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Raquel Conde-Álvarez1,2., Vilma Arce-Gorvel3., Maite Iriarte1, Mateja Manček-Keber4, Elı́as Barquero-
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Abstract

Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory
responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative
bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the
development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We
found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-
polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition,
it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being
targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadCmutant induced dendritic cell maturation
and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a
TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor
leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of
infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence
mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the
generation of novel bacterial vaccines.
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Introduction

Innate immunity plays a fundamental role in the defense against

microorganisms. In addition to the passive action of physical and

physicochemical barriers, the effectiveness of innate immunity

relies on pathogen recognition receptors that quickly perceive the

presence of invaders. Upon binding to microbial molecules

bearing pathogen-associated molecular patterns (PAMP), patho-

gen recognition receptors trigger a cascade of signals that include

the release of proinflammatory mediators, which in turn may

activate adaptive immunity. Cells like macrophages and dendritic

cells are equipped with a variety of pathogen recognition

receptors, which can be activated by bacterial PAMP such as

lipoproteins, glycolipids, peptidoglycan or DNA. However, some

bacteria are able to generate chronic infections by residing and

multiplying in these host cells. A relevant model of this kind of

pathogens is represented by the genus Brucella [1], a group of a-

Proteobacteria that have a great impact on animal and human health

worldwide, and whose virulence relies in part upon the failure of

pathogen recognition receptors to sense Brucella during the initial

stages of infection [2,3].

Brucella surface lipoproteins, ornithine lipids, flagellum-like

structures and the LPS do not bear a marked PAMP [2,3,4,5].

The most conspicuous PAMP bearing component of the surface of
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gram-negative bacteria is LPS, also known as endotoxin, a molecule

made of three sections: lipid A, core oligosaccharide and O-

polysaccharide (O-PS). Typically, LPS express a lipid A made of a

glucosamine disaccharide linked predominantly to C12 to C14 acyl

chains in ester, amide and acyl-oxyacyl bonds. This structure carries

a characteristic PAMP that is recognized by the TLR4-MD2

receptor-coreceptor complex, triggering potent proinflammatory

responses that may lead to endotoxic shock. Since Brucella lipid A (a

diaminoglucose disaccharide substituted with C16, C18, C28 and

other very long acyl chains [6]) structurally departs from the

canonical lipid A recognized by TLR4-MD2 [7], it is postulated to

play a key role in the stealthy behavior of this pathogen; indeed

Brucella LPS is poorly endotoxic [2,4,8,9]. In addition, the O-PS

characteristic of smooth brucellae like B. abortus, B. melitensis or B. suis

confers serum and complement resistance, a property not uncom-

mon in the O-PS of gram-negative pathogens, and also modulates

the entry into cells [1]. It is not known whether the LPS core sugar

structure of Brucella or any other gram-negative intracellular

pathogen has a direct role in intracellular virulence. Indeed,

mutants of smooth Brucella affected in the LPS core show different

degrees of attenuation, but these results cannot be unambiguously

interpreted because all core mutants described so far simultaneously

lack the O-chain. (i.e., are rough [R] mutants) and thus are

attenuated [10]. Here, we report that mutation of a hitherto

unidentified Brucella LPS core glycosyltransferase gene generates

attenuation without affecting the assembly and linkage of the O-PS

or the lipid A section. This attenuation is not caused by a

physiological defect associated with a damage of the envelope

properties but rather by the removal of a core section that hampers

recognition by complement, bactericidal peptides and TLR4-MD2,

thus representing a novel virulence mechanism.

Results

The B. abortus wadC glycosyltransferase gene is required
for the synthesis of a core section of smooth LPS
Up to now, only one Brucella core glycosyltransferase has been

identified [20]. Since LPS core structures are often conserved in

phylogenetically related organisms, we scanned the genomes of a-

Proteobacteria looking for orthologues of glycosyltransferases not

involved in O-PS synthesis. We identified B. abortus ORF

BAB1_1522 as encoding an orthologue (78% similarity) of the

Rhizobium leguminosarum core mannosyltransferase LpcC [11] and

named it wadC following accepted nomenclature [12]. We then

constructed a non-polar mutant (BaDwadC; Figure S1) of virulent B.

abortus 2308 NalR (Ba-parental) [9]. This mutant showed the same

dye and phage sensitivity pattern as the parental strain, and its

growth rate in bacteriological media was similarly unaffected

(Figure S2). In addition, the mutant reacted normally with

polyclonal antibodies to the O-PS and was smooth by the crystal

violet-exclusion and acriflavine tests, suggesting the presence of a

typical smooth LPS (S-LPS). Thus, for a better analysis of possible

LPS defects, we extracted the Ba-parental and BaDwadC LPSs using

the phenol-water protocol [13,14]. SDS-PAGE and Western-blots

with anti-O-PS and anti-core monoclonal antibodies showed that

the wild type LPS of the parental Ba-parental strain consisted of

both S and R fractions, as expected (Figure 1). However, the

BaDwadC LPS extracts showed a different migration pattern

suggesting a core defect. This peculiarity was confirmed by its lack

of reactivity of the anti-core monoclonal antibodies A68/24D08/

G09 (Figure 1), A68/24G12/A08 and A68/3F03/D5 (Figure S3).

The implication of wadC was confirmed by complementation with

plasmid pwadC (strain BaDwadC-comp) (Figure 1). In addition, the

lipids A of both Ba-parental and BaDwadC were dominated by

molecules carrying the very long chain fatty acids typical of Brucella

LPS, with minor and not consistent differences in the intensity of

some peaks as detected by mass spectrometry (Figure S4).

BaDwadC mutant is attenuated and induces
proinflammatory responses
BaDwadC displayed attenuation in mice (Figure 2A, left panel) with

an estimated spleen clearance time of 27 weeks (66 weeks for Ba-

parental). This attenuation, however, was less marked than that of a R

mutant (BaTn5::per) blocked in the synthesis of the only sugar (N-

formylperosamine) of the O-PS but with a complete core (Figure 2A,

left panel). BaDwadC induced a transient splenomegaly, in contrast to

the increasing splenomegaly observed in Ba-parental and the almost

absence of splenomegaly observed in the BaTn5::per inoculated mice

(Figure 2A, right panel). Complementation with plasmid pwadC
restored the replication, persistence and splenomegaly of BaDwadC

back to levels observed with the virulent Ba-parental (Figure S5).

Upon infection, BaDwadC triggered a more intense leukocyte

recruitment in the peritoneum and blood than Ba-parental (both

at 106 CFU/mouse) but less than the highly endotoxic Salmonella
enterica subspecies enterica serotype Typhimurium (S. Typhimur-

ium) (at 105 CFU/mouse) (Figure 2B). Concurrently, cytokine

levels (TNFa, IL-6, IL-12 p40/p70 and IL-10) measured in the

serum of BaDwadC infected mice were always higher than those

induced by the Ba-parental (Figure 2C).

BaDwadC mutant activates dendritic cells
We then investigated whether the attenuation and inflammatory

responses in mice were reproduced in target cells (dendritic cells

and macrophages). BaDwadC but not the complemented strain

BaDwadC-comp was killed in bone marrow-derived dendritic cells

(BMDC), although less rapidly than the virB9 type IV secretion

mutant used as a reference of attenuation (Figure 3, upper panel).

