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Abstract

Load balancing is one of the central problems that have to be solved in parallel

computation. Here, the problem of distributed, dynamic load balancing for massive

parallelism is addressed.

A new local method, which realizes a physical analogy to equilibrating liquids in

multi-dimensional tori or hypercubes, is presented. It is especially suited for

communication mechanisms with low set-up to transfer ratio occurring in tightly-

coupled or SIMD systems. By successive shifting single load elements to the direct

neighbors, the load is automatically transferred to lightly loaded processors.

Compared to former methods, the proposed Liquid model has two main

advantages. First, the task of load sharing is combined with the task of load balancing,

where the former has priority. This property is valuable in many applications and

important for highly dynamic load distribution. Second, the Liquid model has high

efficiency. Asymptotically, it needs O(D.K.Ldiff) load transfers to reach the balanced

state in a D-dimensional torus with K processors per dimension and a maximum initial

load difference of Ldiff. The Liquid model clearly outperforms an earlier load balancing

approach, the nearest-neighbor-averaging.

Besides a survey of related research, analytical results within a formal

framework are derived. These results are validated by worst-case simulations in one-

and two-dimensional tori with up to two thousand processors.

Keywords: distributed computing, parallel algorithms, load sharing, load balancing,

rings, tori, hypercubes

1 . Introduction

Load balancing is one of the central problems that has to be solved in parallel

computation. Load imbalance leads directly to processor idle times and to low exploitation of

the potential power of distributed computing. High efficiency can only be achieved if many
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processors are supplied with work and the computational load is evenly balanced among the

processors. This problem can be divided in two distinct tasks, load balancing and load sharing.

The easier task of load sharing is to supply each processor with at least some load. Thereby, the

amount of processor load is of no interest as long as there is load at all. Load balancing is the

task of equilibrating the load as evenly as possible. As a final goal, every processor should

have the same amount of work.1

For both of these tasks, many approaches have already been studied. A general taxonomy

of load balancing approaches is given in [Casavant88]. Because the number of processors in

available parallel computing systems increases quickly, scalable algorithms are required. In

centralized load balancing algorithms the scheduler forms an bottleneck. Thus, we concentrate

on distributed approaches. Within this category of distributed algorithms, we additionally

distinguish between global and local methods. With global2 load balancing one processor may

transfer load (or load information) to any other processor in the system. This transfer of the

load packages is done by sending them through a routing network. Several global distributed

approaches with asynchronous communication are described, for example, in [Kumar91,

Schabernack92].

The general drawback of global approaches to load balancing is that, with an increasing

number of processors, the global communication of the load will slow down the algorithm.

Thus, in the future, only local approaches seem applicable for massively parallel computers. In

this paper, we concentrate on local distributed load balancing and load sharing methods, where

only communication between a processor and its directly connected neighbors is allowed.

Thus, the communication via several processors is not admissible.

For the load balancing process, we assume that the total work consists of single load

elements that represent tasks to be processed. Because in many applications the size of the tasks

is not known in advance, all the load elements are assumed to be of the same size. Thus, as a

time measure in the load balancing algorithms, the transfer of one load element is appropriate

and any compression of load is excluded. The number of communication set-ups transferring

several load elements is not sufficient as time measure for tightly-coupled or SIMD systems,

because the set-up is fast compared to the communication itself.

For the application process, we assume that the amount of load is increased and reduced

dynamically in time by generating new tasks and finishing existing ones. Additionally, the

development of load increase and reduction is not predictable, thus, future load distribution

1 The distinction between load sharing and load balancing may seem rather artificial because balanced load is
also shared load, but it leads to a better insight of the algorithms and for some applications load sharing is
sufficient.

2 This interpretation differs from the one in [Casavant88]. There, local load balancing addresses the scheduling
and dispatching of processes within a single processor, and global load balancing  addresses the load
distribution over the total multiprocessor system.
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cannot be foreseen. Such highly dynamic load distributions are given, for example, in search

tree algorithms such as Branch-and-bound, A*, IDA*, etc.

In summary, the application algorithm with dynamic load balancing can be viewed as two

interlaced, adversary processes, where the balanced state is unlikely to be reached. As

consequence, an explicit termination criterion of the load balancing process can be omitted.

Another consequence of dynamic load distribution is that aged load information is nearly

worthless. The older the information the more likely has the load configuration changed in the

meantime.

Here, we present and evaluate a new local load balancing approach. Former local load

balancing approaches are reviewed and discussed in Section 2. Then, the new method is

illustrated and a formal framework is set up in Section 3. Using this framework, the properties

and the efficiency of the method are derived analytically in Section 4. These analytic results are

supported by several simulation results in Section 5.

2 . Related Research

In this section, we survey known local load balancing methods. These methods can be

divided into three basic approaches: the diffusion method, the dimension exchange, and the

nearest-neighbor-averaging. All three approaches have one property in common, the strict

locality of control and communication. Nevertheless, each approach uses a different starting

point. Finally, we briefly discuss semi-local approaches, which loosen the strict locality

property.

2 . 1 . Diffusion Approach

The diffusion method is an iterative algorithm and especially suited for systems with

direct communication networks. In every step, a fixed fraction of the load difference between

two neighboring processors is exchanged. When these local operations are used, the load

distribution converges to the global optimum. The efficiency of the diffusion method depends

on a diffusion parameter α which determines the size of the transferred load fraction.

For processor i, let the load Li ∈ R and a set of directly neighboring processors ∆(i) be

given. Thereby it is assumed that the load consists of very many and very small load elements,

so that a continuous representation is admissible. By the diffusion method, a load δi(j) is

transferred from processor i to every neighbor j ∈ ∆(i) with

δi(j) = α (Li – Lj), with α ∈ (0,1) (1)
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With δi(j)  < 0, the load is transferred in the inverse direction. In this formulation,

truncation errors are not considered. Every change of state of the processor load L i by

synchronous load balancing can be described by the following transition equation:

L i(t+1)  :=   L i( t )  + ∑
j∈∆(i)

 δ i(j) (2)

For a system with P processors and a total load of L that is distributed unevenly over the

system, the processor load has to converge to L/P by the diffusion method. In [Cybenko89],

this method is analyzed for the first time. Assuming a synchronous communication, necessary

and sufficient conditions for the diffusion parameter are given to ensure convergence.

