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Summary. A large number of experimental studies in animals 
and retrospective or non-randomised prospective studies in 
humans provide support for the concept that the microvascu- 
lar complications of diabetes mellitus are dependent on 
hyperglycaemia. This review focuses on four potential bio- 
chemical pathways linking hyperglycaemia to changes within 
the kidney which can plausibly be linked to the functional 
and structural changes characterising diabetic nephropathy. 
These four pathways are the polyol pathway, non-enzymatic 
glycation, glucose autoxidation and de novo synthesis of dia- 
cylglycerol leading to protein kinase C and phospholipase A2 

activation. Rather than being independent, there are several 
potential interactions between these four pathways which 
may explain confusing and overlapping effects observed in 
studies examining inhibitors of individual pathways. As 
many of the steps which follow on glucose metabolism are 
subject to modification by dietary and pharmacological 
means, the further delineation of the pathogenetic sequence 
leading to tissue damage in diabetes should allow a logical 
and effective approach to the prevention or treatment of the 
complications of diabetes. 

Despite an increased ability to control the metabolic dis- 
turbances of diabetes mellitus, diabetic nephropathy re- 
mains a major cause of morbidity and mortality. It is now 
the most common underlying problem in patients present- 
ing for management of end-stage renal failure in many 
Western countries, accounting for over 25 % of the cases. 
Whilst controversial, most data indicate that the liability 
to develop diabetic nephropathy is linked to the overall 
control of the blood glucose level. It should be remem- 
bered that the strongest evidence for this in human sub- 
jects comes from non-randomised prospective studies [1] 
or from retrospective studies [2] and that some similar 
retrospective studies have shown no clear association be- 
tween the degree of glycaemic control and the risk of 
diabetic nephropathy [3]. Animal studies have provided 
fairly direct support for an aetiological link between 
hyperglycaemia and histological changes in the kidney [4], 
but until results from the Diabetes Control and Complica- 
tions Trial are available [5], there is no absolute certainty 
of the link in humans between hyperglycaemia and 
diabetic nephropathy. However, the most reasonable po- 
sition to take at this stage, and the departure point for the 
discussion in the rest of this review, is that hyperglycaemia 
sets in motion a series of biochemical disturbances in criti- 
cal tissues (including the kidney) leading to functional 
changes, followed by irreversible structural changes and 

finally the features that we recognise as clinical disease. 
Whatever role we attribute to hyperglycaemia, it is appar- 
ent that this sequence is very much affected by genetic and 
environmental (such as dietary) factors that lead to a vari- 
able expression of disease even in those with a similar du- 
ration and severity of metabolic disturbance. 

Having accepted the surmise that hyperglycaemia is di- 
rectly linked to the development of diabetic nephropathy, 
there is no shortage of plausible biochemical mechanisms 
which could lead to functional changes and/or tissue dam- 
age. Because of available space, this review will focus on 
four biochemical pathways which have recently been the 
subject of extensive investigation. Where possible, poten- 
tial links with functional and structural changes in the kid- 
ney will be described. It willbe emphasised that the mech- 
anisms are not mutually exclusive and that there is the 
likelihood of important interactions between them. 

The polyol pathway (Fig. 1) 

A potential link between the formation of sorbitol from 
glucose catalysed by aldose reductase in tissues of diabetic 
subjects and the development of diabetic complications 
was first recognised more than 20 years ago [6-8]. Evi- 
dence for participation of the polyol pathway in the pa- 
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Fig. 1. The aldose reductase pathway 
with demonstrated or postulated bio- 
chemical consequences of potential relev- 
ance to the pathogenesis of diabetic ne- 
phropathy (and other complications of 
diabetes). GSH, reduced glutathione; 
GSS G, oxidized glutathione 

thogenesis of diabetic nephropathy comes mainly from 
animal data using aldose reductase inhibitors. Although 
the results from different laboratories have not been uni- 
form, most groups have been able to demonstrate that if 
administered from the time of induction of diabetes by 
streptozotocin in rats, a variety of aldose reductase inhibi- 
tors will reduce the subsequent increase in urinary albu- 
min excretion [9-12]. The increased glomerular filtration 
rate of early diabetes may also be normalized [11, 13] al- 
though this is not required for the effect on albumin excre- 
tion to be observed [12]. Human data relating to the 
effects of aldose reductase inhibitors in diabetic nephro- 
pathy are relatively sparse. It has recently been shown that 
the aldose reductase inhibitor ponalrestat decreases the 
hyperfiltration observed in some diabetic subjects [14]. 