Moreover, in contrast to the Ba-parental strain, which segregated

at 24 h post-infection within the calnexin-positive endoplasmic

reticulum, the BaDwadC mutant-containing vacuoles colocalized

with the lysosomal LAMP-1 marker, indicating its failure to reach

the endoplasmic reticulum replication niche (Figure 3, lower

Author Summary

Brucellosis is one of the most extended bacterial zoonosis
in the world and an important cause of economic losses
and human suffering. The causative agents belong to the
genus Brucella, a group of highly infectious gram-negative
bacteria characterized by their ability to escape early
detection by innate immunity. This stealthy behavior
effectively delays the development of immunity, creating
a gap that is used by the bacterium to penetrate into a
variety of cells and to activate complementary virulence
mechanisms such as the type IV secretion system. By this
manner, the brucellae divert intracellular trafficking to
reach a safe multiplication niche and establish chronic
infections. Our results show that an inner section of the
Brucella LPS (a molecule that in most bacteria is detected
by innate immunity), effectively contributes to block
recognition by soluble molecules and cellular receptors
of the host innate immune system. Accordingly, a
mutation disrupting the inner but no other lipopolysac-
charide sections generates attenuation by impairing the
stealthiness characteristics of this pathogen. This is the first
Brucella mutant in which attenuation is specifically linked
to the bolstering of immunity against this pathogen.
Therefore, this new virulence mechanism opens the way
for the development of improved bacterial vaccines.

Brucella LPS Shields Against Innate Immunity
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panel). This attenuation was paralleled by an increased number of

Dendritic Cells Aggresome-Like Structures (DALIS) in infected

BMDC (Figure S6) indicating that dendritic cells were pro-

grammed to undergo a maturation process. Consequently,

secretion of IL-12 and TNF-a proinflammatory cytokines in

BaDwadC-infected BMDC at 24 h post-infection reached inter-

mediate levels between those of Ba-parental and S. Typhimurium

(Figure 4A, left panel). These observations were fully consistent

with the results obtained in mice. Interestingly, BaDwadC

multiplied as Ba-parental in bone marrow-derived macrophages

(BMDM; Figure 3, upper panel), Raw 264.7 macrophages or

HeLa cells (not shown) (see above).

BaDwadC mutant is sensitive to complement and
bactericidal peptides
In the absence of antibodies, Smooth Brucella cells are poor

activators of complement and are thus markedly resistant to the

bactericidal action of normal serum, a property that has been

attributed to the O-chain [15]. BaDwadC was more sensitive than

Ba-parental to the bactericidal action of serum and comparison with

the O-PS defective BaTn5::per mutant suggested that the LPS core

may be as important as the O-PS (Figure 5A). Brucellae are also

resistant to bactericidal polycationic peptides [16,17], a property

linked to a steric hindrance by the O-PS [17] as well as to the low

negative charge in the core and lipid A LPS sections, as assessed by

physicochemical methods [14]. We tested the sensitivity of

BaDwadC to two potent polycationic lipopeptides, polymyxin B

and colistin and demonstrated a greater sensitivity of BaDwadC

(Figure 5B) to these two agents. These results were confirmed using

synthetic poly-L-lysine and poly-L-ornithine (not shown).

BaDwadC LPS triggers dendritic cell maturation and
macrophage activation
We then carried out studies with purified LPSs. In experiments

performed to stimulate BMDC with purified LPS, the saturating

concentration for BaDwadC LPS was 10 mg/mL. This is one

hundred times more than the corresponding concentration of E.

coli LPS, a result that illustrates the importance of the expression of

an endotoxic lipid A for efficient cell activation. However, at

10 mg/mL, BaDwadC LPS induced the secretion of IL-12 and

TNF-a whereas Ba-parental LPS showed very low levels of

cytokine secretion (Figure 4A, right panel) also showing that the

presence of the core oligosaccharide in addition to the expression

of a long acyl-chain lipid A prevent Brucella LPS to show a marked

endotoxicity. These results closely matched those obtained in

infected BMDC (Figure 4A, left panel). Cytokine secretion was

TLR4-dependent since no pro-inflammatory cytokines were

detected in BMDC from TLR4 but not TLR2 (Figure 4B),

TLR6 (not shown) or TLR9 (Figure 4B) knockout mice stimulated

with BaDwadC LPS. Finally, BMDC showed an intermediate

matured phenotype as judged by the expression of CD40 and

CD86 co-stimulatory molecules and surface MHCII (Figure 4C)

that led to efficient cytokine secretion. Although BaDwadC
multiplied in macrophages (BMDM) (Figure 3, upper panel), its

core-defective purified LPS was capable of triggering a cytokine

response higher than that of the parental Ba-LPS (Figure S7B).

These results suggest that signaling by the mutated LPS during

BMDM infection and subsequent cell activation did not occur

early enough to prevent the mutant from reaching the replicative

niche.

BaDwadC LPS binds bactericidal peptides and serum
complement
Purified S-LPS forms supramolecular aggregates in which the

lipid A acyl chains display a characteristic and temperature-

dependent fluidity that increases upon the disturbance of the

aggregate caused by binding of bactericidal peptides and

complement molecules [18]. Accordingly, we measured this

parameter in the absence or the presence of serum or polymyxin

B. In the absence of any agent, the b«a transition that marks the

shift from crystalline to fluid phase took place in the 30 to 40uC

Figure 1. BaDwadC carries a partially defective LPS core oligosaccharide. Western blot analyses were performed with monoclonal
antibodies Cby-33H8 (O-polysaccharide C/Y epitope) and A68/24D08/G09 (core oligosaccharide) and SDS-proteinase K LPS extracts of Ba-parental,
BaDwadC and BaDwadC-compl (complemented mutant), and the SDS-PAGE electropherogram of LPS phenol-water extracts was silver stained.
doi:10.1371/journal.ppat.1002675.g001

Brucella LPS Shields Against Innate Immunity
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Figure 2. BaDwadC is attenuated in mice and induces transitory splenomegaly, local leukocyte recruitment and cytokine secretion.
(A), Left panel, infection kinetics in the spleens of mice intraperitoneally inoculated with 56104 Ba-parental, BaDwadC or 16108 BaTn5::per; right
panel, spleen weights. (B), Leukocyte and PMN levels in the peritoneum (left panel) and blood (right panel) of mice after intraperitoneal infection with
16106 Ba-parental, BaDwadC or 16105 S. Typhimurium SL1344. (C), TNF-a, IL-6, IL-10 and IL-12 p40/p70 levels in the sera of mice infected with Ba-
parental or BaDwadC. Each point is the mean6 standard deviation (n = 5). Differences between Ba-parental and BaDwadC are indicated with symbols
(*, p,0.05; #, p,0.001).
doi:10.1371/journal.ppat.1002675.g002
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range for B. abortus wild type LPS, with a transition temperature of

37uC (Figure 5C). The LPS of the BaDwadC mutant showed a very

different acyl chain fluidity profile with a transition temperature

between 45 and 55uC, and with a markedly more restricted fluidity

below transition temperature than the wild type LPS. Therefore,

the mutant LPS aggregates were in the crystalline phase at

physiological temperatures and, since the acyl-chain composition

of lipid A was not significantly affected (Figure S4), we attributed

this to the disruption induced in the core structure by mutation of

wadC. Despite this greater rigidity, the LPS aggregates of the

BaDwadC mutant were clearly affected by normal serum whereas

those of Ba-parental LPS were not (Figure 5C). Moreover, when

we measured the effect of polymyxin B on acyl chain fluidity, we

found a much less marked effect on wild type LPS than on the LPS

of the BaDwadC mutant (Figure 5B). These results show that the

core defect is uncovering the complement and polycations targets

(Kdo and lipid A phosphate groups) that exist in the innermost

sections of LPS [19], and are in agreement with the serum

complement and bactericidal peptide sensitivity of the mutant.