Additionally, the optimal parameter for hypercubes is found, which enables the highest

convergence rate of load balancing. In [Bertsekas89], the convergence for an asynchronous

version of the diffusion method is shown, provided that the communication delay of a link has

an upper bound.

Besides the necessary convergence itself, the rate of convergence is important. In

[Boillat90], different convergence rates for several network topologies are given. In this

analysis, only the number of communication set-ups is considered, but not the amount of

transferred data. It is shown that in D-dimensional tori with Ki processing units in dimension i,

the load configuration converges asymptotically to a balanced state with O(D.max{Ki}
2) time.

In D-dimensional binary hypercubes only O(D) steps are necessary. Additionally, the number

of iterations necessary to reach a balanced state depends on the initial load configuration but this

fact is not considered by the time measure used. In [Xu93], the optimal diffusion parameter for

synchronous load balancing in D-dimensional tori with K processors per dimension is derived.

In [Kumar87] a variant of receiver-initiated diffusion approach named α-splitting is

analyzed for unidirectional rings. When an idle processor with index i + 1 demands processor

i for work then the fraction (1 – α).Li, with 0 < α < 1, of the total load Li is transferred to

processor i + 1. The analysis shows, that for an increasing number P of processing units, an

exponential time effort of β P, with β = 1/(1 – α), is necessary asymptotically. The time

effort is measured by the number of transfers, independent of the (continuous) amount of

information transferred. The discrepancy to the results of the former paragraphs is due to the

different initialization of load balancing.

For diffusion methods, various applications are possible. For example, the diffusion was

used for branch-and-bound algorithms on Intel iPSC/2 in [Willebeek90] and on Transputer

clusters with de-Bruijn and ring topologies in [Lüling92].

The main drawback of diffusion methods comes up in practice. In [Horton93], it is

shown that in spite of proven convergence, global imbalance using local balancing operations

can arise. This effect is due to the discrete realization of the continuous model. Necessary

truncation errors may cause decreasing ramps with slope –1 that are not further equilibrated.
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2 . 2 . Dimension Exchange

The dimension exchange is a further local load balancing method. It is a synchronous

approach where load balancing takes place successively in a single dimension. See

[Willebeek93, Cybenko89, Dragon89]. In [Cybenko89], a dimension exchange for

asynchronous multiprocessor systems with hypercube topology is presented, which needs

log(P) steps with P processors. One load transfer includes the communication of multiple load

elements. This approach is suited for problems with little dependency between the load

elements (see [Fox89]).

Comparing dimension exchange and the diffusion method, each approach is well suited

for different communication models. With the diffusion method, simultaneous communication

with all direct neighbors is best. For the dimension exchange, one communication at a time is

sufficient. In [Cybenko89], it is shown that the dimension exchange outperforms the diffusion

method in hypercubes. This holds true for k-ary n-cubes too [Xu93].

2 . 3 . Nearest-neighbor-averaging

The nearest-neighbor-averaging (NNA) is a further, completely local load balancing

method. The idea is to change the load of each processor such that it is equal to the mean load

of the processor and its neighbors. Regarding the processor i and the set of its direct neighbors

∆(i), there is a mean load of Li(t) = (Li(t) + ∑j∈∆(i)Lj(t)) / (|∆(i)| + 1) at time t, where |∆(i)|
stands for the number of neighbors. After one load balancing step, at time t + 1, the processor

i should have a load of Li(t). As a transition equation for the load change, the following

formula holds true:

Li(t+1) := 
1

|∆(i) | + 1
 

 


 
L i(t) +  ∑

j∈∆(i)

Lj(t)  (3)

The NNA can be realized in two different ways. An asynchronous variant is described in

[Willebeek93]. When a processor is highly loaded then it transfers a portion of its load to all

deficient neighbors. The amount of transferred load is proportional to the difference of the mean

load and the load of the neighbor. Let the deficiency of each neighboring processor j ∈ ∆(i) for

the processor i be given by hj = max{0,Li – Lj} and the total deficiency by Hi = ∑j∈∆(i) hj.

Then, the asynchronous NNA performs a load transfer δi(j) from processor i to each of its

neighbors j ∈ ∆(i) with

δi(j) = (Li(t) – Li) 
hj
H i

(4)

In the synchronous variant of NNA, the load of every processor is divided into |∆(i)| + 1

portions of the same size. The processor itself and all of its neighbors receive one load portion.

The execution of each load balancing step satisfies the transition equation in (3). Let the
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processor i have a load Li and a set of neighbors ∆(i). Then, by the synchronous NNA, a load

transfer δi from processor i to each of its neighbors j ∈ ∆(i) is performed with3

δi = 
L i  

|∆(i) | + 1
(5)

The synchronous NNA is analyzed in [Hong90] for binary hypercubes and in [Qian91]

for general hypercubes. There, it is proven that the load balancing method converges and that

the variation of the load has an upper bound.

When comparing NNA with the diffusion method in Section 2.1, the NNA can be

recognized as a special case of the diffusion method. With a diffusion parameter

α = 1 / (|∆(i)| + 1) the transition equation of the diffusion method in (2) turns into the one of

NNA in (3).

2 . 4 . Semi-local Load Balancing

Besides the strictly local load balancing methods presented above, there are semi-local

approaches. They have the requirement of locality being more or less loose in common.

Nevertheless, these approaches cannot be fully allocated to global load balancing methods, and

therefore are only briefly mentioned here.

A hierarchical and topological independent diffusion method for multiprocessor systems

is presented in [Horton93]. Local load transfers are controlled based on global load distribution

information. On the one hand, neighborhood relations between load elements can be fulfilled.

