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Abstract
Under certain conditions, generalized action–angle coordinates can be
introduced near non-compact invariant manifolds of completely and partially
integrable Hamiltonian systems.

PACS numbers: 45.20.Jj, 02.30.Ik

1. Introduction

Let us recall that an autonomous Hamiltonian system on a 2n-dimensional symplectic manifold
is said to be completely integrable if there exist n independent integrals of motion in involution.
By virtue of the classical Liouville–Arnold theorem [1, 6], such a system admits action–angle
coordinates around a connected regular compact invariant manifold. In a more general setting,
one considers Hamiltonian systems having partial integrability, i.e. k � n independent integrals
of motion in involution. The Nekhoroshev theorem for these systems [3, 8] generalizes both
the Poincaré–Lyapunov theorem (k = 1) and the above-mentioned Liouville–Arnold theorem
(k = n). The Nekhoroshev theorem, in fact, falls into two parts. The first part states the
sufficient conditions for an open neighbourhood of an invariant torus T k to be a trivial fibre
bundle (see [3] for a detailed exposition). The second one provides this bundle with partial
action–angle coordinates similar to the case of complete integrability.

The present work addresses completely and partially integrable Hamiltonian systems
whose invariant manifolds need not be compact. This is the case for any autonomous
Hamiltonian system because its Hamiltonian, by definition, is an integral of motion. In the
preceding papers, we have shown that if an open neighbourhood of a non-compact invariant
manifold of a completely integrable Hamiltonian system is a trivial bundle, it can be equipped
with the generalized action–angle coordinates which bring a symplectic form into the canonical
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form [2, 4]. Here, we prove that, under certain conditions, an open neighbourhood of a regular
non-compact invariant manifold of a completely integrable system is a trivial bundle (see parts
(A)–(C) in the proof of theorem 1) and, consequently, it can be equipped with the generalized
action–angle coordinates (see part (D) of theorem 1). Then, this result is extended to partially
integrable Hamiltonian systems (see theorem 3). The proof of theorem 3 mainly follows that
of theorem 1. Note that part (D) in the proof of theorem 1 can be simplified by the choice of a
Lagrangian section σ , but this is not the case for partially integrable systems. This proof also
shows that, from the beginning, one can separate integrals of motion whose trajectories live
in tori.

It should be emphasized that the results of theorem 3 are not limited by the scope of
autonomous mechanics. Any time-dependent Hamiltonian system of n degrees of freedom
can be extended to an autonomous Hamiltonian system of n + 1 degrees of freedom which
has at least one integral of motion, namely, its Hamiltonian [2]. Thus, any time-dependent
Hamiltonian system can be seen as a partially integrable autonomous Hamiltonian system
whose invariant manifolds are never compact because of the time axis. Just the time is a
generalized angle coordinate corresponding to a Hamiltonian of this autonomous system.

One also finds reasons in quantum theory in order to introduce generalized action–angle
variables. In particular, quantization with respect to these variables enables one to include a
Hamiltonian in the quantum algebra [2, 5].

2. Completely integrable systems

Let (Z,�) be a 2n-dimensional symplectic manifold, and let it admit n real smooth functions
{Fλ}, which are pairwise in involution and independent almost everywhere on Z. The latter
implies that the set of non-regular points, where the morphism

π = λ× Fλ : Z → R
n (1)

fails to be a submersion, is nowhere dense. Bearing in mind physical applications, we agree
to think of one of the functions Fλ as being a Hamiltonian and of the others as first integrals
of motion. Accordingly, their common level surfaces are called invariant surfaces.

Let M be a regular invariant surface, i.e. the morphism π (1) is a submersion at all points of

M or, equivalently, the n-form
λ∧ dFλ vanishes nowhere on M. Hence, M is a closed imbedded

submanifold of Z. There exists its open neighbourhood U such that the morphism π is a
submersion on U, i.e.

π : U → N = π(U) (2)

is a fibred manifold over an open subset N ⊂ R
n. The vertical tangent bundle V U of U → N

coincides with the n-dimensional distribution on U spanned by the Hamiltonian vector fields
ϑλ of the functions Fλ. Integral manifolds of this distribution are components of the fibres of
π . They are Lagrangian submanifolds of Z. Let U be connected. Then N is a domain. Without
loss of generality, one can suppose that there exists a section of U → N .

If M is connected and compact, we come to the conditions of the Liouville–Arnold
theorem. If M need not be compact, one should require something more.