The core of B. abortus LPS interacts with MD-2
Most endotoxic effects of enterobacterial LPS depend on the

interaction with the TLR4 co-receptor MD-2, an event that

triggers a cascade of signals leading to the NF-kB-dependent

expression of immune response genes and a subsequent proin-

flammatory response [7]. Therefore, we explored the interaction

of BaDwadC LPS with MD-2 using a competitive ELISA using an

antibody that recognizes free- but not LPS-bound human MD-2

(hMD-2) [20]. Whereas Ba-parental LPS did not interact with

MD-2 in the range of concentrations tested, BaDwadC LPS was

capable of binding to MD2, although at concentrations higher

than the reference endotoxic Salmonella LPS (Figure 6A) or E. coli

LPS (not shown). These results were confirmed by testing the

displacement of bis-ANS from MD-2. Whereas Ba-parental LPS

did not cause displacement in the range of the concentrations

tested (1.25–10 mg/mL), BaDwadC displaced this probe from MD-

2. Consistent with the results of the competitive ELISA, the

interaction of the mutated LPS with MD-2 observed using this

protocol did not reach the Salmonella LPS levels (Figure S8).

Figure 3. BaDwadC is attenuated in BMDC. Upper panel, intracellular replication of Ba-parental, BaDwadC, BaDwadC-compl and virB mutant in
BMDC and BMDM. Each point is the mean 6 standard error of an experiment performed in triplicate, and the results representative of three
independent experiments. Differences between Ba-parental and BaDwadC are indicated with symbols (#, p,0.001). Lower panel, confocal imaging
of Ba-parental and BaDwadC carrying a GFP plasmid at 24 h post-infection (calnexin and LAMP-1 are in red).
doi:10.1371/journal.ppat.1002675.g003
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Figure 4. BaDwadC induces a cytokine release that is reproduced by purified LPS in a TLR-4 dependent fashion. (A), IL-12 p40/p70 and
TNF-a released by BMDC 24 h after infection (left panel) or stimulation with 10 mg/mL of Ba-parental or BaDwadC LPS, or with 100 ng/mL of E. coli
LPS (right panel) measured by ELISA; (B), IL-12 p40/p70 (left panel) and TNF-a (right panel) released by BMDC from wild-type (WT), TLR92/2 TLR42/
2 or TLR22/2 mice 24 h after stimulation with 10 mg/mL of Ba-parental or BaDwadC LPS, or with 100 ng/mL of E. coli LPS measured by ELISA; (C),
Surface expression of CD40, CD86 and MHCII in LPS-stimulated BMDC measured by flow cytometry. Each point is the mean 6 standard error (n = 3).
But for TLR42/2 mice differences between Ba-parental and BaDwadC or their corresponding LPS were statistically significant (p,0.001). Results are
representative of two independent experiments.
doi:10.1371/journal.ppat.1002675.g004

Brucella LPS Shields Against Innate Immunity
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Figure 5. BaDwadC shows increased sensitivity to normal serum and bactericidal peptides that relates to the LPS core defect. (A),
Survival of Ba-parental, BaDwadC and BaTn5::per after incubation in non-immune calf serum for 90 min. Each point is the mean 6 standard error of
an experiment performed in triplicate, and the results representative of five independent experiments (differences between Ba-parental and
BaDwadC are indicated as #, p,0.001). (B), minimal inhibitory concentrations (MIC) of polymyxin B (determined by the serial dilution method) and
colistin (determined by the E-test) (results representative of three independent experiments). (C), Crystalline to fluid (b«a) phase transition of the
hydrocarbon chains of Ba-parental LPS and BaDwadC LPS measured in the presence (filled circles) or absence (empty circles) of normal human serum
(red circles) or polymyxin B (black circles; LPS:PMB 1:0.1 molar ratio). The plots represent the position (wavenumber) of the peak of the symmetric
stretching vibration of the methylene groups ns(CH2) versus temperature. Tc, transition temperature (results are representative of three independent
experiments).
doi:10.1371/journal.ppat.1002675.g005
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Interestingly, the LPS of Ochrobactrum anthropi (which carries a

Brucella-type lipid A but differs markedly in the core structure

[8,14]) showed a higher binding to MD2 than either the mutant or

the wild-type B. abortus LPS (Figure S9). Moreover, the percentage

of BMDC showing NF-kB translocation to the nucleus (Figure

S10) after 1 h of stimulation with BaDwadC LPS was clearly above

that of Ba-parental LPS (Figure 6B). Clearly, both sets of results

are in agreement with the cytokine profiles observed in mice and

target cells. In addition, since activation of the mTOR pathway

has been implicated in dendritic cell maturation and cytokine

production, we determined the phosphorylation of S6, one of the

downstream elements of this pathway [21]. When BaDwadC LPS

was compared to Ba-parental LPS, the former induced an earlier,

more intense and more sustained S6 phosphorylation (Figure 6C)

as detected from 30 min up to 6 h of LPS stimulation.

All this evidence suggests that the core of B. abortus LPS

negatively modulates recognition by MD-2/TLR4 and the

subsequent intracellular signaling leading to pro-inflammatory

response and dendritic cell maturation. In support of this

interpretation, the TLR4 dysfunction did not affect the multipli-

cation of the wild type but allowed a better replication of the

mutant in the spleens of mice (Figure S11). The replication of the

wadC mutant in TLR42/2 did not reach the levels of the wild

type, consistent with the existence of additional factors causing

attenuation such as the complement and polycation sensitivity

observed in vitro.