On the other hand, each processor has to be supplied with sufficient load elements to transfer

the required amount of load. To reach the equilibrated load state, O(log(P)) transfers with P

processors are necessary. Thereby, one transfer includes the communication of several load

elements.

The gradient model in [Lin87] is a receiver-initiated, topology-independent load balancing

method for multiprocessor systems. A global potential field indicating the proximity of lightly

loaded processors is successively approximated. The load packages migrate in the direction of

the gradient from highly loaded to lightly loaded processors. Because of the load elements are

migrating through several processing units and are not considered as additional load, the

gradient model cannot be viewed as a strictly local approach. An application of the gradient

model to domains with high, dynamic load changes, e.g., as tree search algorithms, is difficult

because the approximation of the potential field ages quickly.

3 The communication effort can be reduced down to the difference between the two opposed load transfers by
previous exchange of load information.
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2 . 5 Conclusion

All the presented local load balancing approaches have one disadvantage in common:

They assume a continuous amount of processor load. Contrasting with that, for the most

applications, a discrete representation of load is more adequate. Additionally, with massively

parallel computers, one cannot turn to a continuous representation because the local processor

memory is relatively small and, therefore, the number of load elements is limited. A continuous

representation simplifies the analysis of the methods but it leads to the load imbalance

mentioned in Section 2.1. Therefore, it is important to design load balancing mechanisms,

which take this problem into account and, e.g., assume discrete load elements.

Many of the former local load balancing approaches can be reduced to the diffusion

approach. Additionally, this is the only approach, which has been analysed to this extend so

far. For several topologies, e.g. K-ary D-cubes, the NNA implements the optimal diffusion

parameter. Thereby, the time effort grows asymptotically in a quadratic form, for an increasing

network diameter. Because NNA represents the best known method analyzed so far, we will

use it for comparisons in Section 5.

In the previous investigations of load balancing methods, the number of load transfers,

i.e. communication set-ups, has been used as a time measure. For coarse-grained parallel

computers, this is an appropriate measure, because the set-up time is huge compared to the

transfer time itself. On the other hand, for the fine-grained massively parallel architectures, this

ratio is inverse. To determine analytically the time effort on these machines, it is important to

consider the amount of transferred information too. This amount is always greater than or equal

to the number of transfers, because for communicating one information unit at least one set-up

of the link is necessary. Thus, in the rest of the paper, we regard the communicated amount

instead of the communication set-ups.

3 . The Liquid Model

This section presents a new local load balancing method. The basic idea is illustrated

using both a continuous and discrete view point. Then, we develop a formal definition of the

model as a basis for our analysis. Finally, an example showing two basic properties is given.

3 . 1 . Illustration

The proposed load balancing method implements a Liquid model. For this model, a flat

box is filled with a homogeneous liquid. In the balanced state, the liquid has the same height at

any place in the box. If one pours additional liquid into the box at an arbitrary location, the

liquid equalizes itself such that the height is again the same everywhere. See Figure 1a for a

simplified illustration.
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  (a)  

  (b)  

Figure 1: The behaviour of the simplified Liquid model (a) and its discrete equivalent (b) when

further liquid resp. load is added

This equilibration happens by locally displacing the superfluous liquid to the

neighborhood. By successive displacements, the liquid equalizes itself again. This global effect

is achieved by a strictly local mechanism, because none of the additional liquid molecules will

"jump" to locations with lacking liquid.

The discrete equivalent to the above continuous model is shown for the one-dimensional

case in Figure 1b. This simplified physical effect can be used for load balancing. There, the

geometry of the box is discretized and every interval corresponds to one processing unit. The

liquid in the liquid model corresponds to the load in the load balancing process. The

quantization of the liquid height is represented by elementary load units. For example, in a tree

search algorithm, the nodes of the search tree that still have to be processed are the single load

units.

If there is a heavy load at some location and a light load at another location, the load

should be transferred from the former to the latter place. Global approaches would detect these

locations and transfer the load directly by a communication network. Instead, with the Liquid

model, the load is transferred implicitly. While there are processors with light loads, heavily

loaded processors shift load elements to some of their neighbors and receive load elements from

other neighbors. The lightly loaded processors only receive load elements but do not give any

away. By successive shifting, the load is automatically transferred to the processors with low

load. The approach taken here targets for both aims, load balancing and load sharing. These

aims will not be reached in one step, but asymptotically by several load balancing iterations.

3 . 2 . Formal Model

For a precise description of the liquid model load balancing method and for the

formulation of analytical statements about the algorithm, the above presented idea is now

formalized. With regard to that, we assume a general cyclic mesh structure (torus) as the
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communication network of the processing units. This structure is a general topology, which is

used, e.g., in Paragon or MasPar computers. The main advantages are that it can easily be

scaled in the number of processors and that it is easy to implement.

Given is a D-dimensional, symmetric4 torus with P = KD processing elements, for a fixed

K ∈ N+. The processor Pi has a unique identity i, which results from the (cyclic) coordinates

of the torus and is given by the D-dimensional vector i = (i 1, …, iD). The set of all admissible

identifiers of the processing elements is given by the index set

I := {( i1, …, iD) | i j ∈ {0, …, K–1} and j = 1, …, D} (6)

For simplification the indices are taken (mod K), which means Pi stands for Pi mod K.

The access to solely one dimension d is enabled by the vector 1d that consists of a 1 in the d-th

position and in all other positions 0.

The processor system is inspected only at discrete points in time t ∈ N. Thus, we regard

a series of successive system states. At every arbitrary point of time t ∈ N, the load of

processor Pi is denoted by Li(t) ∈ N. In the rest of the paper, the unique time parameter can be

omitted, and the load states refer to the time t, i.e., Li stands for Li(t).

The change of load states is accomplished by shifting elementary load units between

neighboring processors. The Boolean function Ci,d(t) controls the shift of load elements. If for

one processing unit i the condition Ci,d(t) holds true, then it shifts one load element to its

neighbour in dimension d. The function Ci,d(t) represents one of the six conditions C0 to C5 in

Table 1. It evaluates the selected condition for the processing element i (respectively for its load

Li) at time t. Thereby, the one-dimensional condition is applied in the direction of dimension d.

