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The multiple Doppler readouts available on the Laser Interferometer Space Artd8Ag permit simul-
taneous formation of several interferometric observables. All these observables are independent of laser fre-
quency fluctuations and have different couplings to gravitational waves and to the various LISA instrumental
noises. Within the functional space of interferometric combinations LISA will be able to synthesize, we have
identified a triplet of interferometric combinations that show optimally combined sensitivity. As an application
of the method, we computed the sensitivity improvement for sinusoidal sources in the nominal, equal-arm
LISA configuration. In the part of the Fourier band where the period of the wave is longer than the typical light
travel-time across LISA, the sensitivity gain over a single Michelson interferometer is eqy@. ttn the
mid-band region, where the LISA Michelson combination has its best sensitivity, the improvement over the
Michelson sensitivity is slightly better thaf2, and the frequency band of best sensitivity is broadened. For
frequencies greater than the reciprocal of the light travel-time, the sensitivity improvement is oscillatory and
~ /3, but can be greater thaf8 near frequencies that are integer multiples of the inverse of the one-way light
travel-time in the LISA arm.
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[. INTRODUCTION outs. The data they generate, when properly time shifted and
linearly combined, provide observables that are not only in-
The Laser Interferometer Space AntenfldSA) is a  sensitive to laser frequency fluctuations and optical bench
deep-space mission, jointly proposed to the National Aeromotions, but also show different couplings to gravitational
nautics and Space AdministratioNASA) and the European radiation and to the remaining system noi$és2,4. The
Space AgencyESA), to detect and study gravitational radia- SPace of all possible mterfe_r(_)metrlc combinations can be
tion in the millinertz frequency band. generated by properly comblnlng four general[dr]s and it
LISA will use coherent laser beams exchanged betweef@S been shown to be afgebraic modulg5]. In this paper
three remote, widely separated, spacecraft. Modeling eaci{® derive from first prmmples a_partlcular combination of
spacecraft as carrying lasers, beam splitters, photo-detectofd€S€ generators which, for a given waveform and source
and drag-free proof masses on each of two optical benches, g¢ation in the sky, give maximum signal-to-noise ratio. In
has been showfl—3] that the six measured time series of S réspect, LISA should no longer be regarded as a single
Doppler shifts of the one-way laser beams between Spacéi_etector, but rather as an array of interferometers working in
craft pairs, and the six measured shifts between adjacent ofeincidence. _ ,
tical benches on each spacecraft, can be combined, with suit- AN outline of the paper is presented here. Section Il pro-
able time delays, to cancel the otherwise overwhelming/ides @ brief summary of Time-Delay Interferometry, the
frequency fluctuations of the lasers #/v=10"13Hz), data processing technlque needed to remove the frquency
and the noise due to the mechanical vibrations of the optica{LUCtuat'ons .Of the six !asers used .by LlSA'. Aﬁer showing
benches(which could be as large a&»/v~10"18Hz). at the entire set of interferometric combinations can be

: . e _ . derived by properly combining four generators,, 8,vy,{),
21
The achievable strain sensitivity leviek=10"“/\/Hz is set in Sec. Ill we turn to the problem of optimization of the

by the buffeting of the drag-free proof masses inside eac}g. : . AT .
) : ignal-to-noise ratidSNR) within this functional space. As
optllrt]:aclobnet?;::t, 2, n%:%;ﬁbeagggt 20Ijie-}a?:nﬂ:re]tgr?g:g?ne:;rtsor%an application, we apply our results to the case of sinusoidal
L ; » €gul-E . gignals randomly polarized and randomly distributed on the
gravitational wave detection, LISA will have multiple read- oo qia| sphere. We find that the standard LISA sensitivity
figure derived for a single Michelson Interferomefgl can

*Also at Jet Propulsion Laboratory, California Institute of Tech- be improved by a factor O{E n t.he Iow—part_ c.)f the fre-
. quency band, and by more thaf8 in the remaining part of
nology, Pasadena, CA 91109. Electronic address: .
; the accessible band. In Sec. IV we present our comments and
prince@srl.caltech.edu conclusions
TAlso at Jet Propulsion Laboratory, California Institute of Tech- ’

nology, Pasadena, CA  91109. Electronic  address: Il. TIME-DELAY INTERFEROMETRY FOR LISA
Massimo.Tinto@jpl.nasa.gov ’
*Electronic address: shane@stl.caltech.edu Figure 1 shows the overall LISA geometry. The spacecraft

SElectronic address: John.W.Armstrong@jpl.nasa.gov are labeled 1, 2, 3 and distances between pairs of spacecraft
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FIG. 1. Schematic LISA configuration. Each spacecraft is equi-
distant from the point O, in the plane of the spacecraft. Unit vectors
ﬁi point between spacecraft pairs with the indicated orientation. At
each vertex spacecraft there are two optical ben@tesoted 1, 1,
etc), as indicated.

