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Abstract

In the paper, we express uncertain assessments information in linguistic multi-criteria decision makings
(LMCDMs) as linguistic intuitionistic fuzzy sets, i.e., the decision maker provides membership and non-
membership fuzzy linguistic terms to represent uncertain assessments information of alternatives in LM-
CDMs, and present Hamming distance between two linguistic intuitionistic fuzzy sets. Then we propose
the linguistic intuitionistic fuzzy set TOPSIS method for LMCDMs, compared with the traditional TOP-
SIS method, we provide different the positive ideal solution, the negative ideal solution and the relative
closeness degrees of alternatives, in addition, we design an algorithm to finish the linguistic intuitionistic
fuzzy set TOPSIS method for LMCDMs. We utilize a LMCDM problem to illustrate the performance,
usefulness and effectiveness of the linguistic intuitionistic fuzzy set TOPSIS method, and compare it with
the hesitant fuzzy linguistic multi-criteria optimization and compromise solution (HFL-VIKOR) method,
the symbolic aggregation-based method and the hesitant fuzzy linguistic TOPSIS (HFL-TOPSIS) method
in the example, results show that the linguistic intuitionistic fuzzy set TOPSIS method is a useful and
alternative method for LMCDMs.

Keywords: The TOPSIS method; The 2-tuple linguistic model; Hesitant fuzzy linguistic term set; Intu-
itionistic fuzzy sets; Linguistic multi-criteria decision makings.

1. Introduction

We always face tasks and activities in which it is

necessary to use decision making processes in our

daily lives. Generally, decision making is a cogni-

tive process based on different mental and reasoning

processes that lead to the choice of a suitable alterna-

tive from a set of possible alternatives in a decision

situation1−4. Despite the existence of different deci-

sion making processes in the literature composed of

different phases, the TOPSIS method proposed in5

is useful, important and widely studied multiple at-

tribute group decision making method, formally, the

TOPSIS method originates from the concept that the

selected alternative should have the shortest distance

from the positive ideal solution and the farthest from

the negative ideal solution, it’s decision making pro-

cess can be expressed in the following five steps6: 1)

normalization of decision matrix; 2) construction of

weighted normalized decision matrix; 3) determina-

tion of positive and negative ideal solutions; 4) cal-

culation of separation measures and relative close-
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ness; 5) ranking of alternatives. After then, many ex-

tended TOPSIS methods have been applied to multi-

ple attribute decision makings7−13, such as, Chen14

proposed an extended TOPSIS method for multiple

attribute decision makings by considering triangular

fuzzy numbers and defining crisp Euclidean distance

between two fuzzy numbers. Similarly, Ashtiani et

al.15 extended the TOPSIS method to solve multiple

attribute decision making problem with the interval-

valued fuzzy sets. He and Gong16 proposed a nat-

ural generalization of the TOPSIS method to solve

multiple attribute decision making problem with in-

tuitionistic fuzzy sets. Liu, et al.17 developed a

new TOPSIS method for decision making problems

with interval-valued intuitionistic fuzzy data. Yue18

developed a method for decision making problems

with interval number and extended his method to in-

tuitionistic fuzzy sets.

Because of the inherent complexity and uncer-

tainty of the decision situation or the existence of

multiple and conflicting objectives in decision mak-

ing problems, human beings often use fuzzy lin-

guistic values to express complex or uncertain in-

formation in decision making process, and deci-

sion makings with fuzzy linguistic information at-

tract many researchers19−29, in which, the 2-tuple

linguistic model30 is a useful and important tool for

expressing and dealing with linguistic information,

which provides a continuous fuzzy representation

for linguistic values by the translation of the linguis-

tic value obtained from the symbolic computation

to the closest linguistic value in the initial linguis-

tic value set. Formally, the 2-tuple linguistic model

consists of modeling the linguistic information by

means of a pair of elements, one element is a lin-

guistic value similar to the fuzzy linguistic approach

whose semantics is provided by a fuzzy member-

ship function and the syntax chosen according to

the choices offered by the fuzzy linguistic approach,

another element is a numerical value, also called

symbolic translation, that indicates the translation

of the fuzzy membership function which represents

the closest linguistic value if it does not match ex-

actly the computed linguistic information. Up to

now, many new symbolic representation models to

improve different aspects of the 2-tuple linguistic

model have been developed and many different real-

world decision makings based on 2-tuple linguistic

model have been applied, such as, Xu31 introduced

the extended linguistic variable based on the con-

cept of virtual linguistic values to improve the op-

erational laws of symbolic operations. Wang and

Hao32 proposed the linguistic proportional 2-tuple

model to represent linguistic information that is a

generalization and extension of the 2-tuple linguis-

tic model, Guo et al.33 later extended the linguistic

proportional 2-tuple model by using a third param-

eter to deal with incomplete linguistic preferences.

Dong et al.34 presented the concept of numerical

scale with the aim of completing the 2-tuple lin-

guistic model and proportional 2-tuple models and

making the elicitation of information more consis-

tent in different decision situations. Li35 proposed

an extended 2-tuple linguistic model that fuses the

use of virtual linguistic values and 2-tuple linguis-

tic values. Yang36 developed the counted linguis-

tic variable for representing and aggregating linguis-

tic information with the aim of providing better re-

sults and being easier to understand. Wei37 investi-

gated the 2-tuple linguistic multiple attribute group

decision making problems in which the information

about attribute weights is partially known. Cables et

al.38 proposed a decision making method in which

the decision makers provided their assessment infor-

mation to represent their qualitative preferences un-

der 2-tuple linguistic environment. Moreover, many

2-tuple linguistic aggregation operators have been

proposed in literatures39−44 to make the aggrega-

tion of linguistic information much more flexible,

we refer4 for more details about 2-tuple linguistic

model and decision makings based on 2-tuple lin-

guistic model.

