THE LIPSCHITZ CONTINUITY OF THE DISTANCE FUNCTION TO THE CUT LOCUS

JIN-ICHI ITOH AND MINORU TANAKA

Abstract

Let N be a closed submanifold of a complete smooth Riemannian manifold M and $U \nu$ the total space of the unit normal bundle of N. For each $v \in U \nu$, let $\rho(v)$ denote the distance from N to the cut point of N on the geodesic γ_{v} with the velocity vector $\dot{\gamma}_{v}(0)=v$. The continuity of the function ρ on $U \nu$ is well known. In this paper we prove that ρ is locally Lipschitz on which ρ is bounded; in particular, if M and N are compact, then ρ is globally Lipschitz on $U \nu$. Therefore, the canonical interior metric δ may be introduced on each connected component of the cut locus of N, and this metric space becomes a locally compact and complete length space.

Let N be an immersed submanifold of a complete C^{∞} Riemannian manifold M and $\pi: U \nu \rightarrow N$ the unit normal bundle of N. For each positive integer k and vector $v \in U \nu$, let a number $\lambda_{k}(v)$ denote the parameter value of γ_{v}, where γ_{v} denotes the geodesic for which the velocity vector is v at $t=0$, such that $\gamma_{v}\left(\lambda_{k}(v)\right)$ is the k-th focal point (conjugate point for the case in which N is a point) of N along γ_{v}, counted with focal (or conjugate) multiplicities. A unit speed geodesic segment $\gamma:[0, a] \rightarrow M$ emanating from N is called an N-segment if $t=d(N, \gamma(t))$ on $[0, a]$. By the first variation formula, an N-segment is orthogonal to N. A point $\gamma_{v}\left(t_{0}\right)$ on an N-segment $\gamma_{v}, v \in U \nu$, is called a cut point of N if there is no N-segment properly containing $\gamma\left[0, t_{0}\right]$. For each $v \in U \nu$, let $\rho(v)$ denote the distance from N to the cut point on γ_{v} of N. Whitehead [27] investigated the structure of the conjugate locus and the cut locus of a point on a real analytic Finsler manifold. He determined the structure of the conjugate locus around a conjugate point for which the conjugate multiplicity is locally constant on its neighborhood (cf. also [25) and proved the continuity of the function ρ. In compact symmetric spaces, T. Sakai 19 and M. Takeuchi [23] determined the detailed structure of the cut locus of a point. The detailed structure of the cut locus of a point in a 2 -dimensional Riemannian manifold has been investigated by Poincaré, Myers, and others [7], [11, [13]. Hartman first tried to show the absolute continuity of the function ρ when M is 2 -dimensional. He proved in [8 that if ρ is of bounded variation, then ρ is absolutely continuous. Recently, Hebda [11] and the first named author [13] independently proved Ambrose's problem by showing that ρ is absolutely continuous on a closed arc on which ρ is bounded when N is a point in a 2 -dimensional Riemannian manifold. Therefore, the cut locus of a point in a compact 2-dimensional

[^0]Riemannian manifold has finite 1-dimensional Hausdorff measure, and any two cut points can be connected by a rectifiable curve in the cut locus.

In the present paper, we prove that the focal locus and the cut locus of a submanifold of a complete C^{∞} Riemannian manifold have weak differentiability:

Theorem A. Let N be an immersed submanifold of a complete C^{∞} Riemannian manifold M and $\pi: U \nu \rightarrow N$ the unit normal bundle of N. Then, for each positive integer k and $v \in U \nu$ with $\lambda_{k}(v)<\infty, \lambda_{k}$ is locally Lipschitz around v.

Theorem B. Let N be an embedded submanifold of a complete C^{∞} Riemannian manifold M and $\pi: U \nu \rightarrow N$ the unit normal bundle of N. Then, for each $v \in U \nu$ with $\rho(v)<\infty, \rho$ is locally Lipschitz around v. In particular, if M and N are compact, then ρ is globally Lipschitz on $U \nu$ and hence the cut locus has finite ($m-1$)-dimensional Hausdorff measure, where m denotes the dimension of M.

Note that λ_{k} is not always differentiable (see Example 3.1). If there exists a neighborhood of $\lambda_{k}(v) v$ in which the focal multiplicity of each focal tangent vector is constant, then λ_{k} is C^{∞} around v, as Warner [25] and Hebda [9] reported. In particular, if M is 2-dimensional, then λ_{k} is C^{∞} on which λ_{k} is bounded. In fact, the focal multiplicity is 1 at each focal point.

Rademacher's theorem (cf. [16]) states that a Lipschitz map of a domain in R^{k} into R^{l} is differentiable almost everywhere. Therefore, as corollaries to Theorems A and B , there exist tangent spaces at almost all points in the tangent focal locus and the tangent cut locus, respectively.

Since a Lipschitz continuous function is absolutely continuous, Theorem B generalizes the previously mentioned result by Hebda and the first named author; therefore, this theorem is new, even for 2-dimensional M. Theorem B has a few corollaries. If a cut point q is not a focal point of the submanifold along an N segment, then the Hausdorff dimension of the focal locus around q equals $m-1$ (cf. [14] for the case in which N is a point).

Corollary C. Suppose N is a closed submanifold of M. Then the canonical interior metric δ may be introduced on each connected component of C_{N}. Moreover the topology introduced from δ coincides with the relative one of (M, g), and $\left(C_{N}, \delta\right)$ is a locally compact and complete length space.

Note that the cut locus of a compact subset of an Alexandrov surface admits the canonical interior metric, which is a result given by Shiohama and the second named author [22]. Corollary C raises the following interesting problem:

Does the metric space $\left(C_{N}, \delta\right)$ have curvature bounded below (or above) in the sense of Alexandrov?

The answer is no. Counterexamples are given in Section 3.
Refer to [1] or [2] for the geometry on metric spaces. [20] is a good reference on Riemannian geometry and in particular on the Morse index theorem.

Finally, the authors would like to thank Prof. T. Akamatsu for his valuable suggestions on analysis methods such as the Malgrange preparation theorem. He kindly pointed out to the second named author that if the focal multiplicity of the focal point $\gamma_{v}\left(\lambda_{k}(v)\right)$ is two, then the locally Lipschitz continuity of λ_{k} can be proven at v by making use of the Malgrange preparation theorem (see [12]) and Lemma B. 1 in [24].

1. The distance functions to the tangent focal locus

Let (M, g) denote a complete, m-dimensional C^{∞} Riemannian manifold. We denote by $T M$ the total space of the tangent bundle over M, and by exp the exponential map defined on $T M$. The fiber over p is denoted by $T_{p} M$. Let N denote a $C^{\infty} n$-dimensional submanifold of M and $\pi: \quad \nu \quad \longrightarrow N$ the normal bundle of N. The fiber over p is denoted by ν_{p}. For each $\xi \in \nu_{p}$, let A_{ξ} denote the shape operator of N with respect to ξ, which is a symmetric linear transformation on $T_{p} N$ (see [20] for the definition of the shape operator). Suppose that a unit speed geodesic $\gamma:[0, \infty) \longrightarrow M$ is given, for which $\xi:=\dot{\gamma}(0) \in \nu_{p}$. A Jacobi field Y along γ is called an N-Jacobi field if Y satisfies the following two initial conditions:

$$
\begin{equation*}
Y(0) \in T_{p} N, \quad Y^{\prime}(0)-A_{\xi} Y(0) \in \nu_{p} \tag{1.1}
\end{equation*}
$$

where Y^{\prime} denotes the covariant derivative of the Jacobi field Y along γ. Note that if N consists of a single point p, then an N-Jacobi field Y is a Jacobi field along γ emanating from p with $Y(0)=0$ and $Y^{\prime}(0) \in T_{p} M$. The following equations, (1.2) and (1.3), are very important in proving Theorems A and B (cf. 4]). For any two Jacobi fields X, Y along a geodesic $\gamma:[0, \infty) \longrightarrow M$, there exists a constant c such that

$$
\begin{equation*}
g\left(X^{\prime}(t), Y(t)\right)-g\left(X(t), Y^{\prime}(t)\right)=c \tag{1.2}
\end{equation*}
$$

for any $t \geq 0$. In particular, the equality

$$
\begin{equation*}
g\left(X^{\prime}(t), Y(t)\right)=g\left(X(t), Y^{\prime}(t)\right) \tag{1.3}
\end{equation*}
$$

holds for any N-Jacobi fields X, Y. A point $\gamma\left(t_{0}\right)$, where t_{0} is a positive number (respectively $t_{0} \dot{\gamma}(0)$), is called a focal point (respectively focal tangent vector) of N along a geodesic γ emanating perpendicularly from N if there exists a non-zero N-Jacobi field Y along γ with $Y\left(t_{0}\right)=0$. For each geodesic $\gamma:[0, b] \longrightarrow M$ emanating perpendicularly from N, let $\operatorname{ind}_{N}(\gamma)$ denote the index of γ (see [20] for the definition of the index). Let $\pi: U \nu \longrightarrow N$ denote the unit sphere normal bundle over N. For each positive integer k and each unit tangent vector $v \in U \nu$ we define a number $\lambda_{k}(v)$ by

$$
\begin{equation*}
\lambda_{k}(v):=\sup \left\{t ; \operatorname{ind}_{N}\left(\left.\gamma_{v}\right|_{[0, t]}\right) \leq k-1\right\} \tag{1.4}
\end{equation*}
$$

where γ_{v} denotes the geodesic $\gamma_{v}(t):=\exp (t v)$. The differential of the normal exponential map $\exp ^{\perp}$ is singular at $v \in \nu$ if and only if $\exp (v)$ is a focal point of N along γ_{v}. It is clear that $0<\lambda_{1}(v) \leq \lambda_{2}(v) \leq \lambda_{3}(v) \leq \cdots$ and it follows from the Morse index theorem (cf. [20], also [15] or [16]) that $\gamma_{v}\left(\lambda_{k}(v)\right)$ is the k-th focal point of N along γ_{v}, counted with focal multiplicities. Here the focal multiplicity of a focal point $\gamma_{v}\left(t_{0}\right)$ is the dimension of the kernel of $d \exp ^{\perp}$ at $t_{0} v$, where $d \exp ^{\perp}$ denotes the differential of $\exp ^{\perp}$. Hence $\lambda_{k}(v)$ is the distance function to the k-th focal tangent vector of N along γ_{v}, counting focal multiplicities.

Definition 1.1. For each $v \in U \nu$ and $w \in T_{\pi(v)} M$, let $Y(t ; v, w)$ denote the N Jacobi field $Y(t)$ along the geodesic γ_{v} with initial conditions $Y(0)=w^{T}$ and $Y^{\prime}(0)=A_{v} w^{T}+w^{\perp}$, where w^{T} and w^{\perp} denote the images of w under orthogonal projection to $T_{\pi(v)} N$ and $\nu_{\pi(v)}$, respectively.

Definition 1.2. For each positive integer k and $v \in U_{p} \nu:=\nu_{p} \cap U \nu$ with $\lambda_{k}(v)<$ ∞, let $F\left(\lambda_{k}(v) v\right)$ denote the kernel of the linear map $w \in T_{p} M \longrightarrow Y\left(\lambda_{k}(v) ; v, w\right) \in$ $T_{\gamma_{v}\left(\lambda_{k}(v)\right)} M$.

Note that the dimension of $F\left(\lambda_{k}(v) v\right)$ is the same as the focal multiplicity of the focal point $\gamma_{v}\left(\lambda_{k}(v) v\right)$.