FIG. 2. Schematic diagram of proof-masses-plus-optical-
arel,, L,, Ly, with L; being opposite spacecraft Unit ~ Pbenches for a LISA spacecraft. The left-hand bench reads out the
Doppler signalsys; and z3;. The right hand bench analogously
reads outy,; and z,;. The random velocities of the two proof
masses and two optical benches are indicdtmder casa;i for the
ﬁ‘erOf masses, upper ca@e for the optical benches

vectors between spacecraft arg oriented as indicated in
Fig. 1. We similarly index the relative frequency fluctuations
y;j data to be analyzed, is the relative frequency fluctua-
tions time series measured at reception at spacecraft 1 wi
transmission from spacecraft(2longLg). Similarly, y,; is ] ]
the corresponding time series derived from reception a}erferome_trlc observables unaffected by laser and optical
spacecraft 1 with transmission from spacecraft 3. The othep@nch noises. o _
four one-way relative frequency time series from signals ex- 1h€ simplest such combination, the totally symmetrized
changed between the spacecraft are obtained by cyclic peragnac responsg uses all the data of Fig. 2 symmetrically,
mutation of the indices: 4:2—3—1. The useful notation
for delayed data streams will also be used; ,=Ys(t B
—L,), Ya126=Yar(t—Lo—L3)=Ya1 35 etc. (units in which {=Y322 Y233t Y133 Y311t Yor1~ Y122
c=1). Six more Doppler difference series result from laser
beams exchanged between adjacent optical benches within
each spacecraft; these are similarly indexed zgs(i,j
=1,2,3j#]) (see[2] and[3] for details.

The light paths for the,,’s andz;;’s can be traced in Fig.
2. An outgoing light beam transmitted to a distant spacecrafing its transfer functions to gravitational waves and instru-
is routed from the laser on the local optical bench usingnental noises were derived [1], and[2] respectively. In
mirrors and beam splitters; this beam does not interact wittyarticular, ¢ has a “six-pulse response” to gravitational ra-
the local proof mass. Conversely, arcoming light beam  gjation, i.e. as-function gravitational wave signal produces
from a distant spacecraft is bounced off the local proof mass;y gistinct pulses iny [1], which are located with relative
before being reflected onto the photodetector where it igimes depending on the arrival direction of the wave and the
mixed with light from the laser on that same optical bench.qetector configuration.
These data are denotgd, andy,, in Fig. 2. Beams ex-  Together with{, three more interferometric combinations,
changed between adjacent optical benches however do pre; s y) | jointly generate the entire space of interferometric

cisely the opposite. Light to beansmittedfrom the laser on  compinationd1,2,5). Their expressions in terms of the mea-
an optical bench idirst bounced off the proof mass it en- surementsy;; , z; are as follows:

closes and then directed via fiber optics to the other optical
bench. Upon reception it doe®ot interact with the proof

1
+ 3 (= 213011 Zo3,15~ Zo1 231 Z31,23~ Z32,13T 212,19

1
+ 5 (= Zg20t 212 9= Z1331 Zr3 37 Zp1.1F Z31,0)s (1)

mass there, but is directly mixed with local laser light. They a=Y1— Y31+ Y132~ Y125+ VY3215 Vo313
arezz; andz,, in Fig. 2.
The frequency fluctuations introduced by the gravitational — 3 (232 213191 Zo1+ 251 123+ Zap 3t 23219
wave signal, the lasers, the optical benches, the proof
masses, the fiber optics, and the measurement itself at the + %(223,2+ Zp313+ Z31t Z31 1037 21231 21210, (D)

photodetectofshot nois¢ enter into the Doppler observables

Yij » zij with specific time signatures. They have been derived

in the literaturd 2,3], and we refer the reader to those paperswith 8 and y derived by permuting the spacecraft indices in
for a detailed discussion. The Doppler data, z; are the «a. As in the case of, a é-function gravitational wave pro-
fundamental measurements needed to synthesize all the iduces six pulses ia, 8, andvy.

