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Abstract 

Understanding the relationship between photosynthesis, net primary productivity and growth 

in forest ecosystems is key to understanding how these ecosystems will respond to global 

anthropogenic change, yet the linkages among these components are rarely explored in detail. 

We provide the first comprehensive description of the productivity, respiration and carbon 

allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water 

deficit and soil fertility. Using the largest dataset assembled to date, ten sites in three 

countries all studied with a standardized methodology, we find that (i) gross primary 

productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-
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site variations in GPP have little power in explaining site-to-site spatial variations in net 

primary productivity (NPP) or growth because of concomitant changes in carbon use 

efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor 

proxy for its productivity. Instead, (iii) spatial patterns of biomass are much more driven by 

patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity 

or tree growth. Current theory and models of tropical forest carbon cycling under projected 

scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. 

By improving our understanding of poorly understood processes such as CUE, NPP 

allocation and biomass turnover times, we can provide more complete and mechanistic 

approaches to linking climate and tropical forest carbon cycling.  

 

Introduction 

What processes and drivers determine the spatial variation in growth rate and biomass of 

forest ecosystems and how are these processes responding to global atmospheric change? In 

trying to understand and predict the growth and biomass of forest ecosystems, much research 

and discussion has focused on two key features, namely understanding controls on 

photosynthesis and the accompanying process of carbon assimilation into ecosystems 

(Landsberg & Sands, 2010) and alternatively, quantifying the structure and spatial variation 

of woody biomass (Pan et al., 2013). As examples of the focus on photosynthesis, 1) optical 

remote sensing methods relate various metrics of greenness or photosynthetic activity to infer 

rates of photosynthesis (Running et al., 2004), 2) the global network of carbon dioxide (CO2) 

flux towers conducts observations of the exchange of CO2 between canopies and the 

atmosphere in order to infer controls on photosynthesis, respiration and net carbon balance 

(Law et al., 2002; Zhao et al., 2005; Beer et al., 2010), and 3) global land-surface models 

have a particular focus on representing how temperature, drought and CO2 serve as controls 
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of photosynthesis in the context of global change (Galbraith et al., 2010; Marthews et al., 

2012; Huntingford et al., 2013). As examples of the focus on quantifying woody biomass, 

forest inventories convert tree diameter, wood density and height estimates into estimates of 

spatial variation in biomass (Mitchard et al. 2014) and so may also quantify long-term 

changes in forest carbon balance (Lewis et al., 2009; Phillips et al., 2009), while radar and 

LiDAR-based remote sensing approaches estimate and map biomass and infer controls on 

forest processes (Saatchi et al., 2007; Asner et al., 2012). There is much merit in the research 

on photosynthesis and biomass, and much still to be learned. However, there are also a 

considerable number of intermediate processes that link photosynthesis and biomass, which 

receive relatively little scientific attention and yet are equally or even more important for 

understanding controls on the growth and biomass of tropical forest ecosystems (Fig. 1). 

 

For instance, it is frequently assumed that there is a fairly direct link between 

photosynthesis and woody growth rates and biomass (e.g. increasing water deficit leads to 

reduced photosynthesis, which leads to slower growth and lower biomass; Nepstad et al., 

2002). As another example, rising CO2 may stimulate photosynthesis, which in turn is 

expected to stimulate woody growth rates and lead to an increase in forest biomass and a net 

biomass carbon sink (Lewis et al., 2004). Conversely, changes in growth rates are often 

interpreted as directly signifying changes in net primary productivity (e.g. Feeley et al., 2007) 

and such an assumed relationship forms a basis of inferences in dendrochronology. Figure 1 

explores this chain of causality in more detail (Malhi, 2012): 

 

(i) The energy locked into carbon bonds through annual photosynthesis (gross primary 

productivity or GPP) is partially (50-70%) used for plant metabolic processes (i.e. 

autotrophic respiration used for growth or maintenance, with accompanying release of CO2), 
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and partially (30-50%) used for the net production of biomass (i.e. net primary productivity 

or NPP) (Marthews et al., 2012).  

 

(ii) The net primary productivity is allocated between various organs, in particular woody 

tissue, fine roots, and canopy leaves, flower and fruit. In tropical forest ecosystems, typically 

only around 30-50% of NPP is allocated to woody growth (Malhi et al., 2011). 

(iii) The relationship between woody growth and biomass is not direct. The standing live 

woody biomass of an ecosystem is a result of both input (woody biomass recruitment and 

growth) and output (mortality). A key feature of tropical forests, in contrast to the human-

disturbed temperate forests and fire-disturbed boreal forests, is that many of them are 

relatively old growth stands. The processes of tree recruitment/growth and mortality are of 

approximately equivalent magnitude in such forests and this can be expressed in terms of a 

woody biomass residence time ( ), which is defined as equal to above-ground woody 

biomass divided by above-ground woody productivity (Galbraith et al., 2013). 

 

The relative importance of these intermediate factors in influencing the relationship 

between photosynthesis and biomass is rarely examined. To explore them, it is necessary to 

quantify the major components of autotrophic respiration, of NPP and its allocation, and 

woody biomass residence time. In other words, it is necessary to generate a comprehensive 

description of the autotrophic carbon cycle. 