Thus, the scalar operations within the conditions refer only to the d-th component of the D-

dimensional vector. For example C5i,d(t) stands for Li > 0 ∧ L(i1,...,iD) ≥ L(i1,...,id+1,...,iD).

The conditions C0 and C1 use load information Li of only the processor i. Condition C1

and its extension in C2 guarantee that none of the busy processors become idle due to shifting

load elements. Conditions C2 through C5 additionally use load information of the preceding

neighbor Li–1d
 or succeeding neighbor Li+ 1d

. By each of these conditions an extra mechanism

for load balancing in the frame of the Liquid model is implemented. Because each processing

unit uses the same mechanism, the rules C0 to C5 are never working together.

As one load balancing step of the Liquid model, the change of state from time t to time

t + 1 is regarded. Such a load balancing step consists of several substeps. Therefore, the load

state Li of all processors i ∈ I is changed synchronously in every dimension d = 1, …, D.

Instead of viewing the explicit transfer of the load, here, we regard the resulting effect. The

state change of load depends only on the direct neighbors within one dimension. With that, a

definition of load balancing relying only on these shift conditions can be established.

4 A symmetric torus consists of an identical amount of elements (processors) in every dimension. This
symmetry is no precondition of the Liquid Model, but it simplifies the description.
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C i ,d   ⇔ "Processor Pi shifts one load element to Pi+1d
"   ⇔

C0: L i > 0 "Pi has load elements to be transferred"

C1: L i > 1 "Pi is not idle after giving away one load element"

C2: C1 ∨ [(Li = 1) ∧

       (L i – 1d  >  1 ) ]

"Pi is not idle after giving away one load element or
receives one load element from Pi–1d

"

C3: C1 ∧ L i ≥ Li+ 1d
"Pi is not idle after giving away one load element and Pi+1d

has not more load"

C4: C2 ∧ L i ≥ Li+ 1d "Pi is not idle after giving away one load element or
receives one load element from Pi–1d

 and Pi+1d
 has not

more load"

C5: C0 ∧ L i ≥ Li+ 1d
"Pi has load elements to be transferred and Pi+1d

 has not

more load"

Table 1: Formal and verbal description of different instances (C0 to C5) of shift condition Ci,d,

which indicates dependent on the load Li whether processor Pi should shift one load element to

its neighbour in dimension d

Definition 1: (Liquid model)

A change of state Li(t) → Li(t+1), with i ∈ I, is called Liquid model load balancing (LM-C,

with condition C in Table 1), if and only if in every dimension d = 1, …, D the following

equation is applied successively:

L i(t+1)  :=  

 

L i(t) + 1, if Ci-1d,d(t) ∧ ¬Ci,d(t)

L i(t) – 1,  if ¬Ci-1d,d(t) ∧ Ci,d(t)
Li(t),  otherwise

◊

In Table 2, the mechanism of load transfers depending on the shift condition is illustrated.

For each possible evaluation of the shift condition of two neighbouring processors, the

resulting load transfers are given. The shift of load elements results by itself in a change of

load. This change of load serves in Definition 1 as basis to formulate the Liquid model load

balancing method.

By the above definition, the elementary step of iterative load balancing following the

Liquid model is stated. Now, the question for the aim and the termination of the load balancing

arises. The goal of every load distribution method, when aiming to balance the load

configuration, is to obtain the balanced state in as few as possible state changes t → t + 1

starting from any arbitrary load distribution Li. In the final balanced state, every processor load

should have reached about the mean load of the total system. This balanced load configuration

can be defined by the maximum difference between two processors as follows.
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Processor: Pi–1d Pi

Shift condition: Ci,d(t) = False Ci,d(t) = False

Shift of load: – –

State change: L i(t+1)  :=  L i(t)

Shift condition: Ci,d(t) = False Ci,d(t) = True

Shift of load: – • →
State change: L i(t+1)  :=  L i(t)  – 1

Shift condition: Ci,d(t) = True Ci,d(t) = False

Shift of load: • → –

State change: L i(t+1)  :=  L i(t) +  1

Shift condition: Ci,d(t) = True Ci,d(t) = True

Shift of load: • → • →
State change: L i(t+1)  :=  L i(t)

Table 2: Load balancing following the Liquid model for processor Pi with its predecessor Pi–1d
:

The shift of load elements depends on the Boolean evaluation of the shift condition Ci,d, which

indicates by itself the load change of processor Pi.

Definition 2: (Balancing)

A load configuration Li, with i ∈ I, in a D-dimensional torus is called balanced, if and only if

for all i ∈ I the following condition holds true:

|L i – Lj | ≤  D, for all i, j ∈ Ι ◊

The above definition serves as a formal termination criterion of the load balancing

method, which is necessary for the analysis in Section 4. As long as the condition for a

balanced load configuration is not fulfilled, a successive application of single balancing steps is

necessary. As a load shifting operation, a procedure Transfer_Load(Pi, Pi+1d) is assumed,

which transfers one load unit from processor Pi to processor Pi+1d. With that, we obtain the

following imperative formulation of the load balancing method of Definition 1.

Algorithm 1: (Liquid model load balancing)
while (|Li – L| > 1) do

for d = 1, …, D do
for all processors Pi, i ∈ I, do in parallel

if Ci,d then
Transfer_Load(Pi, Pi+1d);
/* Li := Li – 1 and Li+1d := Li+1d+ 1 */

end;
end;

end;
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P(0) P(1) P(2) P(3) P(4) P(5) P(6) P(7)    ( a )    

Li

i

   ( b )    

Li

i

Figure 2: Example of a single load balancing step by the Liquid model with shift condition C5

in a ring of eight processors P(1) through P(8) (black arrows: real load transfer, grey arrows:

"virtually" transferred load). The load configurations are depicted as processors with load

elements on the left and as function graph of the load Li depending on the processor Pi on the

right.