122002-2



LISA OPTIMAL SENSITIVITY PHYSICAL REVIEW D 66, 122002 (2002

We should remind the reader that the four interferometric o |a1?& +a,Bot asyet asl 2
responsesd, 3,7,{) satisfy the following relationship: SNR = > > : >

{=Cmai—at BBt Vs V12 €©))
) ) ) ) _In Eq. (9) the subscripts andn refer to the signal and the
Jointly they also give the expressions of the mterferometrlcnoise arts of &, B.7,7) respectively, the angle brackets rep-
combinations derived ifi1,2]: the Unequal-arm Michelson b A P Y, 9 b

. resent noise ensemble averages, and the interval of integra-
t(l)ﬂ(e \Igezla)lil(tge\/B?/a)ccr)g;’)o%sz the Monitor (E, F, G, and tion (f,,f,) corresponds to the frequency band accessible by

T OB TR TR e (9)
fi <|a1a’n+a2:3n+a3'yn+a4§n| >

LISA.

X 1= 3~ Bo—yatil, (4) Before proceeding with the maximization of t8é&\ R% we
o o may notice from Eq.3) that the Fourier transform of the
P={—ay, (5)  totally symmetric Sagnac combinatiof, multiplied by the

transfer function +e?7'"(t1*L2*L3) can be written as a lin-
E=a—{;, (6)  ear combination of the Fourier transforms of the remaining
U v ,  three generatorsa( 3, ). Since the signal-to-noise ratios of
=v1m B @) 7 and (1—e?™T(tatl2*L3)y 5 are equal, we may conclude

with the remaining expressions obtained from E@—(7) that the optimization of the signal-to-noise ratio.aq)fcan.be
by permutation of the spacecraft indices. All these interferoP€rformed only on the three observabie, y. This implies

metric combinations have been shown to add robustness € following redefined expression f&INR,:
the mission with respect to failures of subsystems, and po- _ _ _
tential design, implementation, or cost advantadeg|. SNI%— fu |ajagtayBst azys|?

fi <|alan+ azﬁn+ a3;n|2>

df. (10
IIl. OPTIMAL SENSITIVITY FOR LISA

All the above interferometric combinations have beenTheSNR;, can be regarded as a functional over the space of
shown to individually have rather different sensitivitigy,  the three complex functior{;} ;, and the particular set of
as a consequence of their different responses to gravitationg@mplex functions that extremize it can of course be derived
radiation and system noises. LISA has the capabilitgiof by solving the associated set of Euler-Lagrange equations.
multaneouslyobserving a gravitational wave signal with  Inorder to make the derivation of the optimal SNR easier,
many different interferometric combinations, all having dif- let us first denote by and x(" the two vectors of the
ferent antenna patterns and noises. We should thus no longsignals g, Bs,vs) and the noisesd,, B, yn) respectively.
regard LISA as a single detector system but rather as an arrayet us also defin@a to be the vector of the three functions
of gravitational wave detectors working in coincidence. This{ai}?:l, and denote witfC the Hermitian, nonsingular, cor-

SUggeStS that the presently adopted LISA SenSitiVity could b%|ation matrix of the vector random process
improved by optimally combining the four generators

(a,B,7,0). In mathematical terms this can be restated by (C)pr= (WM (12)
saying that we should be able to find that particular combi-
nation of the four generators that has a maximum signal-tog \ye finally define ();; to be the components of the Her-

noise ratio to a given gravitational wave signal. mitian matrixx©x*  we can rewritéSNFgZ? in the follow-
In order to proceed with this idea, let us consider theing form: L