Further evidence that the polyol pathway may play a 
role in diabetic complications has come from using galac- 
tose feeding of non-diabetic animals to achieve increased 
polyol accumulation without the other metabolic distur- 
bances of diabetes. Galactose is converted to galactitol by 
aldose reductase, and accumulates in tissues. It has 
been clearly demonstrated that galactose-feeding leads 
to the development of retinal lesions resembling those of 
diabetes in rats and dogs [15-17]. It also leads to changes 
in kidney physiology and structure resembling the effects 
of diabetes [18, 19], although the effectiveness of aldose 
reductase inhibitors in preventing the changes has dif- 
fered between studies. 

The mechanisms by which excessive activity of the 
polyol pathway could lead to complications of diabetes 
are complex and are summarised schematically in Fig- 
ure 1. It was initially considered that osmotic effects of 
sorbitol accumulation might damage tissues [20], but even 
in the lens of the eye where an osmotic effect is potentially 
the greatest sorbitol levels do not exceed 2 mmol/l, even 
after severe hyperglycaemia [21]. Moreover, although 
galactose feeding leads to an increase in nerve water con- 
tent, similar changes are not seen in experimental diabetes 
[22]. These and other observations make osmotic effects 
unlikely to be the major mechanisms of tissue damage as- 
sociated with the polyol pathway. 

Greene and co-workers have suggested that tissue 
damage secondary to polyol pathway activity is caused by 
the impairment of myo-inositol uptake consequent to sor- 
bitol accumulation [23, 24]. This causes depletion of tissue 
phosphoinositides, and would have the potential to result 
in decreased phosphatidylinositol bisphosphate hydro- 
lysis and decreased diacylglycerol formation [25]. Dia- 
cylglycerol is the regulatory activator of protein kinase C 
[26] which in turn activates sodium-potassium ATPase. 
Although there is evidence supporting parts of this se- 
quence especially in nerve [27] the situation in the kidney 
appears to be different. Diacylglycerol is produced in 
increased amounts by a de novo synthetic pathway in 
glomeruli [28] and cultured mesangial cells [29], and this 
is associated with increased, not decreased, protein ki- 
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nase C activity. Decreased myo-inositol uptake and con- 
tent, and polyphosphoinositide turnover can be demon- 
strated in glomeruli from diabetic rats [28], and this could 
contribute to impaired inositol trisphosphate release, 
which in turn could account for poor Ca 2+ mobilisation 
and mesangial cell contractile activity in mesangial cells 
cultured in conditions designed to simulate the diabetic 
environment [29, 30]. 

Even by 1971 it was recognised that important alter- 
ations in the ratio of pyridine nucleotides would occur as a 
result of flux through the polyol pathway [7]. Reduction of 
glucose to sorbitol utilises NADPH and oxidation of sor- 
bitol to fructose catalysed by sorbitot dehydrogenase in- 
creases NADH. 

Increased NADPH utilization by activity of the aldose 
reductase pathway could have several consequences in the 
cell. In particular, it could be linked to increased prosta- 
glandin synthesis in two possible ways. It would be ex- 
pected to lead to decreased levels of reduced glutathione 
(GSH), which in turn might be associated with increased 
endogenous hydrogen peroxide and cyclooxygenase activ- 
ity [32]. Alternatively, the NADPH utilization would be ex- 
pected to increase activity of the pentose phosphate path- 
way, providing triose phosphate intermediates for the de 
novo synthetic pathway for diacylglycerol (and sub- 
sequently prostaglandin synthesis). The de novo dia- 
cylglycerol synthetic pathwaywouldbe enhancedbythein- 
creased NADH:NAD + ratio, which would favour the 
formation of dihydroxyacetone at the triose isomerase 
step. The de novo pathway of diacylglycerol formation and 
its relation to prostaglandin synthesis is described more 
fully in a later section of this review. 