Recently, inspired by intuitionistic fuzzy sets and

2-tuple linguistic values, Chen, et al.45 developed

the concept of linguistic intuitionistic fuzzy num-

bers where membership and and nonmembership

are represented as 2-tuple linguistic values. In or-

der to process the multiple attribute decision mak-

ing with linguistic intuitionistic fuzzy numbers, they

provided the linguistic score index and linguistic

accuracy index of number, analyzed the operation

laws for linguistic intuitionistic fuzzy numbers and
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the related properties of the operation laws. Fur-

thermore, they developed the linguistic intuitionistic

fuzzy weighted averaging operator, linguistic intu-

itionistic fuzzy ordered weighted averaging operator

and linguistic intuitionistic fuzzy hybrid averaging

(LIFHA) operator, which can be utilized to aggre-

gate the linguistic intuitionistic fuzzy information.

Based on linguistic intuitionistic fuzzy numbers, this

paper propose the linguistic intuitionistic fuzzy set

TOPSIS method for linguistic multi-criteria deci-

sion makings, in which, we present Hamming dis-

tance between two linguistic intuitionistic fuzzy sets

and analyze it’s several properties, then we provide

the positive ideal solution, the negative ideal so-

lution and the relative closeness degree of alterna-

tives to solve LMCDMs. In numerical example,

we compare the linguistic intuitionistic fuzzy set

TOPSIS method with the HFL-VIKOR method46,

the symbolic aggregation-based method47 and the

HFL-TOPSIS method48. The rest of this paper is

structured as follows: In Section 2, we briefly re-

view some basic concepts and linguistic intuitionis-

tic fuzzy numbers. In Section 3, we define Hamming

distance between two linguistic intuitionistic fuzzy

sets and analyze their several properties. In Section

4, we present the framework of the linguistic intu-

itionistic fuzzy set TOPSIS method, and provide an

algorithm to deal with LMCDMs in linguistic intu-

itionistic fuzzy set environment. In Section 5, we

utilize a LMCDM problem to illustrate the practi-

cality of the linguistic intuitionistic fuzzy set TOP-

SIS method and comparison results. We conclude

the paper in Section 6.

2. Preliminaries

In this section, we briefly review some basic con-

cepts in 2-tuple linguistic model and linguistic intu-

itionistic fuzzy numbers.

The 2-tuple fuzzy linguistic representation

model consists of a pair of elements 30, which is ex-

plained as follows: 1) Let si ∈ S = {s0,s1,s2, . . . ,sg}
be a initial linguistic term set, whose semantics is

provided by a fuzzy membership function on a uni-

verse of discourse, an ordered structure provided in

the linguistic term set is a total order, i.e., for any

si,s j ∈ S, si � s j if and only if i � j, moreover, a

negation operator is Neg(si) = s j such that j = g− i
(g+ 1 is the cardinality), the maximal and minimal

operators are max{si,s j}= s j and min{si,s j}= si if

si � s j; 2) α is a numerical value that indicates error

when a fuzzy membership function is translated to

the closest linguistic term, i.e.,

α =

⎧⎨
⎩

[−0.5,0.5), if si ∈ {s1,s2, . . . ,sg−1},
[0,0.5), if si = s0,
[−0.5,0), if si = sg.

Accordingly, the 2-tuple linguistic value is a pair

of elements noted as (si,α), which can be used

to express the linguistic information on a universe

of discourse, for example, a set of nine linguistic

terms S on [0,1] is S = {s0 (extremely poor), s1

(very poor), s2 (poor), s3 (slightly poor), s4 (fair),

s5 (slightly good), s6 (good), s7 (very good), s8 (ex-

tremely good)} and their fuzzy sets on [0,1] are

graphically shown in Fig.1.

Fig. 1. Fuzzy sets of S on [0,1]

In which, such as the 2-tuple linguistic value

(s4,0.3) = s4.3 corresponds to fuzzy set s4.3 in Fig.1,

formally, using the 2-tuple linguistic model can ef-

fectively avoid the loss and distortion of information

in linguistic information processing, for simplify, we

denote S[0,g] = {sα |s0 � sα � sg} as all 2-tuple lin-

guistic values on [0,1] 31.

Definition 1. 45 Let sα ,sβ ∈ S[0,g] and γ = (sα ,sβ ), if

α +β � g, then we call γ the linguistic intuitionistic

fuzzy numbers defined on S[0,g]. If sα ,sβ ∈ S, then

we call γ the original linguistic intuitionistic fuzzy

numbers, otherwise, we call γ the virtual linguistic

intuitionistic fuzzy numbers.

In the paper, we denote Γ[0,g] = {(sα ,sβ )|sα ,sβ ∈
S[0,g]} as all linguistic intuitionistic fuzzy num-

bers defined on S[0,g]. For any (sα ,sβ ), (sα1
,sβ1

),
(sα2

,sβ2
) ∈ Γ[0,g], we have the following operators

inspired by operations of intuitionistic fuzzy sets:
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• (sα1
,sβ1

)∪(sα2
,sβ2

)= (max(sα1
,sα2

),min(sβ1
,sβ2

));

• (sα1
,sβ1

)∩(sα2
,sβ2

)= (min(sα1
,sα2

),max(sβ1
,sβ2

));

• (sα ,sβ )
c = (sβ ,sα);

• (sα1
,sβ1

)⊆ (sα2
,sβ2

) iff sα1
� sα2

, and sβ1
� sβ2

;

• (sα1
,sβ1

) = (sα2
,sβ2

) iff sα1
= sα2

, and sβ1
= sβ2

.