 

Here we focus our analysis on the lowland tropical forests of Amazonia (Fig. 2), probably 

the best studied of the major tropical forest regions. Previously, Malhi et al. (2009) 

synthesized data for three eastern Amazonian forests with similar climate and soil regimes to 

describe their full carbon cycle, including estimates of GPP and CUE. Working on a wider 
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Amazonian scale, Aragão et al. (2009) published data on NPP and its allocation for ten plots 

ranging through Brazil, Colombia and Peru. Thus far, no study has combined these two 

aspects to examine the full autotrophic carbon budget (as in Malhi et al., 2009) at a scale that 

begins to capture the variation of soil and climate conditions across Amazonia. 

 

Here, we study how autotrophic carbon cycle processes vary across lowland Amazonian 

forests in order to examine fundamental questions and assumptions about the linkages 

between photosynthesis, productivity and growth in old growth tropical forest ecosystems. In 

particular, we contrast the carbon budgets of humid and seasonally dry tropical forests to 

better understand the influences of rainfall regime on GPP, NPP, woody growth and biomass.  

To do so, we use a global network of sites where the components of the carbon cycle are 

being monitored in such detail, the Global Ecosystems Monitoring (GEM) network 

(gem.tropicalforests.ox.ac.uk), a subset of the Amazon forest inventory network RAINFOR 

(www.rainfor.org, Malhi et al., 2002; Phillips et al., 2009). We have recently completed 

detailed descriptions of the carbon cycle  at 16 RAINFOR-GEM plots in Amazonia (Araujo-

Murakami et al., 2014; da Costa et al., 2014; del Aguila-Pasquel et al., 2014; Doughty et al., 

2014; Malhi et al., 2014; Rocha et al., 2014). This represents the single most comprehensive 

effort in tropical forests to date, but there has been no multi-site analysis of these data. Here 

we synthesize results from the subset of these plots that cover lowland old-growth forests (10 

plots across 5 sites, incorporating 480 plot-months of intensive data collection). The dataset 

was stratified into two gradients, one set of plots in western Amazonia with relatively fertile 

but poorly structured soil and one set of plots in eastern Amazonia with infertile but better 

structured soils (Quesada et al., 2010; 2012), where each set of plots varies in its seasonal 

water deficit. Our focus is not to scale from these plots to the whole of the Amazon, but 
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rather to illustrate the importance of a full plant carbon budget perspective by asking the 

following questions: 

 

1. To what extent can key stand-level aspects of the lowland Amazon forest carbon 

cycle (such as GPP, NPP, CUE, and NPP allocation to canopy, wood, stem growth 

and fine roots) be predicted from rainfall patterns and from soil properties?  

2. Can net primary productivity or woody growth be reliably predicted from GPP, and, 

conversely, is the woody growth of a tropical forest stand a useful proxy for its 

NPP or GPP? If not, why not? 

3. What is the relative importance of different aspects of the carbon budget (GPP, CUE, 

NPP allocation and residence time) in determining spatial variation in biomass in 

Amazonian tropical forests? 

4. Are the relatively low values of biomass in seasonally dry tropical forests caused by a 

decrease in GPP and woody growth rates, or an increase in mortality rates?  

 

Materials and methods 

Field sites 

We collected several years of data on productivity, autotrophic respiration and 

components of the carbon budget from 10 plots at 5 sites (2 plots per site) in contrasting 

rainfall and soil regimes in Amazonia (Table 1; Fig. 2). Underlying data will be made 

available at the GEM network website (http://gem.tropicalforests.ox.ac.uk/data). The western 

Amazonian sites ranged from NE Peru (no dry season; del Aguila-Pasquel et al., 2014), 

through SE Peru (moderate dry season; Malhi et al., 2014) to Bolivia (strong dry season; 

Araujo-Murakami et al., 2014), which is located on the ecotone between humid Amazon 

forest and chiquitano dry forest. The eastern Amazonian sites ranged from humid forest in 

NE Amazonia (da Costa et al., 2014) to dry forest SE Amazonia (Rocha et al., 2014), which 
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sits close to the dry forest-savanna ecotone. The western Amazonian sites are on relatively 

fertile soils, while the eastern sites are on very infertile soils (Table 1). Western Amazonian 

soils generally have weaker physical structure, which may also affect forest mortality rates 

and turnover times (Quesada et al., 2012). The plots included in this analysis (except one fire 

experiment plot; Appendix S1) show little evidence of anthropogenic disturbance of the 

forest community structure, hosting mixed-age tree communities with little net increment in 

biomass.   

 

The small distance (typically a few km) between the two plots at each site could lead to 

issues of pseudo-replication. However, there are sufficient differences in both soil conditions 

and species composition within each pair to consider them independent sample points. At the 

NE Peru site (Allpahuayo), one plot is on white sand, while the other is on clay soils (del 

Aguila-Pasquel et al., 2014), resulting in very different species composition. Likewise, at the 

SE Peru site (Tambopata), one plot is in a palm-rich forest on Holocene floodplain, while the 

other is on an older Pleistocene terrace (Malhi et al., 2014). At the Bolivia site (Kenia), the 

plot on deeper soils has a species composition typical of humid Amazonian forest, whereas 

the plot on shallow soils is typical of dry chiquitano forests (Araujo-Murakami et al., 2014). 

