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LISA optimal sensitivity
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The multiple Doppler readouts available on the Laser Interferometer Space Antenna~LISA! permit simul-
taneous formation of several interferometric observables. All these observables are independent of laser fre-
quency fluctuations and have different couplings to gravitational waves and to the various LISA instrumental
noises. Within the functional space of interferometric combinations LISA will be able to synthesize, we have
identified a triplet of interferometric combinations that show optimally combined sensitivity. As an application
of the method, we computed the sensitivity improvement for sinusoidal sources in the nominal, equal-arm
LISA configuration. In the part of the Fourier band where the period of the wave is longer than the typical light
travel-time across LISA, the sensitivity gain over a single Michelson interferometer is equal toA2. In the
mid-band region, where the LISA Michelson combination has its best sensitivity, the improvement over the
Michelson sensitivity is slightly better thanA2, and the frequency band of best sensitivity is broadened. For
frequencies greater than the reciprocal of the light travel-time, the sensitivity improvement is oscillatory and
;A3, but can be greater thanA3 near frequencies that are integer multiples of the inverse of the one-way light
travel-time in the LISA arm.
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I. INTRODUCTION

The Laser Interferometer Space Antenna~LISA! is a
deep-space mission, jointly proposed to the National Ae
nautics and Space Administration~NASA! and the European
Space Agency~ESA!, to detect and study gravitational radi
tion in the millihertz frequency band.

LISA will use coherent laser beams exchanged betw
three remote, widely separated, spacecraft. Modeling e
spacecraft as carrying lasers, beam splitters, photo-detec
and drag-free proof masses on each of two optical benche
has been shown@1–3# that the six measured time series
Doppler shifts of the one-way laser beams between sp
craft pairs, and the six measured shifts between adjacen
tical benches on each spacecraft, can be combined, with
able time delays, to cancel the otherwise overwhelm
frequency fluctuations of the lasers (Dn/n.10213/AHz),
and the noise due to the mechanical vibrations of the opt
benches~which could be as large asDn/n.10216/AHz).
The achievable strain sensitivity levelh.10221/AHz is set
by the buffeting of the drag-free proof masses inside e
optical bench, and by the shot noise at the photodetecto

In contrast to Earth-based, equi-arm interferometers
gravitational wave detection, LISA will have multiple rea
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outs. The data they generate, when properly time shifted
linearly combined, provide observables that are not only
sensitive to laser frequency fluctuations and optical be
motions, but also show different couplings to gravitation
radiation and to the remaining system noises@1,2,4#. The
space of all possible interferometric combinations can
generated by properly combining four generators@1#, and it
has been shown to be analgebraic module@5#. In this paper
we derive from first principles a particular combination
these generators which, for a given waveform and sou
location in the sky, give maximum signal-to-noise ratio.
this respect, LISA should no longer be regarded as a sin
detector, but rather as an array of interferometers working
coincidence.

An outline of the paper is presented here. Section II p
vides a brief summary of Time-Delay Interferometry, th
data processing technique needed to remove the frequ
fluctuations of the six lasers used by LISA. After showin
that the entire set of interferometric combinations can
derived by properly combining four generators, (a,b,g,z),
in Sec. III we turn to the problem of optimization of th
signal-to-noise ratio~SNR! within this functional space. As
an application, we apply our results to the case of sinuso
signals randomly polarized and randomly distributed on
celestial sphere. We find that the standard LISA sensitiv
figure derived for a single Michelson Interferometer@2# can
be improved by a factor ofA2 in the low-part of the fre-
quency band, and by more thanA3 in the remaining part of
the accessible band. In Sec. IV we present our comments
conclusions.