Lemma 1.1. Let $\left\{v_{j}\right\}$ be a sequence of vectors in $U \nu$ convergent to a tangent vector $v \in U_{p} \nu$. Suppose that there exist positive integers k_{1}, \cdots, k_{l} such that the sequences $\left\{\lambda_{k_{i}}\left(v_{j}\right)\right\}_{j}$ converge to a common real number t_{0}, and that $\lambda_{k_{1}}\left(v_{j}\right)<\lambda_{k_{2}}\left(v_{j}\right)<$ $\cdots<\lambda_{k_{l}}\left(v_{j}\right)$ for each j. If there exists a linear subspace $F_{i}:=\lim _{j \rightarrow \infty} F\left(\lambda_{k_{i}}\left(v_{j}\right) v_{j}\right)$ of $F\left(t_{0} v\right)$ for each $i=1, \cdots l$, i.e., there exists a convergent sequence of a basis of $F\left(\lambda_{k_{i}}\left(v_{j}\right) v_{j}\right)$, then $Y^{\prime}\left(t_{0} ; v, x\right)$ and $Y^{\prime}\left(t_{0} ; v, y\right)$ are orthogonal for any $x \in F_{a}$ and $y \in F_{b}(a<b)$, and in particular the dimension of $F_{1}+\cdots+F_{l}$ equals $\sum_{i=1}^{l} \operatorname{dim} F_{i}$.

Proof. Let $\left\{x_{j}\right\}$ and $\left\{y_{j}\right\}$ be sequences of elements of $F\left(\lambda_{k_{a}}\left(v_{j}\right) v_{j}\right)$ and $F\left(\lambda_{k_{b}}\left(v_{j}\right) v_{j}\right)$ convergent to x and y respectively. Then, from (1.3) it follows that

$$
g\left(Y^{\prime}\left(t ; v_{j}, x_{j}\right), Y\left(t ; v_{j}, y_{j}\right)\right)=g\left(Y\left(t ; v_{j}, x_{j}\right), Y^{\prime}\left(t ; v_{j}, y_{j}\right)\right)
$$

for any $t \geq 0$. Since $Y\left(\lambda_{k_{a}}\left(v_{j}\right) ; v_{j}, x_{j}\right)=0$, we get

$$
\begin{equation*}
g\left(Y^{\prime}\left(\lambda_{k_{a}}\left(v_{j}\right) ; v_{j}, x_{j}\right), Y\left(\lambda_{k_{a}}\left(v_{j}\right) ; v_{j}, y_{j}\right)\right)=0 \tag{1.5}
\end{equation*}
$$

Since $Y\left(t ; v_{j}, y_{j}\right)=0$ at $t=\lambda_{k_{b}}\left(v_{j}\right)$, there exists a C^{∞} vector field $X\left(t ; v_{j}, y_{j}\right)$ along $\gamma_{v_{j}}$ that is smoothly dependent on $\left(v_{j}, y_{j}\right)$ and such that

$$
\begin{equation*}
Y\left(t ; v_{j}, y_{j}\right)=\left(t-\lambda_{k_{b}}\left(v_{j}\right)\right) X\left(t ; v_{j}, y_{j}\right), \quad X\left(\lambda_{k_{b}}\left(v_{j}\right) ; v_{j}, y_{j}\right)=Y^{\prime}\left(\lambda_{k_{b}}\left(v_{j}\right) ; v_{j}, y_{j}\right) \tag{1.6}
\end{equation*}
$$

By (1.5) and (1.6), we get

$$
\begin{equation*}
g\left(Y^{\prime}\left(\lambda_{k_{a}}\left(v_{j}\right) ; v_{j}, x_{j}\right), X\left(\lambda_{k_{a}}\left(v_{j}\right) ; v_{j}, y_{j}\right)\right)=0 \tag{1.7}
\end{equation*}
$$

If we take the limit of (1.7), then it follows from (1.6) that

$$
\begin{equation*}
g\left(Y^{\prime}\left(t_{0} ; v, x\right), Y^{\prime}\left(t_{0} ; v, y\right)\right)=0 \tag{1.8}
\end{equation*}
$$

Let f denote the linear map of $T_{p} M$ into $T_{\gamma_{v}\left(t_{0}\right)} M$ defined by $f(w)=Y^{\prime}\left(t_{0} ; v, w\right)$. Since the $f\left(F_{i}\right), i=1, \cdots, l$, are mutually orthogonal by (1.8), we have

$$
\sum_{j=1}^{l} \operatorname{dim} f\left(F_{i}\right)=\operatorname{dim}\left(f\left(F_{1}\right)+\cdots+f\left(F_{l}\right)\right) \leq \operatorname{dim}\left(F_{1}+\cdots+F_{l}\right)
$$

Since $\left.f\right|_{F_{i}}$ is injective, $\operatorname{dim} f\left(F_{i}\right)=\operatorname{dim} F_{i}$ for each i. Therefore, the dimension of $F_{1}+\cdots+F_{l}$ equals $\sum_{i=1}^{l} \operatorname{dim} F_{i}$.

Proposition 1.2. For each positive number t, the function

$$
v \in U \nu \longrightarrow \operatorname{ind}_{N}\left(\left.\gamma_{v}\right|_{[0, t]}\right)
$$

is locally constant around each tangent vector $v \in U \nu$ if $\gamma_{v}(t)$ is not a focal point of N along γ_{v}. Furthermore, the function $\lambda_{k}: U \nu \longrightarrow(0, \infty]$ is continuous for each k.

Proof. Take a vector $v_{0} \in U \nu$ such that $\gamma_{v_{0}}(t)$ is not a focal point of N along $\gamma_{v_{0}}$. Since the index form depends continuously on the geodesic segment $\left.\gamma_{v}\right|_{[0, t]}$, it is clear that

$$
\begin{equation*}
\operatorname{ind}_{N}\left(\left.\gamma_{v_{0}}\right|_{[0, t]}\right) \leq \operatorname{ind}_{N}\left(\left.\gamma_{v}\right|_{[0, t]}\right) \tag{1.9}
\end{equation*}
$$

for any $v \in U \nu$ sufficiently close to v_{0}. Suppose that there exists a sequence $\left\{v_{j}\right\}$ of elements of $U \nu$ convergent to v_{0} such that $\operatorname{ind}_{N}\left(\left.\gamma_{v_{0}}\right|_{[0, t]}\right) \neq \operatorname{ind}_{N}\left(\left.\gamma_{v_{j}}\right|_{[0, t]}\right)$. By taking a subsequence of the sequence, and by (1.9), we may assume that

$$
\begin{equation*}
\operatorname{ind}_{N}\left(\left.\gamma_{v_{0}}\right|_{[0, t]}\right)<\operatorname{ind}_{N}\left(\left.\gamma_{v_{j}}\right|_{[0, t]}\right) \tag{1.10}
\end{equation*}
$$

for any j, and that the limit linear space $F_{k}:=\lim _{j \rightarrow \infty} F\left(\lambda_{k}\left(v_{j}\right) v_{j}\right)$ exists for each k with $\lim _{j \rightarrow \infty} \lambda_{k}\left(v_{j}\right)<t$. It follows from the Morse index theorem and (1.11) that

$$
\begin{equation*}
\operatorname{ind}_{N}\left(\left.\gamma_{v_{j}}\right|_{[0, t]}\right)=\sum \operatorname{dim} F\left(\lambda_{k}\left(v_{j}\right) v_{j}\right)=\sum \operatorname{dim} F_{k} \tag{1.11}
\end{equation*}
$$

for any sufficiently large j, where the sums are taken over the set $\left\{\lambda_{k}\left(v_{j}\right) ; \lambda_{k}\left(v_{j}\right)<\right.$ $t\}$. It follows from the Morse index theorem and Lemma 1.1 that

$$
\begin{equation*}
\operatorname{ind}_{N}\left(\left.\gamma_{v_{0}}\right|_{[0, t]}\right) \geq \sum \operatorname{dim} F_{k}=\operatorname{ind}_{N}\left(\left.\gamma_{v_{j}}\right|_{[0, t]}\right) \tag{1.12}
\end{equation*}
$$

However, a contradiction exists between (1.10) and (1.12). Therefore, the function $v \in U \nu \longrightarrow \operatorname{ind}_{N}\left(\left.\gamma_{v}\right|_{[0, t]}\right)$ is locally constant around each tangent vector $v \in U \nu$ if $\gamma_{v}(t)$ is not a focal point of N along γ_{v}. Take any $v_{0} \in U \nu$ and any positive number $t>\lambda_{k}\left(v_{0}\right)$ (respectively $\left.t<\lambda_{k}\left(v_{0}\right)\right)$ such that $\gamma_{v_{0}}(t)$ is not a focal point of N along $\gamma_{v_{0}}$. Since $\operatorname{ind}_{N}\left(\left.\gamma_{v}\right|_{[0, t]}\right)$ is locally constant around v_{0}, we get $\lambda_{k}(v)>t$ (respectively $\lambda_{k}(v)<t$) for any v sufficiently close to v_{0}, implying the continuity of λ_{k}.

Fix any positive integer k and any $v_{0} \in U_{p} \nu$ with $\lambda_{k}\left(v_{0}\right)<+\infty$. We want to prove the local Lipschitz continuity of λ_{k} around v_{0}. For convenience, introduce a C^{∞} Riemannian metric G on $U \nu$. The Riemannian distance function induced from G is denoted by D. For each positive number δ, we denote the open ball centered at v_{0} with radius δ by $B_{D}\left(v_{0} ; \delta\right)$.
Definition 1.3. For each $q \in M$, let $S_{q} M$ denote the set of all unit tangent vectors of $T_{q} M$, and for each tangent vector v, let $\|v\|$ denote the length of v, i.e., $\|v\|:=$ $\sqrt{g(v, v)}$.

Since λ_{k} is continuous, there exists a relatively compact convex neighborhood $B_{D}\left(v_{0} ; \delta_{0}(k)\right)$, on which λ_{k} does not exceed $\lambda_{k}\left(v_{0}\right)+1$. Since each Jacobi field $Y(t)$ is uniquely determined by $Y\left(t_{1}\right)$ and $Y^{\prime}\left(t_{1}\right)$ for some t_{1}, the number

$$
\begin{equation*}
2 C_{0}\left(J^{\prime}, k\right):=\min \left\{\left\|Y^{\prime}\left(\lambda_{i}\left(v_{0}\right) ; v_{0}, w\right)\right\|^{2} ; 1 \leq i \leq k, w \in S_{p} M \cap F\left(\lambda_{i}\left(v_{0}\right) v_{0}\right)\right\} \tag{1.13}
\end{equation*}
$$

is positive. Since each λ_{i} is continuous, there exists a positive number $\delta_{1}(k)(\leq$ $\left.\delta_{0}(k)\right)$ such that

$$
\begin{equation*}
C_{0}\left(J^{\prime}, k\right) \leq\left\|Y^{\prime}\left(\lambda_{i}(v) ; v, w\right)\right\|^{2} \tag{1.14}
\end{equation*}
$$

for any $v \in B_{D}\left(v_{0} ; \delta_{1}(k)\right)$ and any $w \in F\left(\lambda_{i}(v) v\right) \cap S_{\pi(v)} M, 1 \leq i \leq k$. For each $v \in B_{D}\left(v_{0} ; \delta_{1}(k)\right)$, choose a sufficiently small positive number $\epsilon(v)$ with the following two properties: The closed intervals $\left[s_{i}(v), t_{i}(v)\right], 1 \leq i \leq k$, are mutually disjoint if $\lambda_{i}(v) \neq \lambda_{j}(v)$, where $s_{i}(v):=\lambda_{i}(v)-\epsilon(v), t_{i}(v):=\lambda_{i}(v)+\epsilon(v)$. For each positive integer $i(\leq k)$, the geodesic segment $\left.\gamma_{v}\right|_{\left[s_{i}(v), t_{i}(v)\right]}$ lies in a convex ball.

