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THE LIPSCHITZ CONTINUITY OF THE DISTANCE FUNCTION
TO THE CUT LOCUS

JIN-ICHI ITOH AND MINORU TANAKA

Abstract. Let N be a closed submanifold of a complete smooth Riemannian
manifold M and Uν the total space of the unit normal bundle of N . For each
v ∈ Uν, let ρ(v) denote the distance from N to the cut point of N on the
geodesic γv with the velocity vector γ̇v(0) = v. The continuity of the function
ρ on Uν is well known. In this paper we prove that ρ is locally Lipschitz on
which ρ is bounded; in particular, if M and N are compact, then ρ is globally
Lipschitz on Uν. Therefore, the canonical interior metric δ may be introduced
on each connected component of the cut locus of N, and this metric space
becomes a locally compact and complete length space.

Let N be an immersed submanifold of a complete C∞ Riemannian manifold M
and π : Uν → N the unit normal bundle of N . For each positive integer k and
vector v ∈ Uν, let a number λk(v) denote the parameter value of γv, where γv de-
notes the geodesic for which the velocity vector is v at t = 0, such that γv(λk(v)) is
the k-th focal point (conjugate point for the case in which N is a point) of N along
γv, counted with focal (or conjugate) multiplicities. A unit speed geodesic segment
γ : [0, a]→M emanating from N is called an N -segment if t = d(N, γ(t)) on [0, a].
By the first variation formula, an N -segment is orthogonal to N . A point γv(t0)
on an N -segment γv, v ∈ Uν, is called a cut point of N if there is no N -segment
properly containing γ[0, t0]. For each v ∈ Uν, let ρ(v) denote the distance from
N to the cut point on γv of N. Whitehead [27] investigated the structure of the
conjugate locus and the cut locus of a point on a real analytic Finsler manifold. He
determined the structure of the conjugate locus around a conjugate point for which
the conjugate multiplicity is locally constant on its neighborhood (cf. also [25]) and
proved the continuity of the function ρ. In compact symmetric spaces, T. Sakai
[19] and M. Takeuchi [23] determined the detailed structure of the cut locus of a
point. The detailed structure of the cut locus of a point in a 2-dimensional Rie-
mannian manifold has been investigated by Poincaré, Myers, and others [7], [11],
[13]. Hartman first tried to show the absolute continuity of the function ρ when
M is 2-dimensional. He proved in [8] that if ρ is of bounded variation, then ρ is
absolutely continuous. Recently, Hebda [11] and the first named author [13] inde-
pendently proved Ambrose’s problem by showing that ρ is absolutely continuous
on a closed arc on which ρ is bounded when N is a point in a 2-dimensional Rie-
mannian manifold. Therefore, the cut locus of a point in a compact 2-dimensional
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22 JIN-ICHI ITOH AND MINORU TANAKA

Riemannian manifold has finite 1-dimensional Hausdorff measure, and any two cut
points can be connected by a rectifiable curve in the cut locus.

In the present paper, we prove that the focal locus and the cut locus of a sub-
manifold of a complete C∞ Riemannian manifold have weak differentiability:

Theorem A. Let N be an immersed submanifold of a complete C∞ Riemannian
manifold M and π : Uν → N the unit normal bundle of N. Then, for each positive
integer k and v ∈ Uν with λk(v) <∞, λk is locally Lipschitz around v.

Theorem B. Let N be an embedded submanifold of a complete C∞ Riemannian
manifold M and π : Uν → N the unit normal bundle of N. Then, for each v ∈ Uν
with ρ(v) < ∞, ρ is locally Lipschitz around v. In particular, if M and N are
compact, then ρ is globally Lipschitz on Uν and hence the cut locus has finite
(m− 1)-dimensional Hausdorff measure, where m denotes the dimension of M.

Note that λk is not always differentiable (see Example 3.1). If there exists a
neighborhood of λk(v)v in which the focal multiplicity of each focal tangent vector
is constant, then λk is C∞ around v, as Warner [25] and Hebda [9] reported. In
particular, if M is 2-dimensional, then λk is C∞ on which λk is bounded. In fact,
the focal multiplicity is 1 at each focal point.

Rademacher’s theorem (cf. [16]) states that a Lipschitz map of a domain in Rk

into Rl is differentiable almost everywhere. Therefore, as corollaries to Theorems
A and B, there exist tangent spaces at almost all points in the tangent focal locus
and the tangent cut locus, respectively.

Since a Lipschitz continuous function is absolutely continuous, Theorem B gen-
eralizes the previously mentioned result by Hebda and the first named author;
therefore, this theorem is new, even for 2-dimensional M. Theorem B has a few
corollaries. If a cut point q is not a focal point of the submanifold along an N -
segment, then the Hausdorff dimension of the focal locus around q equals m − 1
(cf. [14] for the case in which N is a point).

Corollary C. Suppose N is a closed submanifold of M. Then the canonical interior
metric δ may be introduced on each connected component of CN . Moreover the
topology introduced from δ coincides with the relative one of (M, g), and (CN , δ) is
a locally compact and complete length space.

Note that the cut locus of a compact subset of an Alexandrov surface admits
the canonical interior metric, which is a result given by Shiohama and the second
named author [22]. Corollary C raises the following interesting problem:

Does the metric space (CN , δ) have curvature bounded below (or above) in the
sense of Alexandrov?

The answer is no. Counterexamples are given in Section 3.
Refer to [1] or [2] for the geometry on metric spaces. [20] is a good reference on

Riemannian geometry and in particular on the Morse index theorem.
Finally, the authors would like to thank Prof. T. Akamatsu for his valuable

suggestions on analysis methods such as the Malgrange preparation theorem. He
kindly pointed out to the second named author that if the focal multiplicity of
the focal point γv(λk(v)) is two, then the locally Lipschitz continuity of λk can be
proven at v by making use of the Malgrange preparation theorem (see [12]) and
Lemma B.1 in [24].
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1. The distance functions to the tangent focal locus

Let (M, g) denote a complete, m-dimensional C∞ Riemannian manifold. We
denote by TM the total space of the tangent bundle over M , and by exp the
exponential map defined on TM . The fiber over p is denoted by TpM . Let N
denote a C∞ n-dimensional submanifold of M and π : ν −→ N the normal
bundle of N . The fiber over p is denoted by νp. For each ξ ∈ νp, let Aξ denote the
shape operator of N with respect to ξ, which is a symmetric linear transformation
on TpN (see [20] for the definition of the shape operator). Suppose that a unit
speed geodesic γ : [0,∞) −→ M is given, for which ξ := γ̇(0) ∈ νp. A Jacobi
field Y along γ is called an N -Jacobi field if Y satisfies the following two initial
conditions:

Y (0) ∈ TpN, Y ′(0)−AξY (0) ∈ νp,(1.1)

where Y ′ denotes the covariant derivative of the Jacobi field Y along γ. Note that
if N consists of a single point p, then an N -Jacobi field Y is a Jacobi field along γ
emanating from p with Y (0) = 0 and Y ′(0) ∈ TpM . The following equations, (1.2)
and (1.3), are very important in proving Theorems A and B (cf. [4]). For any two
Jacobi fields X,Y along a geodesic γ : [0,∞) −→M , there exists a constant c such
that

g(X ′(t), Y (t))− g(X(t), Y ′(t)) = c(1.2)

for any t ≥ 0. In particular, the equality

g(X ′(t), Y (t)) = g(X(t), Y ′(t))(1.3)

holds for any N -Jacobi fields X,Y . A point γ(t0), where t0 is a positive number
(respectively t0γ̇(0)), is called a focal point (respectively focal tangent vector) of
N along a geodesic γ emanating perpendicularly from N if there exists a non-zero
N -Jacobi field Y along γ with Y (t0) = 0. For each geodesic γ : [0, b] −→ M
emanating perpendicularly from N , let indN (γ) denote the index of γ (see [20] for
the definition of the index). Let π : Uν −→ N denote the unit sphere normal
bundle over N . For each positive integer k and each unit tangent vector v ∈ Uν
we define a number λk(v) by

λk(v) := sup{t; indN (γv|[0,t]) ≤ k − 1},(1.4)

where γv denotes the geodesic γv(t) := exp(tv). The differential of the normal
exponential map exp⊥ is singular at v ∈ ν if and only if exp(v) is a focal point of
N along γv. It is clear that 0 < λ1(v) ≤ λ2(v) ≤ λ3(v) ≤ · · · and it follows from
the Morse index theorem (cf. [20], also [15] or [16]) that γv(λk(v)) is the k-th focal
point of N along γv, counted with focal multiplicities. Here the focal multiplicity
of a focal point γv(t0) is the dimension of the kernel of d exp⊥ at t0v, where d exp⊥

denotes the differential of exp⊥. Hence λk(v) is the distance function to the k-th
focal tangent vector of N along γv, counting focal multiplicities.

Definition 1.1. For each v ∈ Uν and w ∈ Tπ(v)M , let Y (t; v, w) denote the N -
Jacobi field Y (t) along the geodesic γv with initial conditions Y (0) = wT and
Y ′(0) = Avw

T + w⊥, where wT and w⊥ denote the images of w under orthogonal
projection to Tπ(v)N and νπ(v), respectively.
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24 JIN-ICHI ITOH AND MINORU TANAKA

Definition 1.2. For each positive integer k and v ∈ Upν := νp ∩Uν with λk(v) <
∞, let F (λk(v)v) denote the kernel of the linear map w ∈ TpM −→ Y (λk(v); v, w) ∈
Tγv(λk(v))M .

Note that the dimension of F (λk(v)v) is the same as the focal multiplicity of the
focal point γv(λk(v)v).

Lemma 1.1. Let {vj} be a sequence of vectors in Uν convergent to a tangent vector
v ∈ Upν. Suppose that there exist positive integers k1, · · · , kl such that the sequences
{λki(vj)}j converge to a common real number t0, and that λk1(vj) < λk2(vj) <
· · · < λkl(vj) for each j. If there exists a linear subspace Fi := limj→∞ F (λki(vj)vj)
of F (t0v) for each i = 1, · · · l, i.e., there exists a convergent sequence of a basis of
F (λki(vj)vj), then Y ′(t0; v, x) and Y ′(t0; v, y) are orthogonal for any x ∈ Fa and
y ∈ Fb (a < b), and in particular the dimension of F1 + · · ·+Fl equals

∑l
i=1 dimFi.

Proof. Let {xj} and {yj} be sequences of elements of F (λka(vj)vj) and F (λkb(vj)vj)
convergent to x and y respectively. Then, from (1.3) it follows that

g(Y ′(t; vj , xj), Y (t; vj , yj)) = g(Y (t; vj , xj), Y ′(t; vj , yj))

for any t ≥ 0. Since Y (λka (vj); vj , xj) = 0, we get

g(Y ′(λka (vj); vj , xj), Y (λka(vj); vj , yj)) = 0.(1.5)

Since Y (t; vj , yj) = 0 at t = λkb(vj), there exists a C∞ vector field X(t; vj , yj) along
γvj that is smoothly dependent on (vj , yj) and such that

Y (t; vj , yj) = (t− λkb(vj))X(t; vj , yj), X(λkb(vj); vj , yj) = Y ′(λkb (vj); vj , yj).
(1.6)

By (1.5) and (1.6), we get

g(Y ′(λka(vj); vj , xj), X(λka(vj); vj , yj)) = 0.(1.7)

If we take the limit of (1.7), then it follows from (1.6) that

g(Y ′(t0; v, x), Y ′(t0; v, y)) = 0.(1.8)

Let f denote the linear map of TpM into Tγv(t0)M defined by f(w) = Y ′(t0; v, w).
Since the f(Fi), i = 1, · · · , l, are mutually orthogonal by (1.8), we have

l∑
j=1

dim f(Fi) = dim(f(F1) + · · ·+ f(Fl)) ≤ dim(F1 + · · ·+ Fl).

Since f |Fi is injective, dim f(Fi) = dimFi for each i. Therefore, the dimension of
F1 + · · ·+ Fl equals

∑l
i=1 dimFi.

Proposition 1.2. For each positive number t, the function

v ∈ Uν −→ indN (γv|[0,t])

is locally constant around each tangent vector v ∈ Uν if γv(t) is not a focal point of
N along γv. Furthermore, the function λk : Uν −→ (0,∞] is continuous for each
k.
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LIPSCHITZ CONTINUITY OF THE DISTANCE FUNCTION 25

Proof. Take a vector v0 ∈ Uν such that γv0(t) is not a focal point of N along γv0 .
Since the index form depends continuously on the geodesic segment γv|[0,t], it is
clear that

indN (γv0 |[0,t]) ≤ indN (γv|[0,t])(1.9)

for any v ∈ Uν sufficiently close to v0. Suppose that there exists a sequence {vj}
of elements of Uν convergent to v0 such that indN (γv0 |[0,t]) 6= indN (γvj |[0,t]). By
taking a subsequence of the sequence, and by (1.9), we may assume that

indN (γv0 |[0,t]) < indN (γvj |[0,t])(1.10)

for any j, and that the limit linear space Fk := limj→∞ F (λk(vj)vj) exists for each
k with limj→∞ λk(vj) < t. It follows from the Morse index theorem and (1.11) that

indN (γvj |[0,t]) =
∑

dimF (λk(vj)vj) =
∑

dimFk(1.11)

for any sufficiently large j, where the sums are taken over the set {λk(vj);λk(vj) <
t}. It follows from the Morse index theorem and Lemma 1.1 that

indN (γv0 |[0,t]) ≥
∑

dimFk = indN (γvj |[0,t]).(1.12)

However, a contradiction exists between (1.10) and (1.12). Therefore, the function
v ∈ Uν −→ indN (γv|[0,t]) is locally constant around each tangent vector v ∈ Uν
if γv(t) is not a focal point of N along γv. Take any v0 ∈ Uν and any positive
number t > λk(v0) (respectively t < λk(v0)) such that γv0(t) is not a focal point
of N along γv0 . Since indN (γv|[0,t]) is locally constant around v0, we get λk(v) > t
(respectively λk(v) < t) for any v sufficiently close to v0, implying the continuity
of λk.

Fix any positive integer k and any v0 ∈ Upν with λk(v0) < +∞. We want to
prove the local Lipschitz continuity of λk around v0. For convenience, introduce a
C∞ Riemannian metric G on Uν. The Riemannian distance function induced from
G is denoted by D. For each positive number δ, we denote the open ball centered
at v0 with radius δ by BD(v0; δ).