Discussion

We have identified a B. abortus LPS gene (wadC) whose

disruption does not result in the loss of the O-PS but in an altered

core, which is in contrast to all Brucella LPS genes described

[10,22,23,24]. This allowed us to discriminate the role of the LPS

core oligosaccharide from that of the O-polysaccharide in Brucella

Figure 6. BaDwadC LPS binds to MD-2 and increases NF-kB translocation and S6 phosphorylation. (A) LPS binding to hMD-2. After
incubation of 0.75 mM hMD-2 with increasing LPS concentrations, the fraction of hMD-2 not bound to LPS was detected with free-hMD-2 specific
antibody 9B4 by ELISA (results are representative of three independent experiments run in triplicate; differences between Ba-parental and BaDwadC
are indicated as *, p,0.05 or #, p,0.001) (B) NF-kB translocation to the nucleus. BMDC were stimulated for 1 h with media, E. coli LPS (100 ng/mL),
Ba-parental LPS (10 mg/mL) or BaDwadC LPS (10 mg/mL), cells fixed in 3% paraformaldehyde at 37uC for 15 min, immunostained for CD11c and
MHCII, and the % of cells showing nuclear translocation of the NF-kB subunit p65/RelA recorded (results are representative of three independent
experiments run in triplicate; differences between Ba-parental and BaDwadC are indicated as #, p,0.001). (C) S6 phosphorylation. BMDC were
stimulated for 30 min, 1, 4, or 6 h with (left to right) media, E. coli LPS (100 ng/mL), Ba-parental LPS (100 ng/mL), Ba-parental LPS (10 mg/mL) or
BaDwadC LPS (10 mg/mL). Cell lysates (30 mg protein) were analyzed by Western blot with a polyclonal antibody against S6-P or an anti-actin
antibody as control.
doi:10.1371/journal.ppat.1002675.g006
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virulence. The wadC LPS core mutant induced a strong proin-

flammatory response and was attenuated in mice and in dendritic

cells. These properties were reproduced by the purified wadCmutant

LPS but not by the wild type Ba-parental LPS. Activation was

TLR4-dependent and the core-mutated LPS displayed increased

binding to MD-2, the TLR4 co-receptor, which paralleled an

increased intracellular signaling. This is the first description of an

LPS core hampering complement activation, cationic peptide

binding and detection by TLR4-MD-2. Therefore, B. abortus LPS

core acts as a shield against innate immunity recognition and

represents a novel virulence-related mechanism. Studies in progress

with the B. melitensis, B. suis and B. ovis mutants in the wadC

orthologues confirm that this is a general mechanism of this group of

bacteria. Indeed, all our results also provide experimental proof that

the stealthy behavior of this pathogen towards innate immunity is

essential for its virulence, as proposed before [2,8].

Consistent with the key role of dendritic cells in brucellosis

[25,26,27], the attenuation and proinflammatory responses of the

wadC mutant in mice were reproduced in BMDC. It is noteworthy

that the attenuation was not observed in macrophages, and this

could be attributed to functional differences between these two

types of cells in the ability to process and present antigens.

Nevertheless, the results obtained in mice showed that the

observations made in dendritic cells are more relevant for the

course of the infection than those in macrophages in vitro.

Interference with dendritic cell maturation is a strategy that

prevents the development of efficient immunity and there are

several examples of intracellular pathogens that target dendritic

cells. Mycobacterium tuberculosis interferes with TLR signaling in

dendritic cells blocking their maturation and IL-12 generation and

directing the immunoresponse towards IL-10 production [28]. S.

Typhimurium, on the other hand, does not block maturation but

prevents MHC II antigen presentation in some subtypes of

dendritic cells [29,30]. Francisella tularensis, another gram-negative

pathogen that does not block dendritic cell maturation, seems to

be capable of multiplying in these cells and to inhibit the secretion

of pro-inflammatory cytokines [31]. However, only B. abortus, B.

melitensis and B. suis, the three classical smooth Brucella spp., have

been reported to be simultaneously able to multiply in dendritic

cells and to prevent their maturation, thereby thwarting the

efficient presentation of proteins in either the MHC I or MHC II

context [27]. The properties that enable the brucellae to display

these abilities are beginning to be understood. TLR2, TLR4 and

TLR9 seem to be the most important TLRs in dendritic cells, and

they recognize lipoproteins, LPS and CpG DNA, respectively.

Salcedo et al. [27] have recently shown that protein Btp1 of B.

abortus interferes with the TLR2 signaling pathway and down

modulates dendritic cell activation. Billard et al. [26] found that

the response of dendritic cells derived from peripheral blood

monocytes to wild type B. abortus LPS was low as compared to that

obtained with E. coli LPS. Our results extend these observations

and demonstrate the connection between the LPS core oligosac-

charide and the ability of B. abortus to thrive in dendritic cells and

to circumvent their maturation.

Chemical analyses of the B. abortus LPS core reveal the presence

of Kdo, glucosamine, glucose, mannose and quinovosamine [6].

Our results suggest that these sugars must be arranged in such a

way that some of them probably play no role in the section linking

the O-PS, as predicted before by studies with monoclonal

antibodies [23] and on the inability of polymyxin B to neutralize

the charge of B. abortus LPS [14]. Moreover, we have identified a

second glycosyltransferase gene (wadB) that, upon disruption,

generates an LPS phenotype close to the one described here for

BaDwadC. These genetic data indicate that at least two core sugars

must be arranged in a structure whose damage does not affect the

link to the O-PS. Research in progress shows the existence of a

mannose containing branch in the Brucella LPS core. WadC is a

putative mannosyltransferase and it seems likely that it could be

involved in the transfer of a mannose unit to such a branch. It is

tempting to speculate that such a structure hinders the access to

the Kdo and lipid A phosphates targeted by bactericidal peptides

as well as complement C1q [19], and could thus account for the

results of the transition measurements performed in the presence

of PMB and serum. We also propose that the full core structure is

one of the factors contributing to a defective MD-2 recognition,

the other one being the peculiar acyl chain composition of Brucella

lipid A. Two not mutually exclusive hypotheses could account for

the role of the complete core. Its absence in the mutant could favor

the dissociation of individual molecules from aggregates and make

them more readily available for binding to MD2, and the anionic

molecules and Kdo in the inner sections could be more accessible

for binding to MD2. In addition, it is known that C12-C14

hexaacylated lipids A like that of E. coli interact with a large

hydrophobic groove in MD-2, with five acyl chains deep inside,

the remaining chain in a hydrophobic interaction with TLR4 and

the bisphosphorylated glucosamine disaccharide tilted outwards

[7]. Therefore, the lipid A phosphate groups contribute to receptor

multimerization by interacting with positively charged residues in

TLR4 and MD-2 [7]. Previously, we proposed that the very long

chain fatty acids in Brucella lipid A are critical in preventing

effective recognition by TLR4-MD-2 [32] and here we show that

the interaction of both the wild type and the BaDwadC LPS with

MD-2 is significantly reduced as compared to that of Salmonella

LPS. This suggests that the MD-2 hydrophobic pocket does not

allow for efficient interaction with the bulky lipid A of Brucella.

Moreover, removal of part of the B. abortus LPS core increases the

binding to MD-2 indicating that interaction is hampered by

virulent B. abortus intact core. Since O. anthropi and B. abortus LPS

have similar a lipid A but a markedly different core structure

[8,14], the results obtained with the former in the MD2 assay also

suggest that core structures are important. The work in progress

on the structure of the B. abortus LPS core shows that the O-PS

stems from a few sugars linked to Kdo I, suggesting Kdo II as the

section linked to the sugar(s) removed by the wadC mutation.

Thus, these sugars should be close to the negatively charged

groups in the lipid A backbone and Kdo and could hinder cationic

peptide, C1q and MD-2 interactions. This structure may not be

unique to B. abortus. In fact, wadC homologues are found not only

in the genomes of all Brucella species but also in Bartonella spp.,

suggesting structures acting as shields against innate immunity

recognition.

