
The Little Engine(s) That Could:
Scaling Online Social Networks

Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang
Nikos Laoutaris, Parminder Chhabra, Pablo Rodriguez

Telefonica Research
{ jmps, vijay, georgos, yxiao, nikos, pchhabra, pablorr }@tid.es

ABSTRACT

The difficulty of scaling Online Social Networks (OSNs) has
introduced new system design challenges that has often caused
costly re-architecting for services like Twitter and Facebook.
The complexity of interconnection of users in social net-
works has introduced new scalability challenges. Conven-
tional vertical scaling by resorting to full replication can
be a costly proposition. Horizontal scaling by partitioning
and distributing data among multiples servers – e.g. using
DHTs – can lead to costly inter-server communication.

We design, implement, and evaluate SPAR, a social parti-
tioning and replication middle-ware that transparently lever-
ages the social graph structure to achieve data locality while
minimizing replication. SPAR guarantees that for all users
in an OSN, their direct neighbor’s data is co-located in the
same server. The gains from this approach are multi-fold:
application developers can assume local semantics, i.e., de-
velop as they would for a single server; scalability is achieved
by adding commodity servers with low memory and network
I/O requirements; and redundancy is achieved at a fraction
of the cost.

We detail our system design and an evaluation based on
datasets from Twitter, Orkut, and Facebook, with a working
implementation. We show that SPAR incurs minimum over-
head, and can help a well-known open-source Twitter clone
reach Twitter’s scale without changing a line of its applica-
tion logic and achieves higher throughput than Cassandra,
Facebook’s DHT based key-value store database.

Categories and Subject Descriptors

D.3.4 Information Systems [Information storage and re-
trieval]: Systems and Software, Distributed systems; E.1
Data [Data Structures]: Graphs and networks
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1. INTRODUCTION
Recently, there has been a recent unprecedented increase

in the use of Online Social Networks (OSNs) and applica-
tions with a social component. The most popular OSNs at-
tract hundreds of millions of users – e.g. Facebook [16] – and
deliver status updates at very high rates – e.g. Twitter [7].
OSNs differ from traditional web applications significantly
in different ways: they handle highly personalized content;
produce non-traditional workloads [11, 32]; and most im-
portantly, they deal with highly interconnected data due to
the presence of a strong community structure among their
end users [23, 26, 27, 12]. All these factors create new chal-
lenges for the maintenance, management and scaling of OSN
systems.

Scaling real systems is hard as it is, but the problem is
particularly acute for OSNs, due to their interconnected na-
ture and their astounding growth rate. Twitter, for instance,
grew by 1382% between Feb and Mar 2009 [24] and was thus
forced to redesign and re-implement its architecture several
times in order to keep up with the demand. Other OSNs
that failed to do so have virtually disappeared [2].

A natural and traditional solution to cope with higher
demand is to upgrade existing hardware. Such vertical scal-
ing, however, is expensive because of the cost of high perfor-
mance servers. In some cases, vertical scaling can even be
technically infeasible, e.g. Facebook requires multiple hun-
dreds of Terabytes of memory across thousands of machines
[3]. A more cost effective approach is to rely on horizontal
scaling by engaging a higher number of cheap commodity
servers and partitioning the load among them. The advent
of cloud computing systems like Amazon EC2 and Google
AppEngine has streamlined horizontal scaling by removing
the need to own hardware and instead providing the ability
to lease virtual machines (VMs) dynamically from the cloud.
Horizontal scaling has eased most of the scaling problems
faced by traditional web applications. Since the application
front-end and logic is stateless, it can be instantiated on
new servers on demand in order to meet the current load.
The data back-end layer however, is more problematic since
it maintains state. If data can be partitioned into disjoint
components, horizontal scaling still holds. However, this last
condition does not hold for OSNs.