Definition 1.3. For each q ∈M , let SqM denote the set of all unit tangent vectors
of TqM , and for each tangent vector v, let ‖v‖ denote the length of v, i.e., ‖v‖ :=√
g(v, v).

Since λk is continuous, there exists a relatively compact convex neighborhood
BD(v0; δ0(k)), on which λk does not exceed λk(v0)+1. Since each Jacobi field Y (t)
is uniquely determined by Y (t1) and Y ′(t1) for some t1, the number

2C0(J ′, k) := min{ ‖Y ′(λi(v0); v0, w)‖2 ; 1 ≤ i ≤ k, w ∈ SpM ∩ F (λi(v0)v0) }
(1.13)

is positive. Since each λi is continuous, there exists a positive number δ1(k) (≤
δ0(k)) such that

C0(J ′, k) ≤ ‖Y ′(λi(v); v, w)‖2(1.14)

for any v ∈ BD(v0; δ1(k)) and any w ∈ F (λi(v)v) ∩ Sπ(v)M, 1 ≤ i ≤ k. For
each v ∈ BD(v0; δ1(k)), choose a sufficiently small positive number ε(v) with the
following two properties: The closed intervals [si(v), ti(v)], 1 ≤ i ≤ k, are mutually
disjoint if λi(v) 6= λj(v), where si(v) := λi(v)− ε(v), ti(v) := λi(v)+ ε(v). For each
positive integer i(≤ k), the geodesic segment γv|[si(v),ti(v)] lies in a convex ball.
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Definition 1.4. For each v ∈ BD(v0; δ1(k)), τ ∈ (λi(v), ti(v)], and w ∈ F (λi(v)v)
(1 ≤ i ≤ k), let X(t; v, w, τ) denote the broken Jacobi field X(t) along γv such that

X(t) =


Y (t; v, w) on [0, si(v)],
Y (t; v, w, τ) on [si(v), τ ],
0 on [τ,∞],

where Y (t; v, w, τ) denotes the Jacobi field along γv satisfying

Y (si(v); v, w, τ) = Y (si(v); v, w), Y (τ ; v, w, τ) = 0.

Note that the Jacobi field Y (t; v, w, τ) is uniquely determined by the property

Y (τ ; v, w, τ) = 0, Y (si(v); v, w, τ) = Y (si(v); v, w)

for each τ ∈ (si(v), ti(v)], since γv|[si(v),ti(v)] lies in a convex ball. The uniqueness
implies that Y (t; v,

∑
j cjwj , τ) =

∑
j cjY (t; v, wj , τ), and thus

X(t; v,
∑
j

cjwj , τ) =
∑
j

cjX(t; v, wj , τ)

for any finitely many real numbers cj and vectors wj which are elements in a
common F (λi(v)v). By taking a smaller ε(v), we may assume that the length
‖X(t; v, w, τ)‖ of X(t; v, w, τ) is monotone on [si(v), τ ]. Therefore, if

C(J, k) := sup{ ‖Y (t; v, w)‖2 ; 0 ≤ t ≤ λk(v0) + 1,

v ∈ BD(v0; δ1(k)), w ∈ Sπ(v)M},
(1.15)

then

C(J, k) ≥ ‖X(t; v, w, τ)‖2(1.16)

on [0,∞) for each broken Jacobi field X(t; v, w, τ). Let {e1, · · · , em} denote a C∞

local frame field on a neighborhood V of p = π(v0) such that {e1(q), · · · , em(q)}
and {e1(q), · · · , en(q)} are orthonormal bases of TqM and TqN for each q ∈ N ∩ V,
respectively.

Definition 1.5. For each v ∈ Uν ∩π−1(V ∩N) let {E1(t; v), · · · , Em(t; v)} denote
the set of parallel vector fields along the geodesic γv such that Ei(0; v) = ei(π(v))
for each i.

Choose a positive number δ2(k) (≤ δ1(k)) so as to satisfy

BD(v0; δ2(k)) ⊂ Uν ∩ π−1(V ∩N).

Let It0 denote the index form with respect to a geodesic γv|[0,t], i.e.,

It0(X,Y ) =
∫ t

0

g(X ′(t), Y ′(t)) − g(R(X(t), γ̇v(t))γ̇v(t), Y (t))dt

+ g(Av(X(0)), Y (0))

for piecewise C∞ vector fields X,Y along γv|[0,t], where R denotes the sectional
curvature tensor field of (M, g). For simplicity, It0(X,X) will be denoted by It0(X).
Since

Rij(t, v) := g(R(Ei(t; v), γ̇v(t))γ̇v(t), Ej(t; v)), i, j = 1, . . . ,m,

fkl(v) := g(Av(ek(π(v))), el(π(v))), k, l = 1, . . . , n,
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are C∞ functions, we may choose constants C(R, k) and C(A) such that the in-
equalities

|Rij(t, v1)−Rij(t, v2)| ≤ C(R, k)D(v1, v2),(1.17)

|fkl(v1)− fkl(v2)| ≤ C(A)D(v1, v2)

hold for any t ∈ [0, λk(v0) + 1], i, j ∈ {1, . . . ,m}, k, l ∈ {1, . . . , n} and v1, v2 ∈
BD(v0; δ3(k)), where δ3(k) := 1

2δ2(k).

Lemma 1.3. For any v ∈ BD(v0; δ3(k)), w ∈ F (λi(v)v) and τ ∈ (λi(v), ti(v)] (1 ≤
i ≤ k),

Iτ0 (X(· ; v, w, τ)) = −g(Y (τ ; v, w), Y ′(τ ; v, w, τ)).(1.18)

Moreover, for each v ∈ BD(v0; δ3(k)) and positive integer i(≤ k), there exists a
real number τi(v) ∈ (λi(v), ti(v)) such that, for any τ ∈ (λi(v), τi(v)) and w ∈
F (λi(v)v),

Iτ0 (X(· ; v, w, τ)) ≤ −1
2
C0(J ′, k)(τ − λi(v))‖w‖2.(1.19)

Proof. Since X(t; v, w, τ)|[0,si(v)] and X(t; v, w, τ)|[si(v),τ ] are Jacobi fields along γv,
we get

Iτ0 (X(· ; v, w, τ)) = g(Y ′(si(v); v, w), Y (si(v); v, w, τ))

− g(Y (si(v); v, w), Y ′(si(v); v, w, τ)).

It follows from (1.2) that

Iτ0 (X(· ; v, w, τ)) = g(Y ′(τ ; v, w), Y (τ ; v, w, τ)) − g(Y (τ ; v, w), Y ′(τ ; v, w, τ)).

Since Y (τ ; v, w, τ) = 0, equation (1.18) holds. Since Y (t; v, w) = 0 at t = λi(v),
there exists a C∞ vector field X(t; v, w) such that Y (t; v, w) = (t−λi(v))X(t; v, w).
Since

lim
τ→λi(v)

Y ′(τ ; v, w, τ) = Y ′(λi(v); v, w, λi(v)) = Y ′(λi(v); v, w) = lim
τ→λi(v)

X(τ ; v, w),

it follows from (1.14) that there exists τi(v) ∈ (λi(v), ti(v)) such that

−g(Y (τ ; v, w), Y ′(τ ; v, w, τ)) ≤ −1
2
‖Y ′(λi(v); v, w)‖2(τ − λi(v))

≤ −1
2
C0(J ′, k)‖w‖2(τ − λi(v))

for any τ ∈ (λi(v), τi(v)) and w ∈ F (λi(v)v), completing the proof of (1.19).