Finally, current classical smooth brucellosis vaccines (B. abortus

S19 and B. melitensis Rev 1) are doubtlessly useful tools in animal

vaccination and, therefore, in the eradication of this zoonotic

disease, but do not afford 100% protection in the natural host.

Hence, their successful use requires complementary measures

(tagging and control of animal movement, efficient veterinary

services, repeated animal testing) that make brucellosis eradication

a cumbersome and long process [33]. We found that the cytokine

profile, with IL-12 being released in large amounts, the transitory

splenomegaly and the eventual clearance of BaDwadC could make

mutation of wadC a tool to improve existing or future vaccines.

Materials and Methods

Ethics
Animal experimentation was conducted in strict accordance

with good animal practice as defined by the French animal welfare
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bodies (Law 87–848 dated 19 October 1987 modified by Decree

2001-464 and Decree 2001-131 relative to European Convention,

EEC Directive 86/609). All animal work was approved by the

Direction Départmentale des Services Vétérinaires des Bouches du

Rhônes (authorization number 13.118).

All animals were handled and sacrificed according to the

approval and guidelines established by the ‘‘Comité Institucional

para el Cuido y Uso de los Animales’’ of the Universidad de Costa

Rica, and in agreement with the corresponding law ‘‘Ley de

Bienestar de los Animales No 7451’’ of Costa Rica (http://www.

micit.go.cr/index.php/docman/doc_details/101-ley-no-7451-leyde-

bienestar-de-los-animales.html).

Mice (Charles River, Elbeuf, France) were accommodated in

the animal building of the CITA of Aragón (ID registration

number ES-502970012005) in cages with water and food ad

libitum and under biosafety containment conditions, for 2 weeks

before the start and all along the experiment. The animal handling

and procedures were in accordance with the current European

legislation (directive 86/609/EEC) supervised by the Animal

Welfare Committee of the institution (protocol numberR102/

2007).

Bacterial strains and growth conditions
The bacterial strains and plasmids used are listed in Table S1.

Moreover, the strain Salmonella enterica subespecies enterica serotype

typhimurium (abbreviated as S. Typhimurium) reference ATCC

SL1344, Salmonella abortus equi strain HL83 and E. coli strain

MG1655 were used as controls in some assays. Bacteria were

routinely grown in standard tryptic soy broth or agar either plain

or supplemented with kanamycin at 50 mg/mL, or/and nalidixic

acid at 25 mg/mL, or/and 5% sucrose. All strains were stored in

skim milk at 280uC.

DNA manipulations
Plasmid and chromosomal DNA were extracted with Qiaprep

spin Miniprep (Qiagen GmbH, Hilden, Germany), and Ultraclean

Microbial DNA Isolation kit (Mo Bio Laboratories) respectively.

When needed, DNA was purified from agarose gels using Qiack

Gel extraction kit (Qiagen) and sequenced by the Servicio de

Secuenciación de CIMA (Centro de Investigación Médica

Aplicada, Pamplona, Spain). Primers were synthesized by

Sigma-Genosys Ltd. (Haverhill, United Kingdom). Searches for

DNA and protein homologies were carried out using the NCBI

(National Center for Biotechnology Information; http://www.

ncbi.nlm.nih.gov) and the EMBL-European Bioinformatics Insti-

tute server (http://www.ebi.ac.UK/ebi_home.html). In addition,

sequence data were obtained from The Institute for Genomic

Research website at http://www.tigr.org. Genomic sequences of

B. melitensis, B. abortus and B. suis were analyzed using the database

of the URBM bioinformatic group (http://urbm-cluster.urbm.

fundp.ac.be/,apage).

Construction of the Ba-parental wadC non polar mutant
(BaDwadC)
In-frame deletion mutant BaDwadC was constructed by PCR

overlap using genomic DNA of Ba-parental as DNA template

(Figure S1). Primers were designed based on the available

sequence of the corresponding genes in B. abortus 2308. For the

construction of the wadC mutant, we first generated two PCR

fragments: oligonucleotides wadC-F1 (59-CTGGCGTCAG-

CAATCAGAG-39) and wadC-R2 (59- GTGCAACGACCT-

CAACTTCC-39) were used to amplified a 476-bp fragment

including codons 1 to 16 of the wadC ORF, as well as 424 bp

upstream of the wadC start codon, and oligonucleotides wadC-F3
(59-GGAAGTTGAGGTCGTTGCACACGCCATC GAACCT-

TATCTG-39) and wadC-R4 (59-CGGCTATCGTGCGATTCT-

39) were used to amplify a 453-bp fragment including codons 308

to 354 of the wadC ORF and 320-bp downstream of the wadC stop

codon (see S-1). Both fragments were ligated by overlapping PCR

using oligonucleotides wadC-F1 and wadC-R4 for amplification,

and the complementary regions between wadC-R2 and wadC-F3

for overlapping. The resulting fragment, containing the wadC
deletion allele, was cloned into pCR2.1 (Invitrogen), to generate

plasmid pRCI-23, sequenced to ensure the maintenance of the

reading frame, and subsequently subcloned into the BamHI and

the XbaI sites of the suicide plasmid pJQK. The resulting mutator

plasmid (pRCI-26) was introduced in Ba-parental by conjugation.

The first recombination (integration of the suicide vector in the

chromosome) was selected by Nal and Kan resistance, and the

second recombination (excision of the mutator plasmid leading to

construction of the mutant by allelic exchange), was selected by

Nal and sucrose resistance and Kan sensitivity. The resulting

colonies were screened by PCR with primers wadC-F1 and wadC-
R4 which amplify a fragment of 929 bp in the mutant and a

fragment of 1805 bp in the parental strain. The mutation

generated results in the loss of the 82% of the wadC ORF, and

the mutant strain was called BaDwadC.

Complementation of BaDwadC
Taking into account that the WadC sequences of B. melitensis

and B. abortus are identical, we used the B. melitensis ORFeome

constructed with the Gateway cloning Technology (Invitrogen) for

complementation [34]. The clone carrying B. melitensis wadC was

extracted, and the DNA containing the corresponding ORF was

subcloned in pRH001 [35] to produce plasmid pwadC. To

complement the wadC mutation, plasmid pwadC was introduced

into the BaDwadC mutant by mating with E. coli S17-1 and the

conjugants harboring pwadC (designated as BaDwadC-comp) were

selected by plating the mating mixture onto TSA-Nal-Kan plates

which were incubated at 37uC for 3 days.

Virulence assay in mice
Seven-week-old female BALB/c mice (Charles River, Elbeuf,

France) were kept in cages with water and food ad libitum and

accommodated under biosafety containment conditions 2 weeks

before the start of the experiments. Inocula were prepared in

sterile 10 mM PBS (pH 6.85). For each strain, 30 mice were

inoculated intraperitoneally with 0.1 mL of inoculum containing

5.86104 (Ba-parental) or 4.96104 (BaDwadC) CFU/mouse and

the number of CFU in spleens (n = 5) was determined at 1, 2, 4, 6,

8, and 12 weeks after inoculation. BaTn5::per was used as control

of representative R mutant with complete LPS-core, at inoculation

dose of 16108 CFU intraperitoneally and viable counts in spleens

at 1, 2, 3, 6 and 9 weeks post-infection. An additional experiment

was performed under the same conditions but including BaDwadC-

comp and the number of CFU in spleens was determined 8 weeks

after inoculation. The identity of the spleen isolates was confirmed

by PCR at each time-point during the infection process. The

individual data were normalized by logarithmic transformation,

and the mean and standard deviation (SD) of log10 CFU/spleen

were calculated.