Let (sα ,sβ ),(sα1
,sβ1

),(sα2
,sβ2

) ∈ Γ[0,g], λ > 0,

the following operations of linguistic intuitionistic

fuzzy numbers have been defined 45:

• (sα1
,sβ1

)⊕ (sα2
,sβ2

) = (sα1+α2− α1α2
g
,s β1β2

g
);

• (sα1
,sβ1

)⊗ (sα2
,sβ2

) = (s α1α2
g
,sβ1+β2− β1β2

g
);

• λ (sα ,sβ ) = (sg−g(1− α
g )

λ ,sg( β
g )

λ );

• (sα ,sβ )
λ = (sg( α

g )
λ ,sg−g(1− β

g )
λ ).

Accordingly, the linguistic intuitionistic fuzzy

weighted averaging operator have been proposed:

Let γ j = (sα j ,sβ j)∈ Γ[0,g]( j = 1, . . . ,n) and w j be the

weight of γ j, satisfying 0 � w j � 1( j = 1, . . . ,n) and
n
∑
j=1

w j = 1. Then the linguistic intuitionistic fuzzy

weighted averaging operator is

LIFWA(γ1, . . . ,γn)

= (sg−g∏n
j=1(1−

α j
g )ω j ,sg∏n

j=1(
β j
g )ω j

). (1)

As a special case, if w = (1
n , . . . ,

1
n), then Eq.(1) is

reduced to the arithmetic aggregation operator:

LIFWA(γ1, . . . ,γn)

= (s
g−g∏n

j=1(1−
α j
g )

1
n
,s

g∏n
j=1(

β j
g )

1
n
). (2)

Let a LMCDM problem: The decision maker is

asked to assess a set of alternatives X = {x1, . . . ,xm}
with respect to criteria C = {c1, · · · ,cn}, where the

initial linguistic term set is S = {s0, · · · ,sg}, then the

linguistic intuitionistic fuzzy assessment of alterna-

tive xi with respect to the criterion c j provided by the

decision maker is represented as

A j =< xi,s
j
α(xi),s

j
β (xi)>, (3)

where s j
α(xi),s

j
β (xi) ∈ S[0,g] and 0 � α + β � g,

s j
α(xi) represents the membership fuzzy linguistic

assessment of xi provided by the decision maker

with respect to the criterion c j, s j
β (xi) represents

the nonmembership fuzzy linguistic assessment of

xi provided by the decision maker with respect to

the criterion c j. Here, linguistic intuitionistic fuzzy

assessments of alternatives are obviously linguistic

intuitionistic fuzzy numbers on S.

For any A j of xi, due to α + β � g, we have

s j
α(xi) � s j

g−β (xi), inspired by the intuitionistic

fuzzy hesitation degree of intuitionistic fuzzy set,

we call si ∈ S as a linguistic intuitionistic fuzzy hes-

itation assessment of xi if s j
α(xi) � si � s j

g−β (xi),

and all linguistic intuitionistic fuzzy hesitation as-

sessments of xi are formed as a hesitant fuzzy lin-

guistic term set 47: H j
S(xi) = {si ∈ S|s j

α(xi) � si �
s j

g−β (xi)}. In the following, we denote A j =< xi,

s j
α(xi),s

j
β (xi)> as A j = (sα ,sβ ) when xi is clear.

Example 1. Let alternatives X = {x1,x2,x3}, cri-

teria C = {c1,c2,c3} and the initial linguistic term

set S = {s0 (nothing), s1 (very low), s2 (low), s3

(medium), s4 (high), s5 (very high), s6 (perfect)},

linguistic intuitionistic fuzzy assessments provided

by the decision maker d are shown in Table 1, in

which, such as for (s1,s3) of x1 with respect to c1,

the hesitant fuzzy linguistic term set is H1
S (x1) =

{si ∈ S|s1 � si � s6−3} = {s1,s2,s3}. All hesitant

fuzzy linguistic term sets of three alternatives with

respect to criteria are shown in Table 2.

Table 1. Linguistic intuitionistic assessments of alternatives.

c1 c2 c3

x1 (s1,s3) (s4,s1) (s4,s2)

d x2 (s2,s3) (s3,s3) (s0,s4)

x3 (s4,s0) (s1,s4) (s4,s0)

Table 2. The hesitant fuzzy linguistic term sets of alternatives
based on Table 1.

c1 c2 c3

x1 {s1,s2,s3} {s4,s5} {s4}
d x2 {s2,s3} {s3} {s0,s1,s2}

x3 {s4,s5,s6} {s1,s2} {s4,s5,s6}
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3. The distance between two linguistic
intuitionistic fuzzy numbers

The distance measure is an important notion in ex-

isted TOPSIS methods. Inspired by the distance

measure of intuitionistic fuzzy sets27, we can define

the following Hamming distance between two lin-

guistic intuitionistic fuzzy sets.

Definition 2. Let A = (sα1
,sβ1

) and B = (sα2
,sβ2

)
be two linguistic intuitionistic fuzzy numbers. Then

Hamming distance between A and B is as follows:

d(A,B) =
|α1 −α2|+ |β1 −β2|+ |π1 −π2|

2
, (4)

where π1 = g−α1 −β1,π2 = g−α2 −β2.

Proposition 1. The distance d(A,B) between A and
B satisfies: (1) 0 � d(A,B) � g; (2) A = B iff
d(A,B) = 0; (3) d(A,B) = d(B,A);(4) If A ⊆ B ⊆
C for A,B,C ∈ Γ[0,g], then d(A,B) � d(A,C) and
d(B,C)� d(A,C).

Proof. (2) and (3) are obvious. We only prove (1)

and (4).

According to 0 � αi,βi,πi � g and αi + βi +
πi = g (i = 1,2), we can obtain 0 � d(A,B) =
|α1−α2|+|β1−β2|+|π1−π2|

2
� α1+α2+β1+β2+π1+π2

2
= g,

i.e., (1) holds.