Proof of Theorem A. Fix any v1 ∈ BD(v0; δ3(k)). We prove that the inequality

λk(v2)− λk(v1) ≤ LkD(v1, v2)

holds for any v2 ∈ BD(v0; δ3(k)) sufficiently close to v1, where

Lk :=
4mkC(J, k)
C0(J ′, k)

(C(A) + (λk(v0) + 1)C(R, k)).

Thus, the above inequality can be easily proven for any v2 ∈ BD(v0; δ3(k)), and
λk is Lipschitz continuous on BD(v0; δ3(k)) with Lipschitz constant Lk. For each
positive integer i ≤ k, choose a unit vector wi from F (λi(v1)v1) so as to satisfy
the following property: for distinct i, j ≤ k, wi and wj are orthogonal whenever
λi(v1) = λj(v1). Set ai := λi(v1) + ε, where ε (≤ 1) is a sufficiently small positive
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number satisfying ai ∈ (λi(v1), τi(v1)) for each i ≤ k. Let W (γv1) denote the k-
dimensional linear space spanned by piecewise C∞ vector fields Xi(t; v1), 1 ≤ i ≤ k,
along γv1 , where Xi(t; v1) := X(t; v1, wi, ai). We first prove that the inequality

Iak0 (
k∑
i=1

ciXi(· ; v1)) ≤ − ε
2
C0(J ′, k)

k∑
i=1

c2i(1.20)

holds for any real numbers ci’s. Choose a maximal subset {i1, ..., il} of {1, ..., k}
satisfying λi1(v1) < λi2(v1) < · · · < λil(v1). Set

Ns := {j;λj(v1) = λis(v1)}
for each s ∈ {1, ..., l}. The fact that the Ns are mutually disjoint subsets of
{1, · · · , k} with N1 ∪ · · · ∪Nl = {1, · · · , k} is trivial. Since

k∑
i=1

ciXi(t; v1) =
l∑

s=1

X(t; v1,
∑
i∈Ns

ciwi, ais),

it follows that

Iak0 (
k∑
i=1

ciXi(· ; v1)) =
l∑

s=1

Iak0 (X(· ; v1,
∑
i∈Ns

ciwi, ais)).(1.21)

Note that

Iak0 (X(· ; v1, xi, ai), X(· ; v1, xj , aj)) = 0

for any xi ∈ F (λi(v1)v1), yi ∈ F (λj(v1)v1) with λi(v1) < λj(v1). By applying
(1.19) to each broken Jacobi field X(t; v1,

∑
i∈Ns ciwi, ais), it follows that (1.21)

implies (1.20). Choose v2 ∈ U(v0; δ3(k)) sufficiently close to v1 to satisfy

ε := LkD(v1, v2) < min{τi(v1)− λi(v1); 1 ≤ i ≤ k}.
By (1.20), the inequality

Iak0 (
k∑
i=1

ciXi(· ; v1)) ≤ −Lk
2
C0(J ′, k)D(v1, v2)

k∑
i=1

c2i(1.22)

holds for any v2 ∈ BD(v0; δ3(k)) sufficiently close to v1 and any real numbers ci.
For each X ∈W (γv1), we construct a piecewise C∞ vector field X̃(t) along γv2 by

X̃(t) :=
m∑
i=1

g(X(t), Ei(t; v1))Ei(t; v2).

For simplicity, set

Z(t) :=
k∑
i=1

ciXi(t; v1).

It follows from (1.17) and the Schwarz inequality that

Iak0 (Z̃) ≤ Iak0 (Z) +mkC(J, k)D(v1, v2)(C(A) + (λk(v0) + 1)C(R, k))
k∑
i=1

c2i .

Hence, by (1.22), we get

Iak0 (Z̃) ≤ −1
4
LkC0(J ′, k)D(v1, v2)

k∑
i=1

c2i ,
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which holds for any v2 ∈ BD(v0; δ3(k)) sufficiently close to v1. This inequality
implies the index form Iak0 is negative definite on the k-dimensional linear space
{X̃(t);X ∈ W (γv1)}, and so indN (γv2 |[0,ak]) is not less than k. Therefore,

λk(v2) ≤ ak = λk(v1) + LkD(v1, v2)

for any v2 ∈ D(v0; δ3(k)) sufficiently close to v1, completing the proof of Theorem
A.

2. The distance function to the cut locus

Throughout this section N always denotes an embedded submanifold of M. A
unit speed geodesic segment γ : [0, a] → M emanating from N is called an N -
segment if t = d(N, γ(t)) on [0, a]. Note that any N -segment is orthogonal to N , a
consequence of the first variation formula.

Definition 2.1. For each point x ∈M \N,
ΛN(x) := {−γ̇(d(N, x)) ; γ is an N -segment reaching x}.

Definition 2.2. For any distinct points x, y lying in a convex neighborhood around
x, we define a unit tangent vector vx(y) at x by

vx(y) := γ̇(0),

where γ : [0, b] → M denotes the unique unit speed minimizing geodesic joining x
to y.

Lemma 2.1. Let {xn} be a sequence of points in M \ N converging to a point
x /∈ N. For each xn, choose an element wn in ΛN(xn). If limn→∞ vx(xn) =: v and
limn→∞wn =: w∞ ∈ ΛN (x) exist, then

∠(v, w∞) = min{∠(v, w);w ∈ ΛN (x)},
where ∠(v, w∞) denotes the angle made by v and w∞. Moreover,

lim
n→∞

d(N, xn)− d(N, x)
d(xn, x)

= − cos∠(v, w∞).

Remark. This lemma holds even when N is a point in an Alexandrov space; cf.
Lemma 6.3 in [21] and Theorem 3.5 in [18].

Proof. Define N -segments α and αn by

α(t) := exp((t− d(N, x))w∞), αn(t) := exp((t− d(N, x))wn).

Fix any N -segment β reaching x and choose a point y (6= x) on β in a convex neigh-
borhood Vx around x. Let η denote the angle made by v and w := −β̇(d(N, x)). It
follows from the first variation formula that there exists a constant C such that

d(y, xn)− d(y, x) ≤ −d(xn, x) cos ηn + C d(xn, x)2

for any sufficiently large n, where ηn = ∠(vx(xn), w). By the triangle inequality,

d(N, xn)− d(N, x) ≤ d(y, xn)− d(y, x)

for any n. Thus, we get

lim sup
n→∞

d(N, xn)− d(N, x)
d(xn, x)

≤ − lim
n→∞

cos ηn = − cos η.(2.1)
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On the other hand, choose a point z(6= x) on α in the neighborhood Vx. For each
n, choose a point yn lying on αn satisfying d(yn, xn) = d(x, z). Hence, the sequence
{yn} converges to z. By the triangle inequality,

d(N, xn)− d(N, x) ≥ d(yn, xn)− d(yn, x)

for any n. Let θn denote the angle made by vx(xn) and vx(yn). By the hypothesis,
the sequence {θn} converges to ∠(v, w∞). Since the distance function is C∞ around
(x, z), it follows from the first variation formula that there exists a positive constant
C such that

d(yn, xn)− d(yn, x) ≥ −d(xn, x) cos θn − C d(xn, x)2

for any sufficiently large n. Thus,

lim inf
n→∞

d(N, xn)− d(N, x)
d(xn, x)

≥ − lim
n→∞

cos θn = − cos∠(v, w∞).(2.2)

By (2.1) and (2.2), we complete the proof.