At the NE Brazil site (Caxiuanã), one plot is on clay soils and the other on a sandy loam, with 

accompanying contrasts in species composition. At the SE Brazilian Amazonia site 

(Tanguro), there is greater similarity in species composition, but one plot experiences fire 

every year and the other site every few decades (Rocha et al., 2014) 

 

For the analysis of residence time and woody biomass, and to place our intensive plots in a 

regional context, we include the lowland Amazonian component of a larger biomass and 

woody growth rate dataset (n = 82 plots) reported by Galbraith et al. (2013). All sites studied 
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are mixed age forests with little evidence of non-equilibrium size structure. It is possible that 

fire dynamics at a multi-decadal scale has had some influence on the driest sites (Kenia and 

Tanguro: Araujo-Murakaml et al., 2014, Rocha et al., 2014). 

 

Field methods 

We adopt the field protocol of the GEM network (http://gem.tropicalforests.ox.ac.uk). 

Methods are described in detail in a manual on the website, as well as in the site-specific 

papers cited above, and are summarised here only briefly.  

 

The protocol measures and sums all major components of NPP and autotrophic 

respiration on monthly or seasonal timescales in each 1 ha forest plot (for site-specific details 

see Table S1 and Appendix S1). For NPP, this includes canopy litterfall (NPPcanopy) from 

litterfall traps at bimonthly to monthly intervals, estimates of leaf loss to herbivory from 

scans of litterfall, above-ground coarse woody productivity (NPPACW) of all medium-large 

(≥10 cm dbh) trees in the plot and small trees (2-10 cm dbh) in sub-plots via dendrometers at 

regular intervals, the turnover of branches on live trees by conducting transect censuses every 

three months of freshly fallen branch material from live trees, fine root productivity (NPPfine 

root) from ingrowth cores installed and harvested every three months, and estimation of course 

root productivity by applying a multiplying factor to above-ground woody productivity. For 

autotrophic respiration, rhizosphere respiration is estimated by subtracting the respiration of 

root-free soil from that of unaltered soil, above-ground woody respiration is estimated by 

measuring stem respiration on monthly timescales and scaling to the stand level by estimating 

stem surface area, below-ground course root and bole respiration is estimated by applying a 

multiplier to Rstem, and leaf dark respiration by measuring leaf dark respiration rates on sunlit 

and shaded leaves in two seasons, then scaling by estimates of sun and shade leaf fractions 
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and applying a correction of light inhibition of dark respiration. We recognise that many of 

these measurements have potential systematic uncertainties: we assign sampling or 

systematic uncertainties to each measurement, and rigorously propagate by quadrature the 

uncertainties through our calculations (Appendix S1).  

 

The measured components of NPP and Ra are then summed to estimate total NPP and 

autotrophic respiration Ra (Appendix S1). In plant-level autotrophic steady state conditions 

(and on annual timescales or longer where there is little net non-structural carbohydrate 

storage), gross primary productivity (GPP), the carbon taken up via photosynthesis, should be 

approximately equal to plant carbon expenditure (PCE), the amount of carbon used for NPP 

and autotrophic plant respiration (Ra) if there is no net accumulation of non-structural 

carbohydrates. Autotrophic steady state condition does not require the total plot carbon cycle 

to be in equilibrium, the plot can still be gaining or losing biomass or soil carbon stocks, as 

long as there is no substantial accumulation or loss of non-structural carbohydrates. Hence, 

we estimated GPP as the sum of NPP and Ra. We calculate the Carbon Use Efficiency (CUE) 

as the proportion of total GPP invested in NPP rather than Ra: 

  

CUE = NPP / GPP = NPP / (NPP + Ra)                                     (1) 

 

Our biometric estimate of GPP is indirect and depends on summing up components of NPP 

and Ra, each with their inherent sampling errors and systematic uncertainties. An alternative 

approach to estimating GPP (also with inherent errors) is from eddy covariance flux 

measurements. Comparisons of biometric approaches with flux- or canopy ecophysiology in 

six sites (5 tropical and one temperate broadleaf) demonstrate good agreement (Table S2, Fig. 
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S1; slope = 0.97  0.04, coefficient of determination= 0.61), suggesting that no major terms 

of the autotrophic carbon budget are being missed.  

 

Somewhat inevitably, any estimate of NPP may be biased towards underestimation because it 

neglects several small NPP terms, such as NPP lost as volatile organic emissions, non-

measured litter trapped in the canopy, or dropped from understorey plants below the litter 

traps. At a site in central Amazonia, volatile emissions were found to be a minor component 

of the carbon budget (0.13±0.06 Mg C ha
-1

 year
-1

; Malhi et al., 2009). For below-ground 

NPP, the allocation to root exudates and to mycorrhizae is neglected. In effect, we treat root 

exudation and transfer to mycorrhizae as rhizosphere autotrophic respiration rather than as 

NPP, which could potentially impact our CUE estimates. Given that these exudates are labile 

and rapidly respired by mycorrhizae and soil microfauna in the rhizosphere, this exudate NPP 

term is very similar to fine root autotrophic respiration in terms of carbon cycling. The fairly 

close agreement with independent estimates of GPP (Fig. S1; Table S2) suggest that there are 

no large missing terms or biases at the scale of the whole stand.  