II. TIME-DELAY INTERFEROMETRY FOR LISA

Figure 1 shows the overall LISA geometry. The spacec
are labeled 1, 2, 3 and distances between pairs of space
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are L1 , L2 , L3, with Li being opposite spacecrafti. Unit

vectors between spacecraft aren̂i , oriented as indicated in
Fig. 1. We similarly index the relative frequency fluctuatio
yi j data to be analyzed:y31 is the relative frequency fluctua
tions time series measured at reception at spacecraft 1
transmission from spacecraft 2~alongL3). Similarly, y21 is
the corresponding time series derived from reception
spacecraft 1 with transmission from spacecraft 3. The o
four one-way relative frequency time series from signals
changed between the spacecraft are obtained by cyclic
mutation of the indices: 1→2→3→1. The useful notation
for delayed data streams will also be used:y31,25y31(t
2L2), y31,235y31(t2L22L3)5y31,32, etc. ~units in which
c51). Six more Doppler difference series result from las
beams exchanged between adjacent optical benches w
each spacecraft; these are similarly indexed aszi j ( i , j
51,2,3;iÞ j ) ~see@2# and @3# for details!.

The light paths for theyi1’s andzi1’s can be traced in Fig
2. An outgoing light beam transmitted to a distant spacec
is routed from the laser on the local optical bench us
mirrors and beam splitters; this beam does not interact w
the local proof mass. Conversely, anincoming light beam
from a distant spacecraft is bounced off the local proof m
before being reflected onto the photodetector where i
mixed with light from the laser on that same optical ben
These data are denotedy31 and y21 in Fig. 2. Beams ex-
changed between adjacent optical benches however do
cisely the opposite. Light to betransmittedfrom the laser on
an optical bench isfirst bounced off the proof mass it en
closes and then directed via fiber optics to the other opt
bench. Upon reception it doesnot interact with the proof
mass there, but is directly mixed with local laser light. Th
arez31 andz21 in Fig. 2.

The frequency fluctuations introduced by the gravitatio
wave signal, the lasers, the optical benches, the p
masses, the fiber optics, and the measurement itself a
photodetector~shot noise! enter into the Doppler observable
yi j , zi j with specific time signatures. They have been deriv
in the literature@2,3#, and we refer the reader to those pap
for a detailed discussion. The Doppler datayi j , zi j are the
fundamental measurements needed to synthesize all th

FIG. 1. Schematic LISA configuration. Each spacecraft is eq
distant from the point O, in the plane of the spacecraft. Unit vec

n̂i point between spacecraft pairs with the indicated orientation
each vertex spacecraft there are two optical benches~denoted 1, 1* ,
etc.!, as indicated.
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terferometric observables unaffected by laser and opt
bench noises.

The simplest such combination, the totally symmetriz
Sagnac responsez, uses all the data of Fig. 2 symmetricall

z5y32,22y23,31y13,32y31,11y21,12y12,2

1 1
2 ~2z13,211z23,122z21,231z31,232z32,131z12,13!

1 1
2 ~2z32,21z12,22z13,31z23,32z21,11z31,1!, ~1!

and its transfer functions to gravitational waves and inst
mental noises were derived in@1#, and @2# respectively. In
particular,z has a ‘‘six-pulse response’’ to gravitational ra
diation, i.e. ad-function gravitational wave signal produce
six distinct pulses inz @1#, which are located with relative
times depending on the arrival direction of the wave and
detector configuration.

Together withz, three more interferometric combination
(a,b,g), jointly generate the entire space of interferomet
combinations@1,2,5#. Their expressions in terms of the me
surementsyi j , zi j are as follows:

a5y212y311y13,22y12,31y32,122y23,13

2 1
2 ~z13,21z13,131z211z21,1231z32,31z32,12!

1 1
2 ~z23,21z23,131z311z31,1231z12,31z12,12!, ~2!

with b andg derived by permuting the spacecraft indices
a. As in the case ofz, a d-function gravitational wave pro-
duces six pulses ina, b, andg.

i-
s

t

FIG. 2. Schematic diagram of proof-masses-plus-optic
benches for a LISA spacecraft. The left-hand bench reads out
Doppler signalsy31 and z31. The right hand bench analogous
reads outy21 and z21. The random velocities of the two proo

masses and two optical benches are indicated~lower casevW i for the

proof masses, upper caseVW i for the optical benches!.
2-2
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We should remind the reader that the four interferome
responses (a,b,g,z) satisfy the following relationship:

z2z ,1235a ,12a ,231b ,22b ,131g ,32g ,12. ~3!

Jointly they also give the expressions of the interferome
combinations derived in@1,2#: the Unequal-arm Michelson
~X, Y, Z!, the Beacon~P, Q, R!, the Monitor ~E, F, G!, and
the Relay~U, V, W! responses

X,15a ,232b ,22g ,31z, ~4!