following linear combinationy(f) of the Fourier transforms

of the four generatorsa(,3,v,7): faA;a
SNR = J ——df, 12
n(f)=ay(f,X)a(f)+a(f,N)B(f) % i &Cna 2
+as(f,N)y(f)+a,(f,N)Z(f), (8)  where we have adopted the usual convention of summation
over repeated indices. Since the noise correlation matiix
where the{a;(f,\)}*_, are arbitrary complex functions of nonsingular, and the integrand is positive definite or null, the
the Fourier frequencs; and of a vecton containing param- stationary _values of the signal—_to—noise ratio.will be a.ttained
eters characterizing the gravitational wave sigisaurce lo- &t the stationary values of the integrand, which are given by
cation in the sky, waveform parameters, ptind the noises S0MVing the following set of equationgand their complex
affecting the four responseégoise levels, their correlations, conjugated expressions
etc). For a given choice of the four functior®}i_,, 7
gives an element of the functional space of interferometric 7
combinations generated by (8, y,{). Our goal is therefore day
to identify, for a given gravitational wave signal, the four
functions {a;}{_, that maximize the signal-to-noise ratio,  After taking the partial derivatives, E4L3) can be rewrit-
SNF%, of the combinationy ten in the following form:

aA; &
—2 1 1=0, k=1,23. (13)
aCred
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apquaZ; The expression of the optimal signal-to-noise ratio assumes a
(CHi(A)y (@)= 2C o (a*);, 1=1,2,3 (14  rather simple form if we diagonalize this correlation matrix
&% 1mam by properly “choosing a new basis.” There exists an or-

thogonal transformation of the generators, 8,7) which

Sill transform the optimal signal-to-noise ratio into the sum
of the signal-to-noise ratios of the “transformed” three inter-
ferometric combinations. The expressions of the three eigen-
values{u}?_; (which are real of the noise correlation ma-
trix C can easily be found by using the algebraic manipulator
MATHEMATICA [10], and they are equal to

which tells us that the stationary values of the signal-to-nois
ratio of 7 are equal to the eigenvalues of the mat@x?®
-A. The result in Eq{(13) is well known in the theory of
quadratic forms, and it is called Rayleigh’s principi&8].

In order now to identify the eigenvalues of the matrix
C 1. A, we first notice that the 83 matrix A has rank 1.
This implies that the matriC - A has also rank 1, as it is

easy to verify. Therefore two of its three eigenvalues are 1= po=S,—S ws=S,+2S,5. (16)
equal to zero, while the remaining nonzero eigenvalue rep- @ Teb o Tep
resents the solution we are looking for. Note that two of the three real eigenvalueg,; (u,), are

The analytic expression of the third eigenvalue can bequal. This implies that the eigenvector associateg 4ds
obtained by using the property that the trace of the33  orthogonal to the two-dimensional space generated by the
matrix C™*- A is equal to the sum of its three eigenvalues,eigenvalueu,, while any chosen pair of eigenvectors corre-
and in our case to the eigenvalue we are looking for. Fronsponding tow; will not necessarily be orthogonal. This in-
these considerations we derive the following expression foeonvenience can be avoided by Choosing an arbitrary set of
the optimized signal-to-noise ratBNR q: vectors in this two-dimensional space, and by ortho-

normalizing them. After some simple algebra, we have de-

fy rived the following three ortho-normalized eigenvectors:
SNR op= ff X+ (C7YxVdf. (15)
| 1
vi=—=(—1,0,),
We can summarize the results derived in this section, which \/E
are given by Egs(10), (15), in the following way:
(i) Among all possible interferometric combinations LISA v =i(1 —2.1) 17)
will be able to synthesize with its four generatarss, v, ¢, 2 \/g o

the particular combination giving maximum signal-to-noise
ratio can be obtained by using only three of them, namely 1
(a,,7). Va=—=(1,1,1).
(i) The expression of the optimal signal-to-noise ratio \/5
given by Eq.(15) implies that LISA should be regarded as a ) o ) ) )
network of three interferometer detectors of gravitational raEquation(17) implies the following three linear combina-

diation [of responsesd, 3,)] working in coincidencd9].  tions of the generatorsa(3,7):
Application A= i(;/—Zv)
J2