The final consequence of increased flux through the 
aldose reductase pathway which could be important in 
diabetic complications is increased formation of fructose. 
Non-enzymatic fructosylation of tissues occurs at a corn 
siderably increased rate compared with glycation [33] and 
fructose levels are increased up to 23-fold in tissues such as 
the lens where the aldose reductase pathway is active [34]. 
These observations provide an explanation for the ob- 
served effects of aldose reductase inhibitors in decreasing 
collagen fluorescence in diabetic rats [33, 35], an effect 
shared by aminoguanidine, an inhibitor of formation of 
advanced glycation end products. This provides a link be- 
tween the aldose reductase pathway and non-enzymatic 
gtycation. 

It can be seen that there are several consequences of 
increased flux of glucose through the aldose reductase 
pathway which could have relevance to diabetic compli- 
cations. There are abundant data from animal studies sup- 
porting a role for some of these effects in the early stages 
of diabetic nephropathy, but it should be emphasised that 
data in humans are very limited, and no studies have con- 
vincingly demonstrated reversal of established pathologi- 
cal changes following inhibition of aldose reductase. 

Non-enzymatic glycation 

It has been known for many years that glucose can form 
glycation products with protein (Schiff bases), by a non- 
enzymatic process dependent on the glucose concentra- 

tion. The Schiff bases rearrange to form the more stable 
Amadori products. These early glycation reactions are re- 
versible and therefore reach a steady state, even in long- 
lived proteins [36]. Particular interest has focused in re- 
cent years on the subsequent steps which can occur. The 
early glycation products may undergo a complex series of 
chemical rearrangements to form advanced glycation end 
products (AGEs), which accumulate over a life-time. By 
interacting with other proteins, they may form cross-links 
with significant structural effects. Aging in non-diabetic 
subjects is associated with progressive accumulation of 
AGEs, but the process is greatly accelerated by diabetes. 
As it has been shown that a highly significant correlation 
exists between accumulated levels of AGEs on collagen 
and severity of diabetic retinopathy [37], a pathogenetic 
role for them has been suggested. This is supported by ex- 
periments showing that an inhibitor of the advanced gly- 
cation product formation, aminoguanidine, prevented 
basement membrane thickening in diabetic rats [36]. 
Many other consequences of non-enz?anatic glycation 
have been postulated which might be of relevance to 
diabetic complications, but they are beyond the scope of 
this review. It should, however, be emphasised that there is 
an important potential link between the polyol pathway 
and non-enzymatic glycation, with aldose reductase in- 
hibitors having the ability to simulate the action of amino- 
guanidine in inhibiting diabetes-induced fluorescence in 
rat collagen [33, 35]. The description of specific macro- 
phage receptors for advanced glycation end products and 
their down-regulation by insulin [38] provides an addi- 
tional level of complexity. Moreover, non-enzymatic gly- 
cation of reactive amino groups in model proteins in- 
creases the rate of free radical production by nearly 
50-fold [39], providing a link with the oxidative damage 
described in the next section. 

Glucose autoxidation 

The metabolism of glucose can lead to the formation of re- 
active oxygen species [40]. This process is catalysed by 
metal ions. Oxidative modification of lipids and proteins 
can follow. It has been postulated that oxidative processes 
are major mechanisms for tissue damage in diabetes [41]. 
With respect to the kidney, the analogy between diabetic 
nephropathy and atherosclerosis has been drawn [42]. 
Oxidative modification of low density lipoproteins (LDL) 
is a key step in the formation of foam cells in atheroscle- 
rosis, as such modification is required to allow macro- 
phage receptors to recognise LDL [43]. It has been dem- 
onstrated that high fat diets exacerbate certain types of 
experimental nephropathy [44], perhaps by a similar 
mechanism to that occurring in atherosclerosis. Glucose- 
induced oxidative modification of lipids, especially LDL, 
would be expected to exacerbate this process. Controlled 
studies of the effect of diets of varying fat content or of 
pharmacological modification of hyperlipidaemia on the 
progress of diabetic nephropathy in humans are not yet 
available, but an uncontrolled study indicated a relation- 
ship between serum lipid levels and rate of progression of 
diabetic nephropathy in humans [45]. 
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Although human data are lacking, oxidative damage to 
proteins dependent on oxygen radical generation from 
glucose metabolism might also be important in the genesis 
of diabetic nephropathy. 