In the case of OSNs, the existence of social communi-
ties [23, 26, 27], hinders the partitioning of the data back-
end into clean, disjoint components[18, 17]. The problem
in OSNs is that most of the operations are based on the
data of a user and her neighbors. Since users belong to
more than one community, there is no disjoint partition (i.e.
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server) where users and all her neighbors can be co-located.
This hairball that is the community structure causes a lot
of inter-server traffic for resolving queries. The problem be-
comes particularly acute under random partitioning, which
is the de-facto standard in OSNs [16, 30]. On the other
hand, replicating user’s data in multiple or all the servers
eliminates the inter-server traffic for reads but increases the
replication overhead. This has a negative impact on query
execution times and network traffic for propagating updates
and maintaining consistency across replicas. Scalability for
OSNs is indeed a difficult beast to tame.

2. OUR CONTRIBUTION – SPAR
The main contribution of this work is the design, imple-

mentation and extensive evaluation of SPAR: a Social Parti-
tioning And Replication middle-ware for social applications.

2.1 What does SPAR do?

Solves the Designer’s Dilemma for early stage OSNs.
Designers and developers of an early-stage OSN are con-

fronted with the Designer’s Dilemma : “Should they commit
scarce developer resources towards adding features or should
they first ensure that they have a highly scalable system in
place that can handle high traffic volume?”. Choosing the
first option can lead to “death-by-success” – users join at-
tracted to appealing features, but if the infrastructure can-
not support an adequate QoS, it results in frustrated users
leaving the service en-masse – e.g. this was the story be-
hind the demise of Friendster [2]. On the other hand, start-
ing with a highly scalable system, similar to the ones that
power established OSNs like Facebook and Twitter, requires
devoting scarce resources to complex distributed program-
ming and management issues. This comes at the expense
of building the core of the application that attracts users in
the first place.

SPAR avoids this dilemma by enabling transparent OSN
scalability. SPAR constricts all relevant data for a user on a
server. The enforcement of local semantics at the data level
allows queries to be resolved locally on that server, creating
the illusion that the system is running on one centralized
server. This simplifies programming for developers and en-
ables them to focus on the core features of the service.

Avoids performance bottlenecks in established OSNs.
SPAR avoids the potential performance problems of hav-

ing to query multiple servers across a network by enforc-
ing local semantics on the data. For instance, the de-facto
standard random partitioning used by Twitter or Facebook,
splits data across hundreds of data back-end servers. These
servers are then queried with multi-get requests to fetch the
neighbors’ data (e.g., all the friends’ tweets). This can result
in unpredictable response times, determined by the highest-
latency server. The problem can be particularly acute under
heavy data center loads, where network congestion can cause
severe network delays.

In addition to potential network problems, individual servers
could also suffer performance problems (e.g., Network I/O,
Disk I/O or CPU bottlenecks) and drive down the perfor-
mance of the system. For instance, servers could become
CPU bounded as they need to handle a larger number of
query requests from other servers. When a server CPU
is bound, adding more servers does not help serve more
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Figure 1: Sketch of social network to be partitioned in two

servers using (a) Full Replication, (b) Partition using DHT

(random partitioning), (c) Random Partitioning (DHT) with

replication of the neighbors, (d) SPAR, socially aware parti-

tion and replication of the neighbors.

requests [1]. Using additional servers decreases the band-
width per server. It does not, however, decrease the number
of requests per server, which means that CPU usage stays
roughly the same. SPAR reduces the impact of such multi-
get operations by ensuring that all required data is kept
local to the server, avoiding potential network and server
bottlenecks and thus increasing throughput.

Minimizes the effect of provider lock-ins.
The Designer’s Dilemma has prompted several providers

of cloud services to develop and offer scalable “Key-Value”
stores (so-called NoSQL) that run on top of DHTs. They
offer transparent scalability at the expense of sacrificing the
full power of established RDBMS, losing an expressive query
language like SQL, powerful query optimizers and the encap-
sulation and abstraction of data related operations, etc. Fur-
ther, systems such as Amazon’s SimpleDB and Google’s
BigTable require using APIs that are tied to a particular
cloud provider and thus suffer from poor portability that
can lead to architectural lock-ins [9].