Leukocyte counts
BALB/c mice from 20 and 24 g were intraperitoneally injected

with 106 CFU of Ba-parental, 105 of S. Typhimurium or 0.1 mL

pyrogen-free sterile PBS. Blood was collected from the retro-

orbital sinus and subjected to analysis. Alternatively, 5 mL of ice
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cold PBS were injected in the peritoneal cavity of killed the mice,

and the fluids collected with a syringe (from 3.8 to 4.5 mL) from

exposed peritoneal cavity. Then fluids were centrifuged and the

peritoneal cells resuspended in 0.2 mL of PBS and counted in

Neubauer chambers. Giemsa-Wright staining smears were per-

formed to distinguish between leukocytes.

Intracellular multiplication
Bone marrow cells were isolated from femurs of 7–8-week-old

C57Bl/6 female, TLR22/2, TLR42/2 or TLR92/2 [36,37]

mice and differentiated into either dendritic cells (BMDCs) or

macrophages (BMDMs) as described previously [38,39] in

presence of decomplemented fetal bovine serum. Infections were

performed by centrifuging the bacteria onto the differentiated cells

(4006g for 10 min at 4uC; bacteria: cells ratio of 20:1 for BMDCs

or 50:1 for BMDMs) followed by incubation at 37uC for either

15 min (BMDMs) or 30 min (BMDCs) under a 5% CO2

atmosphere. Cells were either extensively washed (BMDMs) or

gently washed (BMDCs) with medium to remove extracellular

bacteria and incubated in medium supplemented with 100 mg/mL

gentamicin for 1 h to kill extracellular bacteria. Thereafter, the

antibiotic concentration was decreased to 20 mg/mL. To monitor

Brucella intracellular survival, infected cells were lysed with 0.1%

(vol/vol) Triton X-100 in H2O (BMDCs) or after PBS washing

(BMDMs) and serial dilutions of lysates were rapidly plated onto

tryptic soy agar plates to enumerate CFU.

Cytokine measurement
The levels of TNF- a, IL-6, IL-10 and IL-12 p40/p70 were

estimated at different time points by enzyme-linked immunosor-

bent assays (ELISA) in the sera of BALB/c mice infected

intraperitoneally, and in the supernatants of BMDC or BMDM

at 24 hours after infection (see above) or after stimulation with

10 mg/mL of the appropriate LPS from different Brucella strains or

100 ng/mL from E. coli ATCC 35218 obtained by the phenol-

water procedure and purified further by the phenol-water-

deoxycholate method [40]. For the latter purpose, a stock of

1 mg/mL in pyrogen free sterile water was prepared, sonicated

briefly and sterilized by autoclaving. Prior to use, the stock was

heated at 56uC for 15 min and then cooled to room temperature.

Immunofluorescence assays
BMDCs were grown on glass coverslips and inoculated with

bacteria as described above or stimulated with the appropriate

LPS. At different times after inoculation (see Results), coverslips

were fixed with 3% paraformaldehyde pH 7.4 at 37uC for 15 min

and washed three times with PBS. Coverslips were processed for

immunofluorescence staining as previously described [39]. Briefly,

cells were permeabilized with 0.1% saponin and incubated with

primary antibodies. After several washes, the primary antibodies

were revealed with the appropriate secondary antibodies. The

primary antibodies used for immunofluorescence microscopy

were: cow anti-B. abortus; rat anti-mouse LAMP1 ID4B (Develop-

mental Studies Hybridoma Bank, National Institute of Child

Health and Human Development, University of Iowa); mouse anti

FK2 (Biomol); Moab anti-calnexin (kindly provided by Dr. D.

Williams, University of Toronto) and NF-kB subunit p65/RelA

(Santa Cruz). In all experiments, BMDCs were labeled using an

antibody against a conserved cytoplasmic epitope found on MHC-

II I-A ß subunits or MHC II [29] which does not produce

significant labeling with BMDMs. In addition, BMDCs were

labeled with an anti–CD11c antibody (Biolegend) confirming that

they are dendritic cells [27]. Samples were analyzed under a Leica

DMRBE epifluorescence microscope for quantitative analysis, or a

Zeiss LSM 510 laser scanning confocal microscope for image

acquisition. Images were then assembled using Adobe Photoshop

7.0. Quantifications were done by counting at least 300 cells in 3

independent experiments.

Immunoblotting
30 mg of cell lysates were subjected to SDS-PAGE and, after

transfer to nitrocellulose, the membrane was probed with a

polyclonal antibody against phospho-S6 (Cell Signaling Technol-

ogy) that detects phosphorylation on Ser235/236 or anti-actin

antibody. Blots were subjected to enhanced chemiluminescence

detection (ECL, PIERCE).

Flow cytometry
BMDCs treated with different types of LPS’s were collected and

stained immediately before fixation with paraformaldehyde.

Isotype controls were included as well as BMDCs treated with

the different secondary antibodies for control of autofluorescence.

Cells were always gated on CD11c and a minimum of 12,000

CD11c-positive events were obtained for analysis. A FACScalibur

cytometer (Beckton Dickinson) was used and data were analysed

using FlowJo software (Tree Star). Allophycocyanin (APC)

conjugated-anti-CD11c antibody (HL3) from Pharmigen was used

in all experiments along with either phycoerythrin (PE) conjugated

anti-CD86, anti-IA-IE (MHC class II) or fluorescein isothiocya-

nate (FITC) conjugated anti-CD40, all from BioLegend.

LPS extraction and characterization
Extraction of whole-cell LPS by SDS-proteinase K protocol was

performed as described previously [41]. In addition, LPS was

obtained by methanol precipitation of the phenol phase of a

phenol-water extract [13]. This fraction (10 mg/mL in 175 mM

NaCl, 0.05% NaN3, 0.1 M Tris-HCl [pH 7.0]) was then purified

by digestion with nucleases (50 mg/mL each of DNase-II type V,

and RNase-A [Sigma, St. Louis, Missouri, U.S.A.], 30 min at

37uC) and three times with proteinase K (50 mg/mL, 3 hours at

55uC), and ultracentrifuged (6 h, 100,0006 g). When we applied

this method to BaDwadC, we found that the supernatant of the

ultracentrifugation step contained the major fraction of the LPS.

The studies were performed with the major LPS fractions of each

bacteria. Free lipids (ornithine lipids and phospholipids) were then

removed by a fourfold extraction with chloroform-methanol. (2:1

[vol/vol]) [14].