P5z2a ,1 , ~5!

E5a2z ,1 , ~6!

U5g ,12b, ~7!

with the remaining expressions obtained from Eqs.~4!–~7!
by permutation of the spacecraft indices. All these interfe
metric combinations have been shown to add robustnes
the mission with respect to failures of subsystems, and
tential design, implementation, or cost advantages@1,2#.

III. OPTIMAL SENSITIVITY FOR LISA

All the above interferometric combinations have be
shown to individually have rather different sensitivities@2#,
as a consequence of their different responses to gravitati
radiation and system noises. LISA has the capability ofsi-
multaneouslyobserving a gravitational wave signal wit
many different interferometric combinations, all having d
ferent antenna patterns and noises. We should thus no lo
regard LISA as a single detector system but rather as an a
of gravitational wave detectors working in coincidence. T
suggests that the presently adopted LISA sensitivity could
improved by optimally combining the four generator
(a,b,g,z). In mathematical terms this can be restated
saying that we should be able to find that particular com
nation of the four generators that has a maximum signal
noise ratio to a given gravitational wave signal.

In order to proceed with this idea, let us consider t
following linear combinationh( f ) of the Fourier transforms
of the four generators (ã,b̃,g̃,z̃):

h~ f ![a1~ f ,lW !ã~ f !1a2~ f ,lW !b̃~ f !

1a3~ f ,lW !g̃~ f !1a4~ f ,lW !z̃~ f !, ~8!

where the$ai( f ,lW )% i 51
4 are arbitrary complex functions o

the Fourier frequencyf, and of a vectorlW containing param-
eters characterizing the gravitational wave signal~source lo-
cation in the sky, waveform parameters, etc.! and the noises
affecting the four responses~noise levels, their correlations
etc.!. For a given choice of the four functions$ai% i 51

4 , h
gives an element of the functional space of interferome
combinations generated by (a,b,g,z). Our goal is therefore
to identify, for a given gravitational wave signal, the fo
functions $ai% i 51

4 that maximize the signal-to-noise ratio
SNRh

2 , of the combinationh
12200
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SNRh
25E

f l

f u ua1ãs1a2b̃s1a3g̃s1a4z̃su2

^ua1ãn1a2b̃n1a3g̃n1a4z̃nu2&
d f . ~9!

In Eq. ~9! the subscriptss and n refer to the signal and the
noise parts of (ã,b̃,g̃,z̃) respectively, the angle brackets re
resent noise ensemble averages, and the interval of inte
tion ( f l , f u) corresponds to the frequency band accessible
LISA.

Before proceeding with the maximization of theSNRh
2 we

may notice from Eq.~3! that the Fourier transform of the
totally symmetric Sagnac combination,z̃, multiplied by the
transfer function 12e2p i f (L11L21L3) can be written as a lin-
ear combination of the Fourier transforms of the remain
three generators (ã,b̃,g̃). Since the signal-to-noise ratios o
h and (12e2p i f (L11L21L3))h are equal, we may conclud
that the optimization of the signal-to-noise ratio ofh can be
performed only on the three observablesa,b,g. This implies
the following redefined expression forSNRh

2 :

SNRh
25E

f l

f u ua1ãs1a2b̃s1a3g̃su2

^ua1ãn1a2b̃n1a3g̃nu2&
d f . ~10!

TheSNRh
2 can be regarded as a functional over the space

the three complex functions$ai% i 51
3 , and the particular set o

complex functions that extremize it can of course be deriv
by solving the associated set of Euler-Lagrange equation

In order to make the derivation of the optimal SNR eas
let us first denote byx(s) and x(n) the two vectors of the
signals (ãs ,b̃s ,g̃s) and the noises (ãn ,b̃n ,g̃n) respectively.
Let us also definea to be the vector of the three function
$ai% i 51

3 , and denote withC the Hermitian, nonsingular, cor
relation matrix of the vector random processxn

~C!rt[^xr
(n)xt

(n)* &. ~11!