When integrating the Liquid model load balancing method in a given application

algorithm, the formal termination criterion is not checked. To do so, global information about

the system state had to be computed, which reduces the scalability of the algorithm. Without

termination criterion, the load balancing mechanism will not terminate by itself. On the other

hand, this property is not necessary, because the application algorithm and the load balancing

proceed concurrently. Thus, the termination of the load balancing mechanism is guaranteed by

the application.

3 . 3 . Example

An example for one single Liquid model step in a ring topology is given in Figure 2.

Thereby, every processing unit shifts one load element to its neighbor on the right iff condition

C5 holds, i.e., if a processor has load elements and its load is greater than or equal to the load

of its neighbour. Additionally, the processors shift the load elements in the same direction that

is given by the indices (here, to the right). In (a), the initial configuration is shown and the

future shifts are indicated by arrows. In (b), the resulting configuration after the shift operation

is given. the arrows indicate the "virtually" transferred load elements. (A formal definition of

the virtual load transfer is given in Section 4.)

Two effects of the Liquid model can be seen from this example. In the left processor

group, P(0) through P(4), a global transfer by local shifts is performed. Additionally, in the right

processor group, P(5) through P(7), the load is balanced.

There are two main differences between the Liquid model and the former load balancing

methods in Section 2. First, with the former methods, none of these global effects are possible

by shifting load elements locally. This is because if the load of three neighbors is already

balanced, then no load elements will pass this triplet in one step. Therefore, this balanced triplet
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forms a burden for a (virtual) load transfer. Second, the former methods achieve load sharing

only as a side effect of balancing the load. This contrasts with the Liquid model, where load is

shared among the processors in the first place, and after that, load balancing takes place. We

will investigate the second effect in greater detail in the following section.

4 . Analysis

In this section, we use the framework of the last section to achieve three basic statements

about the Liquid model. The statements refer to global effects by local operations, to the

convergence to an equilibrated load distribution, and to the high efficiency of the algorithm. In

the following, both statements are derived formally only for condition C5, because it results in

the most efficient variant (see Section 5). The other conditions C3 through C4 can be treated in

the similar way.

One representative of global effects has already been illustrated for LM-C5 in Figure 2.5

The virtual load transfers occur in the shift direction (here, to the right). The precondition for

that effect is a series of processors that have exactly one elementary load, some processors to

the right being idle. Another general representative of global effects is the virtual load transfer in

the inverse shift direction. Thereby, the load of some processor is reduced by one element and

of another processor, with a smaller index, increased. The load of the intermediate processors

remains unchanged. The latter effect is explained more precisely in the following definition (see

also examples in Figure 3).

Definition 3: (Virtual load transfer)

Given are two processors Px and Py, with x, y ∈ I and within a dimension d, i.e., there exists

a k ∈ N+ with y = x + k.1d. A change of a given load configuration Li(t), with i ∈ I, is called a

virtual load transfer between processors Px and Py, if Lx(t+1) = Lx(t) + 1 and Ly(t+1) =

Ly(t) – 1 under the condition that, for all i = x+1d, …, y–1d Li(t+1) = Li(t) holds. ◊

Besides global effects by the load balancing method, global structures can be observed in

the load configuration itself. Because the load balancing method considers multiple dimensions

one by one, only one-dimensional structures are of interest. A typical structure is given by the

strongly monotone ascent of the processor load in the shift direction. Such load ascents with

maximum length are called ramps in the following definition (see also examples in Figure 3).

5 An detailed example is given in Table 3.
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Shift direction

i

Li

Li

i

Figure 3: Different shapes of ramps in one-dimensional load configurations and the resulting

virtual load transfers by LM-C5 in a one-dimensional ring.

Definition 4: (Ramps)

The load configuration between two processors Px and Py, with x, y ∈  I and within

dimension d, forms a ramp if the following four conditions hold true:

(1) there exists a k ∈ N+ with y = x + k.1d and

(2)  for all i = x, x+1d, …, y–1d holds Li < Li+1d and

(3) Lx–1d ≥ Lx and

(4) Ly+1d ≤ Ly ◊

In Figure 3, a series of examples for ramps in one-dimensional load configurations is

depicted. There, processor load Li is plotted against the processor index i. The shift direction is

to the right. In the upper row, the slope of the ramps decreases from the left to the right

example. In the lower row, special cases with smallest-possible ramps in a load plateau are

shown (left: jump, mid: maximum, right: minimum). Additional arrows in the figure indicate

the virtual load transfers. The relationship between ramps and virtual load transfers is stated in

the following theorem.6

6 In this and the following theorems, a load configuration is assumed, where all processors have at least one
load element (Li > 0, with i ∈ I), i.e., the goal of load sharing has already been reached. This assumption is
not critical, because all processors are supplied with load elements by the Liquid model in a very short time
(in O(D.K) steps).
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Theorem 1: (Global effects)

Let Li(t) > 0, with i ∈ I. A virtual load transfer between processors Px and Py, with x, y ∈ I,

can be observed after one load balancing step by LM-C5 if the load configuration between these

two processors forms a ramp.

Proof: The condition (1) of Definition 4 guarantees the order of the processors Px and Py,

which is required by Definition 3. From conditions (2) and (3) and Definition 1 follows that Px

receives an additional load element from Px–1d
 but does not shift any to Px+1d

, i.e., after one

load balancing step, processor Px has one more element and Lx(t+1) = Lx(t) + 1 holds. From

conditions (4) and (2), it follows analogously that Py shifts one load element to Py+1d
 but does

not receive any from Py–1d
, i.e., after one load balancing step, processor Py has one element

less and Ly(t+1) = Ly(t) – 1 holds. For all processors Pj with j = x+1d, …, y–1d, it follows

from condition (2) with i = j , that Pj does not give away any load, and from condition (2) with

i = j –1d, that Pj does not receive any load. With that, the load state of processor Pj is

unchanged and Lj(t+1) = Lj(t) holds after one load balancing step. Now all the requirements of

Definition 3 are fulfilled. ◊

A basic precondition for the efficiency of the load balancing method is that the quality of

the load configuration does not worsen by applying load balancing. With LM-C5, this

conservative behavior can be guaranteed. The reason is that the maximum or the minimum of

the load is not increased or decreased, respectively. The following lemma proves this statement.