Theorem 1. Let M be a connected regular invariant manifold of a completely integrable
Hamiltonian system {Fλ} and let U be an open neighbourhood as above. Let us additionally
assume that: (i) all fibres of the fibred manifold U → N (2) are mutually diffeomorphic,
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(ii) the Hamiltonian vector fields ϑλ on U are complete. Then, there exists a domain N so that
U → N is a trivial bundle

U = N × (Rn−m × T m) (3)

provided with the generalized action–angle coordinates (Iλ; xa; φi) such that the integrals of
motion Fλ depend only on the action coordinates Iα and the symplectic form � on U reads

� = dIa ∧ dxa + dIi ∧ dφi. (4)

Proof. (A) Since Hamiltonian vector fields ϑα on U are complete and mutually commutative,
their flows assemble into the additive Lie group R

n. This group is naturally identified with its
Lie algebra, and its group space is a vector space coordinated by parameters (sλ) of the flows
with respect to the basis {eλ} for its Lie algebra. This group acts in U so that its generators
eλ are represented by the Hamiltonian vector fields ϑλ and its orbits are fibres of the fibred
manifold U → N . Given a point r ∈ N , the action of R

n in the fibre Mr = π−1(r) factorizes
as

R
n × Mr → Gr × Mr → Mr (5)

through the free transitive action in Mr of the factor group Gr = R
n/Kr , where Kr is the

isotropy group of an arbitrary point of Mr . It is the same group for all points because R
n is

an Abelian group. Since the fibres Mr are mutually diffeomorphic, all isotropy groups Kr are
isomorphic to the group Z

m for some fixed m, 0 � m � n, and the groups Gr are isomorphic
to the additive group R

n−m × T m. Let us show that the fibred manifold U → N (2) is a
principal bundle with the structure group G0, where we denote {0} = π(M). For this purpose,
let us determine isomorphisms ρr : G0 → Gr of the group G0 to the groups Gr, r ∈ N . Then,
a desired fibrewise action of G0 in U is given by the law

G0 × Mr → ρr(G0) × Mr → Mr. (6)

(B) Generators of each isotropy subgroup Kr of R
n are given by m linearly independent

vectors of the group space R
n. One can show that there are ordered collections of generators

(v1(r), . . . , vm(r)) of the groups Kr such that r �→ vi(r) are smooth R
n-valued fields on

N. Indeed, given a vector vi(0) and a section σ of the fibred manifold U → N , each field
vi(r) = (sα(r)) is the unique smooth solution of the equation

g(sα)σ (r) = σ(r) (sα(0)) = vi(0) (7)

on an open neighbourhood of {0}. Without loss of generality, one can assume that this
neighbourhood is N. Let us consider the decomposition

vi(0) = Ba
i (0)ea + Ck

i (0)ek a = 1, . . . , n − m k = 1, . . . ,m

where Ck
i (0) is a non-degenerate matrix. Since the fields vi(r) are smooth, there exists an

open neighbourhood of {0}, say N again, where the matrices Ck
i (r) remain non-degenerate.

Then, there is a unique linear morphism

Ar =
(

Id (B(r) − B(0))C−1(0)

0 C(r)C−1(0)

)
(8)

of the vector space R
n which transforms its frame vα(0) = {ea, vi (0)} into the frame

vα(r) = {ea, vi(r)}. Since it is also an automorphism of the group R
n sending K0 onto

Kr , we obtain a desired isomorphism ρr of the group G0 to the group Gr . Let an element g of
the group G0 be the coset of an element g(sλ) of the group R

n. Then, it acts in Mr by rule (6)
just as the element g

((
A−1

r

)λ

β
sβ

)
of the group R

n does. Since entries of the matrix A (8) are
smooth functions on N, this action of the group G0 in U is smooth. It is free and U/G0 = N .
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Then, the fibred manifold U → N is a principal bundle with the structure group G0 which is
trivial because N is a domain.

(C) Given a section σ of the principal bundle U → N , its trivialization U = N × G0 is
defined by assigning the points ρ−1(gr) of the group space G0 to points grσ (r), gr ∈ Gr , of
a fibre Mr . Let us endow G0 with the standard coordinate atlas (yλ) = (ta; ϕi) of the group
R

n−m × T m. We provide U with a desired trivialization (3) with respect to the coordinates
(Jλ; ta; ϕi), where Jλ(u) = Fλ(u), u ∈ U , are coordinates on the base N. The Hamiltonian
vector fields ϑλ on U relative to these coordinates read

ϑa = ∂a ϑi = −(BC−1)ai ∂a + (C−1)ki ∂k. (9)

In particular, the Hamilton equation takes the form

J̇ λ = 0 ẏλ = f λ(Jα).