We have α1 � α2 � α3 and β1 � β2 � β3 due to

A ⊆ B ⊆C. Then d(A,C)−d(A,B) =
|α1−α3|+|β1−β3|+|π1−π3|

2
− |α1−α2|+|β1−β2|+|π1−π2|

2

= α3−α1+β1−β3+|π1−π3|
2

− α2−α1+β1−β2+|π1−π2|
2

=
α3−α2+β2−β3+|π1−π3|−|π1−π2|

2
� α3−α2+β2−β3−|π2−π3|

2

= α3−α2+β2−β3−|α3−α2+β3−β2|
2

�
α3−α2+β2−β3−|α3−α2|−|β3−β2|

2
= α3−α2+β2−β3−α3+α2−β2+β3

2
= 0, i.e., d(A,B) � d(A,C) holds, similarly,

d(B,C)� d(A,C) holds.

Example 2. In Example 1, for A1 = (s1,s3) of x1,

A1 = (s2,s3) of x2 and A3 = (s4,s0) of x3, due to

s1 < s2 < s4 and s3 = s3 > s0, we have A1 ⊆ A2 ⊆ A3,

in addition, π1 = 6− 1− 3 = 3, π2 = 6− 2− 3 = 1

and π3 = 6−4−0 = 2,

d(A1,A2) =
|1−2|+ |3−3|+ |3−1|

2
= 1,

d(A1,A3) =
|1−4|+ |3−0|+ |3−2|

2
= 3.5,

d(A2,A3) =
|2−4|+ |3−0|+ |1−2|

2
= 3.

Hence, d(A1,A2) < d(A1,A3) and d(A2,A3) <
d(A1,A3).

4. The linguistic intuitionistic fuzzy set
TOPSIS method

In this section, we present the linguistic intuitionis-

tic fuzzy set TOPSIS method to solve LMCDMs, the

method is mainly consisted of the four phases, i.e.,

1. construct the linguistic intuitionistic fuzzy de-

cision matrix;

2. determine the positive and negative ideal so-

lutions of alternatives;

3. calculate the relative closeness degree of ev-

ery alternative;

4. rank alternatives according to their relative

closenesses degree.

Where, we use the linguistic intuitionistic fuzzy de-

cision matrix to express linguistic assessments of

alternatives, i.e., in LMCDMs, we utilize linguis-

tic intuitionistic fuzzy sets on S and weights of cri-

teria to represent uncertain linguistic assessments

of alternatives provided by decision maker with re-

spect to criteria, which is described in Subsection

4.1. In Subsection 4.2, based on the linguistic intu-

itionistic fuzzy decision matrix, we adopt ∪ and ∩
operations of linguistic intuitionistic fuzzy sets and

the linguistic intuitionistic fuzzy weighted averaging

operator to determine the positive and negative ideal

solutions of alternatives. In Subsection 4.3, we use

Hamming distance between linguistic intuitionistic

fuzzy assessment of each alternative and the positive

and negative ideal solutions to calculate the relative

closeness degree of each alternative, then according

to relative closeness degrees, we rank the preference
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order of all alternatives. We also provide Algorithm

1 in the end of Subsection 4.3 to automatically deal

with LMCDM problems.

4.1. The linguistic intuitionistic fuzzy decision
matrix

Let W = {w1, . . . ,wn} be weights of criteria C =
{c1, · · · ,cn}, Ai j = (sαi j ,sβi j) be linguistic intuition-

istic fuzzy assessment of the alternative xi provided

by decision maker with respect to the criterion c j.

Then the linguistic intuitionistic fuzzy decision ma-

trix of a LMCDM can be formed as follows:

D = (Ai j)m×n

=

c1(w1) . . . cn(wn)
x1

x2

...

xm

⎛
⎜⎜⎜⎝

(sα11
,sβ11

)
(sα21

,sβ21
)

...

(sαm1
,sβm1

)

. . .

. . .

. . .

. . .

(sα1n ,sβ1n)
(sα2n ,sβ2n)

...

(sαmn ,sβmn)

⎞
⎟⎟⎠,

(5)

Example 3. In Example 1, suppose that weights of

criteria C = {c1,c2,c3} is W = {0.3,0.4,0.3}, then

the linguistic intuitionistic fuzzy decision matrix of

the LMCDM is

D = (Ai j)3×3

=

c1(0.3) c2(0.4) c3(0.3)
x1

x2

x3

⎛
⎝

(s1,s3)
(s2,s3)
(s4,s0)

(s4,s1)
(s3,s3)
(s1,s4)

(s4,s2)
(s0,s4)
(s4,s0)

⎞
⎠.

4.2. The positive and negative ideal solutions of
alternatives

According to the linguistic intuitionistic fuzzy deci-

sion matrix D (Eq.(5)), we use ∪ and ∩ operations

of linguistic intuitionistic fuzzy numbers and the lin-

guistic intuitionistic fuzzy weighted averaging oper-

ator to determine the positive and negative ideal so-

lutions of alternatives, formally, for each column of

D, ∪ and ∩ of linguistic intuitionistic fuzzy sets are

as follows:

∨c j = (s∨α j ,s∨β j) =
m⋃

i=1

Ai j =
m⋃

i=1

(sαi j ,sβi j)

= (max{sα1 j , . . . ,sαm j},min{sβ1 j , . . . ,sβm j}),

∧c j = (s∧α j ,s∧β j) =
m⋂

i=1

Ai j =
m⋂

i=1

(sαi j ,sβi j)

= (min{sα1 j , . . . ,sαm j},max{sβ1 j , . . . ,sβm j}).
Based on ∨c j, ∧c j and weights W = {w1, . . . ,wn}
of criteria C = {c1, · · · ,cn}, we utilize the linguistic

intuitionistic fuzzy weighted averaging operator to

determine the positive ideal solution (PIS) and the

negative ideal solution (NIS) of alternatives, i.e.,

PIS = (sαp ,sβp) = LIFWA(∨c1, . . . ,∨cn)