Lemma 1: (Conservativity)

After the application of one load balancing step by LM-C5 to a load configuration Li(t), with

i ∈ I and Lmax(t) = max{Li(t) | i ∈I} with Lmin(t) = min{Li(t) | i ∈I} respectively, it holds:

Lmax(t + 1) ≤ Lmax(t)   and   Lmin(t + 1) ≥ Lmin(t).

Proof. Initially, we consider only a partial step in dimension d. By the last two cases of the

state transition by LM in Definition 1, the load state of a processor cannot be increased. The

first state change Li(t+1) := Li(t) + 1 is performed if Ci,d(t) ∧ ¬Ci+1d,d(t) holds true. With C5 as

a condition, this is equivalent to Li–1d(t) ≥ Li(t) ∧ Li(t) < Li+ 1d(t). Thus, processor Pi has no

more load than its neighbor Pi+1d after one partial load balance step in dimension d. With

minimal load the argumentation is analogous. Because the partial steps in all dimensions are

executed successively, their combination to one full load balancing step does not increase or

decrease any maxima or minima, respectively. ◊

Besides the conservativity referring to the load configuration, the load balancing method

additionally has to improve the distribution of the load. For iterative methods, this requires an

improvement within a fixed number of iterations. Otherwise, the efficiency cannot be

guaranteed. For LM-C5, this improvement can be observed at all left maximum positions or
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right minimum positions in load plateaux or valleys, respectively. At these positions, the

behavior is symmetrical, thus we regard only a left, global maximum position. The application

of a load balancing step can have two alternative consequences. Either the value in the

maximum position is reduced (see upper row in Figure 3), (because no other extreme positions

can arise spontaneously, the total number of maximum positions has been decreased), or the

maximum position has moved for one processor in the inverse shift direction (see lower row of

Figure 3). In the following lemma, the two alternatives of improvement are derived.

Lemma 2: (Improvement)

Given is a non-balanced load configuration Li > 0, with i ∈ I and Lmax = max{Li | i ∈ I}}.
After a load balancing step using LM-C5, every maximum position m ∈ I at the left end of a

plateau (Lm(t) = Lmax(t) and Lm–1d(t) < Lmax(t), for one d) is either:

(1) reduced in its value for one load unit:
Lm(t+1) = Lmax(t) – 1 and Lm–1d(t+1) < Lmax(t) or

(2) moved left for one processor element:
Lm(t+1) = Lmax(t) – 1 and Lm–1d(t+1) = Lmax(t)

Proof. Because the load configuration Li(t) is not balanced, there always exist a dimension d

and an index m ∈ I with Lm = Lmax and Lm–1d < Lm. With that, Pm forms the upper (right) end

of a ramp of Definition 4. Let Pn, be the corresponding lower (left) end. Thus, Lm – Ln

indicates the load difference of the ramp.

Case 1. If Lm–2.1d < Lm–1d or Lm–1d + 1 < Lm holds, then the load difference is greater than

one. According to Theorem 1, one load element has been transferred virtually from Pm to Pn

after one load balancing step. Because Lm(t+1) = Lm(t) – 1 holds, Lm is no longer as high as

the previous maximum height, i.e., Lm(t+1) < Lmax(t). Because the load difference is grater

than one, no other global maximum at the lower end of the ramp can arise and, thus, condition

(1) is satisfied.

Case 2: Let Lm–2.1d ≥ Lm–1d  and Lm–1d+1 = Lm. The direct neighboring processor Pm–1d

forms the left end of a ramp and the load difference of the ramp is equal to one. According to

Theorem 1, the maximum position Pm is virtually transferred to Pm–1d with Lm(t+1) = Lm(t) –

 1. Because of the small load difference, a new global maximum position arises at Pm–1d after

the load transfer, i.e., Lm–1d(t+1) = Lmax(t). The former maximum position of Pm has moved

left to Pm–1d and condition (2) is satisfied. ◊

In Case 2 of the lemma, the extreme value positions cannot be reduced because there is a

load difference of only one element in the ramp. E.g., if a ring of processors with a load ramp

of height one is part of a two-dimensional torus, then a orthogonal ring may have such a ramp,

too. Thus, the number of total load difference in the torus is increased by one. If we regard

higher-dimensional topologies then the total load difference, which will not necessarily be
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Figure 4: In (a) an example of a balanced load configuration in a 3-dimensional torus, with total

load difference of 3 elements is given. In (b) a balanced 2-dimensional torus with an unbalanced

ring is shown.

reduced by LM-C5,  increases with the number of dimensions. This is because the extreme

positions may cycle on different rings. An example of this situation is given in Figure 4a.

On the other hand, if the total load difference in a D-dimensional torus is greater than D,

the difference will be reduced by LM-C5. This fact is shown in the next theorem. Before that,

the relation of balanced torus and their embedded rings is pointed out.

Lemma 3: (Balance)

Given is a D-dimensional torus. If all existing rings are balanced then the torus is balanced, too.

Proof. Let all rings in the D-dimensional torus be balanced (according to Definition 2) and let

x, y ∈ I be two arbitrary processors. Then, each path from x to y leads via at most D pairwise

orthogonal rings. Each ring contains a load difference of at most one load element because they

are balanced. Thus, the load difference between processor x and y sum up to at most D load

elements. This argument holds for all processor pairs x, y and, therefore, the torus is balanced.

◊

The reverse implication does not hold because two extreme positions x and y in a D-

dimensional torus, with 1 < |Lx – Ly | ≤ D, may belong to the same ring. See Figure 4b for a

counterexample. Together with the in Lemma 2 derived possibilities for improvement, this

lemma is used to show that an overall balancing of the disturbed load is reached.