Definition 1.4. For each $v \in B_{D}\left(v_{0} ; \delta_{1}(k)\right), \tau \in\left(\lambda_{i}(v), t_{i}(v)\right]$, and $w \in F\left(\lambda_{i}(v) v\right)$ $(1 \leq i \leq k)$, let $X(t ; v, w, \tau)$ denote the broken Jacobi field $X(t)$ along γ_{v} such that

$$
X(t)= \begin{cases}Y(t ; v, w) & \text { on }\left[0, s_{i}(v)\right] \\ Y(t ; v, w, \tau) & \text { on }\left[s_{i}(v), \tau\right] \\ 0 & \text { on }[\tau, \infty]\end{cases}
$$

where $Y(t ; v, w, \tau)$ denotes the Jacobi field along γ_{v} satisfying

$$
Y\left(s_{i}(v) ; v, w, \tau\right)=Y\left(s_{i}(v) ; v, w\right), \quad Y(\tau ; v, w, \tau)=0
$$

Note that the Jacobi field $Y(t ; v, w, \tau)$ is uniquely determined by the property

$$
Y(\tau ; v, w, \tau)=0, \quad Y\left(s_{i}(v) ; v, w, \tau\right)=Y\left(s_{i}(v) ; v, w\right)
$$

for each $\tau \in\left(s_{i}(v), t_{i}(v)\right]$, since $\left.\gamma_{v}\right|_{\left[s_{i}(v), t_{i}(v)\right]}$ lies in a convex ball. The uniqueness implies that $Y\left(t ; v, \sum_{j} c_{j} w_{j}, \tau\right)=\sum_{j} c_{j} Y\left(t ; v, w_{j}, \tau\right)$, and thus

$$
X\left(t ; v, \sum_{j} c_{j} w_{j}, \tau\right)=\sum_{j} c_{j} X\left(t ; v, w_{j}, \tau\right)
$$

for any finitely many real numbers c_{j} and vectors w_{j} which are elements in a common $F\left(\lambda_{i}(v) v\right)$. By taking a smaller $\epsilon(v)$, we may assume that the length $\|X(t ; v, w, \tau)\|$ of $X(t ; v, w, \tau)$ is monotone on $\left[s_{i}(v), \tau\right]$. Therefore, if

$$
\begin{align*}
& C(J, k):=\sup \left\{\|Y(t ; v, w)\|^{2} ; 0 \leq t \leq \lambda_{k}\left(v_{0}\right)+1,\right. \\
& \left.v \in B_{D}\left(v_{0} ; \delta_{1}(k)\right), w \in S_{\pi(v)} M\right\}, \tag{1.15}
\end{align*}
$$

then

$$
\begin{equation*}
C(J, k) \geq\|X(t ; v, w, \tau)\|^{2} \tag{1.16}
\end{equation*}
$$

on $[0, \infty)$ for each broken Jacobi field $X(t ; v, w, \tau)$. Let $\left\{e_{1}, \cdots, e_{m}\right\}$ denote a C^{∞} local frame field on a neighborhood V of $p=\pi\left(v_{0}\right)$ such that $\left\{e_{1}(q), \cdots, e_{m}(q)\right\}$ and $\left\{e_{1}(q), \cdots, e_{n}(q)\right\}$ are orthonormal bases of $T_{q} M$ and $T_{q} N$ for each $q \in N \cap V$, respectively.
Definition 1.5. For each $v \in U \nu \cap \pi^{-1}(V \cap N)$ let $\left\{E_{1}(t ; v), \cdots, E_{m}(t ; v)\right\}$ denote the set of parallel vector fields along the geodesic γ_{v} such that $E_{i}(0 ; v)=e_{i}(\pi(v))$ for each i.

Choose a positive number $\delta_{2}(k)\left(\leq \delta_{1}(k)\right)$ so as to satisfy

$$
B_{D}\left(v_{0} ; \delta_{2}(k)\right) \subset U \nu \cap \pi^{-1}(V \cap N)
$$

Let I_{0}^{t} denote the index form with respect to a geodesic $\left.\gamma_{v}\right|_{[0, t]}$, i.e.,

$$
\begin{aligned}
I_{0}^{t}(X, Y)= & \int_{0}^{t} g\left(X^{\prime}(t), Y^{\prime}(t)\right)-g\left(R\left(X(t), \dot{\gamma}_{v}(t)\right) \dot{\gamma}_{v}(t), Y(t)\right) d t \\
& +g\left(A_{v}(X(0)), Y(0)\right)
\end{aligned}
$$

for piecewise C^{∞} vector fields X, Y along $\left.\gamma_{v}\right|_{[0, t]}$, where R denotes the sectional curvature tensor field of (M, g). For simplicity, $I_{0}^{t}(X, X)$ will be denoted by $I_{0}^{t}(X)$. Since

$$
\begin{aligned}
R_{i j}(t, v) & :=g\left(R\left(E_{i}(t ; v), \dot{\gamma}_{v}(t)\right) \dot{\gamma}_{v}(t), E_{j}(t ; v)\right), \quad i, j=1, \ldots, m \\
f_{k l}(v) & :=g\left(A_{v}\left(e_{k}(\pi(v))\right), e_{l}(\pi(v))\right), \quad k, l=1, \ldots, n
\end{aligned}
$$

are C^{∞} functions, we may choose constants $C(R, k)$ and $C(A)$ such that the inequalities

$$
\begin{gather*}
\left|R_{i j}\left(t, v_{1}\right)-R_{i j}\left(t, v_{2}\right)\right| \leq C(R, k) D\left(v_{1}, v_{2}\right), \tag{1.17}\\
\left|f_{k l}\left(v_{1}\right)-f_{k l}\left(v_{2}\right)\right| \leq C(A) D\left(v_{1}, v_{2}\right)
\end{gather*}
$$

hold for any $t \in\left[0, \lambda_{k}\left(v_{0}\right)+1\right], i, j \in\{1, \ldots, m\}, k, l \in\{1, \ldots, n\}$ and $v_{1}, v_{2} \in$ $B_{D}\left(v_{0} ; \delta_{3}(k)\right)$, where $\delta_{3}(k):=\frac{1}{2} \delta_{2}(k)$.

Lemma 1.3. For any $v \in B_{D}\left(v_{0} ; \delta_{3}(k)\right), w \in F\left(\lambda_{i}(v) v\right)$ and $\tau \in\left(\lambda_{i}(v), t_{i}(v)\right](1 \leq$ $i \leq k)$,

$$
\begin{equation*}
I_{0}^{\tau}(X(\cdot ; v, w, \tau))=-g\left(Y(\tau ; v, w), Y^{\prime}(\tau ; v, w, \tau)\right) \tag{1.18}
\end{equation*}
$$

Moreover, for each $v \in B_{D}\left(v_{0} ; \delta_{3}(k)\right)$ and positive integer $i(\leq k)$, there exists a real number $\tau_{i}(v) \in\left(\lambda_{i}(v), t_{i}(v)\right)$ such that, for any $\tau \in\left(\lambda_{i}(v), \tau_{i}(v)\right)$ and $w \in$ $F\left(\lambda_{i}(v) v\right)$,

$$
\begin{equation*}
I_{0}^{\tau}(X(\cdot ; v, w, \tau)) \leq-\frac{1}{2} C_{0}\left(J^{\prime}, k\right)\left(\tau-\lambda_{i}(v)\right)\|w\|^{2} \tag{1.19}
\end{equation*}
$$

Proof. Since $\left.X(t ; v, w, \tau)\right|_{\left[0, s_{i}(v)\right]}$ and $\left.X(t ; v, w, \tau)\right|_{\left[s_{i}(v), \tau\right]}$ are Jacobi fields along γ_{v}, we get

$$
\begin{aligned}
I_{0}^{\tau}(X(\cdot ; v, w, \tau))=g & \left(Y^{\prime}\left(s_{i}(v) ; v, w\right), Y\left(s_{i}(v) ; v, w, \tau\right)\right) \\
& -g\left(Y\left(s_{i}(v) ; v, w\right), Y^{\prime}\left(s_{i}(v) ; v, w, \tau\right)\right)
\end{aligned}
$$

It follows from (1.2) that

$$
I_{0}^{\tau}(X(\cdot ; v, w, \tau))=g\left(Y^{\prime}(\tau ; v, w), Y(\tau ; v, w, \tau)\right)-g\left(Y(\tau ; v, w), Y^{\prime}(\tau ; v, w, \tau)\right)
$$

Since $Y(\tau ; v, w, \tau)=0$, equation (1.18) holds. Since $Y(t ; v, w)=0$ at $t=\lambda_{i}(v)$, there exists a C^{∞} vector field $X(t ; v, w)$ such that $Y(t ; v, w)=\left(t-\lambda_{i}(v)\right) X(t ; v, w)$. Since
$\lim _{\tau \rightarrow \lambda_{i}(v)} Y^{\prime}(\tau ; v, w, \tau)=Y^{\prime}\left(\lambda_{i}(v) ; v, w, \lambda_{i}(v)\right)=Y^{\prime}\left(\lambda_{i}(v) ; v, w\right)=\lim _{\tau \rightarrow \lambda_{i}(v)} X(\tau ; v, w)$, it follows from (1.14) that there exists $\tau_{i}(v) \in\left(\lambda_{i}(v), t_{i}(v)\right)$ such that

$$
\begin{aligned}
-g\left(Y(\tau ; v, w), Y^{\prime}(\tau ; v, w, \tau)\right) & \leq-\frac{1}{2}\left\|Y^{\prime}\left(\lambda_{i}(v) ; v, w\right)\right\|^{2}\left(\tau-\lambda_{i}(v)\right) \\
& \leq-\frac{1}{2} C_{0}\left(J^{\prime}, k\right)\|w\|^{2}\left(\tau-\lambda_{i}(v)\right)
\end{aligned}
$$

for any $\tau \in\left(\lambda_{i}(v), \tau_{i}(v)\right)$ and $w \in F\left(\lambda_{i}(v) v\right)$, completing the proof of (1.19).
Proof of Theorem A. Fix any $v_{1} \in B_{D}\left(v_{0} ; \delta_{3}(k)\right)$. We prove that the inequality

$$
\lambda_{k}\left(v_{2}\right)-\lambda_{k}\left(v_{1}\right) \leq L_{k} D\left(v_{1}, v_{2}\right)
$$

holds for any $v_{2} \in B_{D}\left(v_{0} ; \delta_{3}(k)\right)$ sufficiently close to v_{1}, where

$$
L_{k}:=\frac{4 m k C(J, k)}{C_{0}\left(J^{\prime}, k\right)}\left(C(A)+\left(\lambda_{k}\left(v_{0}\right)+1\right) C(R, k)\right)
$$