 

Because our estimate of NPP includes only straightforward biomass production terms and 

neglects mycorrhizae, exudates and VOCs, it has recently been proposed that CUE should be 

termed the Biomass Production Efficiency (BPE; Vicca et al., 2012).  Here we retain the use 

of CUE to be compatible with the wider and older literature, but note that our CUE is 

equivalent to BPE. At the few tropical sites where the mycorrhizal component of rhizosphere 

respiration has been evaluated, it has values around 1-2 Mg C ha
-1

 year
-1

 (Kho et al., in 

review, Metcalfe et al., in preparation). This suggests that site-to-site variations in 

mycorrhizal activity are likely to contribute to a mismatch < 1 Mg C ha
-1

 year
-1

 between 

biomass production and total NPP. 
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It is important to note that our calculation of NPP is based on the summation of four 

independent measurements (litterfall, tree growth, fine root production and branchfall) and 

our estimate of GPP is based on the summation of seven independent measurements (the 

components of NPP, as well as leaf, stem and rhizosphere measurements). While some of 

these terms can carry substantial measurement and scaling uncertainties, if the uncertainties 

are independent for each measurement, some of these uncertainties potentially cancel one 

another and they propagate by quadrature to result in a manageable uncertainty in the final 

sum NPP or GPP (Appendix S1). For example, while there may be significant uncertainty in 

our measurement of root productivity or in our scaling of stem respiration, this does not result 

in unmanageable uncertainties in our estimates of GPP. By contrast, an eddy covariance-

based estimate of GPP is based on a single type of measurement (of net ecosystem 

exchange); hence any uncertainties in the method, such as underestimation of night-time 

respiration in stable atmospheric conditions, can result in an equivalent uncertainty in the 

final estimate of GPP. Hence, it could be argued that a carbon summation measurement 

comprised of seven independent measurements may potentially be more accurate than an 

eddy covariance-based estimate comprised of one measurement. Where the two approaches 

agree (as for many of the sites in Fig. S1), we can have increased confidence that both 

approaches are capturing the major components of the carbon cycle. 

 

In addition to measuring major components of the autotrophic carbon cycle, we measured 

precipitation at each location, using local automatic weather stations gap-filled with other 

weather station data and satellite rainfall products where necessary. Mean Maximum 

Climatological Water Deficit (MCWD), a measure of peak dry season water deficit, was then 

calculated following Aragão et al. (2007). We prefer the use of MCWD, rather than more 
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traditional annual precipitation, because it is a simple metric of dry season intensity and 

therefore more closely linked to the mechanisms (e.g. water deficits that lead to stomatal 

closure, leaf shedding, etc.) that limit GPP. 

 

The dataset presented represent the largest methodologically controlled analysis of carbon 

cycling for lowland tropical forests to date. Despite this, the number of plots analysed is low 

(n=10) and as discussed above, may be at risk of spatial autocorrelation; caution is warranted 

in interpretation. Thus, we apply statistical analysis to the dataset as a whole, but do not 

report statistics for individual regions (n=6 in west and n=4 in east) unless significance is 

very high.  

 

Analysis framework  

To examine what parameters explain the variation in total NPP, above-ground coarse 

wood productivity (NPPACW; a proxy for tree growth rates), and above-ground biomass 

among sites, we present a systematic framework to decompose the relationship between 

NPPACW and GPP into several terms in a productivity-allocation-turnover chain. As defined 

here, NPPACW includes the net recruitment and growth of small and large trees as calculated 

from allometric equations, but excludes branch turnover – hence it is equivalent to the above-

ground coarse woody productivity most usually determined from multiple censuses of forest 

plots (e.g. Malhi et al., 2004).  The framework follows as 

 

         (2) 

i.e. NPP = GPP × CUE         

      (3) 
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i.e. NPPACW = NPP × fractional allocation to above-ground wood 

For a mature forest, where biomass growth and mortality rates are similar and there is little 

net change in biomass, the above-ground woody biomass residence time ( , can be 

estimated as woody biomass divided by woody productivity (Galbraith et al., 2013). Hence 

biomass can be expressed as:  

   (4) 

 

The biomass residence time is largely determined by the mortality rates of medium and large 

trees. However, because large tree mortality events are stochastic and may be poorly captured 

by 1 ha plots, we use standing biomass and woody growth rates to determine residence times. 

The assumption is that over appropriate timescales (~ 10 years) the woody production and 

mortality are approximately equal (i.e. the forest is not significantly increasing in biomass 

compared to its standing biomass). However, woody production rates show much less 

variability than mortality at inter-annual scales, and hence better represent the mean mortality 

rate (in biomass terms) of a 1 ha plot. If the plot is still substantially aggrading (e.g. after a 

disturbance), our assumption will tend to underestimate residence time. 

 

We analysed the relationship between various components of the carbon cycle as a function 

of maximum climatological water deficits (MCWD), east vs. west region and the interaction 

of the two by means of general linear models. For CUE and carbon allocation fractions, a 

logit link function was specified. For those response variables with a normal error structure 

(GPP, NPP, AGB, ), an identity link function was specified. The minimal adequate model 

was chosen by stepwise evaluation using AIC. All analyses were conducted in R 3.0.1 (R 

Core Team, 2013).  
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Results 

Among the western (fertile) sites, mean annual precipitation (MAP) ranged from 1310 to 

2689 mm year
-1

, while seasonal differences in the timing of the precipitation resulted in a 

maximum climatological water deficit (MCWD) ranging from -6.2 mm (no dry season) to -

386 mm (strong dry season; Table 1). The eastern (infertile) sites varied similarly, with MAP 

ranging from 1770 to 2311 mm and MCWD from -203 mm (moderate dry season) to -482 

mm (very strong dry season).  