Theorem 2: (Convergence)

A unbalanced load configuration Li > 0, with i ∈ I in a D-dimensional torus, will converge to

a balanced configuration when LM-C5 is applied.

Proof. As long as the torus is not balanced, there exist at least one unbalanced ring with load

difference greater than two elements (Lemma 2). Applying Lemma 3 to this ring, then, in every

load balancing shift, either a global extreme position is reduced, which is the trivial case, or is

is moved, which we will regard further. Without loss of generality, we can asume that the

extreme position is a maximum. Because this ring has a load difference greater than two
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elements, there exist a corresponding (local) minimum position, which will move in the inverse

direction. Thus, the distance of the extreme positions is reduced regarding to the dimension of

the ring. (Here, the distance in the ring is measured in the move direction, i.e. the extreme

positions may diverge at first.)

After a shift in another dimension these two extreme posisions may not belong to the same ring

anymore. Still, there exist another unbalanced ring in which the distance is further reduced

according to the above arguments. This process repeats until the maximum is reduced due to

Case 1 of Lemma 2 and there is no unbalanced ring in the torus anymore. Hence, the load

configuration of the torus is balanced. ◊

With that, the following upper bound for the necessary time effort of the LM-C5 can be

set-up.

Theorem 3: (Efficiency)

For balancing an unbalanced load configuration Li > 0, with i ∈ I and Ldiff = max{|Li – Lj|, i, j

∈ I} , in a symmetrical, D-dimensional torus with P = KD processors, K ∈ N, a maximum time

effort T (measured in shifts) by LM-C5, is necessary of:

T = O(D . K . Ldiff)

Proof. It is sufficient to prove, that the global maximum is reduced for at least one load element

after O(D.K) load balancing steps, i.e., Lmax(t + O(D.K)) < Lmax(t) holds, with Lmax =

max{Li | i ∈ I}. For that, the set of global maximum positions is regarded. Let m ∈ I with Lm

= Lmax be such a position.

Case 1. Let (Lm–1d < Lmax–1) or (Lm–1d
 = Lmax–1 ∧ Lm–2.1d

 < Lm–1) for one dimension d.

According to Lemma 2 (Case1), the maximum position m is removed by one load balancing

step.

Case 2. Let (Lm–1d = Lmax–1 ∧ Lm–2.1d
 ≥ Lmax–1). According to Lemma 2 (Case2), the

maximum position m moves left onto m – 1d in dimension d by one load balancing step. The

Manhattan distance of the maximum position to the nearest position n with Ln ≤ Lmax – 2 is

at most D.K in a torus with unidirectional links. According to Theorem 2, this distance will be

reduced by moving both extreme positions in inverse directions. Thus, at most D.K/2 steps are

necessary until the maximum position is equilibrated.

Case 3. Let Lm–1d = Lmax. The position m will not move before all additional maximum

positions lying directly to the left of m have been moved and Lm–1d < Lmax holds true. In the

worst case, K  – 2 positions have to move. After that, for position m, Case 1 or 2 is

appropriate.

In all cases, at most O(D.K) load balancing steps are necessary to remove the maximum

position m. Because this position is representative for all existing maximum positions and all
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positions are processed in parallel, Lmax(t + O(D.K)) < Lmax(t) holds. With the maximum load

difference Ldiff, the theorem is proven. ◊

The last theorem shows that local load balancing can be efficient. Contrasting with NNA

in Section 2, the Liquid model shows only linear time effort in the single parameters using a tori

as interconnection network.7 The NNA as special case of the diffusion approaches needs

quadratic time depending on the maximum number of processing units per dimension.

Comparing LM-C5 with the dimension exchange in hypercubes, the LM-C5 has the same

asymptotical time effort, which has a logarithmic form.

When examining the analytical results of LM-C5 and other load balancing methods,

please note that two different time measures have been applied. The linear time effort of LM-C5

is measured in the amount of communicated data. The time effort of NNA or of the dimension

exchange is measured in the number of communication set-ups. The data amount is always

greater or equal to the number of set-ups, because for transferring a single data unit at least one

set-up of the connection is necessary. Thus, the comparison of the two different time measures

is justified.

5 . Simulation results

The application algorithm with dynamic load balancing can be viewed as two interlaced,

adversary processes. The application algorithm disturbs the load distribution by increasing or

reducing the load in an unpredictable way. On the other hand, the load balancing process tries

to re-equilibrate the load by transferring load elements. Investigating solely the balancing

process apart from the application algorithm makes the effects more clearly recognizable.

Because the nearest-neighbour-averaging method (NNA) implements the optimal diffusion

parameter of the diffusion approaches in several topologies, we use this method for

comparison.

We compared NNA and LM with different shifting conditions in ring simulations of size

P. As the worst case scenario, one processor holds the total load Lsum = c.P, where c > 0 is an

arbitrary integer, and the remaining processors are idle. Thus, in the perfectly balanced system

state, every processor holds c load elements. Each balancing method is executed synchronously

until the balanced state is reached. For NNA, a synchronous variation of the method in Section

2.3 is used. If a non-integer amount of load should be shifted, then the amount is rounded

asymmetrically. When transferring to the right and to the left, it is rounded upwards and