Thus, the above inequality can be easily proven for any $v_{2} \in B_{D}\left(v_{0} ; \delta_{3}(k)\right)$, and λ_{k} is Lipschitz continuous on $B_{D}\left(v_{0} ; \delta_{3}(k)\right)$ with Lipschitz constant L_{k}. For each positive integer $i \leq k$, choose a unit vector w_{i} from $F\left(\lambda_{i}\left(v_{1}\right) v_{1}\right)$ so as to satisfy the following property: for distinct $i, j \leq k, w_{i}$ and w_{j} are orthogonal whenever $\lambda_{i}\left(v_{1}\right)=\lambda_{j}\left(v_{1}\right)$. Set $a_{i}:=\lambda_{i}\left(v_{1}\right)+\epsilon$, where $\epsilon(\leq 1)$ is a sufficiently small positive
number satisfying $a_{i} \in\left(\lambda_{i}\left(v_{1}\right), \tau_{i}\left(v_{1}\right)\right)$ for each $i \leq k$. Let $W\left(\gamma_{v_{1}}\right)$ denote the k dimensional linear space spanned by piecewise C^{∞} vector fields $X_{i}\left(t ; v_{1}\right), 1 \leq i \leq k$, along $\gamma_{v_{1}}$, where $X_{i}\left(t ; v_{1}\right):=X\left(t ; v_{1}, w_{i}, a_{i}\right)$. We first prove that the inequality

$$
\begin{equation*}
I_{0}^{a_{k}}\left(\sum_{i=1}^{k} c_{i} X_{i}\left(\cdot ; v_{1}\right)\right) \leq-\frac{\epsilon}{2} C_{0}\left(J^{\prime}, k\right) \sum_{i=1}^{k} c_{i}^{2} \tag{1.20}
\end{equation*}
$$

holds for any real numbers c_{i} 's. Choose a maximal subset $\left\{i_{1}, \ldots, i_{l}\right\}$ of $\{1, \ldots, k\}$ satisfying $\lambda_{i_{1}}\left(v_{1}\right)<\lambda_{i_{2}}\left(v_{1}\right)<\cdots<\lambda_{i_{l}}\left(v_{1}\right)$. Set

$$
N_{s}:=\left\{j ; \lambda_{j}\left(v_{1}\right)=\lambda_{i_{s}}\left(v_{1}\right)\right\}
$$

for each $s \in\{1, \ldots, l\}$. The fact that the N_{s} are mutually disjoint subsets of $\{1, \cdots, k\}$ with $N_{1} \cup \cdots \cup N_{l}=\{1, \cdots, k\}$ is trivial. Since

$$
\sum_{i=1}^{k} c_{i} X_{i}\left(t ; v_{1}\right)=\sum_{s=1}^{l} X\left(t ; v_{1}, \sum_{i \in N_{s}} c_{i} w_{i}, a_{i_{s}}\right)
$$

it follows that

$$
\begin{equation*}
I_{0}^{a_{k}}\left(\sum_{i=1}^{k} c_{i} X_{i}\left(\cdot ; v_{1}\right)\right)=\sum_{s=1}^{l} I_{0}^{a_{k}}\left(X\left(\cdot ; v_{1}, \sum_{i \in N_{s}} c_{i} w_{i}, a_{i_{s}}\right)\right) \tag{1.21}
\end{equation*}
$$

Note that

$$
I_{0}^{a_{k}}\left(X\left(\cdot ; v_{1}, x_{i}, a_{i}\right), X\left(\cdot ; v_{1}, x_{j}, a_{j}\right)\right)=0
$$

for any $x_{i} \in F\left(\lambda_{i}\left(v_{1}\right) v_{1}\right), y_{i} \in F\left(\lambda_{j}\left(v_{1}\right) v_{1}\right)$ with $\lambda_{i}\left(v_{1}\right)<\lambda_{j}\left(v_{1}\right)$. By applying (1.19) to each broken Jacobi field $X\left(t ; v_{1}, \sum_{i \in N_{s}} c_{i} w_{i}, a_{i_{s}}\right)$, it follows that (1.21) implies (1.20). Choose $v_{2} \in U\left(v_{0} ; \delta_{3}(k)\right)$ sufficiently close to v_{1} to satisfy

$$
\epsilon:=L_{k} D\left(v_{1}, v_{2}\right)<\min \left\{\tau_{i}\left(v_{1}\right)-\lambda_{i}\left(v_{1}\right) ; 1 \leq i \leq k\right\}
$$

By (1.20), the inequality

$$
\begin{equation*}
I_{0}^{a_{k}}\left(\sum_{i=1}^{k} c_{i} X_{i}\left(\cdot ; v_{1}\right)\right) \leq-\frac{L_{k}}{2} C_{0}\left(J^{\prime}, k\right) D\left(v_{1}, v_{2}\right) \sum_{i=1}^{k} c_{i}^{2} \tag{1.22}
\end{equation*}
$$

holds for any $v_{2} \in B_{D}\left(v_{0} ; \delta_{3}(k)\right)$ sufficiently close to v_{1} and any real numbers c_{i}. For each $X \in W\left(\gamma_{v_{1}}\right)$, we construct a piecewise C^{∞} vector field $\tilde{X}(t)$ along $\gamma_{v_{2}}$ by

$$
\tilde{X}(t):=\sum_{i=1}^{m} g\left(X(t), E_{i}\left(t ; v_{1}\right)\right) E_{i}\left(t ; v_{2}\right)
$$

For simplicity, set

$$
Z(t):=\sum_{i=1}^{k} c_{i} X_{i}\left(t ; v_{1}\right)
$$

It follows from (1.17) and the Schwarz inequality that

$$
I_{0}^{a_{k}}(\tilde{Z}) \leq I_{0}^{a_{k}}(Z)+m k C(J, k) D\left(v_{1}, v_{2}\right)\left(C(A)+\left(\lambda_{k}\left(v_{0}\right)+1\right) C(R, k)\right) \sum_{i=1}^{k} c_{i}^{2}
$$

Hence, by (1.22), we get

$$
I_{0}^{a_{k}}(\tilde{Z}) \leq-\frac{1}{4} L_{k} C_{0}\left(J^{\prime}, k\right) D\left(v_{1}, v_{2}\right) \sum_{i=1}^{k} c_{i}^{2}
$$

which holds for any $v_{2} \in B_{D}\left(v_{0} ; \delta_{3}(k)\right)$ sufficiently close to v_{1}. This inequality implies the index form $I_{0}^{a_{k}}$ is negative definite on the k-dimensional linear space $\left\{\tilde{X}(t) ; X \in W\left(\gamma_{v_{1}}\right)\right\}$, and so $\operatorname{ind}_{N}\left(\left.\gamma_{v_{2}}\right|_{\left[0, a_{k}\right]}\right)$ is not less than k. Therefore,

$$
\lambda_{k}\left(v_{2}\right) \leq a_{k}=\lambda_{k}\left(v_{1}\right)+L_{k} D\left(v_{1}, v_{2}\right)
$$

for any $v_{2} \in D\left(v_{0} ; \delta_{3}(k)\right)$ sufficiently close to v_{1}, completing the proof of Theorem A.

2. The distance function to the cut locus

Throughout this section N always denotes an embedded submanifold of M. A unit speed geodesic segment $\gamma:[0, a] \rightarrow M$ emanating from N is called an N segment if $t=d(N, \gamma(t))$ on $[0, a]$. Note that any N-segment is orthogonal to N, a consequence of the first variation formula.

Definition 2.1. For each point $x \in M \backslash N$,

$$
\Lambda_{N}(x):=\{-\dot{\gamma}(d(N, x)) ; \gamma \text { is an } N \text {-segment reaching } x\}
$$

Definition 2.2. For any distinct points x, y lying in a convex neighborhood around x, we define a unit tangent vector $v_{x}(y)$ at x by

$$
v_{x}(y):=\dot{\gamma}(0)
$$

where $\gamma:[0, b] \rightarrow M$ denotes the unique unit speed minimizing geodesic joining x to y.

Lemma 2.1. Let $\left\{x_{n}\right\}$ be a sequence of points in $M \backslash N$ converging to a point $x \notin N$. For each x_{n}, choose an element w_{n} in $\Lambda_{N}\left(x_{n}\right)$. If $\lim _{n \rightarrow \infty} v_{x}\left(x_{n}\right)=: v$ and $\lim _{n \rightarrow \infty} w_{n}=: w_{\infty} \in \Lambda_{N}(x)$ exist, then

$$
\angle\left(v, w_{\infty}\right)=\min \left\{\angle(v, w) ; w \in \Lambda_{N}(x)\right\}
$$

where $\angle\left(v, w_{\infty}\right)$ denotes the angle made by v and w_{∞}. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{d\left(N, x_{n}\right)-d(N, x)}{d\left(x_{n}, x\right)}=-\cos \angle\left(v, w_{\infty}\right)
$$

Remark. This lemma holds even when N is a point in an Alexandrov space; cf. Lemma 6.3 in 21 and Theorem 3.5 in 18 .

Proof. Define N-segments α and α_{n} by

$$
\alpha(t):=\exp \left((t-d(N, x)) w_{\infty}\right), \quad \alpha_{n}(t):=\exp \left((t-d(N, x)) w_{n}\right)
$$

Fix any N-segment β reaching x and choose a point $y(\neq x)$ on β in a convex neighborhood V_{x} around x. Let η denote the angle made by v and $w:=-\dot{\beta}(d(N, x))$. It follows from the first variation formula that there exists a constant C such that

$$
d\left(y, x_{n}\right)-d(y, x) \leq-d\left(x_{n}, x\right) \cos \eta_{n}+C d\left(x_{n}, x\right)^{2}
$$

for any sufficiently large n, where $\eta_{n}=\angle\left(v_{x}\left(x_{n}\right), w\right)$. By the triangle inequality,

$$
d\left(N, x_{n}\right)-d(N, x) \leq d\left(y, x_{n}\right)-d(y, x)
$$

for any n. Thus, we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{d\left(N, x_{n}\right)-d(N, x)}{d\left(x_{n}, x\right)} \leq-\lim _{n \rightarrow \infty} \cos \eta_{n}=-\cos \eta \tag{2.1}
\end{equation*}
$$

On the other hand, choose a point $z(\neq x)$ on α in the neighborhood V_{x}. For each n, choose a point y_{n} lying on α_{n} satisfying $d\left(y_{n}, x_{n}\right)=d(x, z)$. Hence, the sequence $\left\{y_{n}\right\}$ converges to z. By the triangle inequality,

$$
d\left(N, x_{n}\right)-d(N, x) \geq d\left(y_{n}, x_{n}\right)-d\left(y_{n}, x\right)
$$

for any n. Let θ_{n} denote the angle made by $v_{x}\left(x_{n}\right)$ and $v_{x}\left(y_{n}\right)$. By the hypothesis, the sequence $\left\{\theta_{n}\right\}$ converges to $\angle\left(v, w_{\infty}\right)$. Since the distance function is C^{∞} around (x, z), it follows from the first variation formula that there exists a positive constant C such that

$$
d\left(y_{n}, x_{n}\right)-d\left(y_{n}, x\right) \geq-d\left(x_{n}, x\right) \cos \theta_{n}-C d\left(x_{n}, x\right)^{2}
$$

for any sufficiently large n. Thus,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{d\left(N, x_{n}\right)-d(N, x)}{d\left(x_{n}, x\right)} \geq-\lim _{n \rightarrow \infty} \cos \theta_{n}=-\cos \angle\left(v, w_{\infty}\right) \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2), we complete the proof.
Definition 2.3. We define a function $\rho(v), v \in U \nu$, which is called the distance function to the cut locus of N, by

$$
\rho(v):=\sup \left\{t ;\left.\gamma\right|_{[0, t]} \text { is an } N \text {-segment }\right\} .
$$

The set

$$
C_{N}:=\left\{\gamma_{v}(\rho(v)) ; v \in U \nu, \rho(v)<\infty\right\}
$$

is called the cut locus of N, and each point of C_{N} is called a cut point of N.
Note that ρ is positive on $U \nu$, since N is an embedded submanifold of M. It is well-known that ρ is continuous and $\rho \leq \lambda_{1}$ on $U \nu$ (for example, see [20]). Let $v:(a, b) \rightarrow(U \nu, G)$ denote a unit speed geodesic on $U \nu$, where G is a C^{∞} Riemannian metric on $U \nu$, assuming that

$$
\rho(s):=\rho(v(s))<\lambda(s):=\lambda_{1}(v(s))
$$

on (a, b).
Definition 2.4. For each $v(s)$ define an N-Jacobi field $Y_{N}(t ; v(s))$ along $\gamma_{v(s)}$ by

$$
Y_{N}(t ; v(s)):=\frac{\partial}{\partial s} \exp (t v(s))
$$

Actually, $Y_{N}(t ; v(s))$ is a Jacobi field satisfying the initial conditions

$$
Y_{N}(0 ; v(s))=d \pi(\dot{v}(s)), \quad Y_{N}^{\prime}(0 ; v(s))=A_{v(s)}(d \pi(\dot{v}(s)))+\left(v^{\prime}(s)\right)^{\perp}
$$