= (s
g−g∏n

j=1(1−
∨α j

g )w j ,sg∏n
j=1(

∨β j
g )w j

), (6)

NIS = (sαn ,sβn) = LIFWA(∧c1, . . . ,∧cn)

= (s
g−g∏n

j=1(1−
∧α j

g )w j ,sg∏n
j=1(

∧β j
g )w j

). (7)

Example 4. According to D in Example 1,

we have ∨c1 =
⋃3

i=1 Ai1 = (max{s1,s2,s4},min{
s3,s3,s0}) = (s4,s0), ∧c1 =

⋂3
i=1 Ai1 = (min{s1,s2,

s4},max{s3,s3,s0}) = (s1,s3), ∨c2 = (s4,s1), ∧c2 =
(s1,s4), ∨c3 = (s4,s0) and ∧c2 = (s0,s4). Based on

Eqs.(6) and (7), we can obtain PIS and NIS of D,

PIS = LIFWA(∨c1,∨c2,∨c3)

= (s
6−6∏3

j=1(1−
∨α j

6 )w j ,s6∏3
j=1(

∨β j
6 )w j

),

= (s6−6×(1− 4
6 )
,s6×0× 1

6×0)

= (s4,s0),

NIS = LIFWA(∧c1,∧c2,∧c3)

= (s
6−6∏3

j=1(1−
∧α j

6 )w j ,s6∏3
j=1(

∧β j
6 )w j

)

= (s6−6×(1− 1
6 )

0.7×1,s6×( 3
6 )

0.3×( 4
6 )

0.7)
.
= (s0.72,s3.65).

4.3. The relative closeness and the ranking of
alternatives

To rank alternatives, we first calculate the relative

closeness degree of every alternative, theoretically,
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the relative closeness degree is determined by dis-

tances between the linguistic intuitionistic fuzzy as-

sessment of each alternative and the positive and

negative ideal solutions. Based on Eq.(5), we use

the linguistic intuitionistic fuzzy weighted averaging

operator to obtain the linguistic intuitionistic fuzzy

set of each alternative in D, i.e., for each row of D,

the linguistic intuitionistic fuzzy set Ai of xi is

Ai = (sαi ,sβi) = LIFWA(Ai1, . . . ,Ain)

= (sg−g∏n
j=1(1−

αi j
g )w j ,sg∏n

j=1(
βi j
g )w j

). (8)

Based on Ai of xi, PIS (Eq.(6)), NIS (Eq.(7)) and

Eq.(4), Hamming distances between the linguistic

intuitionistic fuzzy set of each alternative and the

positive and negative ideal solutions are

d(Ai,PIS) =
|αi −αp|+ |βi −βp|+ |πi −πp|

2
, (9)

d(Ai,NIS) =
|αi −αn|+ |βi −βn|+ |πi −πn|

2
, (10)

where, πi = g−αi −βi, πp = g−αp −βp and πn =
g−αn −βn.

Originated from the TOPSIS method, the rank-

ing of alternatives is based on “the shortest distance

from the positive ideal solution and the farthest from

the negative ideal solution”, formally, this is also ful-

filled by the relative closeness degree of each alter-

native in existed TOPSIS methods. Based on Ham-

ming distance between the linguistic intuitionistic

fuzzy set of each alternative and the positive and

negative ideal solutions (Eqs.(9) and (10)), we pro-

vide the following relative closeness degree C(xi) of

each alternative xi,

d−
max = max{d(A1,NIS), . . . ,d(Am,NIS)}, (11)

d+
min = min{d(A1,PIS), . . . ,d(Am,PIS)}, (12)

C(xi) =
1

2
(
d(Ai,NIS)

d−
max

+
d+

min
d(Ai,PIS)

). (13)

Formally, C(xi) is in [0,1] for any alternative xi
and a monotone function in its components, i.e.,
C(xi) is increasing for d(Ai,NIS), and decreasing for

d(Ai,PIS). Based on relative closeness degrees of

alternatives, we can obtain the ranking of alterna-

tives as follows: ∀xi,xi′ ∈ X ,

xi ≺ xi′ if and only if C(xi)�C(xi′). (14)

Example 5. According to D in Example 1 and

Eq.(8), we obtain the linguistic intuitionistic fuzzy

assessment of each alternative as follows:

A1 = LIFWA((s1,s3),(s4,s1),(s4,s2))

= (s6−6×(1− 1
6 )

0.3×(1− 4
6 )

0.7 ,s6×( 3
6 )

0.3×( 1
6 )

0.4×( 2
6 )

0.3)
.
= (s3.38,s1.71),

A2 = LIFWA((s2,s3),(s3,s3),(s0,s4))
.
= (s1.98,s3.31),

A3 = LIFWA((s4,s0),(s1,s4),(s4,s0))

= (s6−6×(1− 4
6 )

0.6×(1− 1
6 )

0.4 ,s6×( 0
6 )

0.3×( 1
6 )

0.4×( 2
6 )

0.3)
.
= (s3.10,s0),

Based on PIS and NIS in Example 4 and

Eqs.(9) and (10), we can obtain d(A1,PIS) =
|3.38−4|+|1.71−0|+|0.91−2|

2
=1.71 and d(A1,NIS) =

|3.38−0.72|+|1.71−3.65|+|0.91−1.63|
2

=2.16, similarly,

d(A2,PIS) = 3.31 and d(A2,NIS) = 1.26,

d(A3,PIS) = 0.795 and d(A3,NIS) = 3.545. Ac-

cording to Eqs.(11), (12) and (13), we obtain

d−
max = max{2.16,1.26,3.545}= 3.545,

d+
min = min{1.71,3.31,0.795}= 0.795,

C(x1) =
1

2
(

2.16

3.545
+

0.795

1.71
) = 0.535,

C(x2) =
1

2
(

1.26

3.545
+

0.795

3.31
) = 0.30,

C(x3) =
1

2
(
3.545

3.545
+

0.795

0.795
) = 1.

