fliX. (11) 

The condition that Formula 8 changes sign only once is fulfilled for this regression function. 

Substituting Formula I 1 into Formula 8, setting the result equal to 0, and solving for X, 

gives: 

y* -cci ao~ - a l i  
= (12) 

As indicated earlier, the cutting score is assumed to be an integer: for the first integer 

smaller than x~ Formula 8 is positive, and for the first integer greater than x~ it is negative. 

Therefore, the optimal cutting score for subpopulation i is the first integer greater than x~. 

This value ofx~ will henceforth be indicated by x*. 

From Formula 12, it follows that for utility function Formula 9 and the linear 
regression function Formula 11 the optimal cutting score is the first integer greater than: 

' Y* -cci (13) X i 

Formula 13 is the solution to the Formula 1. This shows that the regression model for 

selection can be considered a special case of the linear utility model. For a linear regression 

function of the criterion variable on the predictor variable and equal constant amounts of 

utility for an accepted and a rejected applicant, the linear utility model reduces to the 

regression model for selection. 

Optimal Cutting Scores in Quota-Restricted Selection 

The situation is considered where only a fixed number of applicants can be accepted. 

For a given population of applicants, it is usual to replace this number by a fixed propor- 
tion p of all applicants that can be accepted. Therefore, the overall expected utility of 

Formula 5 is maximized under restriction that 

~ p ,  ~ h~(X)= p (14) 
1=1 X = x i  ~ 

is a fixed constant. As the predictor should be considered a discrete variable, this condition 

cannot in general be fulfilled exactly. Suppose, however, that the fixed constant p can be 

replaced by an upper bound (p,) and a lower bound (Pi). The proportion of accepted 
applicants from the total population should then be within these bounds. The restriction of 

Formula 14 becomes: 

p, < p, h, x) < p. (15) 
i..~ l " - " X  = x i ,  

Using the linear utility theory given in the previous section, optimal cutting scores can 

be found for the linear utility function Formula 2 and the interval restriction Formula 15. 

In principle, the procedure is a search routine based on the simple idea of looking for all 
possible sets of cutting scores x~ (i = 1, 2 . . . . .  0) fulfilling the restriction of Formula 15. Once 

these sets are found, the task is to choose the set that gives the maximum of the expected 

linear utility of Formula 5. More specifically, the following should be done: First, the total 
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number of s sets of cutting scores x~ (i = 1, 2 . . . . .  g) fulfilling the restriction of Formula 15 
are determined. Second, from empirical data the regression functions Et(YIX) and the 

probability densities h,(X) are estimated. Third, using Formula 4, the linear expected utility 

is estimated for each subpopulation and for all cutting scores found in this population in 
the first step. Fourth, using Formula 5, the overall expected utility is computed for each set 

of cutting scores x} (i = 1, 2 . . . . .  g) found in the first step. Fifth, the maximum value of the 

overall expected utilities computed in the previous step is determined. The set yielding this 
maximum value contains the optimal cutting scores x* (i = 1, 2 . . . . .  g). A numerical 

example illustrating this procedure is given in the next section. 

Example 

Van der Flier and Drenth 11977] administered some ability tests to a group of primary 

school children in Surinam. Examination results were also available for 169 Creoles and 

124 Asiatics. For illustrative purpose only the data of the Differences test and the language 

examination are used. In each item of the test six figures are presented; two figures must be 

found that deviate from an exemplary figure. The language examination performance was 
evaluated with school marks. 

A mark 5 is considered insufficient, whereas a mark 6 is considered sufficient. There- 

fore, the minimum level of satisfactory criterion performance is fixed at 5.5. Because the 

costs for testing are equal for accepted and rejected subjects, the constants in the utility 

function Formula 2 are set equal to each other in both groups: aot = al~ (i = 1, 2). 

First, the quota-free situation is considered. From Table 2 it is seen that for the Creoles 

the estimated function {y* - /~ I (YIX)}  = {5.5 - / ~ I ( Y I X ) )  changes sign for the cutting 
score 10 on the test. Consequently, the optimal cutting score for the Creoles is 10. For the 
Asiatics the function {5.5 - F~2(Y 1X)} changes sign more than once. Therefore, the optimal 

cutting score must be found using Formula 10. These estimated values are reported in 

Table 2. It is seen that the function has a minimum value for the test score 11. Conse- 
quently, the optimal cutting score for the Asiatics is 11. 