(D) Since fibres of U → N are Lagrangian manifolds, the symplectic form � on U is
given by the coordinate expression

� = �αβ dJα ∧ dJβ + �α
β dJα ∧ dyβ. (10)

Let us bring it into the canonical form (4). The Hamiltonian vector fields ϑλ obey the relations
ϑλ�� = −dJλ, which take the coordinate form

�α
βϑ

β

λ = δα
λ . (11)

It follows that �α
β is a non-degenerate matrix whose entries are independent of coordinates

yλ. By virtue of the well-known Künneth formula for the de Rham cohomology of manifold
product, the closed form � (10) on U (3) is exact, i.e. � = d where  reads

 = α(Jλ, y
λ) dJα + i(Jλ) dϕi. (12)

Because entries of d = � are independent of yλ, we obtain the following:

(i) �λ
i = ∂λi − ∂i

λ. Consequently, ∂i
λ are independent of ϕi , i.e. λ are, at most,

affine in ϕi and, therefore, are independent of ϕi since these are cyclic coordinates. Hence,
�λ

i = ∂λi and ∂i�� = −di . A glance at the last equality shows that ∂i are Hamiltonian
vector fields. It follows that we can substitute m integrals of motion among Fλ with the
functions i , which we continue to denote Fi . The Hamiltonian vector fields of these
new Fi are tangent to invariant tori. In this case, the matrix B in expressions (8) and (9)
is the zero one, and the Hamiltonian vector fields ϑλ read

ϑa = ∂a ϑi = (C−1)ki ∂k. (13)

Moreover, the coordinates ta are exactly the flow parameters sa . Substituting expressions
(13) into conditions (11), we obtain

� = �αβ dJα ∧ dJβ + dJa ∧ dsa + Ci
k dJi ∧ dϕk.

It follows that i are independent of Ja, and so are Ck
i = ∂ki .

(ii) �λ
a = −∂a

λ = δλ
a . Hence, a = −sa + Ea(Jλ) and i are independent of sa .

In view of items (i) and (ii), the Liouville form  (12) reads

 = (−sa + Ea(Jλ)) dJa + Ei(Jλ) dJi + i(Jj ) dϕi.

Since the matrix ∂ki is non-degenerate, we perform the coordinate transformation Ia = Ja,

Ii = i(Jj ) and obtain

 = (−sa + E′a(Iλ)) dIa + E′i (Iλ) dIi + Ii dϕi.
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Finally, put

xa = sa − E′a(Iλ) φi = ϕi − E′i (Iλ) (14)

in order to obtain the desired action–angle coordinates

Ia = Ja, Ii(Jj ), xa(Jλ, s
a), φi(Jλ, ϕ

k).

The shifts (14) correspond to the choice of a Lagrangian section σ . �

Let us remark that the generalized action–angle coordinates in theorem 1 are by no means
unique. For instance, the canonical coordinate transformations

Ia = fa(I
′
λ) Ii = I ′

i x ′a = ∂fb

∂I ′
a

xb φ′i = φi +
∂fa

∂I ′
i

xa (15)

give new generalized action–angle coordinates on U.

3. Partially integrable systems

Let a 2n-dimensional symplectic manifold (Z,�) admit k < n smooth real functions {Fλ},
which are pairwise in involution and independent almost everywhere on Z. Let us consider the
morphism

π = λ× Fλ : Z → R
k (16)

and its regular connected common level surface W . There exists an open connected
neighbourhood UW of W such that

π : UW → VW = π(UW) (17)

is a fibred manifold over a domain VW in R
k . Restricted to UW , the Hamiltonian vector fields

ϑλ of functions Fλ define a k-dimensional distribution and the corresponding regular foliation
F of UW . Its leaves are isotropic. They are located in fibres of the fibred manifold UW → VW

and, moreover, make up regular foliations of these fibres.
Let us assume that the foliation F has a total transversal manifold S and its holonomy

pseudogroup on S is trivial. Then, F is a fibred manifold

π1 : UW → S′ (18)

and S = σ(S′) is its section [7]. Thereby, the fibration π (17) factorizes as

π : UW

π1−→ S′ π2−→VW

through the fibration π1 (18). The map π2 reads π2 = π ◦ σ and, consequently, it is also a
fibred manifold.