 

Estimates of carbon cycle components are presented in Table S3. GPP demonstrates a clear 

and significant negative relationship with increasing water deficit, declining from around 40 

Mg C ha
-1

 year
-1

 in the sites with the lowest MCWD to around 25 Mg C ha
-1

 year
-1

 at the sites 

with the highest MCWD (p < 0.001, Fig. 3a). There is no significant effect of soil regime (as 

delineated by the east vs. west sites) on GPP (p > 0.1).  

 

There is no significant overall relationship between CUE and MCWD (p > 0.1, Fig. 3b). We 

also detected no significant effect of soil regime (east vs. west) on CUE (p > 0.1). However, 

in the western (fertile) sites, CUE shows a steady and significant increase with increasing 

(more negative) MCWD, ranging from around 0.35 in the least seasonal sites, to around 0.41 

in the moderately seasonal sites, to around 0.45 in the driest sites (least squares regression: r
2
 

= 0.91; p = 0.002; Fig. 3b). Hence, the decline in GPP with increasing seasonality is largely 

offset by the increase in CUE (i.e. a greater reduction in Ra), leading to no significant 

relationship between NPP and MCWD or soil regime (Fig. 3c). To compare with literature 

where annual precipitation is used rather than MCWD, we reproduce an equivalent to Fig. 3, 

but plotted against annual precipitation, in supplementary material (Fig S2). As expected, the 

relationship between GPP and MCWD is stronger than annual precipitation (Fig S2a). 
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Figure 4a plots the relationship between NPP and GPP. In recognition of the autocorrelation 

between these two variables, our main purpose here is not to establish the significance of 

relationships, but to illustrate the range of values possible among the ten different plots. 

When the linear regression is forced through the origin, the mean slope (CUE) of the dataset 

is 0.39 ± 0.01.  However, there is substantial residual variance in CUE among sites. This is 

particularly noticeable in the fertile western sites, where the GPP ranges between 34 and 42 

Mg C ha
-1

 year
-1

 in five of the six plots (CUE between 0.34 and 0.46), with no corresponding 

trend in NPP.  

 

Within this dataset, there is no evidence for significant relationships between the components 

of NPP allocation (to wood, canopy or fine roots) and MCWD (Fig. S3). Hence above-

ground wood production NPPACW (Fig. 3d) is similar at all sites. NPPACW is equivalent to the 

above-ground woody production term most frequently estimated from forest inventories 

(Malhi et al., 2004). NPPACW shows no significant relationship with NPP or GPP (Figs. 4b, 5; 

p > 0.05), while total canopy production (r
2
 = 0.31, p < 0.06) and fine root production (r

2
 = 

0.41, p < 0.03) have more significant relationships to overall NPP (Fig. 5). Hence woody 

growth is a particularly poor proxy for total NPP. Again, there is potential for autocorrelation 

here as NPPACW itself accounts for around 20-30% of NPP, but such autocorrelation would 

tend to enhance the likelihood of finding apparently significant relationships, where in fact 

none are found. 

 

Both within the intensive and wider plot datasets, woody biomass residence time does not 

vary strongly as a function of MCWD among the western sites, whereas it varies 

considerably in the eastern sites (Fig. 3e). While residence time is low (around 30-50 years) 
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in the western sites, the eastern sites demonstrates high residence times at moderate MCWD 

(around 80-120 years at -200 mm). The patterns observed are consistent both within and 

among countries (Fig. S4). Plots in Venezuela and Colombia were excluded due to lack of 

clarity as to their edaphic position in western or eastern Amazonia. 

 

The pattern in residence time is reflected in the patterns of above-ground biomass (Fig. 3f). 

Biomass is lowest in the driest sites, around 60-80 Mg C ha
-1

, because residence times are so 

low. It rises moderately in western Amazonia (around 100-150 Mg C ha
-1

 at MCWD = -200 

mm) because residence times increase, but shows no trend between the moderately seasonal 

and aseasonal sites. In eastern Amazonia, it rises more substantially to a peak of 170-220 Mg 

C ha
-1

 at MCWD = -200 mm, with some hint of a slight decline at less seasonal sites, 

consistent with the trend in residence time. Due to the strong effect of residence time, there 

are no significant relationships between above-ground biomass and GPP, NPP or woody 

growth (Fig. S5). The spatial variation in biomass is dominated by the spatial variation in 

residence times (mortality rates), whereas GPP, NPP and woody growth rates have negligible 

influence. 

 

Results from analysis framework for above-ground growth and biomass 

 

In the western sites, there is no significant difference in mean woody productivity between 

the dry plots (Kenia) and the humid plots (Allpahuayo and Tambopata) (Fig. 6a). There is a 

significant (21±7 %; z-test, p = 0.001) decline in GPP in the dry plots, probably associated 

with the decline in leaf area and increased stomatal closure that was directly observed at the 

dry site in the dry season (Araujo-Murakami et al., 2014). However, this decline is offset by 

the higher CUE (+18±12 %; p =0.07) of the drier sites, and by increased allocation of NPP to 
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stem growth (+15±7 %; p = 0.02), leading to a slight overall increase in woody growth at the 

dry sites (+7±4 %; p = 0.06). 