Definition 2.3. We define a function ρ(v), v ∈ Uν, which is called the distance
function to the cut locus of N, by

ρ(v) := sup{t; γ|[0,t] is an N -segment}.
The set

CN := {γv(ρ(v)); v ∈ Uν, ρ(v) <∞}
is called the cut locus of N , and each point of CN is called a cut point of N.

Note that ρ is positive on Uν, since N is an embedded submanifold of M. It
is well-known that ρ is continuous and ρ ≤ λ1 on Uν (for example, see [20]).
Let v : (a, b) → (Uν,G) denote a unit speed geodesic on Uν, where G is a C∞

Riemannian metric on Uν, assuming that

ρ(s) := ρ(v(s)) < λ(s) := λ1(v(s))

on (a, b).

Definition 2.4. For each v(s) define an N -Jacobi field YN (t; v(s)) along γv(s) by

YN (t; v(s)) :=
∂

∂s
exp(t v(s)).

Actually, YN (t; v(s)) is a Jacobi field satisfying the initial conditions

YN (0; v(s)) = dπ(v̇(s)), Y ′N (0; v(s)) = Av(s)(dπ(v̇(s))) + (v′(s))⊥.

Definition 2.5. For each s ∈ (a, b) we define the unit tangent vectors e1(s) and
e2(s) by

e1(s) := −γ̇v(s)(ρ(s)), e2(s) :=
1

||YN (ρ(s); v(s))||YN (ρ(s); v(s)).

Note that e1(s) and e2(s) are mutually orthogonal according to (1.2). Since
we assumed ρ < λ on (a, b), the continuous curve c(s) := exp(ρ(s)v(s)) lies in an
immersed surface

S := {exp(t v(s)); s ∈ (a, b), 0 < t < λ(s)}
of M. It is clear that {e1(s), e2(s)} is an orthonormal basis for the tangent space
Tc(s)S for each s ∈ (a, b). For each w ∈ ΛN (c(s)) \ {e1(s)}, let H(w) denote the
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hypersurface of Tc(s)M orthogonal to w − e1(s). The dimension of the linear space
Tc(s)S∩H(w) is 1, since e1(s) is tangent to S, but not to H(w). Therefore, for each
w ∈ ΛN(c(s))\{e1(s)} there exists a unique unit tangent vector η+(w) (respectively
η−(w)) in Tc(s)S ∩H(w) such that the angle made by η+(w) (respectively η−(w))
and e2(s) is smaller (respectively greater) than π

2 .

Definition 2.6. For each s ∈ (a, b), let ξ+(s) (respectively ξ−(s)) denote the
unique element η+(w+(s)) (resp. η−(w−(s)) in {η+(w);w ∈ ΛN (c(s)) \ {e1(s)}}
(resp. {η−(w);w ∈ ΛN (c(s)) \ {e1(s)}}) such that

∠(η+(w+(s)), e1(s)) = min{∠(η+(w), e1(s));w ∈ ΛN (c(s)) \ {e1(s)}}
or, respectively,

∠(η−(w−(s)), e1(s)) = min{∠(η−(w), e1(s));w ∈ ΛN (c(s)) \ {e1(s)}}.
Note that the choices of w±(s) may not be unique. Choose one w±(s) corre-

sponding to each s ∈ (a, b), and fix them.

Proposition 2.2. At each s0 ∈ (a, b),

lim
s→s0+0

vc(s0)(c(s)) = ξ+(s0)(2.3)

and

lim
s→s0−0

vc(s0)(c(s)) = ξ−(s0).(2.4)

Furthermore, the right and left derivatives D+ρ(s0) and D−ρ(s0) of ρ exist, and

D+ρ(s0) = −||YN (ρ(s0); v(s0))|| cot θ+(s0)(2.5)

and

D−ρ(s0) = −||YN (ρ(s0); v(s0))|| cot θ−(s0),(2.6)

where

θ+(s0) := ∠(ξ+(s0), e1(s0)), θ−(s0) := ∠(ξ−(s0),−e1(s0)).

Proof. Only equations (2.3) and (2.5) are proven, because the other equations may
be proven in the same manner. Let {si} denote a monotone decreasing sequence
converging to s0 such that η(s0) := limi→∞ vc(s0)(c(si)) exists. By applying Lemma
2.1 to the sequences {c(si)}i and {e1(si)}i, we have

∠(e1(s0), η(s0)) = min{∠(w, η(s0));w ∈ ΛN(c(s0))}.(2.7)

On the other hand, there exists a unit tangent vector w ∈ ΛN (c(s0))\{e1(s0)} that
is a limit vector of a sequence {wi}, where wi ∈ ΛN(c(si)) \ {e1(si)}, because c(s0)
is not a focal point of N. Thus it follows from Lemma 2.1 that

∠(w, η(s0)) = min{∠(w, η(s0));w ∈ ΛN (c(s0))}.(2.8)

By (2.7) and (2.8), η(s0) is a unit tangent vector in H(w) ∩ Tc(s0)S such that
∠(η(s0), e2(s0)) is smaller than π

2 , and hence equals ξ+(s0). This implies that
lims→s0+0 vc(s0)(c(s)) exists and is equal to ξ+(s0). It follows from Lemma 2.1 that

lim
s→s0+0

ρ(s)− ρ(s0)
d(c(s), c(s0))

= − cos θ+(s0).(2.9)

For each s > s0 sufficiently close to s0, choose the nearest point γv(s)(a(s)) on
γv(s)|[ρ(s0)−δ,ρ(s0)+δ] to the point c(s0), where δ is a sufficiently small positive num-
ber such that γv(s)[ρ(s0)− δ, ρ(s0) + δ] lies in a convex neighborhood around c(s0).
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So we may assume that γv(s) is orthogonal at γv(s)(a(s)) to the minimal geodesic
joining γv(s)(a(s)) to c(s0) for each s > s0 sufficiently close to s0. Thus, we have

lim
s→s0+0

k(s)
d(c(s0), c(s))

= sin θ+(s0),(2.10)

where k(s) := d(c(s0), γv(s)(a(s))). Since lims→s0+0 vc(s0)(γv(s)(a(s))) = e2(s0) is
perpendicular to e1(s0), it follows from Lemma 2.1 that

lim
s→s0+0

a(s)− ρ(s0)
k(s)

= 0.(2.11)

By the triangle inequality, we have

−|a(s)− ρ(s0)|+m(s) ≤ k(s) ≤ m(s),

which holds for each s > s0 sufficiently close to s0, where

m(s) := d(c(s0), γv(s)(ρ(s0))).

Therefore, by (2.11), we get the equality

lim
s→s0+0

m(s)
k(s)

= 1.(2.12)

Let exp−1
c(s0) denote the local inverse of expc(s0) := exp |Tc(s0)M around c(s0). Since

d expc(s0) is the identity map on Tc(s0)M at the zero vector, it follows that

lim
s→s0+0

m(s)
s− s0

= || ∂
∂s
|s=s0 exp−1

c(s0) γv(s)(ρ(s0))|| = ||YN (ρ(s0); v(s0))||.(2.13)

It follows from (2.9), (2.10), (2.12) and (2.13) that we get (2.5).