Hence, according to Eq.(14), the ranking of

{x1,x2,x3} is x2 ≺ x1 ≺ x3, i.e., x3 is the most sat-

isfying alternative.

Based on discussions in Subsections 4.1, 4.2 and

4.3, we provide the following algorithm to carry

out the linguistic intuitionistic fuzzy set TOPSIS

method to solve LMCDMs.

Algorithm 1
Input: The numbers of alternatives (m) and criteria

(n), the linguistic term set S = {s0,s1, · · · ,sg}.

Output: The ranking of alternatives and the most

satisfying alternative.

Begin
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Step 1: According to the membership and nonmem-

bership fuzzy linguistic assessments and Eq.(5), the

linguistic intuitionistic fuzzy decision matrix D of

the LMCDM problem can be constructed;

Step 2: For each column of D, calculate ∨c j and

∧c j, then the linguistic intuitionistic fuzzy weighted

averaging operator is used to determine PIS (Eq.(6))

and NIS (Eq.(7));

Step 3: For each row of D, the linguistic intuition-

istic fuzzy weighted averaging operator is used to

obtain the linguistic intuitionistic fuzzy assessment

Ai (Eq.(8)) of each alternative xi;

Step 4: For each alternative, Hamming distances

d(Ai,PIS) and d(Ai,NIS) between each Ai and PIS

(or NIS) are calculated by Eqs.(9) and (10), the

maximum Hamming distance d−
max (Eq.(11)) of all

d(Ai,NIS)(i = 1, . . . ,m) and the minimum Ham-

ming distance d+
min (Eq.(12)) of all d(Ai,PIS)(i =

1, . . . ,m) are obtained, then the relative closeness

degree C(xi) of each alternative xi is calculated by

Eq.(13);

Output: xi ≺ xi′ if and only if C(xi) � C(xi′) by us-

ing Eq.(14).

end

5. Numerical example

In this section, we utilize an example to illustrate

the practicality of the linguistic intuitionistic fuzzy

set TOPSIS method, and compare the linguistic in-

tuitionistic fuzzy set TOPSIS method with the HFL-

VIKOR method46, the symbolic aggregation-based

method47 and the HFL-TOPSIS method48. The ex-

ample initially used in reference46 to show the HFL-

VIKOR method.

Example 6. 46 A company intends to select an ERP

system to implement from three candidates A =
{a1,a2,a3}. To make a more reasonable decision,

the chief information officer (CIO) of the company

assesses the candidate ERP systems in terms of three

criteria, i.e., c1 (potential cost), c2 (function), and c3

(operation complexity). The weights of these crite-

ria are 0.3, 0.5 and 0.2. Since the three criteria are

qualitative, the CIO gives his assessment values in

linguistic expressions (shown in Table 3). Reference
46 used S = {none (s−3), very low (s−2), low (s−1),

medium (s0), high (s1), very high (s2), perfect (s2)}.

Here, we use the linguistic term set S′ = {none (s0),

very low (s1), low (s2), medium (s3), high (s4), very

high (s5), perfect (s6)}.

Table 3. The hesitant fuzzy linguistic term sets of alternatives.

c1 c2 c3

a1 {s1,s2,s3} {s2,s3} {s1,s2,s3}
a2 {s1,s2,s3} {s1,s2,s3} {s−2,s−1,s0}
a3 {s2,s3} {s1,s2,s3} {s3}

By using the linguistic intuitionistic fuzzy set

TOPSIS method (Algorithm 1), the LMCDM prob-

lem can be carried out as follows:

Step 1: According to Table 3 and Eq.(5), we use

S′ to obtain the linguistic intuitionistic fuzzy deci-

sion matrix D, i.e.,

D =

c1 c2 c3

a1

a2

a3

⎛
⎝

(s4,s0)
(s4,s0)
(s5,s0)

(s5,s0)
(s4,s0)
(s4,s0)

(s4,s0)
(s1,s3)
(s3,s3)

⎞
⎠

In Table 3, such as for hesitant fuzzy linguistic

term sets {s1,s2,s3} of a1 with respect to c1, in S′,
{s1,s2,s3} is transformed as {s4,s5,s6}, then we se-

lect s4 =min{s4,s5,s6} as the membership fuzzy lin-

guistic assessment of a1 with respect to c1 and s0 =
sg−max{4,5,6} as the nonmembership fuzzy linguistic

assessment of a1 with respect to c1, i.e., the linguis-

tic intuitionistic fuzzy set of a1 with respect to c1 is

(s4,s0), others linguistic intuitionistic fuzzy sets in

D can be similarly obtained. Formally, for any hesi-

tant fuzzy linguistic term set {si, . . . ,s j}(i � . . .� j)
on S = {s0, . . . ,sg}, (si,sg− j) is a linguistic intuition-

istic fuzzy set on S due to i+ g− j = g− ( j− i) �
g. This does not mean that linguistic intuitionistic

fuzzy sets and hesitant fuzzy linguistic term sets on

S are equal to each other, because in real world prac-

tice, a decision maker provides a hesitant fuzzy lin-

guistic term set {si, . . . ,s j}, it does not imply that

si is membership fuzzy linguistic assessment and

sg− j is nonmembership fuzzy linguistic assessment.

Here, we only limit discussion in a formal form, and

we think that hesitant fuzzy linguistic term set and

linguistic intuitionistic fuzzy set are two alternative

tools for representing linguistic assessments of alter-

natives in linguistic decision making.
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Step 2: For each column of D, we have

∨c1 = (max{s4,s4,s5},min{s0,s0,s0}) = (s5,s0),

∨c2 = (max{s5,s4,s4},min{s0,s0,s0}) = (s5,s0),

∨c3 = (max{s4,s1,s3},min{s0,s3,s3}) = (s4,s0),

∧c1 = (min{s4,s4,s5},max{s0,s0,s0}) = (s4,s0),

∧c2 = (min{s5,s4,s4},max{s0,s0,s0}) = (s4,s0),

∧c3 = (min{s4,s1,s3},max{s0,s3,s3}) = (s1,s3).