LPS were analyzed in 15 or 18% polyacrylamide gels (37.5:1

acrylamide/methylene-bisacrylamide ratio) in Tris-HCl-glycine

and stained by the periodate-alkaline silver method [42]. For

Western blots, gels were electrotransferred onto nitrocellulose

sheets (Schleicher & Schuell GmbH, Dassel, Germany), blocked

with 3% skim milk in PBS with 0.05% Tween 20 overnight, and

washed with PBS–0.05% Tween 20. Immune sera were diluted in

this same buffer and, after incubation overnight at room

temperature, the membranes were washed again. Bound immu-

noglobulins were detected with peroxidase-conjugated goat anti-

mouse immunoglobulin (Nordic,Tilburg, Netherlands) and 4-

chloro-1-naphthol- H2O2. Monoclonal antibodies (Moabs) used in

this study were Cby-33H8 (Ingenasa, Madrid, Spain), which

recognizes the C/Y O-chain epitope, and A68/24D08/G09,

A68/24G12/A08, and A68/3F03/D5 which recognize core

epitopes [43]. The inner core LPS marker Kdo was determined

colorimetrically by the thiobarbituric acid method using pure Kdo

and deoxyribose as the standards, with the modifications described

previously [44]. Kdo contents were 1.6 and 2.4% for the wild type

and the mutated LPS, respectively.
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Lipid A analysis
Lipid A fractions were extracted using an ammonium hydrox-

ide/isobutyric acid method and subjected to negative ion matrix-

assisted laser desorption ionization time-of-flight (MALDI-TOF)

mass spectrometry analysis [45,46]. Briefly, lyophilized crude cells

(20 mg) were resuspended in 400 mL isobutyric acid/1M ammo-

nium hydroxide (5:3, v/v) and were incubated in a screw-cap test

tube at 100uC for 2 h, with occasional vortexing. Samples were

cooled in ice water and centrifuged (2,0006g for 15 min). The

supernatant was transferred to a new tube, diluted with an equal

volume of water, and lyophilized. The sample was then washed

twice with 400 mL methanol and centrifuged (2,0006g for

15 min). The insoluble lipid A was solubilized in 100 mL

chloroform/methanol/water (3:1.5:0.25, v/v/v). Analyses were

performed on a Bruker Autoflex II MALDI-TOF mass spectrom-

eter (Bruker Daltonics, Incorporated) in negative reflective mode

with delayed extraction. Each spectrum was an average of 300

shots. The ion-accelerating voltage was set at 20 kV. Dihydrox-

ybenzoic acid (Sigma Chemical Co., St.Louis, MO) was used as a

matrix. A few microliters of lipid A suspension (1 mg/mL) was

desalted with a few grains of ion-exchange resin (Dowex 50W-X8;

H+) in an Eppendorf tube. A 1 mL aliquot of the suspension (50–

100 mL) was deposited on the target and covered with the same

amount of the matrix suspended at 10 mg/mL in a 0.1 M solution

of citric acid. Different ratios between the samples and dihydrox-

ybenzoic acid were used when necessary. A peptide calibration

standard (Bruker Daltonics) was used to calibrate the MALDI-

TOF. Further calibration for lipid A analysis was performed

externally using lipid A extracted from E. coli strain MG1655

grown in LB at 37uC.

LPS binding to hMD-2
Binding of LPS to MD-2 was assayed by two different methods:

binding to hMD-2 by competitive ELISA and displacement of bis-

ANS (4,49-Dianilino-1,19-binaphthyl-5,59-disulfonic acid dipotas-

sium salt) from MD-2 by LPS. In both assays, LPS was sonicated

before use and subjected to three cycles of heating at 56uC

followed by cooling to 4uC.

The ELISA for determination of LPS binding to hMD-2 was

performed in 96-well plates (NUNC immunoplate F96 cert. Maxi-

sorp, Roskilde, Denmark).Chicken anti-hMD-2 (GenTel, Madi-

son, WI, U.S.A) (5 mg/mL) in 50 mM Na2CO3 (pH 9.6) was used

to coat the microtiter plate at 4uC overnight. Excess binding sites

were blocked with 1% BSA in PBS buffer (pH 7.2) for 1 h at room

temperature, and rinsed three times with the same buffer. During

the blocking step, hMD-2 (0.75 mM) was preincubated with 0 mM

to 8 mM LPS at 37uC and, as a negative control, LPS was also

preincubated in absence of hMD-2. This preincubated solutions

were added to the plate, which was then incubated for 1 h at

37uC. After rinsing, hMD-2 not bound to LPS was detected by

incubation with 0.1 mg/mL of mouse anti h-MD-2 (clone 9B4 e-

Bioscience San Diego, CA., U.S.A.) in PBS buffer at 37uC for 1 h,

followed by incubation with 0.1 mg/mL peroxidase-conjugated

goat anti-mouse IgG (Santa Cruz, CA., U.S.A.), also in PBS buffer

at 37uC for 1 h. After plate washing, ABTS (Sigma) was added,

the reaction was stopped with 1% SDS after 15 min, and the

absorbance at 420 nm measured using a Mithras LB940 apparatus

(Berthold Technologies). Salmonella abortus equi (strainHL83) LPS,

used as a control, was prepared by a phenol extraction procedure

and was kindly provided by Dr. Brandenburg (Forschungszentrum

Borstel, Germany).

Since the binding site of bis-ANS overlaps with theMD-2 binding

site of LPS we measured the displacement of the probe by the LPS

of Ba-parental and BaDwadC using Salmonella LPS as a control

[47].Binding of bis-ANS to hMD-2 was measured at 20uC using

excitation at 385 nm and measuring the emission fluorescence

spectra between 420 and 550 nm. Then, increasing amounts of LPS

were added to preincubated bis-ANS/hMD-2 complex (200 nM/

200 nM). The F0 value was the fluorescence intensity of bis-ANS/

hMD-2 complexes at 490 nm after 30 min of incubation (to reach

stable fluorescence).The FLPS value was the fluorescence at 490 nm

after LPS addition to the complex. Fluorescence was measured on

Perkin Elmer fluorimeter LS 55. Quartz glass cuvette (565 mm

optical path, Hellma Suprasil) was used and bis-ANS was obtained

from Sigma (St. Louis, Missouri, U.S.A.).

LPS-Complement and -polymyxin B interactions
determined by acyl-chain fluidity measurements
The transition of the acyl chains of LPS from a well-ordered

state (gel phase) to a fluid state (liquid crystalline phase) at a lipid-

specific temperature (Tc) was determined by Fourier transform

infrared spectroscopy. A specific vibrational band, the symmetric

stretching vibration of the methylene groups ns(CH2) around

2,850 cm21, was analyzed since its peak position is a measure of

the state of order (fluidity) of the acyl chains. Measurements were

performed in a Bruker IFS 55 apparatus (Bruker, Karlsruhe,

Germany) as described previously [48]. To ensure homogeneity,

LPS suspensions were prepared in 2.5 mM HEPES (pH 7.2) at

room temperature, incubated at 56uC for 15 min, stirred, and

cooled to 4uC. This heating/cooling step was repeated three times,

and the suspensions were stored at 4uC for several hours before

analysis. LPS suspensions (water content, 90%) were analyzed in

CaF2 cuvettes with 12.5-mm Teflon spacers, and for each

measurement, 50 interferograms were accumulated, Fourier

transformed, and converted to absorbance spectra. The measure-

ments were obtained in continuous heating scans (2uC/min)

between 10uC and 60uC. To test the effect of complement, the

experiments were performed in the presence of normal human

serum. The effect of polymyxin B was assessed similarly at

different LPS:polymyxin B molar ratios (see Results), and using an

average MW of 11800 for Ba-2308 LPS (determined by SDS-

PAGE with Yersinia enterocolitica O:8 LPS as a standard).