If we finally define (A) i j to be the components of the He
mitian matrixxi

(s)xj
(s)* , we can rewriteSNRh

2 in the follow-
ing form:

SNRh
25E

f l

f uaiA i j aj*

arCrtat*
d f , ~12!

where we have adopted the usual convention of summa
over repeated indices. Since the noise correlation matrixC is
nonsingular, and the integrand is positive definite or null,
stationary values of the signal-to-noise ratio will be attain
at the stationary values of the integrand, which are given
solving the following set of equations~and their complex
conjugated expressions!:

]

]ak
F aiA i j aj*

arCrtat*
G50, k51,2,3. ~13!

After taking the partial derivatives, Eq.~13! can be rewrit-
ten in the following form:
2-3
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~C21! ir ~A!r j ~a* ! j5FapApqaq*

alClmam*
G ~a* ! i , i 51,2,3 ~14!

which tells us that the stationary values of the signal-to-no
ratio of h are equal to the eigenvalues of the matrixC21

•A. The result in Eq.~13! is well known in the theory of
quadratic forms, and it is called Rayleigh’s principle@7,8#.

In order now to identify the eigenvalues of the matr
C21

•A, we first notice that the 333 matrix A has rank 1.
This implies that the matrixC21

•A has also rank 1, as it is
easy to verify. Therefore two of its three eigenvalues
equal to zero, while the remaining nonzero eigenvalue r
resents the solution we are looking for.

The analytic expression of the third eigenvalue can
obtained by using the property that the trace of the 333
matrix C21

•A is equal to the sum of its three eigenvalue
and in our case to the eigenvalue we are looking for. Fr
these considerations we derive the following expression
the optimized signal-to-noise ratioSNRh

2
opt:

SNRh
2

opt5E
f l

f u
xi

(s)* ~C21! i j xj
(s)d f . ~15!

We can summarize the results derived in this section, wh
are given by Eqs.~10!, ~15!, in the following way:

~i! Among all possible interferometric combinations LIS
will be able to synthesize with its four generatorsa,b,g,z,
the particular combination giving maximum signal-to-noi
ratio can be obtained by using only three of them, nam
(a,b,g).

~ii ! The expression of the optimal signal-to-noise ra
given by Eq.~15! implies that LISA should be regarded as
network of three interferometer detectors of gravitational
diation @of responses (a,b,g)] working in coincidence@9#.

Application

As an application of Eq.~15!, here we calculate the sen
sitivity that LISA can reach when observing sinusoidal s
nals uniformly distributed on the celestial sphere and of r
dom polarization. In order to calculate the optimal signal-
noise ratio we will also need to use a specific expression
the noise correlation matrixC. As a simplification, we will
assume the LISA arm-lengths to be equal to its nomi
valueL516.67 sec, the optical-path noises to be equal
uncorrelated to each other, and finally the noises due to
proof-mass noises to be also equal, uncorrelated to e
other and to the optical-path noises. Under these assump
the correlation matrix becomes real, its three diagonal
ments are equal, and all the off-diagonal terms are equa
each other, as it is easy to verify by direct calculation@2#.
The noise correlation matrixC is therefore uniquely identi-
fied by two real functions,Sa andSab , in the following way:

C5S Sa Sab Sab

Sab Sa Sab

Sab Sab Sa

D .
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The expression of the optimal signal-to-noise ratio assum
rather simple form if we diagonalize this correlation matr
by properly ‘‘choosing a new basis.’’ There exists an o
thogonal transformation of the generators (ã,b̃,g̃) which
will transform the optimal signal-to-noise ratio into the su
of the signal-to-noise ratios of the ‘‘transformed’’ three inte
ferometric combinations. The expressions of the three eig
values$m i% i 51

3 ~which are real! of the noise correlation ma
trix C can easily be found by using the algebraic manipula
MATHEMATICA @10#, and they are equal to

m15m25Sa2Sab , m35Sa12Sab . ~16!

Note that two of the three real eigenvalues, (m1 ,m2), are
equal. This implies that the eigenvector associated tom3 is
orthogonal to the two-dimensional space generated by
eigenvaluem1, while any chosen pair of eigenvectors corr
sponding tom1 will not necessarily be orthogonal. This in
convenience can be avoided by choosing an arbitrary se
vectors in this two-dimensional space, and by orth
normalizing them. After some simple algebra, we have
rived the following three ortho-normalized eigenvectors:

v15
1

A2
~21,0,1!,

v25
1

A6
~1,22,1!, ~17!

v35
1

A3
~1,1,1!.