As an application of Eq(15), here we calculate the sen-
sitivity that LISA can reach when observing sinusoidal sig-
nals uniformly distributed on the celestial sphere and of ran- E— i(~ — 2B+ )
dom polarization. In order to calculate the optimal signal-to- B J6 a=2p+y),
noise ratio we will also need to use a specific expression for
the noise correlation matri€. As a simplification, we will 1
assume the LISA arm-lengths to be equal to its nominal T=-"—(a+B+7y),
value L=16.67 sec, the optical-path noises to be equal and \/5
uncorrelated to each other, and finally the noises due to the o o
other and to the optical-path noises. Under these assumption@'thogonal modes.” Although the expressions for the
the correlation matrix becomes real, its three diagonal eleModesA andE depend on our particular choice for the two
ments are equal, and all the off-diagonal terms are equal tBigenvectors\(;,v,), it is clear from our earlier consider-
each other, as it is easy to verify by direct calculatj@h ations that the value of the optimal signal-to-noise ratio is
The noise correlation matri€ is therefore uniquely identi- unaffected by such a choice. From Eg8) it is also easy to

fied by two real functionsS, andS, z, in the following way: verify that the noise correlation matrix of these three combi-
nations is diagonal, and that its nonzero elements are indeed

Sy Sup Sus equal to the eigenvalues given in E45H).
c=|s s s In order to calculate the sensitivity corresponding to the
- afB @ af . . . . .
expression of the optimal signal-to-noise ratio, we have pro-
Sup Sap Sa ceeded similarly to what was done([ih,2], and described in
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more detail in[11]. We assume an equal-arm LISA. ( from the gravitational wave responses @of,3,y). For 7000
=16.67 light seconds and take the one-sided spectra of Fourier frequencies in the 10" * Hz to ~1 Hz LISA band,
proof mass and aggregate optical-path-noiges a single  we produce the Fourier transforms of the gravitational wave
link), expressed as fractional frequency fluctuation spectragsponse of ¢,3,y) from the formulas if1,11]. The aver-

to be( [2,6]), S’y’“"’f mas2 5x 10 ‘4 /1 Hz] > Hz ' and  aging over source directionainiformly distributed on the
sppuicalpaths 1 8% 10737 [f/1 Hz]? Hz %, respectively. We celestial sphedeand polarization state@niformly distrib-
also assume that aggregate optical path noise has the samtifed on the Poincargpherg is performed via a Monte Carlo
transfer function as shot noise. method. From the Fourier transforms of the,B,y) re-

The optimum SNR is the square root of the sum of thesponses at each frequency, we construct the Fourier trans-
squares of the SNRs of the three “orthogonal modes*forms of (A,E,T). We then square and average to compute
(A,E,T). To compare with previous sensitivity curves of athe mean-squared responses & K,T) at that frequency
single LISA Michelson interferometer, we construct thefrom 10" realizations of(source position, polarization state
SNRs as a function of Fourier frequency for sinusoidalpairs.
waves from sources uniformly distributed on the celestial The noise spectra ofA(E,T) are determined from the
sphere. To produce the SNR of each of theH,T) modes raw spectra of proof-mass and optical-path noises, and the
we need the gravitational wave response and the noise réransfer functions of these noises té,E,T). Using the
sponse as a function of Fourier frequency. We build up tharansfer functions given if2], the resulting spectra are equal
gravitational wave responses of the three mode&E(T) to

Sa(f)=Se(f) =16 sirf(7fL)[3+2 cog2mfL) +cog 4mfL)]S " ™25 f) + 8 sirf(fL)[ 2+ cog 2mfL)|SP!e Pt f),
(19

Sr(f)=[2+4 co(2mfL)][4 sirf(mfL)S)ro° massy goptical pati )], (20)