Theorem 2.3. For each cut point q of N which is not a focal point of N along
each N -segment reaching q, the space of directions at q coincides with the cut locus
of ΛN(q) in the sphere SqM. Here the space of directions at q is defined to be the
set of all limit unit tangent vectors at q of sequences {vq(qi)} as cut points qi of N
tend to q.

Proof. By Proposition 2.2, we have proved that any element of the space of di-
rections at q is a cut point of ΛN (q). Suppose that there exists a cut point v
of ΛN (q) that is not an element of the space of directions at q. Since v is a
cut point of ΛN (q), we may choose two unit speed geodesics ci : [0, θ] → SqM,
i = 1, 2, joining vi to v, none of which meet ΛN (q), except vi. For each positive ε let
γε : [0, 2θ]→M be a curve joining exp(εv1) to exp(εv2) such that γε(t) = exp(εc1(t))
and γε(t) = exp(εc2(2θ − t)) for t ∈ [0, θ] and t ∈ [θ, 2θ], respectively. By def-
inition, for any sufficiently small positive ε, the curve γε does not meet the cut
locus of N. Thus, there exists a unique curve γ̃ε : [0, 2θ] → ν in the open subset
{tv; 0 < t < ρ(v), v ∈ Uν} of the normal bundle that satisfies exp⊥(γ̃ε(t)) = γε(t).
It is clear that a family of curves {γ̃ε(t)}ε is equicontinuous, since the lengths of
the velocity vectors of γ̃ε are bounded. It follows from the Ascoli-Arzela theorem
that the family has a limit curve γ̃, which is continuous, as ε goes to zero. Hence,
exp⊥(γ̃(t)) = q for any t ∈ [0, 2θ]. If we define a continuous curve ξ(t) in Uν by

ξ(t) :=
1

||γ̃(t)|| γ̃(t),
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then from the construction it follows that ρ(ξ(t)) ≥ ||γ̃(t)||. Thus ||γ̃(t)|| = d(N, q)
for any t ∈ [0, 2θ], since exp⊥(γ̃(t)) = q. Therefore we get a family of N -segments
{γξ(t)[0, d(N, q)]}t∈[0,2θ] reaching q such that

γ́ξ(0)(d(N, q)) = −v1 and γ́ξ(2θ)(d(N, q)) = −v2.

This implies q is a focal point of N, which contradicts the hypothesis of the theorem.
Thus, the proof is complete.

To prove the local Lipschitz continuity of ρ at v0, fix any v0 ∈ Upν with ρ(v0) <
∞. Let BD(v0; δ0(v0)) denote a relatively compact convex ball in (Uν,G) centered
at v0 with radius δ0(v0), on which ρ ≤ ρ(v0) + 1.

Lemma 2.4. There exist positive numbers C1(v0) and δ1(v0) (< δ0(v0)) such that
for any v, w ∈ BD(v0; δ1(v0)) with γv(ρ(v)) = γw(ρ(w)) the inequality

C1(v0)D(v, w) < ∠(γ̇v(ρ(v)), γ̇w(ρ(w)))(2.14)

holds.

Proof. Since γv0(t0), where t0 = ρ(v0)
2 , is not a focal point of N along γv0 , the

differential of the normal exponential map has maximal rank at t0v0. Thus, there
exist a positive constant C1 and a convex ball BD(v0; δ1(v0)) (δ1(v0) < δ0(v0)) in
Uν such that

C1 D(u,w) < d(γu(t0), γw(t0))(2.15)

for any u,w ∈ BD(v0; δ1(v0)). By taking a smaller δ1(v0), we may assume that
3
2
t0 < ρ(v) <

5
2
t0

on BD(v0; δ1(v0)). Let K be the closure of the set {exp(ρ(v)v); v ∈ BD(v0; δ1(v0))}.
Note that K is compact, because ρ < 5

2 t0 on BD(v0; δ1(v0)). Thus, there exists a
constant C2 such that

max{||Y (t)||; 0 ≤ t ≤ 2t0} ≤ C2

for any Jacobi field Y along a geodesic that emanates from K with initial conditions
Y (0) = 0, ||Y ′(0)|| = 1. Suppose that v, w ∈ BD(v0; δ1(v0)) satisfy γw(ρ(w)) =
γv(ρ(v)) =: q. Let ξ : [0, φ] → SqM denote a unit speed minimal geodesic join-
ing −γ̇v(ρ(v)) to −γ̇w(ρ(w)), where φ = ∠(γ̇v(ρ(v)), γ̇w(ρ(w))). The curve x(θ) =
expq(t1ξ(θ)), θ ∈ [0, φ], joins γv(t0) to γw(t0), where t1 := ρ(w)− t0 = ρ(v)− t0. By
definition,

d(γv(t0), γw(t0)) ≤
∫ φ

0

||ẋ(θ)||dθ.

Since ||ẋ(θ)|| ≤ C2, we get

d(γv(t0), γw(t0)) ≤ C2φ = C2∠(γ̇v(ρ(v)), γ̇w(ρ(w))).(2.16)

From (2.15) and (2.16) we get (2.14).

Since the differential of the map (π, exp) : TM → M ×M, (q, v) → (q, expq(v))
has maximal rank at each zero vector, it has a C∞ local inverse Φ on an open set
Ur ⊃ {(γv0(t), γv0(t)); 0 ≤ t ≤ r}, where r := ρ(v0) + 1. Choose a positive number
δ2(v0) (< δ1(v0)) such that, for any v1, v2 ∈ BD(v0; δ2(v0)) and any t ∈ [0, r],
(γv1(t), γv2(t)) ∈ Ur.
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Definition 2.7. For each distinct v, ṽ ∈ BD(v0; δ2(v0)) let X(t; v, ṽ) denote the
vector field along γv|[0,r] defined by

X(t; v, ṽ) :=
1
ψ

Φ(γv(t), γṽ(t)),

where ψ = D(v, ṽ).

It is trivial that there exists a positive constant C2(v0) such that

∠(γ̇v(ρ(v)), γ̇w(ρ(w))) ≥ C2(v0)(2.17)

for any v ∈ BD(v0; δ3(v0)) and w ∈ Uν \BD(v0; δ1(v0)) with γv(ρ(v)) = γw(ρ(w)),
where δ3(v0) := δ2(v0)

2 .

Lemma 2.5. There exists a positive number C3(v0) such that for any t ∈ [0, r] and
any unit speed minimizing geodesic ξ(s) (0 ≤ s ≤ ψ) in BD(v0; δ2(v0))

||X(t; ξ(0), ξ(ψ))− YN (t; ξ(0))||+ ||X ′(t; ξ(0), ξ(ψ)) − Y ′N (t; ξ(0))|| ≤ C3(v0)ψ,
(2.18)

where YN (t; ξ(0)) is the N -Jacobi field along γv(0) defined in Definition 2.4.