Equation ~17! implies the following three linear combina
tions of the generators (ã,b̃,g̃):

A5
1

A2
~ g̃2ã !,

E5
1

A6
~ ã22b̃1g̃ !, ~18!

T5
1

A3
~ ã1b̃1g̃ !,

where A, E, and T are italicized to indicate that these a
‘‘orthogonal modes.’’ Although the expressions for th
modesA andE depend on our particular choice for the tw
eigenvectors (v1 ,v2), it is clear from our earlier consider
ations that the value of the optimal signal-to-noise ratio
unaffected by such a choice. From Eq.~18! it is also easy to
verify that the noise correlation matrix of these three com
nations is diagonal, and that its nonzero elements are ind
equal to the eigenvalues given in Eq.~16!.

In order to calculate the sensitivity corresponding to t
expression of the optimal signal-to-noise ratio, we have p
ceeded similarly to what was done in@1,2#, and described in
2-4
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more detail in @11#. We assume an equal-arm LISA (L
516.67 light seconds!, and take the one-sided spectra
proof mass and aggregate optical-path-noises~on a single
link!, expressed as fractional frequency fluctuation spec
to be ~ @2,6#!, Sy

proo f mass52.5310248@ f /1 Hz#22 Hz21 and
Sy

opticalpath51.8310237 @ f /1 Hz#2 Hz21, respectively. We
also assume that aggregate optical path noise has the
transfer function as shot noise.

The optimum SNR is the square root of the sum of
squares of the SNRs of the three ‘‘orthogonal mode
(A,E,T). To compare with previous sensitivity curves of
single LISA Michelson interferometer, we construct t
SNRs as a function of Fourier frequency for sinusoid
waves from sources uniformly distributed on the celes
sphere. To produce the SNR of each of the (A,E,T) modes
we need the gravitational wave response and the noise
sponse as a function of Fourier frequency. We build up
gravitational wave responses of the three modes (A,E,T)
be
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from the gravitational wave responses of (a,b,g). For 7000
Fourier frequencies in the;1024 Hz to ;1 Hz LISA band,
we produce the Fourier transforms of the gravitational wa
response of (a,b,g) from the formulas in@1,11#. The aver-
aging over source directions~uniformly distributed on the
celestial sphere! and polarization states~uniformly distrib-
uted on the Poincare´ sphere! is performed via a Monte Carlo
method. From the Fourier transforms of the (a,b,g) re-
sponses at each frequency, we construct the Fourier tr
forms of (A,E,T). We then square and average to comp
the mean-squared responses of (A,E,T) at that frequency
from 104 realizations of~source position, polarization state!
pairs.

The noise spectra of (A,E,T) are determined from the
raw spectra of proof-mass and optical-path noises, and
transfer functions of these noises to (A,E,T). Using the
transfer functions given in@2#, the resulting spectra are equ
to
SA~ f !5SE~ f !516 sin2~p f L !@312 cos~2p f L !1cos~4p f L !#Sy
proo f mass~ f !18 sin2~p f L !@21cos~2p f L !#Sy

optical path~ f !,
~19!

ST~ f !5@214 cos2~2p f L !#@4 sin2~p f L !Sy
proo f mass1Sy

optical path~ f !#. ~20!
l

ual-

nd,

-
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ne
Let the amplitude of the sinusoidal gravitational wave
h. The SNR for, e.g.A, SNRA , at each frequencyf is equal to
h times the ratio of the root-mean-squared gravitational w
response at that frequency divided byASA( f )B, whereB is
the bandwidth conventionally taken to be equal to 1 cy
per year. Finally, if we take the reciprocal ofSNRA /h and
multiply it by 5 to get the conventionalSNR55 sensitivity
criterion, we obtain the sensitivity curve for this combinati
which can then be compared against the corresponding
sitivity curve for the equal-arm Michelson Interferometer.