Cross platform Key-Value stores like Cassandra or CouchDB
do not cause lock-in concerns, but suffer from the aforemen-
tioned shortcomings in addition to performance problems as
we will argue shortly.

SPAR is implemented as a middle-ware that is platform
agnostic and allows developers to select its preferred data-
store, either be a Key-Value store or a relational database.

376



2.2 How does SPAR do it?
Through joint partitioning and replication. On the par-

tition side, SPAR ensures that the underlying community
structure is preserved as much as possible. On the replica-
tion side, SPAR ensures that data of all one-hop neighbors
of a user hosted on a particular server is co-located on that
same server, thereby guaranteeing local semantics of data.
Note that most of the relevant data for a user in an OSN is
one-hop away (friends, followers, etc.).

Fig. 1 is a toy-example highlighting the operation and ben-
efits of SPAR. At the top of Fig. 1, we depict a social graph
with 10 users (nodes) and 15 edges (bidirectional friendship
relationships). The social graph contains an evident strong
community structure: two communities that are connected
through the “bridge” nodes 3 and 4. Then, we depict the
physical placement of users on 2 servers under four differ-
ent solutions. We summarize the memory (in terms of user
profiles/data) and network cost assuming unit-sized profiles
and a read rate of 1 for all profiles.

Random partition (b) – the de-facto standard of Key-
Value stores – minimizes the replication overhead (0 units),
and thus has the lowest memory (either RAM or Disk) foot-
print on the servers. On the downside, random partition
imposes the highest aggregate network traffic due to reads
(10 units), and thus increases the network I/O cost of the
servers and the networking equipment that interconnects
them. Replicating the neighbors as shown in (c) will elim-
inate the read traffic across servers, but will increase the
memory in return. Another widely used approach is Full
Replication (a). In this case, network read traffic falls to
0, but the memory requirements are high (10 units). Full
replication also results in high write traffic to maintain con-
sistency. Our proposed solution, SPAR (d), performs the
best overall.

Summary of results.
The above toy example is a preview of the performance

results of Sec. 5 based on workloads from Twitter, Orkut,
and Facebook. We summarize the results here:

• SPAR provides local semantics with the least overhead
(reduction of 200% over random in some cases), while
reducing inter-server read traffic to zero.

• SPAR handles node and edge dynamics observed in
OSNs with minimal overhead in the system. In addi-
tion, SPAR provides mechanisms for addition/removal
of servers and handle failures gracefully.

• In our implementation, SPAR serves 300% more req/s
than Cassandra while reducing network traffic by a
factor of 8. We also show substantial gains when we
implement SPAR with MySQL.

2.3 What does SPAR not do?
SPAR is not designed for the distribution of content such

as pictures and videos in an OSN. This problem is well stud-
ied in the area of Content Distribution Networks (CDN).
SPAR is an On-line Transaction Processing system (OLTP),
it is not a solution for storage or for batch data analysis such
as Hadoop (MapReduce). SPAR is not intended to charac-
terize or aid in computing properties of the OSN graph,
although we leave this for future work.

3. PROBLEM STATEMENT
We first describe the requirements that SPAR has to ad-

dress. Next, we formulate the problem solved by SPAR.
Finally, we discuss why existing social partition based solu-
tions are inadequate to meet our set of requirements.

3.1 Requirements
The set of requirements that SPAR must fulfill are:

Maintain local semantics: Relevant data for a user in
OSNs is her own and that of her direct neighbors (e.g. fol-
lowees’ tweets, friends’ status updates, etc.). To achieve lo-
cal semantics we need to ensure that for every master replica
of a user, either a master or a slave replica of all her direct
neighbors is co-located in the same server. We use the term
replica to refer to a copy of the user’s data. We differenti-
ate between the master replica, serving all application level
read/write operations; and the slave replica, required for
redundancy and to guarantee data locality.