7 For the common topologies, either the number of processors K per dimension or the dimension D itself
grows with the topology size, but not both simultaneously.
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T: LM-C5: NNA:
0 16 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
1 15 1 0 0 0 0 0 0
2 14 1 1 0 0 0 0 0
3 13 1 1 1 0 0 0 0
4 12 1 1 1 1 0 0 0
5 11 1 1 1 1 1 0 0
6 10 1 1 1 1 1 1 0
7 9 1 1 1 1 1 1 1
8 8 1 1 1 1 1 1 2
9 7 1 1 1 1 1 2 2
10 6 1 1 1 1 2 1 3
11 5 1 1 1 2 1 2 3 5 6 0 0 0 0 0 5
12 4 1 1 2 1 2 2 3
13 3 1 2 1 2 1 3 3
14 3 2 1 2 1 2 2 3 5 4 2 0 0 0 1 4
15 3 2 2 1 2 1 3 2
16 2 2 2 2 1 2 2 3 4 4 2 1 0 0 2 3
17 2 2 2 2 2 1 3 2 4 3 2 1 1 0 2 3
18 2 2 2 2 2 2 2 2 3 3 2 2 0 1 2 3
19 3 2 3 1 1 1 2 3
20 2 3 2 2 1 1 2 3
21 3 2 3 1 2 1 2 2
22 2 3 2 2 1 2 2 2
23 2 2 3 1 2 2 2 2
24 2 2 2 2 2 2 2 2

Table 3: A worst case example depicted over time T for the Liquid model (LM-C5) and nearest-

neighbour-averaging (NNA) with eight processors in a ring topology.

downwards respectively. This insures that the perfectly balanced system state is actually

reached and not only "ramps" turn up.

As time unit T, the number of shifts executed synchronously is used. Because NNA

generally needs more than one shift per logical load balancing step (one NNA iteration), the

maximum number of load transfers per single load balancing step is summed. In the LM, this

corresponds to exactly one shift. This time measure is reasonable, especially if the set-up time

for communication is short compared with the transfer time itself. This case holds especially for

the tightly-coupled systems regarded here.

In Table 3, a worst case example for NNA and LM is given. In a ring structure with eight

processors, initially only one processor holds 16 load units. For both methods, only the logical

elementary steps are recorded. Please note that multiple steps are necessary for one averaging

with NNA. Before NNA has averaged the first two processors, LM could already reach the

load sharing goal after the seventh step. After the 18-th step, LM has reached the load balancing

goal. NNA still needs 6 further steps for balancing. Altogether, in this example, LM is about 25

% faster than NNA.
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Figure 5: Simulation results of load balancing (a) and load sharing (b) by the nearest-neighbour-

averaging (NNA) and the Liquid model (LM) for synchronous processing in a ring for the

worst case (c = 5)

The general validity of the run-time proportions in the above example can be shown by

further simulations. In Figure 5, the simulation results for different numbers of processors are

given. The results show an almost linear increase in time with P for all balancing methods.

When numerically fitting analytical functions to the results, quadratic components with small

coefficients can be recognized only for NNA. For load balancing, NNA needs about four times

longer than LM within our range of processor numbers. For load sharing, the difference is

worse – NNA is 23 times slower than LM.

With LM, the load elements are always shifted, unless the load difference to the successor

is negative (C3 through C5). Therefore, load sharing has priority compared to load balancing.

In the worst case (see above), only when all processors are supplied with a load the load

balancing phase begins. The time effort of LM for load sharing amounts to T = P – 1, measured

in necessary shifts. This explains the huge difference between LM and NNA for load

balancing.

Additionally, simulation results not shown here indicate a linear increase in time with the

size Lsum of initial load.

In Figure 6 the runtime behaviour of NNA is further investigated. Depending on the

initial load Lsum = c.P of the first processor, the normalized number of NNA iterations is

depicted. For NNA, one iteration mostly includes several shifts. The data points of each initial

load have been normalized so that they match at value One for 512 processors. If iterations

instead of shifts are depicted then NNA shows not such an extreme behaviour, because the

multiple shifts per iteration smear the quadratic form. Altogether, the quadratic portion of the
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Figure 6: Dependency of the nearest-neighbour-averaging (NNA) execution time of the initial

load difference Lsum = c.P plotted by the number of iterations normalized to one for up to 512

processors.

runtime increases with the initial load of the first processor (the total number of load elements,

respectively). The borderline case is formed by continuous load.

In Figure 7, the simulation results of LM in a squared, two-dimensional torus are

depicted for an increasing number of processors. In (a), the worst case with Lsum = c.P load

elements on only one processors is assumed (c = 5) as initial load distribution. For the last three

conditions (C3 through C5), identical numbers of iterations are necessary to reach the balanced

state. In (b), the initial load was uniformly ranomized among 0 and 100 load elements. As

above, the results show an only linear time dependency of LM on the number of processors.

To show the efficiency of the LM, NP-hard scheduling problems are used as an

application domain in [Henrich94, Henrich95]. For the experiments, we used the MasPar

SIMD machine MP-1 with 16384 processors arranged in a two-dimensional torus. Altogether,

20 problem instances with 106 up to 108 expanded nodes of the search tree were solved. The

different shift conditions mentioned in Table 1 show very different behavior in the experimental

results. All three conditions performing only the load sharing task (C0 through C2) are average.

In contrast, the LM using any shift condition including load balancing (C3 through C5) are very

efficient. All of them outperform the NNA method.
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Figure 7: Simulation results of load balancing and sharing by LM in a 2-dimensional torus for

the worst case (a) and for a uniform random distribution (b).

6 . Summary

The realization of the Liquid model leads to a series of scalable and efficient dynamic load

balancing techniques (LM-C3 through LM-C5). This is ensured by the strong locality of the

algorithm as well as by exploiting the feature of tightly-coupled processing units. As it has been

proven for multi-dimensional tori and simulated for the ring and the 2-dimensional torus, it is

expected to be suitable and efficient for various other topologies.

Besides the simplicity of the presented algorithm, the main advantage lies in the

combination of load sharing and load balancing. The most simple version, following both the

sharing and the balancing task (C5), yields the best overall run time. The Liquid model gives

high priority to the sharing task before balancing is performed. Especially for algorithms with

highly dynamic load distribution, as e.g., tree search techniques, this prioritization

demonstrates to be efficient. But this property is useful in many more applications.

The Liquid model has outperformed a former local load balancing approach, nearest-

neighbor-averaging (NNA). None of the above two properties are reached by the NNA

algorithm. It does not have such global effects when executing only a single local operation,

and NNA performs load sharing only as a consequence of balancing.
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