Sensitivity to brucellaphages, dyes, antibiotics and
polycationic bactericidal peptides
The minimal inhibitory concentrations (MIC) of polymyxin B,

poly-L-ornithine, poly-L-lysine, colistin, penicillin, doxycycline,

clarithromycin, erythromycin, rifampicin, basic fuchsin, safranine

and thionin was determined in Müller-Hinton medium by

standard procedures. Sensitivity to the S (Tb, Wb, Iz) and rough

(R/C) -specific brucellaphages was measured by testing the lysis of

bacteria exposed to serial 10-fold dilutions made from a routine

test dilution phage stock [49].

Sensitivity to the bactericidal action of non-immune
serum
Exponentially growing bacteria were adjusted to 104 CFU/mL

in saline and dispensed in triplicate in microtiter plates (45 mL per

well) containing fresh normal bovine serum (90 mL/well). After

90 min of incubation at 37uC, brain heart infusion broth was

dispensed (200 mL/well), mixed with the bacterial suspension and

100 mL was plated on TSA. Results were expressed as the

percentage of the average CFU with respect to the inoculum.

Statistical analysis
The Kolmogorov-Smirnov test was applied to assess the normal

distribution of data obtained in each experiment. Thereafter,
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means were statistically compared by an unpaired Student’s t test.

Kruskal-Wallis and Mann-Whitney tests were used for experi-

ments with non-normal data distribution. The StatviewGraphics

5.0 for Windows (SAS Institute Inc) statistical package was used in

all cases.

Supporting Information

Figure S1 BAB1_1522 (BaDwadC) and its upstream and
downstream regions. The DNA sequence is registered at

NCBI with accession number YP_414888.1 (Gene ID: 3788779).

Start and stop codons are in blue characters; grey characters

denote intergenic nucleotides; primers used for mutagenesis are in

bold characters; red and green characters mark amino acids

deleted and present in BaDwadC, respectively.

(TIF)

Figure S2 Representative growth curves of Ba-parental
and BaDwadC in TSB at 376C. (each point represents the

mean of triplicate samples; the experiment was repeated three

times with similar results).

(TIF)

Figure S3 BaDwadC carries a partially defective LPS
core oligosaccharide. Western blot analyses were performed

with monoclonal antibodies Cby-33H8 (O-polysaccharide C/Y

epitope) A68/24D08/G09, A68/24G12/A08 and A68/3F03/D5

(core oligosaccharide) and SDS-proteinase K LPS extracts of Ba-

parental, BaDwadC and BaDwadC-compl (complemented mutant).

(TIF)

Figure S4 MALDI-TOF analysis of lipid A. The table

summarizes the results obtained with several independent

preparations, and the figures below show representative spectra

(peak B is an uncharacterized molecular species).

(TIF)

Figure S5 Complementation with pwadC restores the
ability of BaDwadC to multiply in mice. Mice were

inoculated intraperitoneally with 56104 Ba-parental, BaDwadC
and BaDwadC-compl (complemented mutant). Number of CFU in

spleens was determined eight weeks after inoculation. Differences

between BaDwadC and Ba-parental or BaDwadC-compl were

statistically significant. (#, p,0.001).

(TIF)

Figure S6 BaDwadC induces DALIS in BMDC. (A),

Percentages of BMDCs infected with either Ba-parental, BaDwadC
or S. Typhimurium that contain DALIS. (B), representative

confocal images of BMDCs infected with Ba-parental GFP or

BaDwadC GFP (in green) labeled with Moabs to CD11c (in blue)

and FK2 (in red) 24 hours after infection.

(TIF)

Figure S7 BaDwadC LPS induces cytokine release in

BMDM. (A), Intracellular replication of Ba-parental, BaDwadC,

BaDwadC-compl and virB mutant in BMDM. (B), TNF-a (left

panel) and IL-12 p40/p70 (right panel) released by BMDM 24 h

after incubation with 10 mg/mL of Ba-parental or BaDwadC LPS,

or with 100 ng/mL of E. coli LPS as measured by ELISA.

(TIF)

Figure S8 LPS binding to MD-2 assessed by displace-

ment of bis-ANS. The bis-ANS/hMD2 complex (200 nM/

200 nM) was incubated for 30 min to reach stable fluorescence

(F0). Then, increasing amounts of the indicated LPSs were added

and fluorescence (FLPS) measured. Salmonella LPS was used as

control. The results shown are representative of three independent

experiments.

(TIF)

Figure S9 Ochrobactrum anthropi LPS binding to MD-2.

(A), After incubation of 0.75 mM hMD-2 with increasing LPS

concentrations, the fraction of hMD-2 not bound to LPS was

detected with free-hMD-2 specific antibody 9B4 by ELISA. (B),

MALDI-TOF analysis of Ochrobactrum anthropi lipid A.

(TIF)

Figure S10 Nuclear translocation of NF-kB subunit in

LPS-stimulated BMDC. Cells were stimulated for 1 h with cell

culture medium, E. coli LPS (100 ng/mL), Ba-parental LPS

(10 mg/mL) or BaDwadC LPS (10 mg/mL). Cells were stained with

CD11c (in blue) and MHCII (in green). The nuclear translocation

NF-kB subunit p65/ReiA (in red) was analyzed by confocal

microscopy.

(TIF)

Figure S11 Multiplication of Ba-parental or BaDwadC

in the spleens of TLR4 KO mice. Mice were intraperitoneally

inoculated with 16106 CFU of either Ba-parental or BaDwadC.

Ten weeks after infection the number of CFU per spleen were

determined.

(TIF)
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6. Iriarte M, González D, Delrue RM, Monreal D, Conde R, et al. (2004) Brucella

Lipopolysaccharide: Structure, Biosynthesis and Genetics. In: López-Goñi I,
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Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydropho-
bic probes and more sensitive to cationic peptides and EDTA than are their
native Brucella sp. counterparts. J Bacteriol 178: 5867–5876.

17. Martı́nez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyón I (1995) The outer
membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect
Immun 63: 3054–3061.

18. Brandenburg K, David A, Howe J, Koch MH, Andra J, et al. (2005)
Temperature dependence of the binding of endotoxins to the polycationic
peptides polymyxin B and its nonapeptide. Biophys J 88: 1845–1858.

19. Moriyón I (2003) Against Gram-negative Bacteria: The LPS case. In: Gorvel JP,
ed. Intracellular Pathogens in Membrane Interactions and Vacuole Biogenesis
Landes Bioscience/Eurekah.com, Georgetown,Texas. pp 204–230.

20. Gradisar H, Keber MM, Pristovsek P, Jerala R (2007) MD-2 as the target of
curcumin in the inhibition of response to LPS. J Leukoc Biol 82: 968–974.

21. Delgoffe GM, Powell JD (2009) mTOR: taking cues from the immune
microenvironment. Immunology 127: 459–465.

22. Allen CA, Adams LG, Ficht TA (1998) Transposon-derived Brucella abortus rough
mutants are attenuated and exhibit reduced intracellular survival. Infect Immun
66: 1008–1016.
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