Definition 2.5. For each $s \in(a, b)$ we define the unit tangent vectors $e_{1}(s)$ and $e_{2}(s)$ by

$$
e_{1}(s):=-\dot{\gamma}_{v(s)}(\rho(s)), \quad e_{2}(s):=\frac{1}{\left\|Y_{N}(\rho(s) ; v(s))\right\|} Y_{N}(\rho(s) ; v(s))
$$

Note that $e_{1}(s)$ and $e_{2}(s)$ are mutually orthogonal according to (1.2). Since we assumed $\rho<\lambda$ on (a, b), the continuous curve $c(s):=\exp (\rho(s) v(s))$ lies in an immersed surface

$$
S:=\{\exp (t v(s)) ; s \in(a, b), 0<t<\lambda(s)\}
$$

of M. It is clear that $\left\{e_{1}(s), e_{2}(s)\right\}$ is an orthonormal basis for the tangent space $T_{c(s)} S$ for each $s \in(a, b)$. For each $w \in \Lambda_{N}(c(s)) \backslash\left\{e_{1}(s)\right\}$, let $H(w)$ denote the
hypersurface of $T_{c(s)} M$ orthogonal to $w-e_{1}(s)$. The dimension of the linear space $T_{c(s)} S \cap H(w)$ is 1 , since $e_{1}(s)$ is tangent to S, but not to $H(w)$. Therefore, for each $w \in \Lambda_{N}(c(s)) \backslash\left\{e_{1}(s)\right\}$ there exists a unique unit tangent vector $\eta_{+}(w)$ (respectively $\left.\eta_{-}(w)\right)$ in $T_{c(s)} S \cap H(w)$ such that the angle made by $\eta_{+}(w)$ (respectively $\eta_{-}(w)$) and $e_{2}(s)$ is smaller (respectively greater) than $\frac{\pi}{2}$.
Definition 2.6. For each $s \in(a, b)$, let $\xi_{+}(s)$ (respectively $\xi_{-}(s)$) denote the unique element $\eta_{+}\left(w_{+}(s)\right.$) (resp. $\eta_{-}\left(w_{-}(s)\right)$ in $\left\{\eta_{+}(w) ; w \in \Lambda_{N}(c(s)) \backslash\left\{e_{1}(s)\right\}\right\}$ (resp. $\left.\left\{\eta_{-}(w) ; w \in \Lambda_{N}(c(s)) \backslash\left\{e_{1}(s)\right\}\right\}\right)$ such that

$$
\angle\left(\eta_{+}\left(w_{+}(s)\right), e_{1}(s)\right)=\min \left\{\angle\left(\eta_{+}(w), e_{1}(s)\right) ; w \in \Lambda_{N}(c(s)) \backslash\left\{e_{1}(s)\right\}\right\}
$$

or, respectively,

$$
\angle\left(\eta_{-}\left(w_{-}(s)\right), e_{1}(s)\right)=\min \left\{\angle\left(\eta_{-}(w), e_{1}(s)\right) ; w \in \Lambda_{N}(c(s)) \backslash\left\{e_{1}(s)\right\}\right\}
$$

Note that the choices of $w_{ \pm}(s)$ may not be unique. Choose one $w_{ \pm}(s)$ corresponding to each $s \in(a, b)$, and fix them.

Proposition 2.2. At each $s_{0} \in(a, b)$,

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}+0} v_{c\left(s_{0}\right)}(c(s))=\xi_{+}\left(s_{0}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}-0} v_{c\left(s_{0}\right)}(c(s))=\xi_{-}\left(s_{0}\right) \tag{2.4}
\end{equation*}
$$

Furthermore, the right and left derivatives $D^{+} \rho\left(s_{0}\right)$ and $D^{-} \rho\left(s_{0}\right)$ of ρ exist, and

$$
\begin{equation*}
D^{+} \rho\left(s_{0}\right)=-\left\|Y_{N}\left(\rho\left(s_{0}\right) ; v\left(s_{0}\right)\right)\right\| \cot \theta_{+}\left(s_{0}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{-} \rho\left(s_{0}\right)=-\left\|Y_{N}\left(\rho\left(s_{0}\right) ; v\left(s_{0}\right)\right)\right\| \cot \theta_{-}\left(s_{0}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\theta_{+}\left(s_{0}\right):=\angle\left(\xi_{+}\left(s_{0}\right), e_{1}\left(s_{0}\right)\right), \quad \theta_{-}\left(s_{0}\right):=\angle\left(\xi_{-}\left(s_{0}\right),-e_{1}\left(s_{0}\right)\right)
$$

Proof. Only equations (2.3) and (2.5) are proven, because the other equations may be proven in the same manner. Let $\left\{s_{i}\right\}$ denote a monotone decreasing sequence converging to s_{0} such that $\eta\left(s_{0}\right):=\lim _{i \rightarrow \infty} v_{c\left(s_{0}\right)}\left(c\left(s_{i}\right)\right)$ exists. By applying Lemma 2.1 to the sequences $\left\{c\left(s_{i}\right)\right\}_{i}$ and $\left\{e_{1}\left(s_{i}\right)\right\}_{i}$, we have

$$
\begin{equation*}
\angle\left(e_{1}\left(s_{0}\right), \eta\left(s_{0}\right)\right)=\min \left\{\angle\left(w, \eta\left(s_{0}\right)\right) ; w \in \Lambda_{N}\left(c\left(s_{0}\right)\right)\right\} \tag{2.7}
\end{equation*}
$$

On the other hand, there exists a unit tangent vector $w \in \Lambda_{N}\left(c\left(s_{0}\right)\right) \backslash\left\{e_{1}\left(s_{0}\right)\right\}$ that is a limit vector of a sequence $\left\{w_{i}\right\}$, where $w_{i} \in \Lambda_{N}\left(c\left(s_{i}\right)\right) \backslash\left\{e_{1}\left(s_{i}\right)\right\}$, because $c\left(s_{0}\right)$ is not a focal point of N. Thus it follows from Lemma 2.1 that

$$
\begin{equation*}
\angle\left(w, \eta\left(s_{0}\right)\right)=\min \left\{\angle\left(w, \eta\left(s_{0}\right)\right) ; w \in \Lambda_{N}\left(c\left(s_{0}\right)\right)\right\} \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8), $\eta\left(s_{0}\right)$ is a unit tangent vector in $H(w) \cap T_{c\left(s_{0}\right)} S$ such that $\angle\left(\eta\left(s_{0}\right), e_{2}\left(s_{0}\right)\right)$ is smaller than $\frac{\pi}{2}$, and hence equals $\xi_{+}\left(s_{0}\right)$. This implies that $\lim _{s \rightarrow s_{0}+0} v_{c\left(s_{0}\right)}(c(s))$ exists and is equal to $\xi_{+}\left(s_{0}\right)$. It follows from Lemma 2.1 that

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}+0} \frac{\rho(s)-\rho\left(s_{0}\right)}{d\left(c(s), c\left(s_{0}\right)\right)}=-\cos \theta_{+}\left(s_{0}\right) \tag{2.9}
\end{equation*}
$$

For each $s>s_{0}$ sufficiently close to s_{0}, choose the nearest point $\gamma_{v(s)}(a(s))$ on $\left.\gamma_{v(s)}\right|_{\left[\rho\left(s_{0}\right)-\delta, \rho\left(s_{0}\right)+\delta\right]}$ to the point $c\left(s_{0}\right)$, where δ is a sufficiently small positive number such that $\gamma_{v(s)}\left[\rho\left(s_{0}\right)-\delta, \rho\left(s_{0}\right)+\delta\right]$ lies in a convex neighborhood around $c\left(s_{0}\right)$.

So we may assume that $\gamma_{v(s)}$ is orthogonal at $\gamma_{v(s)}(a(s))$ to the minimal geodesic joining $\gamma_{v(s)}(a(s))$ to $c\left(s_{0}\right)$ for each $s>s_{0}$ sufficiently close to s_{0}. Thus, we have

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}+0} \frac{k(s)}{d\left(c\left(s_{0}\right), c(s)\right)}=\sin \theta_{+}\left(s_{0}\right) \tag{2.10}
\end{equation*}
$$

where $k(s):=d\left(c\left(s_{0}\right), \gamma_{v(s)}(a(s))\right)$. Since $\lim _{s \rightarrow s_{0}+0} v_{c\left(s_{0}\right)}\left(\gamma_{v(s)}(a(s))\right)=e_{2}\left(s_{0}\right)$ is perpendicular to $e_{1}\left(s_{0}\right)$, it follows from Lemma 2.1 that

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}+0} \frac{a(s)-\rho\left(s_{0}\right)}{k(s)}=0 \tag{2.11}
\end{equation*}
$$

By the triangle inequality, we have

$$
-\left|a(s)-\rho\left(s_{0}\right)\right|+m(s) \leq k(s) \leq m(s)
$$

which holds for each $s>s_{0}$ sufficiently close to s_{0}, where

$$
m(s):=d\left(c\left(s_{0}\right), \gamma_{v(s)}\left(\rho\left(s_{0}\right)\right)\right)
$$

Therefore, by (2.11), we get the equality

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}+0} \frac{m(s)}{k(s)}=1 \tag{2.12}
\end{equation*}
$$

Let $\exp _{c\left(s_{0}\right)}^{-1}$ denote the local inverse of $\exp _{c\left(s_{0}\right)}:=\left.\exp \right|_{T_{c\left(s_{0}\right)} M}$ around $c\left(s_{0}\right)$. Since $d \exp _{c\left(s_{0}\right)}$ is the identity map on $T_{c\left(s_{0}\right)} M$ at the zero vector, it follows that

$$
\begin{equation*}
\lim _{s \rightarrow s_{0}+0} \frac{m(s)}{s-s_{0}}=\left\|\left.\frac{\partial}{\partial s}\right|_{s=s_{0}} \exp _{c\left(s_{0}\right)}^{-1} \gamma_{v(s)}\left(\rho\left(s_{0}\right)\right)\right\|=\left\|Y_{N}\left(\rho\left(s_{0}\right) ; v\left(s_{0}\right)\right)\right\| \tag{2.13}
\end{equation*}
$$

It follows from $(2.9),(2.10),(2.12)$ and (2.13) that we get (2.5).
Theorem 2.3. For each cut point q of N which is not a focal point of N along each N-segment reaching q, the space of directions at q coincides with the cut locus of $\Lambda_{N}(q)$ in the sphere $S_{q} M$. Here the space of directions at q is defined to be the set of all limit unit tangent vectors at q of sequences $\left\{v_{q}\left(q_{i}\right)\right\}$ as cut points q_{i} of N tend to q.