In Fig. 3 we show the sensitivity curve for the LIS
equal-arm Michelson response (SNR55) as a function of
the Fourier frequency, and the sensitivity curve from the
timum weighting of the data described abov
5h/ASNRA

21SNRE
21SNRT

2. The SNRs were computed fo
a bandwidth of 1 cycle/year. Note that at frequencies wh
the LISA Michelson combination has best sensitivity, the i
provement in signal-to-noise ratio provided by the optim
combination is slightly larger thanA2.

In Fig. 4 we plot the ratio between the optimal SNR a
the SNR of a single Michelson interferometer. In the lon
wavelength limit, the SNR improvement isA2. For Fourier
frequencies greater than or about equal to 1/L, the SNR im-
provement is larger and varies with the frequency, show
an average value of aboutA3. In particular, for bands o
frequencies centered on integer multiples of 1/L, SNRT con-
tributes strongly and the aggregate SNR in these bands
be greater than 2. In order to better understand the contr
tion from the three different combinations to the optim
combination of the three generators, in Fig. 5 we plot
e

e

n-

-
:

re
-
l

-

g

an
u-
l
e

signal-to-noise ratios of (A,E,T) as well as the optima
signal-to-noise ratio. For an assumedh510223, the SNRs of
the three modes are plotted versus frequency. For the eq
arm case computed here, the SNRs ofA and E are equal
across the band. In the long wavelength region of the ba
modesA andE have SNRs much greater than modeT, where
its contribution to the total SNR is negligible. At higher fre
quencies, however, theT combination has SNR greater tha

FIG. 3. The LISA Michelson sensitivity curve (SNR55) and
the sensitivity curve for the optimal combination of the data, both
a function of Fourier frequency. The integration time is equal to o
year, and LISA is assumed to have a nominal arm lengthL
516.67 sec.
2-5
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or comparable to the other modes and can dominate the
improvement at selected frequencies.

IV. CONCLUSIONS

The use of Time-Delay Interferometry has shown th
LISA has the capability to simultaneously observe grav
tional waves in the millihertz band with several, and rath
different, interferometric data combinations. In this paper
have identified, for a given~but otherwise arbitrary! gravita-
tional wave signal, the particular interferometric combinati
that gives maximum signal-to-noise ratio. In this context
have actually shown that LISA should no longer be regar
as a single-instrument mission, but rather as a network
interferometer detectors of gravitational radiation working
coincidence. We have identified the general expression o
optimal combination of the generators (a,b,g), which
should be used when observing a specified gravitatio
wave signal.

Under rather general assumptions on the properties of
noise correlation matrix, and for sinusoidal gravitation
wave signals that are randomly distributed over the celes
sphere and over the polarization states, we have found
the sensitivity gain of the optimal data combination over t

FIG. 4. The optimal SNR divided by the SNR of a single Mic
elson interferometer, as a function of the Fourier frequencyf. The
sensitivity gain in the low-frequency band is equal toA2, while it
can get larger than 2 at selected frequencies in the high-frequ
region of the accessible band. The integration time has been
sumed to be one year, and the proof mass and optical path n
spectra are the nominal ones. See the main body of the paper
quantitative discussion of this point.
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of the Michelson combination can be significant, and it v
ies over the frequency band accessible by LISA. In the l
part of the frequency band such improvement is equal toA2,
and it grows to values larger thanA3 at higher frequencies
and in small frequency bands centered on frequencies
are integer multiple of the inverse of the one-way light-trav
time.

The results derived in this paper will have immediate a
plication to the solution of the so called ‘‘Inverse Problem
for LISA, that is to say the determination of the source loc
tion and of the wave’s two independent amplitudes from
data LISA will be able to generate. We will estimate th
accuracies in the determination of the source location an
the wave’s amplitudes that the optimal combination of t
three interferometric responses (a,b,g) derived in this paper
will imply. This work is in progress, and will be presented
a follow-up publication.
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FIG. 5. The SNRs of the three combinations, (A,E,T), and their
sum as a function of the Fourier frequencyf. The SNRs ofA andE
are equal over the entire frequency band. The SNR ofT is signifi-
cantly smaller than the other two in the low part of the frequen
band, while it is comparable to~and at times larger than! the SNR
of the other two in the high-frequency region. See text for a co
plete discussion.
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