Based on Eqs.(6) and (7), we obtain the positive and

negative ideal solutions are

PIS = LIFWA(∨c1,∨c2,∨c3)

= (s6−6×(1− 5
6 )

0.8×(1− 4
6 )

0.2 ,s6×( 0
6 )

0.3+0.5+0.2)
.
= (s4.86,s0),

NIS = (sαn ,sβn) = LIFWA(∧c1,∧c2,∧c3)

= (s6−6×(1− 4
6 )

0.8×(1− 1
6 )

0.2 ,s6×( 0
6 )

0.8×( 3
6 )

0.2)
.
= (s3.6,s0).

Step 3: For each row of D, according to Eq.(8),

we have

A1 = LIFWA((s4,s0),(s5,s0),(s4,s0))

= (s6−6×(1− 4
6 )

0.5×(1− 5
6 )

0.5 ,s6×( 0
6 )

0.3+0.5+0.2)
.
= (s4.58,s0),

A2 = LIFWA((s4,s0),(s4,s0),(s1,s3))
.
= (s3.6,s0),

A3 = LIFWA((s5,s0),(s4,s0),(s3,s3))
.
= (s4.24,s0),

Step 4: For each alternative, according to Eqs.(9)

and (10), we obtain the following Hamming dis-

tances

d(A1,PIS) =
|4.58−4.86|+ |0−0|+ |1.42−1.14|

2
= 0.28,

d(A1,NIS) =
|4.58−3.6|+ |0−0|+ |1.42−2.4|

2
= 0.98,

d(A2,PIS) = 1.26,d(A2,NIS) = 0,

d(A3,PIS) = 0.62,d(A2,NIS) = 0.64,

Based on Eqs.(11), (12) and (13), the maximum

Hamming distance, the minimum Hamming dis-

tance and the relative closeness degree of each al-

ternative are as follows:

d−
max = max{0.98,0,0.64}= 0.98,

d+
min = min{0.28,1.26,0.618}= 0.28,

C(x1) =
1

2
(
0.98

0.98
+

0.28

0.28
) = 1,

C(x2) =
1

2
(

0

0.98
+

0.28

1.26
)
.
= 0.22,

C(x3) =
1

2
(
0.64

0.98
+

0.28

0.62
)
.
= 0.55.

Accordingly, the ranking of three alternatives is a2 ≺
a3 ≺ a1 according to Eq.(14), and the set of most sat-

isfying alternatives is AMS = {a1}.

In the following, we compare the linguistic intu-

itionistic fuzzy set TOPSIS method with the HFL-

VIKOR method, the symbolic aggregation-based

method and the HFL-TOPSIS method, in which,

the HFL-VIKOR method, the symbolic aggregation-

based method and the HFL-TOPSIS method trans-

form assessments of alternatives into HFLTSs based

on Table 3, however, the linguistic intuitionistic

fuzzy set TOPSIS method transforms assessments of

alternatives into linguistic intuitionistic fuzzy sets,

we carry out comparison of four methods as follows.

a) The positive and negative ideal solutions:

The HFL-VIKOR method46 and the HFL-TOPSIS

method48 utilized the score function, the variance

function, the Max and Min operators of HFLTSs to

obtain PIS and NIS, this means that their PIS or NIS

are one of HFLTSs of alternatives, such as in Ta-

ble 4, {s3} of PIS is HFLTS of c3, {s−2,s−1, s0}
of NIS is HFLTS of c3. Its drawback is that PIS or

NIS may be a HFLTS of an alternative, such as NIS

({s1,s2,s3},{s1,s2, s3},{s−2,s−1,s0}) is the HFLTS

of a2, i.e., this makes that a2 is the worst alternative.

The symbolic aggregation-based method47 uti-

lized Min-upper and Max-lower operators to obtain

the upper bound and the lower bound of each HFLTS

and construct the core information of alternatives

(CIA), such as for c1, Min bounds of a1, a2 and

a3 are s1, s1 and s2, so the Min-upper of c1 is s2.

Max bounds of a1, a2 and a3 are s3, s3 and s3, so the

Max-lower of c1 is s3, hence CIA for c1 is [s2,s3].
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Intuitively, CIA reduces HFLTSs into linguistic in-

tervals, especially, if the Min-upper is equal to the

Max-lower for each criterion, then CIA contain cer-

tain linguistic information, such as [s3,s3] for c3 in

Table 4, which maybe loss a lot of useful informa-

tion, and there is no any hesitant fuzzy linguistic in-

formation in CIA.

In the linguistic intuitionistic fuzzy set TOPSIS

method, we use linguistic intuitionistic fuzzy num-

bers on the linguistic term set S to represent assess-

ments of alternatives, and utilize Union and Inter-

section of linguistic intuitionistic fuzzy numbers and

the linguistic intuitionistic fuzzy weighted averag-

ing operator to obtain PIS and NIS, which are still

linguistic intuitionistic fuzzy numbers, i.e., hesitant

fuzzy linguistic information PIS are contained in PIS

and NIS, because we use the linguistic intuitionistic

fuzzy weighted averaging operator, our PIS and NIS

are different with PIS and NIS in methods 46,47,48,

this can be seen from Table 4.