Proposition 2. Let us assume that there exists a domain N ⊂ S′ such that: (i) the fibres of the
fibred manifold π1 (18) over N are mutually diffeomorphic, (ii) the Hamiltonian vector fields
ϑλ on U = π−1

1 (N) are complete. Then, there exists a domain in S′, say N again, such that
U → N is a trivial principal bundle with the structure group R

k−m × T m.

Proof. The proof is a straightforward repetition of parts (A) and (B) in the proof of theorem 1.
�

Furthermore, one can always choose the domain N in proposition 2 as the domain of a
fibred chart of π2. Following part (C) in the proof of theorem 1, we can provide U → N with
the trivialization

U = N × R
k−m × T m (19)
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coordinated by (Jλ; zA; yλ) where: (i) Jλ(u) = Fλ(u), u ∈ U , are coordinates on the base V ,
(ii) (Jλ; zA) are coordinates on N and (iii) (yλ) = (ta; ϕi) are coordinates on R

k−m ×T m. The
Hamiltonian vector fields ϑα on U with respect to these coordinates read

ϑa = ∂a ϑi = ϑa
i (Jλ, z

A)∂a + ϑk
i (Jλ, z

A)∂k. (20)

Since fibres of U → N are isotropic, the symplectic form � on U relative to the coordinates
(Jλ; zA; yλ) is given by the expression

� = �αβ dJα ∧ dJβ + �α
β dJα ∧ dyβ + �AB dzA ∧ dzB + �λ

A dJλ ∧ dzA + �Aβ dzA ∧ dyβ.

(21)

The Hamiltonian vector fields ϑλ obey the relations ϑλ�� = −dJλ, which give the conditions

�α
βϑ

β

λ = δα
λ �Aβϑ

β

λ = 0.

The first of them shows that �α
β is a non-degenerate matrix independent of coordinates yλ.

Then, the second one implies �Aβ = 0. The rest is a minor modification of part (D) in the
proof of theorem 1.

The symplectic form � (21) on U is exact, and the Liouville form is

 = α(Jλ, z
B, yλ) dJα + i(Jλ, z

B) dϕi + A(Jλ, z
B, yλ) dzA.

Since a = 0 and i are independent of ϕi , one easily obtains from the relations
�Aβ = ∂Aβ−∂βA = 0 that i are independent of coordinates zA, while A are independent
of coordinates yλ. Hence, the Liouville form reads

 = α(Jλ, z
B, yλ) dJα + i(Jλ) dϕi + A(Jλ, z

B) dzA

(cf (12)). Running through item (i), we observe that, in the case of a partially integrable
system, one can also separate integrals of motion Fi whose Hamiltonian vector fields are
tangent to invariant tori. Then, the Hamiltonian vector fields (20) take the form

ϑa = ∂a ϑi = ϑk
i (Jλ, z

A)∂k.

Following items (i) and (ii) of part (D), we obtain

 = (−sa + Ea(Jλ, z
B)) dJa + Ei(Jλ, z

B) dJi + i(Jj ) dϕi + A(Jλ, z
B) dzA.

Finally, the coordinates

xa = −sa + Ea(Jλ, z
B) Ii = i(Jj ) Ia = Ja φi = ϕi − Ej(Jλ, z

B)
∂Jj

∂Ii

bring � into the form

� = dIa ∧ dxa + dIi ∧ dφi + �AB(Iλ, z
B) dzA ∧ dzB + �λ

A(Iλ, z
B) dIλ ∧ dzA. (22)

Therefore, one can think of these coordinates as being partial generalized action–angle
coordinates. The Hamiltonian vector fields of integral of motions with respect to these
coordinates read

ϑa = ∂

∂xa
ϑi = ∂Ji

∂Ij

∂

∂φj
.

Thus, we have proved the following.

Theorem 3. Given a partially integrable Hamiltonian system {Fλ} on a symplectic manifold
(Z,�), let W be its regular connected level surface, and let M ⊂ W be a leaf of the
characteristic foliation F of the distribution generated by the Hamiltonian vector fields ϑλ of
Fλ. Let M have an open satured neighbourhood U ⊂ Z such that: (i) the foliation F of U
admits a transversal manifold S and its holonomy pseudogroup on S is trivial, (ii) the leaves of
this foliation are mutually diffeomorphic, (iii) Hamiltonian vector fields ϑλ on U are complete.
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Then, there exists an open satured neighbourhood of M, say U again, which is a trivial bundle
(19), provided with the particular coordinates (Iλ; zA, xa; φi) such that the integrals of motion
Fλ depend only on the coordinates Iα and the symplectic form � on U is brought into the
form (22).
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