Balance loads: Application level read and write requests
of a user are directed only to her master replica. Write
operations need to be propagated to all her slave replicas
for consistency. However, since masters handle much more
load than slaves, we can obtain an approximately balanced
load by doing an even distribution of masters among servers.

Be resilient to machine failures: To cope with machine
failures, we need to ensure that all masters have at least K

slave replicas that act as redundant copies.

Be amenable to online operations: OSN are highly
dynamic; new users constantly join and there is a process
of graph densification due to new edges formed between
users [22]. Further, the infrastructure hosting the OSN may
change through the addition, removal or upgrade of servers.
To handle such dynamics, the solution needs to be respon-
sive to such a wide range of events, and yet simple to quickly
converge to an efficient assignment of users to servers.

Be stable: Given that we are operating in a highly dynamic
environment, we need to ensure that the solution is stable.
For example, addition of a few edges should not lead to a
cascade of changes in the assignment of masters and slaves
to servers.

Minimize replication overhead: The overall performance
and efficiency of the system is strongly correlated to the
number of replicas in the system. We require a solution that
keeps replication overhead – defined as the average number
of slave replicas created per user – as low as possible.

3.2 Formulation
Given the above requirements, we can formulate the solu-

tion as an optimization problem of minimizing the number
of required replicas. For this purpose, we use the following
notation. Let G = (V, E) denote the social graph represent-
ing the OSN, with node set V representing users, and edge
set E representing (friendship) relationships among users.
Let N = |V | denote the total number of users and M the
number of available servers.

We could cast the problem as an integer linear program
where pij denotes a binary decision variable that becomes 1
if and only if the primary of user i is assigned to partition
j, 1 ≤ j ≤ M . Also rij denote a similar decision variable
for a replica of user i assigned to partition j. Finally, let the
constants ǫii′ = 1 if {i, i′} ∈ E capture the friendship rela-
tionships. We state the MIN REPLICA problem as follows:
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min
X

i

X

j

rij

s.t.
X

∀j

pij = 1 (1)

pij + ǫii′ ≤ pi′j + ri′j + 1, ∀i, j, i′ (2)
X

i

(pij) =
X

i

(pi(j+1)), 1 ≤ j ≤ M − 1 (3)

X

j

rij ≥ k, ∀i ∈ V (4)

Constraint 1 in the above formulation ensures that there is
exactly one master copy of a user in the system. Constraint 2
ensures that all neighbors of a user (be it masters or slaves)
are in the same machine. Constraint 3 tries to distribute
equal number of master replicas across the machines and
Constraint 4 encodes the redundancy requirement.

Lemma 1. Min Replica is NP-Hard
A simple reduction from the graph Min-bisection problem

[14] can be used to prove this. We skip the description of
the formal proof for lack of space.

3.3 Why graph/social partitioning falls short
An obvious set of candidates that can be used to address

the problem described in the previous section include graph
partitioning algorithms [10, 19] and modularity optimization
algorithms [23, 26, 27, 12]. These algorithms either aim to
find equal sized partitions of a graph such that the number of
inter-partition edges is minimized, or try to maximize mod-
ularity[27]. There are, however, several reason why these
methods are inadequate for our purpose:

• Most graph partitioning algorithms are not incremental
(offline) [12, 27, 10]. This poses a problem when dealing
with highly dynamic social graphs, as they require costly
re-computation of the partition. An incremental (online)
algorithm is more suited for this scenario.

• Algorithms based on community detection are known to
be extremely sensitive to input conditions. Small changes
to the graph structure can lead to very different placement
of nodes into partitions [20]. In other words, they do not
produce stable solutions.