 

A very similar pattern is observed for the eastern sites comparing the dry Tanguro plots 

relative to more humid Caxiuanã plots, with a 21±9 % (p = 0.009) decline in GPP at the drier 

site offset by an increase in woody allocation (+15±10 %; p = 0.06) and a non-significant 

increase in CUE (+7±13 %; p = 0.3), resulting in no significant difference in stem growth 

between the sites (-3±6 %; p = 0.3; Fig. 6b). In the eastern sites, the increase in allocation to 

stem growth (at the expense of branch turnover – see Figs. 3e and 3g) appears more important 

than the increase in CUE.  

 

In both the eastern and western sites, the clear decline in GPP in the drier sites is completely 

offset by shifts in CUE and allocation, resulting in either no decline, or even a net increase, in 

tree woody growth from wet to dry sites. Hence the compensatory shifts in CUE and 

allocation effectively decouple spatial variations in GPP, NPP and wood growth. 

 

Woody biomass is substantially lower at the dry sites in both seasonal water deficit gradients 

(43±10 % lower in the west, 62±7 % lower in the east; p < 10
-5

), but this decline is 

overwhelmingly explained by the strong decrease (approximate halving; 47±10% in west, 

61±8% in east; p < 10
-5

) of woody biomass residence time at the dry sites in both gradients 

(Fig. 6). 

 

Discussion 

This study presents the largest dataset assembled to date that provides a comprehensive 

analysis of the productivity and autotrophic carbon cycling of lowland tropical forests, with 

ten plots covering geographical, hydrological and edaphic contrasts in Amazonia. Previous 
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analyses have explored patterns of NPP allocation (Aragão et al., 2009; Malhi et al., 2011) 

and residence time in tropical forests (Galbraith et al., 2013). A particular contribution of this 

new synthesis is the ability to evaluate GPP and CUE in relation to other carbon cycle 

components. Hence, we focus our discussion on the novel insights that quantification of GPP 

and CUE brings to our understanding of the carbon cycle. We highlight four emergent results, 

in the context of the autotrophic carbon budget framework presented in Fig. 1: 

 

To what extent can key carbon budget parameters be predicted from precipitation and soils? 

 

Our results suggest that annual GPP increases linearly as seasonal water deficit decreases, 

with similar relationships in the contrasting soils of eastern and western Amazonia. This is 

likely related to the duration and intensity of the reduction of photosynthesis in the dry 

season, either through closure of stomata or by the shedding of leaves in deciduous or semi-

deciduous trees (Araujo-Murakami et al., 2014; del Aguila-Pasquel et al., 2014). CO2 flux 

tower data show clear reduction of photosynthesis in the dry season in the southern fringe of 

Amazonia, but little limitation in forests with modest seasonal water deficits (Restrepo-

Coupe et al., 2013). These findings suggest it may be relatively straightforward to predict and 

model tropical forest GPP as a function of seasonality, irrespective of soil regime. 

 

In contrast, we see no other strong relationships of other carbon cycling parameters as a 

function of seasonal water deficit. Surprisingly, we also do not find a significant effect of soil 

properties, though it is possible that a larger dataset would find a significant result. There is 

evidence that woody productivity is higher on the more fertile, less well-structured soils of 

western Amazonia (Malhi et al., 2004; Quesada et al., 2012), though this east-west gradient 

diminishes when the lower stature of western Amazonian trees is taken into account 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

(Feldpausch et al., 2012). Our findings on NPP allocation have the benefit of complete 

methodological consistency across sites, but are consistent with larger pan-tropical datasets 

(Malhi et al., 2011), which have also demonstrated that woody growth shows little 

relationship to total NPP, whereas litterfall is a good predictor of total NPP. Our data on fine 

root production, which is rarely measured in the context of total NPP, also hint at a 

surprising, positive correlation between fine root production and total NPP (Fig. 5). 

 

Can NPP or woody growth be reliably predicted from GPP, and vice versa? 

 

Our findings show that GPP has only moderate power as a predictor of the variation in NPP 

across Amazonia and very little power as a predictor of woody biomass production, due to 

equally important variations in CUE and NPP allocation that are rarely quantified in 

ecosystem carbon cycle studies. This observation has ramifications for attempts to either 

determine and map tropical forest NPP from satellite data (e.g. the MODIS NPP product; 

Running et al. 2004) or relate spatial or temporal changes in GPP to changes in tree growth 

rates. Until we have an improved understanding of the factors determining CUE and NPP 

allocation in tropical forests, such attempts have to be interpreted with caution. 

 

The reason CUE varies between sites may be linked to life history dynamics and the 

resource-economics spectrum: at more dynamic sites, the tree community is dominated by 

faster-growing species that prioritise growth over defence and are also (on average) at a 

younger life stage with lower biomass and maintenance respiration costs. More conservative, 

defensive strategies found in less dynamic forests may carry high respiration costs associated 

with the production and maintenance of defence compounds (Coley et al., 1985). This may 

also help explain why tropical forests appear to have lower CUE than many temperate forests 
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(DeLucia et al., 2007), which are often at a stage of vigorous recovery after disturbance or 

management.  

 

In addition, our lack of quantification of below-ground exudate and mycorrhizae-associated 

fluxes may partially explain apparent trends in NPP and CUE. If these missing fluxes are 

larger on nutrient-poor soils, this may be at the expense of other, more visible components of 

NPP and result in a decrease of apparent CUE (or BPE) on nutrient-poor soils (Vicca et al., 

2012). Examination of Fig. 4a suggests that such missing fluxes would need differ by as 

much as 2-4 Mg C ha
-1

 year
-1

 between sites to account for all spatial differences in CUE. The 

plausibility of these fluxes will be explored in a forthcoming paper (Doughty et al., in 

preparation), but it seems possible that such terms may provide a partial (but not complete) 

explanation of differences in CUE between sites. 