Proof. By Proposition 2.2, we have proved that any element of the space of directions at q is a cut point of $\Lambda_{N}(q)$. Suppose that there exists a cut point v of $\Lambda_{N}(q)$ that is not an element of the space of directions at q. Since v is a cut point of $\Lambda_{N}(q)$, we may choose two unit speed geodesics $c_{i}:[0, \theta] \rightarrow S_{q} M$, $i=1,2$, joining v_{i} to v, none of which meet $\Lambda_{N}(q)$, except v_{i}. For each positive ϵ let $\gamma_{\epsilon}:[0,2 \theta] \rightarrow M$ be a curve joining $\exp \left(\epsilon v_{1}\right)$ to $\exp \left(\epsilon v_{2}\right)$ such that $\gamma_{\epsilon}(t)=\exp \left(\epsilon c_{1}(t)\right)$ and $\gamma_{\epsilon}(t)=\exp \left(\epsilon c_{2}(2 \theta-t)\right)$ for $t \in[0, \theta]$ and $t \in[\theta, 2 \theta]$, respectively. By definition, for any sufficiently small positive ϵ, the curve γ_{ϵ} does not meet the cut locus of N. Thus, there exists a unique curve $\tilde{\gamma}_{\epsilon}:[0,2 \theta] \rightarrow \nu$ in the open subset $\{t v ; 0<t<\rho(v), v \in U \nu\}$ of the normal bundle that satisfies $\exp ^{\perp}\left(\tilde{\gamma}_{\epsilon}(t)\right)=\gamma_{\epsilon}(t)$. It is clear that a family of curves $\left\{\tilde{\gamma}_{\epsilon}(t)\right\}_{\epsilon}$ is equicontinuous, since the lengths of the velocity vectors of $\tilde{\gamma}_{\epsilon}$ are bounded. It follows from the Ascoli-Arzela theorem that the family has a limit curve $\tilde{\gamma}$, which is continuous, as ϵ goes to zero. Hence, $\exp ^{\perp}(\tilde{\gamma}(t))=q$ for any $t \in[0,2 \theta]$. If we define a continuous curve $\xi(t)$ in $U \nu$ by

$$
\xi(t):=\frac{1}{\|\tilde{\gamma}(t)\|} \tilde{\gamma}(t)
$$

then from the construction it follows that $\rho(\xi(t)) \geq\|\tilde{\gamma}(t)\|$. Thus $\|\tilde{\gamma}(t)\|=d(N, q)$ for any $t \in[0,2 \theta]$, since $\exp ^{\perp}(\tilde{\gamma}(t))=q$. Therefore we get a family of N-segments $\left\{\gamma_{\xi(t)}[0, d(N, q)]\right\}_{t \in[0,2 \theta]}$ reaching q such that

$$
\dot{\gamma}_{\xi(0)}(d(N, q))=-v_{1} \quad \text { and } \quad \dot{\gamma}_{\xi(2 \theta)}(d(N, q))=-v_{2}
$$

This implies q is a focal point of N, which contradicts the hypothesis of the theorem. Thus, the proof is complete.

To prove the local Lipschitz continuity of ρ at v_{0}, fix any $v_{0} \in U_{p} \nu$ with $\rho\left(v_{0}\right)<$ ∞. Let $B_{D}\left(v_{0} ; \delta_{0}\left(v_{0}\right)\right)$ denote a relatively compact convex ball in $(U \nu, G)$ centered at v_{0} with radius $\delta_{0}\left(v_{0}\right)$, on which $\rho \leq \rho\left(v_{0}\right)+1$.

Lemma 2.4. There exist positive numbers $C_{1}\left(v_{0}\right)$ and $\delta_{1}\left(v_{0}\right)\left(<\delta_{0}\left(v_{0}\right)\right)$ such that for any $v, w \in B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)$ with $\gamma_{v}(\rho(v))=\gamma_{w}(\rho(w))$ the inequality

$$
\begin{equation*}
C_{1}\left(v_{0}\right) D(v, w)<\angle\left(\dot{\gamma}_{v}(\rho(v)), \dot{\gamma}_{w}(\rho(w))\right) \tag{2.14}
\end{equation*}
$$

holds.
Proof. Since $\gamma_{v_{0}}\left(t_{0}\right)$, where $t_{0}=\frac{\rho\left(v_{0}\right)}{2}$, is not a focal point of N along $\gamma_{v_{0}}$, the differential of the normal exponential map has maximal rank at $t_{0} v_{0}$. Thus, there exist a positive constant C_{1} and a convex ball $B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)\left(\delta_{1}\left(v_{0}\right)<\delta_{0}\left(v_{0}\right)\right)$ in $U \nu$ such that

$$
\begin{equation*}
C_{1} D(u, w)<d\left(\gamma_{u}\left(t_{0}\right), \gamma_{w}\left(t_{0}\right)\right) \tag{2.15}
\end{equation*}
$$

for any $u, w \in B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)$. By taking a smaller $\delta_{1}\left(v_{0}\right)$, we may assume that

$$
\frac{3}{2} t_{0}<\rho(v)<\frac{5}{2} t_{0}
$$

on $B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)$. Let K be the closure of the set $\left\{\exp (\rho(v) v) ; v \in B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)\right\}$. Note that K is compact, because $\rho<\frac{5}{2} t_{0}$ on $B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)$. Thus, there exists a constant C_{2} such that

$$
\max \left\{\|Y(t)\| ; 0 \leq t \leq 2 t_{0}\right\} \leq C_{2}
$$

for any Jacobi field Y along a geodesic that emanates from K with initial conditions $Y(0)=0,\left\|Y^{\prime}(0)\right\|=1$. Suppose that $v, w \in B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)$ satisfy $\gamma_{w}(\rho(w))=$ $\gamma_{v}(\rho(v))=: q$. Let $\xi:[0, \phi] \rightarrow S_{q} M$ denote a unit speed minimal geodesic joining $-\dot{\gamma}_{v}(\rho(v))$ to $-\dot{\gamma}_{w}(\rho(w))$, where $\phi=\angle\left(\dot{\gamma}_{v}(\rho(v)), \dot{\gamma}_{w}(\rho(w))\right)$. The curve $x(\theta)=$ $\exp _{q}\left(t_{1} \xi(\theta)\right), \theta \in[0, \phi]$, joins $\gamma_{v}\left(t_{0}\right)$ to $\gamma_{w}\left(t_{0}\right)$, where $t_{1}:=\rho(w)-t_{0}=\rho(v)-t_{0}$. By definition,

$$
d\left(\gamma_{v}\left(t_{0}\right), \gamma_{w}\left(t_{0}\right)\right) \leq \int_{0}^{\phi}\|\dot{x}(\theta)\| d \theta
$$

Since $\|\dot{x}(\theta)\| \leq C_{2}$, we get

$$
\begin{equation*}
d\left(\gamma_{v}\left(t_{0}\right), \gamma_{w}\left(t_{0}\right)\right) \leq C_{2} \phi=C_{2} \angle\left(\dot{\gamma}_{v}(\rho(v)), \dot{\gamma}_{w}(\rho(w))\right) \tag{2.16}
\end{equation*}
$$

From (2.15) and (2.16) we get (2.14).
Since the differential of the map $(\pi, \exp): T M \rightarrow M \times M,(q, v) \rightarrow\left(q, \exp _{q}(v)\right)$ has maximal rank at each zero vector, it has a C^{∞} local inverse Φ on an open set $U_{r} \supset\left\{\left(\gamma_{v_{0}}(t), \gamma_{v_{0}}(t)\right) ; 0 \leq t \leq r\right\}$, where $r:=\rho\left(v_{0}\right)+1$. Choose a positive number $\delta_{2}\left(v_{0}\right)\left(<\delta_{1}\left(v_{0}\right)\right)$ such that, for any $v_{1}, v_{2} \in B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right)$ and any $t \in[0, r]$, $\left(\gamma_{v_{1}}(t), \gamma_{v_{2}}(t)\right) \in U_{r}$.

Definition 2.7. For each distinct $v, \tilde{v} \in B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right)$ let $X(t ; v, \tilde{v})$ denote the vector field along $\left.\gamma_{v}\right|_{[0, r]}$ defined by

$$
X(t ; v, \tilde{v}):=\frac{1}{\psi} \Phi\left(\gamma_{v}(t), \gamma_{\tilde{v}}(t)\right)
$$

where $\psi=D(v, \tilde{v})$.
It is trivial that there exists a positive constant $C_{2}\left(v_{0}\right)$ such that

$$
\begin{equation*}
\angle\left(\dot{\gamma}_{v}(\rho(v)), \dot{\gamma}_{w}(\rho(w))\right) \geq C_{2}\left(v_{0}\right) \tag{2.17}
\end{equation*}
$$

for any $v \in B_{D}\left(v_{0} ; \delta_{3}\left(v_{0}\right)\right)$ and $w \in U \nu \backslash B_{D}\left(v_{0} ; \delta_{1}\left(v_{0}\right)\right)$ with $\gamma_{v}(\rho(v))=\gamma_{w}(\rho(w))$, where $\delta_{3}\left(v_{0}\right):=\frac{\delta_{2}\left(v_{0}\right)}{2}$.
Lemma 2.5. There exists a positive number $C_{3}\left(v_{0}\right)$ such that for any $t \in[0, r]$ and any unit speed minimizing geodesic $\xi(s)(0 \leq s \leq \psi)$ in $B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right)$

$$
\begin{equation*}
\left\|X(t ; \xi(0), \xi(\psi))-Y_{N}(t ; \xi(0))\right\|+\left\|X^{\prime}(t ; \xi(0), \xi(\psi))-Y_{N}^{\prime}(t ; \xi(0))\right\| \leq C_{3}\left(v_{0}\right) \psi \tag{2.18}
\end{equation*}
$$

where $Y_{N}(t ; \xi(0))$ is the N-Jacobi field along $\gamma_{v(0)}$ defined in Definition 2.4.
Proof. Since $\left(\gamma_{\xi(0)}(t), \gamma_{\xi(s)}(t)\right) \in U_{r}$ for any $t \in[0, r]$ and any $s \in[0, \psi]$, the vector field $\Phi\left(\gamma_{\xi(0)}(t), \gamma_{\xi(s)}(t)\right)$ along $\left.\gamma_{\xi(0)}\right|_{[0, r]}$ is well-defined for each $s \in[0, \psi]$. Let f : $[0, r] \times B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right) \times B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right) \rightarrow T M$ be a C^{∞} map defined by

$$
f\left(t, v_{1}, v_{2}\right):=\Phi\left(\gamma_{v_{1}}(t), \gamma_{v_{2}}(t)\right)
$$

and put $h(s):=f(t, \xi(0), \xi(s))$. Since

$$
h(\psi)=h^{\prime}(0) \psi+\psi^{2} \int_{0}^{1} u \int_{0}^{1} h^{\prime \prime}(s u \psi) d s d u
$$

and $h^{\prime}(0)=Y_{N}(t ; \xi(0))$, we get

$$
X(t ; \xi(0), \xi(\psi))=Y_{N}(t ; \xi(0))+\psi \int_{0}^{1} u \int_{0}^{1} h^{\prime \prime}(s u \psi) d s d u
$$

Hence, the inequality (2.18) is trivial.
Lemma 2.6. Let $v:(a, b) \rightarrow B_{D}\left(v_{0} ; \delta_{3}\left(v_{0}\right)\right)$ be a unit speed geodesic such that $\lambda(s)>\rho(s)$ on (a, b). Then for each $s \in(a, b)$,

$$
\begin{equation*}
\left|D^{ \pm} \rho(s)\right| \leq C\left(J_{N}\right) \max \left(\cot \frac{C_{4}\left(v_{0}\right)}{2}, \frac{\pi^{2} C_{3}\left(v_{0}\right) C_{1}\left(v_{0}\right)^{-2}}{2}\right) \tag{2.19}
\end{equation*}
$$

where

$$
\begin{gathered}
C_{4}\left(v_{0}\right)=\min \left(C_{2}\left(v_{0}\right), C_{1}\left(v_{0}\right) \delta_{3}\left(v_{0}\right)\right) \\
C\left(J_{N}\right)=\sup \left\{\left\|Y_{N}(t ; v(s))\right\|,\left\|Y_{N}^{\prime}(t ; v(s))\right\| ; 0 \leq t \leq r\right. \\
\left.v(s) \text { s a unit speed geodesic in } B_{D}\left(v_{0} ; \delta_{3}\left(v_{0}\right)\right)\right\}
\end{gathered}
$$