Second, the quota-restricted situation is considered. Suppose that, based on the test 
scores, about  five pupils can get a scholarship. It is decided that at least four and at most six 
pupils will get a scholarship. The frequency distributions in Table 2 show that the following 

pairs of  cutting scores fulfil the restriction Formula 15: (30, 36), (30, 34), (31, 36), (31, 34), 

(31, 31), (32, 34), (32, 31), (32, 28), (34, 28), and (35, 27). Using Formula 6, the expected 

utility for a given cutting score and utility function can be estimated, and substituting the 

estimated proportions Creoles and Asiatics in Formula 5, the overall expected utility can be 
estimated. 

The procedure is demonstrated using the pair (31, 31) and the utility function 

bol = bla = bo2 = b12 = 1,aol = a l l  = ao2 = a12 = 0: 

(i) From Table 2 it is seen that for this pair of cutting scores three Creoles and three 
Asiatics will get a scholarship. 

(ii) The specification of Formula 6 for this utility function is: 

3 6  3 6  

E(U,) = ~. {5.5 - E~(YIX)}h,(X) -- 2 Z {5.5 - E,(YIX)}h,(X). 
X=O X=31 

From Table 2 it is seen that for the Asiatics the estimated utility is: 

/~(U2) = - .468  - 2(- .044)  = - .380.  From this table it can be computed that the 
corresponding value for the Creoles is/~(U1) = - .655.  

(iii) The estimated proportion Creoles is/~ = .5768 and the estimated proportion 
Asiatics/~ = .4232. Using Formula 5, the estimated overall expected utility is: 

/~(U) = .5768 x ( - .655)  + .4232 x ( - .380)  = - .539.  



290 PSYCHOMETRIKA 

TABLE 2 

Optimal Cutting Scores Using a Linear Utility Function Quota-Free Selection 

Creoles (N = 169) Asiatics (N = 124) 

36 

X freq(X) {5.5.-~I(YIX)) freq(X) {5.5-E2(YIX) } Z {5.5-E2(YIX)~2(X) } 

X=x ' 

0 1 +0.5000 0 -.468 

I 0 0 -.468 

2 0 0 -.468 

3 0 0 -.468 

4 0 0 -.468 

5 I +1.5000 0 -.468 

6 0 0 -.468 

7 0 1 +1.5000 -.468 

8 4 +0.2500 1 -0.5000 -.480 

9 4 +0.5000 I +1.5000 -.476 

10 4 -0.7500* I +2.5000 -.488 

11 5 -0.5000 1 -0.5000 -.508* 

12 6 -0.5000 2 -1.0000 -.504 

13 8 -0.8750 3 -0.1667 -.488 

14 7 -0.0714 6 -2.0000 -.484 

15 6 -0.8333 7 +0.0714 -.387 

16 11 -0.5909 10 +0.2000 -.391 

17 14 -0.0714 11 -0.5000 ~.407 

18 11 -0.5000 12 -0.0833 -.363 

19 13 -0.8077 13 -0.8077 -.355 

20 16 -0.8125 15 -0.5667 -.270 

21 20 -1.4000 12 -0.2500 -.201 

22 6 -1.3333 8 +0.2500 -.177 

23 11 -0.8636 7 -1.0714 -.193 

24 5 -0.7000 4 +0.2500 -.132 

25 5 -0.9000 I -2.5000 -.140 

26 2 -1.0000 2 -1.5000 -.120 

27 5 -1.1000 2 -2.5000 -.096 

28 0 1 -1.5000 -.056 

29 0 0 -.044 

30 I -2.5000 0 -.044 

31 I -2.5000 1 -2.5000 -.044 

32 I -2.5000 0 -.024 

33 0 0 -.024 

34 I -0.5000 I -1.5000 -.024 

35 0 0 -.012 

36 0 I -1.5000 -.012 

*The estimated value for which the cutting score is optimal. 

The estimated overall expected utility for the above mentioned pairs of cutting scores and 

three different utility functions is reported in Table 3. The optimal pair of cutting scores for 

the utility function bol = b** = b02 - b , 2  = 1 is (35 ,  27). The consequence of choosing 

bo2 < bo,, and b,2 < b~, is to lower the cutting score for the Creoles and to raise the 

cutting score for the Asiatics: (30, 34). 