Let the amplitude of the sinusoidal gravitational wave besignal-to-noise ratios of A,E,T) as well as the optimal
h. The SNR for, e.gA, SNR,, at each frequendljis equalto  signal-to-noise ratio. For an assunted 10”23 the SNRs of
h times the ratio of the root-mean-squared gravitational wavéhe three modes are plotted versus frequency. For the equal-
response at that frequency divided G$,(f)B, whereBis  arm case computed here, the SNRsfofind E are equal
the bandwidth conventionally taken to be equal to 1 cycleacross the band. In the long wavelength region of the band,
per year. Finally, if we take the reciprocal 8NRy/h and ~ modesA andE have SNRs much greater than mddevhere
mu|t|p|y it by 5 to get the convention@NR=5 Sensiti\/ity its contribution to the total SNR is negllglble At hlgher fre-
criterion, we obtain the sensitivity curve for this combination guencies, however, the combination has SNR greater than
which can then be compared against the corresponding sen-
sitivity curve for the equal-arm Michelson Interferometer. - . . . . . . .
In Fig. 3 we show the sensitivity curve for the LISA
equal-arm Michelson respons&NR=5) as a function of
the Fourier frequency, and the sensitivity curve from the op- al
timum weighting of the data described above:
5h/SNRi+SNRe+SNR. The SNRs were computed for =
a bandwidth of 1 cycle/year. Note that at frequencies where::?
the LISA Michelson combination has best sensitivity, the im- §2 |
provement in signal-to-noise ratio provided by the optimal
combination is slightly larger thag2. N
In Fig. 4 we plot the ratio between the optimal SNR and -2s |
the SNR of a single Michelson interferometer. In the long-
wavelength limit, the SNR improvement i&. For Fourier
frequencies greater than or about equal 1o, the SNR im- e , , . .
provement is larger and varies with the frequency, showing ~* -38 -3 23 -2 -18 - 03 0
an average value of aboyf3. In particular, for bands of loonirequency. He)
frequencies centered on integer multiples df, INR: con- FIG. 3. The LISA Michelson sensitivity curve (SNF5) and
tributes strongly and the aggregate SNR in these bands cafe sensitivity curve for the optimal combination of the data, both as
be greater than 2. In order to better understand the contribu function of Fourier frequency. The integration time is equal to one
tion from the three different combinations to the optimalyear, and LISA is assumed to have a nominal arm lerigth
combination of the three generators, in Fig. 5 we plot the=16.67 sec.
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FIG. 4. The optimal SNR divided by the SNR of a single Mich-  FIG. 5. The SNRs of the three combination4, ,T), and their
elson interferometer, as a function of the Fourier frequehd@he  sum as a function of the Fourier frequerfcffhe SNRs ofA andE
sensitivity gain in the low-frequency band is equal, while it ~ are equal over the entire frequency band. The SNR if signifi-
can get larger than 2 at selected frequencies in the high-frequendantly smaller than the other two in the low part of the frequency
region of the accessible band. The integration time has been agand, while it is comparable t@nd at times larger tharthe SNR
sumed to be one year, and the proof mass and optical path noigé the other two in the high-frequency region. See text for a com-
spectra are the nominal ones. See the main body of the paper forpiete discussion.
quantitative discussion of this point.

) of the Michelson combination can be significant, and it var-
or comparable to the other modes and can dominate the SNRs over the frequency band accessible by LISA. In the low

improvement at selected frequencies. part of the frequency band such improvement is equaizp
and it grows to values larger tha/8 at higher frequencies
IV. CONCLUSIONS and in small frequency bands centered on frequencies that

are integer multiple of the inverse of the one-way light-travel
The use of Time-Delay Interferometry has shown thattime.
LISA has the capability to simultaneously observe gravita- The results derived in this paper will have immediate ap-
tional waves in the millihertz band with several, and ratherPlication to the solution of the so called “Inverse Problem”
different, interferometric data combinations. In this paper wefor LISA, that is to say the determination of the source loca-
have identified, for a givefbut otherwise arbitrajygravita-  tion and of the wave's two independent amplitudes from the
tional wave signal, the particular interferometric combinationdat@ LISA will be able to generate. We will estimate the

that gives maximum signal-to-noise ratio. In this context Weaccuracies in the determination of the source location and of

have actually shown that LISA should no longer be regarded® Wave's amplitudes that the optimal combination of the
as a single-instrument mission, but rather as a network of\'€€ interferometric responses, (3,y) derived in this paper
interferometer detectors of gravitational radiation working inWill imply. This vx'/ork. is in progress, and will be presented in
coincidence. We have identified the general expression of th@ follow-up publication.
optimal combination of the generatorsy,(3,vy), which
should be used when observing a specified gravitational
wave signal. We would like to thank Dr. Albert Lazzarini and Dr. Frank
Under rather general assumptions on the properties of thB. Estabrook for stimulating conversations while this work
noise correlation matrix, and for sinusoidal gravitationalwas in progress. The research was performed at the Jet Pro-
wave signals that are randomly distributed over the celestigbulsion Laboratory, California Institute of Technology, under
sphere and over the polarization states, we have found thabntract with the National Aeronautics and Space Adminis-
the sensitivity gain of the optimal data combination over thattration.
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