Proof. Let $e_{3}(s)$ denote the unit tangent vector satisfying

$$
\begin{equation*}
w_{+}(s)=e_{1}(s) \cos \phi(s)+e_{3}(s) \sin \phi(s) \tag{2.20}
\end{equation*}
$$

where $\phi(s):=\angle\left(w_{+}(s), e_{1}(s)\right)$. Since $\angle\left(e_{1}(s), \xi_{+}(s)\right)=\theta_{+}(s)$ and $\angle\left(\xi_{+}(s), e_{2}(s)\right)<$ $\frac{\pi}{2}$, it follows that

$$
\begin{equation*}
\xi_{+}(s)=e_{1}(s) \cos \theta_{+}(s)+e_{2}(s) \sin \theta_{+}(s) \tag{2.21}
\end{equation*}
$$

Since $\xi_{+}(s)$ is orthogonal to $w_{+}(s)-e_{1}(s)$, it follows from (2.20) and (2.21) that

$$
\begin{equation*}
\cot \theta_{+}(s)=\frac{\sin \phi(s)}{1-\cos \phi(s)} g\left(e_{2}(s), e_{3}(s)\right) \tag{2.22}
\end{equation*}
$$

Hence, by (2.5), we get

$$
\begin{equation*}
D^{+} \rho(s)=-\frac{\sin \phi(s)}{1-\cos \phi(s)} g\left(Y_{N}(\rho(s)), e_{3}(s)\right)=-\cot \frac{\phi(s)}{2} g\left(Y_{N}(\rho(s)), e_{3}(s)\right) \tag{2.23}
\end{equation*}
$$

where $Y_{N}(t):=Y_{N}(t ; v(s))$. Let $\tilde{v}(s) \in U \nu$ denote the vector satisfying $-w_{+}(s)=$ $\dot{\gamma}_{\tilde{v}(s)}(\rho(\tilde{v}(s)))$. If $\phi(s)$ is not less than $C_{4}\left(v_{0}\right)$, then from (2.23) it is trivial that

$$
\begin{equation*}
\left|D^{+} \rho(s)\right| \leq C\left(J_{N}\right) \cot \frac{C_{4}\left(v_{0}\right)}{2} \tag{2.24}
\end{equation*}
$$

If $\phi(s)$ is less than $C_{4}\left(v_{0}\right)$, then it follows from (2.14) and (2.17) that $D(v(s), \tilde{v}(s))<$ $\delta_{3}\left(v_{0}\right)$. Thus, by the triangle inequality, $\tilde{v}(s) \in B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right)$. The vector field $X(t):=X(t ; v(s), \tilde{v}(s))$ is well-defined by Definition 2.7. Since $X(\rho(s))=0$, we get

$$
\begin{equation*}
X^{\prime}(\rho(s))=\frac{1}{\psi(s)}\left(e_{1}(s)-w_{+}(s)\right)=\frac{1}{\psi(s)}\left((1-\cos \phi(s)) e_{1}(s)-e_{3}(s) \sin \phi(s)\right) \tag{2.25}
\end{equation*}
$$

where $\psi(s):=D(v(s), \tilde{v}(s))$. Let $\xi:[0, \psi(s)] \rightarrow B_{D}\left(v_{0} ; \delta_{2}\left(v_{0}\right)\right)$ denote the unit speed minimal geodesic joining $v(s)$ to $\tilde{v}(s)$. It follows from (2.23) and (2.25) that

$$
\begin{equation*}
D^{+} \rho(s)=\cot \frac{\phi(s)}{2} \frac{\psi(s)}{\sin \phi(s)} g\left(Y_{N}(\rho(s)), X^{\prime}(\rho(s))\right) \tag{2.26}
\end{equation*}
$$

It follows from (1.3) that

$$
\begin{aligned}
g\left(Y_{N}(\rho(s)), X^{\prime}(\rho(s))\right)=g(& \left.Y_{N}(\rho(s)), X^{\prime}(\rho(s))-X_{N}^{\prime}(\rho(s))\right) \\
& +g\left(Y_{N}^{\prime}(\rho(s)), X_{N}(\rho(s))\right)
\end{aligned}
$$

where $X_{N}(t):=Y_{N}(t ; \xi(0))$. Hence, by (2.26), we have

$$
\begin{equation*}
\left|D^{+} \rho(s)\right| \leq \cot \frac{\phi(s)}{2} \frac{\psi(s)}{\sin \phi(s)} C\left(J_{N}\right)\left(\left\|X^{\prime}(\rho(s))-X_{N}^{\prime}(\rho(s))\right\|+\left\|X_{N}(\rho(s))\right\|\right) \tag{2.27}
\end{equation*}
$$

Since $X(\rho(s))=0$, by (2.14), (2.18) and (2.27), we get

$$
\begin{equation*}
\left|D^{+} \rho(s)\right| \leq \cot \frac{\phi(s)}{2} \frac{\psi(s)^{2}}{\sin \phi(s)} C\left(J_{N}\right) C_{3}\left(v_{0}\right) \leq \frac{\pi^{2}}{2} C_{1}\left(v_{0}\right)^{-2} C_{3}\left(v_{0}\right) C\left(J_{N}\right) \tag{2.28}
\end{equation*}
$$

By (2.24) and (2.28), we get (2.19). The estimate for $D^{-} \rho(s)$ is the same as the one for $D^{+} \rho(s)$.

Proof of Theorem B. Let $v_{0} \in U \nu$ be any vector with $\rho\left(v_{0}\right)<\infty$. Choose a small convex ball $B_{D}\left(v_{0} ; \delta_{4}\left(v_{0}\right)\right), \delta_{4}\left(v_{0}\right)<\delta_{3}\left(v_{0}\right)$, on which $\rho<\lambda_{1}$ or λ_{1} is Lipschitz continuous with Lipschitz constant $L\left(\lambda_{1}\right)$. Let $v_{1}, v_{2} \in B_{D}\left(v_{0} ; \delta_{4}\left(v_{0}\right)\right)$ be any distinct vectors with $\rho\left(v_{1}\right) \leq \rho\left(v_{2}\right)$. Let $\xi:[0, \psi] \rightarrow B_{D}\left(v_{0} ; \delta_{4}\left(v_{0}\right)\right)$ be the unit speed geodesic joining v_{1} to v_{2}, so that $\psi=D\left(v_{1}, v_{2}\right)$. If $\lambda_{1}\left(v_{1}\right)=\rho\left(v_{1}\right)$, then

$$
\begin{equation*}
\left|\rho\left(v_{1}\right)-\rho\left(v_{2}\right)\right|=\rho\left(v_{2}\right)-\rho\left(v_{1}\right) \leq \lambda_{1}\left(v_{2}\right)-\lambda_{1}\left(v_{1}\right) \leq L\left(\lambda_{1}\right) D\left(v_{1}, v_{2}\right) \tag{2.29}
\end{equation*}
$$

Suppose that $\lambda_{1}\left(v_{1}\right)>\rho\left(v_{1}\right)$. Let $(0, a)$ be the maximal open subinterval of $[0, \psi]$ on which $\lambda_{1}>\rho$. By Lemma 2.5,

$$
\left|D^{ \pm} \rho(s)\right| \leq C_{5}\left(J_{N}, v_{0}\right)
$$

on $(0, a)$, where

$$
C_{5}\left(J_{N}, v_{0}\right):=C\left(J_{N}\right) \max \left(\cot \frac{C_{4}\left(v_{0}\right)}{2}, \frac{\pi^{2} C_{3}\left(v_{0}\right) C_{1}\left(v_{0}\right)^{-2}}{2}\right)
$$

Hence, $\rho \circ \xi$ is Lipschitz continuous with Lipschitz constant $C_{5}\left(J_{N}, v_{0}\right)$ on $[0, a]$. In particular,

$$
\begin{equation*}
\left|\rho\left(v_{1}\right)-\rho(\xi(a))\right| \leq C_{5}\left(J_{N}, v_{0}\right) a \tag{2.30}
\end{equation*}
$$

If $a<\psi$, then $\lambda_{1}(\xi(a))=\rho(\xi(a))$. Thus by (2.30), we get

$$
\begin{equation*}
\left|\rho\left(v_{1}\right)-\rho\left(v_{2}\right)\right| \leq \lambda_{1}\left(v_{2}\right)-\lambda_{1}(\xi(a))+\left|\rho(\xi(a))-\rho\left(v_{1}\right)\right| \leq L(\rho) D\left(v_{1}, v_{2}\right) \tag{2.31}
\end{equation*}
$$

where $L(\rho):=\max \left(L\left(\lambda_{1}\right), C_{5}\left(J_{N}, v_{0}\right)\right)$. If $a=\psi$, then (2.31) is trivial by (2.30). Therefore, by (2.29) and (2.31),

$$
\left|\rho\left(v_{1}\right)-\rho\left(v_{2}\right)\right| \leq L(\rho) D\left(v_{1}, v_{2}\right)
$$

for any $v_{1}, v_{2} \in B_{D}\left(v_{0} ; \delta_{4}\left(v_{0}\right)\right)$.
The length $L(c)$ of a continuous curve $c:[a, b] \rightarrow M$ is defined as

$$
L(c):=\sup \sum_{i=1}^{k} d\left(c\left(t_{i-1}\right), c\left(t_{i}\right)\right)
$$

where the supremum is taken over all subdivisions

$$
a=t_{0}<t_{1}<\cdots<t_{k}=b
$$

of $[a, b]$. Note that any absolutely continuous curve has finite length (cf. [28] for the definition of an absolutely continuous curve). We omit the proof of the following lemma, since it is standard (cf. [28]).

Lemma 2.7. For any absolutely continuous curve $c:[a, b] \rightarrow M$,

$$
L(c)=\int_{a}^{b}\|\dot{c}(t)\| d t
$$

We introduce an interior metric δ on a component C_{N}^{0} of C_{N} by

$$
\delta(p, q):=\inf \left\{L(c) ; c \text { is a continuous curve on } C_{N}^{0} \text { joining } p \text { to } q\right\} .
$$

By Theorem B, $\delta(p, q)$ is finite for any $p, q \in C_{N}^{0}$. Any two points $p, q \in C_{N}^{0}$ can be connected by a minimal curve c; that is, there exists a continuous curve c joining p to q such that $\delta(p, q)=L(c)$ (for example, cf. Theorem 5.18 in [3]). It follows from Lemma 2.7 that δ coincides with the usual definition of the Riemannian distance function, or, in other words,

$$
\begin{array}{r}
\delta(p, q)=\inf \left\{\int_{0}^{1}\|\dot{c}(t)\| d t ; c\right. \text { is an absolutely continuous } \\
\left.\quad \text { curve on } C_{N}^{0} \text { joining } p \text { to } q\right\} .
\end{array}
$$

Proof of Corollary Let $\left\{p_{n}\right\}$ be a sequence of points in C_{N}^{0} such that

$$
\lim _{n \rightarrow \infty} d\left(p, p_{n}\right)=0
$$

Since the cut locus is closed, p is a cut point of N. For each p_{n} choose a vector $v_{n} \in U \nu$ with $\exp \left(\rho\left(v_{n}\right) v_{n}\right)=p_{n}$. Let $v \in U \nu$ be a limit vector of the sequence $\left\{v_{n}\right\}$. Let $\xi_{n}:\left[0, D\left(v, v_{n}\right)\right] \rightarrow U \nu$ be a minimizing geodesic joining v to v_{n}, and put $\bar{\xi}_{n}(t):=\exp \left(\rho\left(\xi_{n}(t)\right) \xi_{n}(t)\right)$. Since $\bar{\xi}_{n}$ is a (Lipschitz) continuous curve in C_{N}^{0} joining p to p_{n}, we get

$$
\begin{equation*}
\delta\left(p, p_{n}\right) \leq L\left(\bar{\xi}_{n}\right) \tag{2.32}
\end{equation*}
$$

Since ρ is locally Lipschitz, the map $w \in U \nu \rightarrow \exp (\rho(w) w) \in M$ is also locally Lipschitz. Thus, there exist a positive constant C and a neighborhood V around v such that

$$
\begin{equation*}
L\left(\bar{\xi}_{n}\right) \leq C L\left(\xi_{n}\right)=C D\left(v, v_{n}\right) \tag{2.33}
\end{equation*}
$$

for any n with $v_{n} \in V$. By (2.35) and (2.36), we get $\lim _{n \rightarrow \infty} \delta\left(p, p_{n}\right)=0$. Thus, the topology introduced from δ coincides with the relative topology of (M, g). The other claims are clear from this property.