 

What is the relative importance of different aspects of the carbon budget (GPP, CUE, NPP 

allocation and residence time) in determining spatial variation in biomass in Amazonian 

tropical forests? 

 

Our analyses show that spatial variation in biomass is overwhelmingly determined by 

variation in residence time. GPP, NPP and woody growth are all poor predictors of 

Amazonian forest biomass (Fig. 3, Fig. S5). This has been noted in our previous work in 

Amazonia (e.g. (Baker et al., 2004; Malhi et al., 2006; Delbart et al., 2010; Castanho et al., 

2013); however, the analysis here advances on this by providing a quantitative comparison 

with other aspects of the carbon budget such as GPP. It also shows the consistent, but 

divergent, relationships between residence times and water deficit in eastern and western 

Amazonia and in particular, the low residence time “hyperdynamic” belt around the southern 
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dry fringe of Amazonia (Marimon et al., 2014). If we are to develop a predictive 

understanding of the spatial variation of biomass in old-growth forests, it is probably a higher 

priority to understand the determinants of mortality rates and residence times, rather than the 

determinants of GPP and NPP. This may also have implications for predicting the future 

behaviour of the biosphere carbon sink – if rising atmospheric CO2 stimulates GPP, would 

this be manifest primarily as an increase in biomass, or an increase in turnover rates (Malhi, 

2012)? At the driest sites (Tanguro and Kenia), it is possible that our estimates of residence 

time are biased downwards if the forests are still far from biomass equilibrium following fire 

disturbance. However, both sites show a mixed age structure and little net biomass increase 

over time, suggesting that they are not in a strong secondary stage and any such bias is likely 

to be small.  The short residence times at the dry margin reported here are consistent with the 

high stem turnover rates reported at other southern Amazonian sites (Marimon et al., 2014) 

and therefore likely reflect a genuine phenomenon. 

 

Why do biomass residence times, which are mainly dominated by the mortality rates of 

medium and large trees, vary so much across Amazonia? Understanding the determinants of 

tree death is a major question in forest ecology (Stephenson et al., 2011); explanations must 

account for both intrinsic mortality rates (e.g. self-thinning in a light-limited and resource-

limited system, interacting with life-history trade-offs across species) and the role of 

exogenous disturbances (e.g. blow-downs). The strong contrast between east and west 

Amazonia is almost certainly linked to soil substrate, whether through higher fertility driving 

resource-demanding, high mortality strategies, or the weaker soil structure driving higher tree 

fall rates (Quesada et al., 2012). The short residence times at the dry fringe may be driven by 

drought-associated mortality, which also end up favouring high growth, short lifetime 

strategies. 
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Are the relatively low values of biomass in seasonally dry tropical forests caused by a 

decrease in GPP and woody growth rates, or an increase in mortality rates?  

 

Our results show that the seasonally dry tropical forests studied here have low biomass 

because they are dynamic, not because they are unproductive. Biomass is lower at the dry 

sites in both seasonal water deficit gradients, despite little decline in stem productivity (Fig. 

6).  The dry plots have low biomass not because they have lower growth rates (they do not) 

or lower GPP (they do, but this is completely offset by increases in CUE and/or woody 

allocation), but because the trees in these plots have shorter lifetimes and die more quickly. 

Mortality rates (i.e. residence times) overwhelmingly explain spatial variation in biomass in 

these plots, photosynthesis or growth do not. Again, there may be a direct link between the 

high mortality rates and the high CUE and/or woody allocation; such a dynamic system may 

favour trees with inherently shorter life-history strategies, an early mean life stage, and less 

investment in defence. Understanding the role of mortality and turnover in determining the 

structure of dry forests is an important and neglected component in understanding their 

response to atmospheric change. 

 

In conclusion, this study demonstrates the critical importance of considering the various 

components of ecosystem forest carbon budgets, particularly carbon use efficiency and 

residence time, if we are to understand relationships between photosynthesis, growth, 

allocation and biomass, and the spatial variation of these parameters (Landsberg & Sands, 

2010; Pan et al., 2013). We focussed on a unique dataset of ten lowland Amazonian plots 

where we conducted a comprehensive quantification of the carbon cycle (Malhi et al., 2009); 

however, the insights gained are probably equally applicable for other forest and woodland 

ecosystems, and particularly so in other tropical forest regions. These ten plots provide 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

substantial new insights and represent a major data collection effort, but are clearly not 

sufficient in and of themselves to untangle the spatial variability of links between GPP, 

growth and biomass. Further plots are needed across the tropics engaging a standardised 

protocol, something that is being attempted by the GEM network. Moreover, an important 

next step will be to employ data from these and other new sites to develop and test hypotheses 

and models for how GPP, autotrophic respiration, allocation and residence time respond to 

varying environmental conditions. 
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Table 1. Environmental characteristics of 1 ha study sites occurring along wet-dry gradients 

in eastern and western Amazonia. Data for radiation, temperature, precipitation and MCWD 

are available for each pair of sites.  