Proof. Since (γξ(0)(t), γξ(s)(t)) ∈ Ur for any t ∈ [0, r] and any s ∈ [0, ψ], the vector
field Φ(γξ(0)(t), γξ(s)(t)) along γξ(0)|[0,r] is well-defined for each s ∈ [0, ψ]. Let f :
[0, r]×BD(v0; δ2(v0))×BD(v0; δ2(v0))→ TM be a C∞ map defined by

f(t, v1, v2) := Φ(γv1(t), γv2 (t))

and put h(s) := f(t, ξ(0), ξ(s)). Since

h(ψ) = h′(0)ψ + ψ2

∫ 1

0

u

∫ 1

0

h′′(suψ)ds du

and h′(0) = YN (t; ξ(0)), we get

X(t; ξ(0), ξ(ψ)) = YN (t; ξ(0)) + ψ

∫ 1

0

u

∫ 1

0

h′′(suψ)ds du.

Hence, the inequality (2.18) is trivial.

Lemma 2.6. Let v : (a, b) → BD(v0; δ3(v0)) be a unit speed geodesic such that
λ(s) > ρ(s) on (a, b). Then for each s ∈ (a, b),

|D±ρ(s)| ≤ C(JN ) max
(

cot
C4(v0)

2
,
π2C3(v0)C1(v0)−2

2

)
,(2.19)

where

C4(v0) = min(C2(v0), C1(v0)δ3(v0))

C(JN ) = sup{||YN(t; v(s))||, ||Y ′N (t; v(s))||; 0 ≤ t ≤ r,
v(s) is a unit speed geodesic in BD(v0; δ3(v0))}.

Proof. Let e3(s) denote the unit tangent vector satisfying

w+(s) = e1(s) cosφ(s) + e3(s) sinφ(s),(2.20)

where φ(s) := ∠(w+(s), e1(s)). Since ∠(e1(s), ξ+(s)) = θ+(s) and ∠(ξ+(s), e2(s)) <
π
2 , it follows that

ξ+(s) = e1(s) cos θ+(s) + e2(s) sin θ+(s).(2.21)
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Since ξ+(s) is orthogonal to w+(s)− e1(s), it follows from (2.20) and (2.21) that

cot θ+(s) =
sinφ(s)

1− cosφ(s)
g(e2(s), e3(s)).(2.22)

Hence, by (2.5), we get

D+ρ(s) = − sinφ(s)
1− cosφ(s)

g(YN (ρ(s)), e3(s)) = − cot
φ(s)

2
g(YN (ρ(s)), e3(s)),

(2.23)

where YN (t) := YN (t; v(s)). Let ṽ(s) ∈ Uν denote the vector satisfying −w+(s) =
γ̇ṽ(s)(ρ(ṽ(s))). If φ(s) is not less than C4(v0), then from (2.23) it is trivial that

|D+ρ(s)| ≤ C(JN ) cot
C4(v0)

2
.(2.24)

If φ(s) is less than C4(v0), then it follows from (2.14) and (2.17) that D(v(s), ṽ(s)) <
δ3(v0). Thus, by the triangle inequality, ṽ(s) ∈ BD(v0; δ2(v0)). The vector field
X(t) := X(t; v(s), ṽ(s)) is well-defined by Definition 2.7. Since X(ρ(s)) = 0, we get

X ′(ρ(s)) =
1

ψ(s)
(e1(s)− w+(s)) =

1
ψ(s)

((1− cosφ(s))e1(s)− e3(s) sinφ(s)),

(2.25)

where ψ(s) := D(v(s), ṽ(s)). Let ξ : [0, ψ(s)] → BD(v0; δ2(v0)) denote the unit
speed minimal geodesic joining v(s) to ṽ(s). It follows from (2.23) and (2.25) that

D+ρ(s) = cot
φ(s)

2
ψ(s)

sinφ(s)
g(YN (ρ(s)), X ′(ρ(s))).(2.26)

It follows from (1.3) that

g(YN (ρ(s)), X ′(ρ(s))) = g(YN (ρ(s)), X ′(ρ(s))−X ′N (ρ(s)))

+ g(Y ′N (ρ(s)), XN (ρ(s))),

where XN(t) := YN (t; ξ(0)). Hence, by (2.26), we have

|D+ρ(s)| ≤ cot
φ(s)

2
ψ(s)

sinφ(s)
C(JN )(||X ′(ρ(s)) −X ′N(ρ(s))|| + ||XN (ρ(s))||).

(2.27)

Since X(ρ(s)) = 0, by (2.14), (2.18) and (2.27), we get

|D+ρ(s)| ≤ cot
φ(s)

2
ψ(s)2

sinφ(s)
C(JN )C3(v0) ≤ π2

2
C1(v0)−2C3(v0)C(JN ).(2.28)

By (2.24) and (2.28), we get (2.19). The estimate for D−ρ(s) is the same as the
one for D+ρ(s).

Proof of Theorem B. Let v0 ∈ Uν be any vector with ρ(v0) < ∞. Choose a small
convex ball BD(v0; δ4(v0)), δ4(v0) < δ3(v0), on which ρ < λ1 or λ1 is Lipschitz
continuous with Lipschitz constant L(λ1). Let v1, v2 ∈ BD(v0; δ4(v0)) be any dis-
tinct vectors with ρ(v1) ≤ ρ(v2). Let ξ : [0, ψ] → BD(v0; δ4(v0)) be the unit speed
geodesic joining v1 to v2, so that ψ = D(v1, v2). If λ1(v1) = ρ(v1), then

|ρ(v1)− ρ(v2)| = ρ(v2)− ρ(v1) ≤ λ1(v2)− λ1(v1) ≤ L(λ1)D(v1, v2).(2.29)
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Suppose that λ1(v1) > ρ(v1). Let (0, a) be the maximal open subinterval of [0, ψ]
on which λ1 > ρ. By Lemma 2.5,

|D±ρ(s)| ≤ C5(JN , v0)

on (0, a), where

C5(JN , v0) := C(JN ) max
(

cot
C4(v0)

2
,
π2C3(v0)C1(v0)−2

2

)
.

Hence, ρ ◦ ξ is Lipschitz continuous with Lipschitz constant C5(JN , v0) on [0, a]. In
particular,

|ρ(v1)− ρ(ξ(a))| ≤ C5(JN , v0)a.(2.30)

If a < ψ, then λ1(ξ(a)) = ρ(ξ(a)). Thus by (2.30), we get

|ρ(v1)− ρ(v2)| ≤ λ1(v2)− λ1(ξ(a)) + |ρ(ξ(a)) − ρ(v1)| ≤ L(ρ)D(v1, v2),(2.31)

where L(ρ) := max(L(λ1), C5(JN , v0)). If a = ψ, then (2.31) is trivial by (2.30).
Therefore, by (2.29) and (2.31),

|ρ(v1)− ρ(v2)| ≤ L(ρ)D(v1, v2)

for any v1, v2 ∈ BD(v0; δ4(v0)).

The length L(c) of a continuous curve c : [a, b]→M is defined as

L(c) := sup
k∑
i=1

d(c(ti−1), c(ti)),

where the supremum is taken over all subdivisions

a = t0 < t1 < · · · < tk = b

of [a, b]. Note that any absolutely continuous curve has finite length (cf. [28] for the
definition of an absolutely continuous curve). We omit the proof of the following
lemma, since it is standard (cf. [28]).

Lemma 2.7. For any absolutely continuous curve c : [a, b]→M,

L(c) =
∫ b

a

||ċ(t)|| dt.

We introduce an interior metric δ on a component C0
N of CN by

δ(p, q) := inf{L(c); c is a continuous curve on C0
N joining p to q}.