b) The ranking of alternatives: In the HFL-

VIKOR method46, the hesitant fuzzy linguistic

group utility measure HFLGUi and the hesitant

fuzzy individual regret measure HFLIRi for the al-

ternative ai are defined by the hesitant fuzzy linguis-

tic Euclidean Lp−metric, then the hesitant fuzzy lin-

guistic compromise measure HFLCi is established,

HFLCi = θ
HFLGUi −HFLGU+

HFLGU−−HFLGU+ +

(1−θ)
HFLIR1 −HFLIR+

HFLIR−−HFLIR+ ,

in which, HFLGU+ = min{ HFLGU1, HFLGU2,

HFLGU3}, HFLGU− = max{ HFLGU1, HFLGU2,

HFLGU3}, HFLIR+ = min{ HFLIR1, HFLIR2,

HFLIR3} and HFLIR− = max{ HFLIR1, HFLIR2,

HFLIR3}, and θ ∈ [0,1] is the weight of the strategy

of the majority of criteria or the maximum overall

utility. By ranking HFLGUi, HFLIRi and HFLCi in

descending order, the final optimal solution should

be the one that makes those measures attain the min-

imum values. Formally, the HFL-VIKOR method

is very effective in handling the noncommensurable

criteria, derives the compromise solution(s) which

consider not only maximizing the group utility for

the majority but mini- mizing individual regret for

the opponent as well and takes different weights of

the criteria into account.

In the symbolic aggregation-based method47,

based on the CIA of each alternative, a binary pref-

erence relation between two alternatives is calcu-

lated, and the nondominance degree (NDD) of each

alternative is used to obtain the set of nondom-

inated alternatives, which indicates the degree to

which alternative ai is not dominated by the remain-

ing ones. In the HFL-TOPSIS method48, the Eu-

clidean distance measure is used to obtain distances

between alternatives and the positive and negative

ideal solutions, then the relative closeness degree

(RC) of each alternative is calculated to rank alter-

natives, where weights of criteria are not used in the

symbolic aggregation-based method and the HFL-

TOPSIS method.

In the linguistic intuitionistic fuzzy set TOPSIS

method, we use Hamming distances between al-

ternatives and the positive and negative ideal solu-

tions to calculate the relative closeness of each al-

ternative. As shown in Table 5, the ranking of al-

ternatives are the same in the linguistic intuitionis-

tic fuzzy set TOPSIS method and the HFL-VIKOR

method46, however, calculation of the linguistic in-

tuitionistic fuzzy set TOPSIS method are simpler

than the HFL-VIKOR method. We notice that the

ranking results of the symbolic aggregation-based

method and the HFL-TOPSIS method are differ-

ent from that produced by the linguistic intuitionis-

tic fuzzy set TOPSIS method and the HFL-VIKOR

method, The reasons leading to this unconvincing

result can be set out as follows: for one thing,

with the symbolic aggregation-based method and

the HFL-TOPSIS method, the weights of differ-

ent criterion do not take into consideration; For

another thing, when aggregating the HFLTSs by

the symbolic aggregation operators, including the

Min-upper operator and the Max-lower operator, the

HFLTSs are reduced into linguistic intervals, which

losses quite a lot of useful information. When ag-

gregating the HFLTSs by Euclidean distance mea-

sure, including the normalized hesitant fuzzy lin-

guistic terms, it only considers the distances from

the ideal solution and from the negative-ideal solu-

tion, without considering their relative importance.
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Table 4: Main results of four methods
PIS NIS CIA

The method46 ({s2,s3},{s2,s3},{s3}) ({s1,s2,s3},{s1,s2,s3},{s−2,s−1,s0}) −
The method47 − − ([s2,s3], [s0,s1], [s3,s3])

The method48 ({s2,s3},{s2,s3},{s3}) ({s1,s2,s3},{s1,s2,s3},{s−2,s−1,s0}) −
Our method (s4.86,s0) (s3.6,s0) −

Table 5: The ranking of four methods

Using wights HFLC (NDDs or RC) The ranking The best one

The method46
√

(0∗,1−,0.6074) a2 ≺ a3 ≺ a1 a1

The method47 − (0,0.5,1) a1 ≺ a2 ≺ a3 a3

The method48 − (0.6531,0,0.8799) a2 ≺ a1 ≺ a3 a3

Our method
√

(1,0.22,0.55) a2 ≺ a3 ≺ a1 a1

Summary, in Example 6, we respectively use

hesitant fuzzy linguistic term sets and linguistic

intuitionistic fuzzy sets to represent linguistic as-

sessments of the LMCDM problem, then we com-

pare the linguistic intuitionistic fuzzy set TOPSIS

method with the HFL-VIKOR method, the symbolic

aggregation-based method and the HFL-TOPSIS

method, which are based on hesitant fuzzy linguistic

term sets. An intriguing problem is which method is

more reasonable among the above mentioned four

methods or which representation of the above men-

tioned four methods is more reasonable? In real

world practice, it is not possible to determine which

one is the best suitable alternative for a given de-

cision problem, this means that it is difficult to an-

swer the intriguing problem. Theoretically, the test-

ing criteria to evaluate the validity of MCDM meth-

ods in the same numerical data has been established

such as in 49, which can help us for our future re-

search works.

6. Conclusions

Motivated by linguistic intuitionistic fuzzy numbers,

in the paper, uncertain assessments information in

linguistic multi-criteria decision makings are ex-

press by linguistic intuitionistic fuzzy sets on lin-

guistic terms set, then Hamming distance between

two linguistic intuitionistic fuzzy sets and their prop-

erties are presented and analyzed. Accordingly, the

linguistic intuitionistic fuzzy set TOPSIS method for

LMCDM problems is proposed, compared with the

traditional TOPSIS methods, different the positive

ideal solution, the negative ideal solution and the rel-

ative closeness degrees of alternatives are provided,

based on the designed algorithm, LMCDM prob-

lems with linguistic intuitionistic fuzzy sets can be

automatically carried out. An example is also uti-

lized to illustrate the performance, usefulness and

effectiveness of the linguistic intuitionistic fuzzy

set TOPSIS method, and compare the method with

the HFL-VIKOR method, the symbolic aggregation-

based method and the HFL-TOPSIS method.
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