De novo synthesis of diacylglycerol, protein kinase C 
activation, phospholipase A2 activation and increased 
prostanoid synthesis (Fig. 2) 

Following some earlier observations on glucose conver- 
sion to lipids and phospholipids in mouse pancreatic islets 
[46] it was shown that glucose can be metabolised directly 
to diacylglycerol, by a process involving conversion of 
dihydroxyacetone phosphate to lysophosphatidic acid, 
phosphatidic acid and diacylglycerol in neonatal rat pan- 
creatic islets [47]. This pathway has now been shown to 
operate in many other tissues, including retinal capillary 
endothelial cells [48, 49] heart from diabetic rats [50], gra- 
nulation tissue in a skin chamber exposed to high glucose 
concentrations [51], glomeruli from diabetic rats [28] and 
mesangial cells isolated from diabetic rats or cultured 
under conditions designed to simulate diabetes [29]. 

Diacylglycerol is the regulatory stimulator of protein 
kinase C [26], and its elevation is the presumed mechan- 
ism for the elevated protein kinase C activity observed in 
several tissues obtained from diabetic animals or exposed 
in vitro to high glucose concentrations, including rat reti- 
nal capillary endothelial cells [49], rat granulation tissue 
[52], rat renal glomeruli [28, 53-55] and rat mesangial cells 
[29]. Activation of protein kinase C in turn could have 
several consequences of potential importance in the pa- 
thogenesis of diabetic complications [48] including en- 
hanced DNA synthesis and growth rate in vascular cells 
[56], increased hormone and growth factor receptor turn- 
over [57], increased smooth muscle contraction [58] and 
increased cyclic AMP responses to different hormones in 
vascular cells [591 . 

Another consequence of increased protein kinase C 
activity may be increased prostaglandin synthesis. In- 
creased glomerular and mesangial cell prostaglandin pro- 
duction in experimental diabetes was demonstrated sev- 
eral years ago [60, 61] and has been confirmed by many 

investigators. Part of the mechanism for increased prosta- 
glandin synthesis is presumably increased conversion of 
arachidonic acid to prostaglandins dependent on cyclo- 
oxygenase activation [62, 63] perhaps related to altered 
redox state of the cell due to aldose reductase activity 
[12, 31]. In addition, however, and probably playing a 
larger part in the increased glomerular prostaglandin pro- 
duction, increased phospholipase A2 activity has been 
demonstrated in glomeruli and mesangiat cells from 
diabetic rats [12, 29, 64]. Phospholipase A2 activation has 
been attributed to activation of protein kinase C [53-55] 
directly or via phosphorylation of lipocortin [65]. There 
are of course many ways in which elevated production of 
vasodilatory prostaglandins and/or thromboxaneA2 
could lead to the early functional and later structural 
changes in the kidney in diabetes, and much research has 
been devoted to delineating their role. Suffice it to say that 
it seems likely that overproduction of vasodilatory prosta- 
glandins by renal glomeruli plays a role in the early renal 
hyperfusion and hyperfiltration [62, 63, 66-68] although 
their exact contribution is controversial [69, 70]. The re- 
duction in mesangial cell contractility induced by prosta- 
glandin E2 and prostacyclin in vitro [30, 60] suggests that 
increased production of vasodilatory prostaglandins 
could also affect glomerular permeability. A recent report 
also suggests an important role for overproduction of 
thromboxane A2. Treatment of diabetic rats with a throm- 
boxane synthetase inhibitor greatly reduced the degree of 
albuminuria and the degree of renal type IV collagen gene 
expression [71]. The latter effect may well have resulted 
from decreased pressure within the glomerular loops, 
suggesting that thromboxane A2 might contribute to in- 
creased glomerular efferent arteriolar tone in diabetes. 

Conclusion 
From this brief review, it can be seen that there are several 
potential mechanisms by which hyperglycaemia could 
lead to a sequence of biochemical events culminating in 
the physiological changes characterising early diabetes. 
The later structural changes can be understood as long- 
term consequences of the biochemical and physiological 
changes. The exact role played by these processes, and the 
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contr ibut ion of  m a n y  o ther  physiological  and biochemical  
changes  observed  in diabetes which have no t  been  dealt  
with in this review remain  to be clarified. However ,  as 
m a n y  of  the processes  can be modif ied  by dietary or  phar-  
macological  means,  it is essential that  the detai led se- 
quence  of  events in the pathogenesis  of  diabetic nephro-  
pathy be defined by cont inuing and extending the 
combina t ion  of  cell biology, animal  and  h u m a n  ex- 
per imenta t ion  that  has led to  such dramat ic  advances in 
our  knowledge  in the last few years.  
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