By Theorem B, δ(p, q) is finite for any p, q ∈ C0
N . Any two points p, q ∈ C0

N can be
connected by a minimal curve c; that is, there exists a continuous curve c joining p
to q such that δ(p, q) = L(c) (for example, cf. Theorem 5.18 in [3]). It follows from
Lemma 2.7 that δ coincides with the usual definition of the Riemannian distance
function, or, in other words,

δ(p, q) = inf{
∫ 1

0

||ċ(t)||dt; c is an absolutely continuous

curve on C0
N joining p to q}.
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Proof of Corollary C. Let {pn} be a sequence of points in C0
N such that

lim
n→∞

d(p, pn) = 0.

Since the cut locus is closed, p is a cut point of N. For each pn choose a vector
vn ∈ Uν with exp(ρ(vn)vn) = pn. Let v ∈ Uν be a limit vector of the sequence
{vn}. Let ξn : [0, D(v, vn)] → Uν be a minimizing geodesic joining v to vn, and
put ξn(t) := exp(ρ(ξn(t))ξn(t)). Since ξn is a (Lipschitz) continuous curve in C0

N

joining p to pn, we get

δ(p, pn) ≤ L(ξn).(2.32)

Since ρ is locally Lipschitz, the map w ∈ Uν → exp(ρ(w)w) ∈ M is also locally
Lipschitz. Thus, there exist a positive constant C and a neighborhood V around v
such that

L(ξn) ≤ CL(ξn) = CD(v, vn)(2.33)

for any n with vn ∈ V. By (2.35) and (2.36), we get limn→∞ δ(p, pn) = 0. Thus,
the topology introduced from δ coincides with the relative topology of (M, g). The
other claims are clear from this property.

3. Open problems and examples

The functions λk are not always differentiable, except when M is of dimension
2. The following example shows that λ1 need not be differentiable.

Example 3.1. Let M denote the Riemannian product of two 2-dimensional unit
spheres S2. Choose a unit tangent vector v1 to S2 at a point p1. For each θ ∈ [0, π2 ],
we define a geodesic γθ on M by

γθ(t) := (exp(tv1 cos θ), exp(tv1 sin θ)).

Let λ1 denote the distance function to the first conjugate tangent vectors of the
point p := (p1, p1) ∈M. Thus

λ1(γ̇θ(0)) = min
( π

cos θ
,
π

sin θ

)
.

Hence λ1(γ̇θ(0)) is not differentiable at θ = π
4 , that is, λ1 is not differentiable at(

v1/
√

2, v1/
√

2
)
.

There exist many surfaces admitting a cut locus with branch points (for example
cf. [7] or the following example). This implies such a cut locus need not have
curvature bounded below in the sense of Alexandrov.

Example 3.2. Let N be a smooth convex Jordan curve in the 2-dimensional Eu-
clidean plane R2 which contains a regular triangle T, except around its three ver-
tices. Then the cut locus of N contains three line segments emanating from the
center of T .

The following example shows that there is a cut locus containing a neighborhood
of the vertex of a flat cone. This implies this cut locus cannot have curvature
bounded above in the sense of Alexandrov.
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Example 3.3. Take a C∞ Jordan arc C in the yz plane in the 3-dimensional
Euclidean space R3 with endpoints (0, 0,±1) as follows:

(1) C contains three arcs

C1 := {(0, cos θ, sin θ);−π
2
≤ θ ≤ −π

2
+ δ},

C2 := {(0, cos θ, sin θ);−π
4

+ δ ≤ θ ≤ π

2
}

and

C3 := {(0, 1√
2

+
δ

10
cosφ,− 1√

2
+

δ

10
sinφ);−π

4
− δ ≤ φ ≤ −π

4
+ δ},

where δ is a sufficiently small positive constant.
(2) C\(C1∪C2∪C3) consists of two Jordan subarcs which are mutually symmetric

with respect to the line through (0, 0, 0) and (0, 1,−1).
(3) The cut locus of C \ {(0, 0,±1)} in the yz plane is the line segment with

endpoints (0, 0, 0) and (0,− 1√
2
,− 1√

2
) .

Let N be the surface of revolution obtained by rotating C about the z axis. Then
the cut locus of N coincides with a cone

{(x, y, z);x2 + y2 = z2, − 1√
2
≤ z ≤ 0}.

The cut loci constructed in Examples 3.2 and 3.3 are those of a submanifold that
is not a single point. By making use of Weinstein’s technique ([26]), we may regard
these cut loci as being of a single point.

Finally, we state five interesting open problems, some of which might be proved
using the local Lipschitz continuity of the function ρ.

J. Hebda and J. Itoh affirmatively solved Ambrose’s problem in the 2-dimensional
case (cf. [11], [13]). They solved it by proving that the cut locus of a point on a
2-dimensional Riemannian manifold has finite 1-dimensional Hausdorff measure.
Hebda had pointed out in [10] that it is sufficient to prove the property above to
solve the problem in the 2-dimensional case. Theorem B generalizes this property
for any dimensional compact Riemannian manifolds. Thus we might be able to
solve Ambrose’s problem using this property.

Problem 3.1. Solve Ambrose’s problem for any dimensional Riemannian mani-
fold.

The authors proved in [14] that for each cut point q of a point p on M, there
exists a nonnegative integer k such that the cut locus of p is locally k-dimensional
around q. We call the integer k the local dimension of the cut locus at q.

Problem 3.2. Let q denote a cut point of a point p on M at which the local di-
mension of the cut locus is k. Is the cut locus locally a k-dimensional submanifold
of M around q, except for a k-null subset of M? Here a subset of M is said to be
k-null if it is of k-dimensional Hausdorff measure zero.

Hereafter N denotes an embedded submanifold of a complete Riemannian mani-
fold M. A point q ∈M \N is called a critical point of the distance function from N
if for each unit tangent vector v at q there exists a unit tangent vector w in ΛN (q)
such that the angle made by v and w is not greater than π

2 . A real number c is
called a critical value of the distance function from N if there exists a critical point
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q whose distance is c from N. It is well-known that for each positive number c the
set of all points whose distances are c is a topological hypersurface in M, if c is not a
critical value of the distance function (cf. [5]). In [22], it was proved that the set of
all critical values of the distance function from a compact subset in an Alexandrov
surface is of Lebesgue measure zero. Does what we call a “Sard Theorem for the
distance function” hold for the distance function from N? Namely,

Problem 3.3. Is the set of all critical values of the distance function from N of
Lebesgue measure zero?

We showed in Examples 3.2 and 3.3 that the cut locus is not always an Alexan-
drov space. How about the tangent cut locus?

Problem 3.4. Is the tangent cut locus of N an Alexandrov space?

We proved in Theorem 2.3 that the space of directions at a non-focal cut point
q of N coincides with the cut locus of ΛN (q) in SqM. Here a non-focal cut point q
is a cut point that is not a focal point along each N -segment reaching q. Therefore,
the following problem is an interesting investigatation into the structure of a cut
locus.

Problem 3.5. Let q be a non-focal cut point of N. Then, is S(q; δ)∩CN homeo-
morphic to the cut locus of ΛN (q) in SqM for any sufficiently small positive δ?
Here S(q; δ) denotes a geodesic sphere in M centered at q with radius δ.
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