3. Open problems and examples

The functions λ_{k} are not always differentiable, except when M is of dimension 2. The following example shows that λ_{1} need not be differentiable.

Example 3.1. Let M denote the Riemannian product of two 2-dimensional unit spheres S^{2}. Choose a unit tangent vector v_{1} to S^{2} at a point p_{1}. For each $\theta \in\left[0, \frac{\pi}{2}\right]$, we define a geodesic γ_{θ} on M by

$$
\gamma_{\theta}(t):=\left(\exp \left(t v_{1} \cos \theta\right), \exp \left(t v_{1} \sin \theta\right)\right)
$$

Let λ_{1} denote the distance function to the first conjugate tangent vectors of the point $p:=\left(p_{1}, p_{1}\right) \in M$. Thus

$$
\lambda_{1}\left(\dot{\gamma}_{\theta}(0)\right)=\min \left(\frac{\pi}{\cos \theta}, \frac{\pi}{\sin \theta}\right) .
$$

Hence $\lambda_{1}\left(\dot{\gamma}_{\theta}(0)\right)$ is not differentiable at $\theta=\frac{\pi}{4}$, that is, λ_{1} is not differentiable at $\left(v_{1} / \sqrt{2}, v_{1} / \sqrt{2}\right)$.

There exist many surfaces admitting a cut locus with branch points (for example cf. 7] or the following example). This implies such a cut locus need not have curvature bounded below in the sense of Alexandrov.

Example 3.2. Let N be a smooth convex Jordan curve in the 2-dimensional Euclidean plane \mathbf{R}^{2} which contains a regular triangle T, except around its three vertices. Then the cut locus of N contains three line segments emanating from the center of T.

The following example shows that there is a cut locus containing a neighborhood of the vertex of a flat cone. This implies this cut locus cannot have curvature bounded above in the sense of Alexandrov.

Example 3.3. Take a C^{∞} Jordan $\operatorname{arc} \mathcal{C}$ in the $y z$ plane in the 3 -dimensional Euclidean space \mathbf{R}^{3} with endpoints $(0,0, \pm 1)$ as follows:
(1) \mathcal{C} contains three arcs

$$
\begin{aligned}
C_{1} & :=\left\{(0, \cos \theta, \sin \theta) ;-\frac{\pi}{2} \leq \theta \leq-\frac{\pi}{2}+\delta\right\} \\
C_{2} & :=\left\{(0, \cos \theta, \sin \theta) ;-\frac{\pi}{4}+\delta \leq \theta \leq \frac{\pi}{2}\right\}
\end{aligned}
$$

and

$$
C_{3}:=\left\{\left(0, \frac{1}{\sqrt{2}}+\frac{\delta}{10} \cos \phi,-\frac{1}{\sqrt{2}}+\frac{\delta}{10} \sin \phi\right) ;-\frac{\pi}{4}-\delta \leq \phi \leq-\frac{\pi}{4}+\delta\right\}
$$

where δ is a sufficiently small positive constant.
(2) $\mathcal{C} \backslash\left(C_{1} \cup C_{2} \cup C_{3}\right)$ consists of two Jordan subarcs which are mutually symmetric with respect to the line through $(0,0,0)$ and $(0,1,-1)$.
(3) The cut locus of $\mathcal{C} \backslash\{(0,0, \pm 1)\}$ in the $y z$ plane is the line segment with endpoints $(0,0,0)$ and $\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

Let N be the surface of revolution obtained by rotating \mathcal{C} about the z axis. Then the cut locus of N coincides with a cone

$$
\left\{(x, y, z) ; x^{2}+y^{2}=z^{2},-\frac{1}{\sqrt{2}} \leq z \leq 0\right\}
$$

The cut loci constructed in Examples 3.2 and 3.3 are those of a submanifold that is not a single point. By making use of Weinstein's technique ([26]), we may regard these cut loci as being of a single point.

Finally, we state five interesting open problems, some of which might be proved using the local Lipschitz continuity of the function ρ.
J. Hebda and J. Itoh affirmatively solved Ambrose's problem in the 2-dimensional case (cf. [11], [13]). They solved it by proving that the cut locus of a point on a 2-dimensional Riemannian manifold has finite 1-dimensional Hausdorff measure. Hebda had pointed out in [10] that it is sufficient to prove the property above to solve the problem in the 2-dimensional case. Theorem B generalizes this property for any dimensional compact Riemannian manifolds. Thus we might be able to solve Ambrose's problem using this property.

Problem 3.1. Solve Ambrose's problem for any dimensional Riemannian manifold.

The authors proved in 14 that for each cut point q of a point p on M, there exists a nonnegative integer k such that the cut locus of p is locally k-dimensional around q. We call the integer k the local dimension of the cut locus at q.

Problem 3.2. Let q denote a cut point of a point p on M at which the local dimension of the cut locus is k. Is the cut locus locally a k-dimensional submanifold of M around q, except for a k-null subset of M ? Here a subset of M is said to be k-null if it is of k-dimensional Hausdorff measure zero.

Hereafter N denotes an embedded submanifold of a complete Riemannian manifold M. A point $q \in M \backslash N$ is called a critical point of the distance function from N if for each unit tangent vector v at q there exists a unit tangent vector w in $\Lambda_{N}(q)$ such that the angle made by v and w is not greater than $\frac{\pi}{2}$. A real number c is called a critical value of the distance function from N if there exists a critical point
q whose distance is c from N. It is well-known that for each positive number c the set of all points whose distances are c is a topological hypersurface in M, if c is not a critical value of the distance function (cf. [5]). In [22], it was proved that the set of all critical values of the distance function from a compact subset in an Alexandrov surface is of Lebesgue measure zero. Does what we call a "Sard Theorem for the distance function" hold for the distance function from N ? Namely,

Problem 3.3. Is the set of all critical values of the distance function from N of Lebesgue measure zero?

We showed in Examples 3.2 and 3.3 that the cut locus is not always an Alexandrov space. How about the tangent cut locus?
Problem 3.4. Is the tangent cut locus of N an Alexandrov space?
We proved in Theorem 2.3 that the space of directions at a non-focal cut point q of N coincides with the cut locus of $\Lambda_{N}(q)$ in $S_{q} M$. Here a non-focal cut point q is a cut point that is not a focal point along each N-segment reaching q. Therefore, the following problem is an interesting investigatation into the structure of a cut locus.

Problem 3.5. Let q be a non-focal cut point of N. Then, is $S(q ; \delta) \cap C_{N}$ homeomorphic to the cut locus of $\Lambda_{N}(q)$ in $S_{q} M$ for any sufficiently small positive δ ? Here $S(q ; \delta)$ denotes a geodesic sphere in M centered at q with radius δ.

References

[1] W. Ballmann, Lectures on spaces of nonpositive curvature, Birkhäuser, Basel-Boston-Berlin, 1995. MR 97a:53053
[2] Y. Burago, M. Gromov and G. Perel'man, A. D. Alexandrov spaces with curvature bounded below, Russian Math. Surveys, 47 (1992), no. 2, 1-58. MR 93m:53035
[3] H. Busemann, The geometry of geodesics, Acad. Press, New York-San Francisco-London, 1955. MR 17:779a
[4] I. Chavel, Riemannian Geometry : A Modern Introduction, Cambridge University Press, 1993. MR 95j:53001
[5] J. Cheeger, Critical points of distance functions and applications to geometry, Geometric Topology: Recent Developments, Lecture Notes in Math., no.1504, Springer-Verlag, 1992,138. MR 94a:53075
[6] K.J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985. MR 88d:28001
[7] H. Gluck and D. Singer, Scattering of geodesic fields, I, Ann. of Math. 108 (1978) 347-372. MR 80c:53046
[8] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964) 705-727. MR 30:3435
[9] J.J. Hebda, The regular focal locus, J. of Differential Geometry 16 (1981) 421-429. MR 83j:53049
[10] J.J. Hebda, Parallel translation of curvature along geodesics, Trans. of Amer. Math. Soc. 299 (1987) 559-572. MR 88d:53035
[11] J.J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. of Differential Geometry 40 (1994) 621-642. MR 95m:53046
[12] L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1983. MR 85g:35002a
[13] J. Itoh, The length of a cut locus in a surface and Ambrose's problem, J. of Differential Geometry 43 (1996) 642-651. MR 97i:53038
[14] J. Itoh and M. Tanaka, The dimension of a cut locus on a smooth Riemannian manifold, Tohoku Math. J. (2) 50 (1998), 571-575. MR 99k:53068
[15] J. Milnor, Morse theory, Ann. of Math. Studies No.51, Princeton Univ. Press, 1963. MR 29:634
[16] F. Morgan, Geometric measure theory, A beginner's guide, Acad. Press 1988. MR 89f:49036
[17] M. Morse, The calculus of variations in the large, vol.18, Amer. Math. Soc.,1966. MR 98f:58070 (reprint)
[18] Y. Otsu and T. Shioya The Riemannian structure of Alexandrov spaces, J. Differential Geometry 39 (1994) 629-658. MR 95e:53862]
[19] T. Sakai, On the structure of cut loci in compact Riemannian symmetric spaces, Math. Ann. 235(1978)129-148. MR 58:18272
[20] T. Sakai, Riemannian Geometry, Translation of Mathematical Monographs, vol.149, Amer. Math. Soc.,1996. MR 97f:53001
[21] K. Shiohama, An introduction to the geometry of Alexandrov spaces Lecture Notes series No.8, Research Inst. of Math. Global Analysis Research Center, Seoul National Univ.,1992. MR 96c:53064
[22] K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Séminaires \& Congrès, Collection SMF No.1, Actes de la table ronde de Géometrié différentielle en l'honneur Marcel Berger, (1996), 531-560. MR 98a:53062
[23] M. Takeuchi, On conjugate and cut loci of compact symmetric spaces I, II, Tsukuba Math. J. 2(1978), 25-68; 3(1979), 1-29. MR 80d:53033; MR 80k:53082, MR 84g:53078
[24] F.Treves, A new method of proof of the subelliptic estimates, Comm. Pure Appl. Math. 24 (1971) 71-115. MR 44:7385
[25] F.W.Warner, The conjugate locus of a Riemannian manifold, Amer. J. of Math. 87 (1965) 575-604. MR 34:8344
[26] A. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. 87 (1968) 29-41. MR 36:4486
[27] J.H.C.Whitehead, On the covering of a complete space by the geodesics through a point, Ann. of Math. 36 (1935) 679-704.
[28] R.L. Wheeden and A. Zygmund, Measure and integral, Marcel Dekker, New York, 1977. MR 58:11295

Faculty of Education, Kumamoto University, Kumamoto 860-8555 Japan
E-mail address: j-itoh@gpo.kumamoto-u.ac.jp
Department of Mathematics, Tokai University, Hiratsuka 259-1292, Japan
E-mail address: m-tanaka@sm.u-tokai.ac.jp

[^0]: Received by the editors October 14, 1998 and, in revised form, April 13, 1999.
 2000 Mathematics Subject Classification. Primary 53C22; Secondary 28A78.
 Supported in part by a Grant-in-Aid for Scientific Research from The Ministry of Education, Science, Sports and Culture, Japan.