Two remarks are appropriate. One, the example was used only to illustrate the pro- 

cedure. The sample size was rather small, and the estimates of the expected utility functions 

can be inaccurate. The cutting score(s) are chosen such that the estimated expected utility 

function has reached its maximum. If in the population some values of the function are near 

the maximum, a large sample is necessary to determine accurately the maximum of the 

function, and with that the optimal cutting score(s). It therefore seems wise to use this 

procedure with large samples. Two, in the quota-restricted situation the calculations were 
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Table  3 

Optimal Cutting Scores Quota-Restricted Selection 

291 

Cutting Score x' Number Accepted Estimated Overall Expected 

Utility E(U) 

Creoles Asiatics Creoles Asiatics Utility Function (~i=0; h=0,1; i=I,2) 

bhl = 1 bhl = I bh l  = 1 

bh2 = I bh2 = 2 bh2 = .5 

30 36 4 1 - . 5 4 8  - . 7 3 6  - . 4 5 4  

34 4 2 -.538 -.716 -.449* 

31 36 3 1 -.566 -.754 -.472 

34 3 2 -.556 -.733 -.467 

31 3 3 -.539 -.699 -.458 

32 34 2 2 -.573 -.751 -.484 

31 2 3 -.556 -.717 -.476 

28 2 4 -.546 -.696 -.470 

34 28 I 4 -.563 -.714 -.488 

35 27 0 6 -.533* -.649* -.474 

The maximal value of the estimated overall expected utility. 

done using a desk calculator. For other applications the calculations can be laborious, but a 
computer can easily do the job. 

Discussion 

In the linear utility model it is not assumed that the predictor and criterion variables 

are continuous with a bivariate normal distribution. These assumptions are also not necess- 

ary for the threshold utility model. For this model the expected utility of an applicant from 
subpopuhtion i is: 

1 1 

E(v,) = E[ E u,jkP, k, i =  1, 2 . . . . .  g (16) 
j=O k=O 

where Pok (1, k = 0, 1) are the probabilities of belonging to the cells of Table 1 for sub- 
population i. For a fixed cutting score on the predictor, the probabilities P~jk can be 

estimated from empirical data; using Formula 16, the expected utility can be estimated. In 
quota-free selection the optimal cutting score for subpopulation i is found by computing 
the expected utility of Formula 16 for all possible cutting scores, settingx} equal to 0, 1 . . . . .  
n; the optimal cutting score is the cutting score for which the expected utility is maximal. In 
quota-restricted selection all possible sets of cutting scores fulfilling the restriction of For- 

mula 15 are determined. Using Formula 5, the set of cutting scores that has the maximum 
expected utility is chosen. These procedures were applied to the data of the example from 
the previous section. The optimal cutting scores for the quota-free situation and the optimal 
pairs of cutting scores for the quota-restricted situation with different utility functions are 
reported in Table 4, respectively, 5. The tables show that sometimes two or more cutting 
scores or pairs of cutting scores have equal estimated maximal utilities. A sensible solution 

for the quota-free situation is to choose the lowest of these cutting scores implying that the 
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Table 4 

Optimal ~Cutting Scores Quota-Free Selection 

Utility Function Creoles Asiatics 

(ui0 ~ = uil 0 = 0) (i=l) (i=2) 

ui00 = Uil I = I I0 11 

ui00 = I, ~II = 2 6, 7, 8 8, II 

ui00 = 2, ~iI = 1 I0, 12, 13, 15 19 

number of accepted applicants is as high as possible. A fair solution in the quota-restricted 
situation is to select one set of cutting scores randomly from the sets with equal estimated 

maximal utilities. 

The same problem can arise for the linear utility model when Formula 5 or 6 has more 

than one absolute maximum. In applications with carefully constructed predictor tests and 

large samples, this is not likely. Should it occur, however, one may use the same procedure 

as that described in the threshold utility example. 
Instead of assuming a linear regression line, as has occasionally been done in the 

foregoing, the regression function E~YIX) can also be estimated from empirical data, for 

example, by computing the mean criterion score for every value of the predictor score in 
subpopulation i. E~(YJX) can also be estimated using polynomial regression functions. A 

special case of polynomial regression is the regression line. Using a polynomial regression 

function of a fixed degree, no assumptions regarding the distribution of the residual term 

are needed. If, however, the degree of the polynomial should also be determined from the 
data, then it is necessary to assume a normal distributed residual term [Book, 1975, 

chap. 4]. 
The assumptions made in the linear utility model are rather weak. Using estimates of 

the regression functions and the probability densities of the predictor variable, the optimal 
cutting scores can be computed. When the degree of the polynomial regression function is 

estimated from the data, it is also assumed that the residual term is distributed normally. 
Note that the assumption of normality of the criterion variable is weaker than the assump- 
tion of a bivariate normal distribution of the predictor and criterion variable. 

Table 5 

Optimal Cutting Scores Quota-Restricted Selection 

Utility Function (uiO I = uil 0 = O, i=1,2) Pair(s) of Cutting Scores 

Uio0 Ulll U200 u211 

I I I 1 (30,34), (31,31) 

(32,28), (35,27) 

1 2 I 2 (31,31) 

2 1 2 I (31,31) 

1 I 2 2 (35,27) 

I I .5 .5 (30,34) 
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