 

 

 
Western Amazonia Transect Eastern Amazonia 

   Allpahuay
o A 

Allpahuay
o C* 

Tambopa
ta V 

Tambopat
a VI 

Kenia 
Wet 

Kenia 
Dry 

Caxiuanã 
Control 

Caxiuanã 
Tower 

Tanguro 
Control† 

Tanguro 
Burn† 

RAINFOR site code ALP11/AL
P12 ALP30 TAM05 TAM6 KEN01 KEN02 CAX04 CAX06 --- --- 

Latitude -3.95 -3.9543 -12.8309 -12.8385 
-

16.015
8 

-
16.015

8 
-1.7160 -1.7369 -13.0765 -13.0765 

Longitude -73.4333 -73.4267 -69.2705 -69.2960 
-

62.730
1 

-
62.730

1 
-51.4570 -51.46194 52.3858 52.3858 

Elevation (m asl) 120 150 223 215 384 384 47 47 385 385 

Solar radiation (GJ m
-2

 
yr

-1
) 5.2 4.8 5.9 5.7 6.74 

Mean annual air 
temperature (°C) 25.2 24.4 23.4 25.8 25 

Precipitation (mm yr
-1

) 2689 1900 1310 2311 1770 

Mean MCWD (mm) -6 -259 -386 -203 -482 

Soil moisture (%)  26.8 ± 0.3 10.8 ± 0.2 
21.8 ± 

0.2 35.5 ± 0.4 
19.7 ± 

0.4 
16.0 ± 

0.3 22.4 ± 0.1 27.1 ± 0.3 10.7 ± 0.2 10.8 ± 0.2 
Soil type Alisol/Gle

ysol Arenosol Cambisol Alisol 
Cambi

sol 
Cambi

sol Vetic Acrisol Ferralsol Ferralsol  Ferralsol  
Ptotal (mg kg

-1
) 

125.6 37.6 256.3 528.8 447.1 244.7 37.4 178.5 147 147 
Total N (%) 

0.1 0.08 0.16 0.17 0.22 0.17 0.06 0.13 0.16 0.16 
Total C (%) 

1.19 1.13 1.51 1.2 2.4 2 0.83 1.68 2.55 2.55 
Soil C stock (Mg C ha-

1
 

from 0-30 cm)  92.95 16.4 43.7 37.4 74.8 67.1 35 51.9 67.1 67.1 
Soil organic layer depth 
(cm) 12 10 13 37 32 54 30 35 28 28 
Cation exchange 
capacity (mmolc kg

−1
) 30.4 4.9 44.8 56.8 75.58 60.74 1.34 22.82 19.47 19.47 

Sand (%) 
65 82 40 2 58.05 55.48 83.69 32.54 45.73 45.73 

Clay (%) 
15 2 44 46 19.13 18.25 10.68 53.76 48.9 48.9 

Silt (%) 
20 16 17 52 22.82 26.27 5.64 13.7 5.37 5.37 

 

 

* This site is located on an infertile, sandy upper soil layer; however, there is evidence that tree roots may have 

access to a deeper, more fertile soil and thus contribute to the high productivity observed (P.V.A. Fine, pers. 

comm.).  

† Soil data derived from a neighboring site. 
 

 

Figure Legends 

Fig. 1. The source-to-sink pathway leading from photosynthesis to standing live woody 

biomass (Malhi 2012).  
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Fig. 2. The location of study sites in eastern and western Amazonia, with arrows indicating 

the two wet-dry gradients. Sites are superimposed on a gridded map of mean maximum 

climatological water deficit (MCWD). 

 

Fig. 3. Productivity, allocation and carbon stock variables plotted as a function of mean 

maximum climatological water deficit (MCWD): (a) gross primary productivity (GPP); (b) 

carbon use efficiency (CUE); (c) net primary productivity (NPP); (d) fractional NPP 

allocation to above-ground coarse wood, excluding branch turnover; (e) coarse woody 

biomass residence time, with the two low MCWD sites overlapping in means and error; (f) 

above-ground woody biomass. Black symbols indicate comprehensive measurement sites, 

grey symbols a wider forest inventory dataset. Curves illustrate global fits for eastern (solid) 

and western (dashed) datasets. Bars indicate ±1 SE. 

 

Fig. 4. Relationship between (a) total NPP and (b) coarse woody NPP as a function of GPP. 

Dotted lines in (a) reflect carbon use efficiencies (CUE) of 0.3, 0.4, and 0.5. Bars indicate ±1 

SE. 

 

Fig. 5. Various components of net primary productivity as a function of total net primary 

productivity.  

 

 

Fig. 6. Results from analysis framework exploring how above-ground woody growth varies 

between dry and wet forests. Bars indicate proportion difference (±1 SE) in various 

productivity and carbon budget terms between the driest site and the mean of the wetter sites 

for the (a) western and (b) eastern sites. 
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Supporting Information 

 

Appendix S1. Detailed data collection methods for 1 ha plots. 

Table S1. Sampling period and interval for data collection in 1 ha plots. 

Table S2. Comparison of approaches for estimating gross primary productivity.  

Table S3. Measurements of carbon cycle components measured in 1 ha plots.  

Figure S1. Relationship between two approaches for estimating gross primary productivity. 

Figure S2. Relationships among components of the carbon cycle and annual precipitation. 

Figure S3. Relationships among components of net primary productivity and seasonal water 

deficit. 

Figure S4. Relationship between residence time and above-ground biomass and seasonal 

water deficit. 

Figure S5. Relationship between above-ground biomass and various components of the 

carbon cycle.  
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