• It can be argued that directly reducing the number of
inter-partition edges is equivalent to a reduction of the num-
ber of replicas. However, it is not the case. Consider the
example depicted in Fig. 2. Minimizing the number of inter-
partition edges will result in partitions P1 and P2, with only
3 inter-partition edges but this requires 5 replicas to main-
tain locality. On the other hand, partitions P3 and P4 result
in 4 inter-partition edges, but this requires one less replica.
As we will show later in Sec. 5 minimizing inter-partition
edges indeed leads to worse results. Motivated by the short-
comings of the existing solutions, we present our online so-
lution in the next section.

4. SPAR: JOINT PARTITIONING AND

REPLICATION ON THE FLY
Having described the MIN REPLICA problem and the re-

quirements that it must fulfill, we now present our heuristic
solution based on a greedy optimization using local informa-
tion.

4.1 Overview
We assume that users represent nodes in a graph, and

edges are formed when users create links among them. The
algorithm runs in the Partition Manager module as explained
in Sec. 6. In the average case, the required information for
the algorithm is proportional to the product of the average
node degree and the number of servers. The worst case com-
putational complexity of the algorithm is proportional to the
highest node degree. The algorithm is triggered by any one
of the six following possible events: addition or removal of
either nodes, edges, or servers.

4.2 Description
Node addition: A new node (user) is assigned to the parti-
tion with the fewest number of masters replicas. In addition,
K slaves are created and assigned to random partitions.
Node removal: When a node is removed (a user is deleted),
the master and all the slaves are removed. The states of the
nodes that had an edge with it are updated.
Edge addition: When a new edge is created between nodes
u and v, the algorithm checks whether both masters are
already co-located with each other or with a master’s slave.
If so, no further action is required.

If not, the algorithm calculates the number of replicas that
would be generated for each of the three possible configu-
rations: 1) no movements of masters, which maintains the
status-quo, 2) the master of u goes to the partition contain-
ing the master of v, 3) the opposite.

Let us start with configuration 1). Here, a replica is added
if it does not already exist in the partition of the master of
the complementary node. This may result in an increase of
1 or 2 replicas depending on whether the two masters are
already present in each other’s partitions. This can occur if
nodes v or u already have relationships with other nodes in
the same partition or if there already exist extra slaves of v

or u for redundancy.
In configuration 2), no slave replicas are created for u and

v since their masters will be in the same partition. However,
for the node that moves, in this case u, we will have to
create a slave replica of itself in its old partition to service
the master of the neighbors that were left behind in that
partition. In addition, the masters of these neighbors will
have to create a slave replica in the new partition – if they
do not already have one– to preserve the local semantics
of u. Finally the algorithm removes the slave replicas that
were in the old partition only to serve the master of u, since
they are no longer needed. The above rule is also subject to
maintaining a minimum number of slave replicas due to the
K redundancy: the old partition slave will not be removed
if the overall system ends up with less than K slaves for that
particular node. Configuration 3) is complementary to 2).

The algorithm greedily chooses the configuration that yields
the smallest aggregate number of replicas subject to the con-
straint of load-balancing the master across the partitions.
More specifically, configuration 2) and 3) also need to ensure
that the movement does not cause load unbalancing. That
is, this movement either happens to a partition with fewer
masters, or to a partition for which the savings in terms of
number of replicas of the best configuration to the second
best one is greater than the current ratio of load imbalance
between partitions.

Fig. 3 illustrates the steps just described with an exam-
ple. The initial configuration (upper-left subplot) contains
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Figure 2: Illustrative example on why minimizing edges between partitions (inter-partition) does not minimize replicas. The

partition P1 and P2 results in 3 edges between partitions and 5 nodes to be replicated (e to i). The partitions P3 and P4 results

in 4 inter-partition edges but only 4 nodes need to be replicated (c to f).

6 nodes in 3 partitions. The current number of replicated
nodes (empty circles) is 4. An edge between nodes 1 and 6
is created. Since there is no replica of 1 in M3 or replica of
6 in M1 if we maintain status quo, two additional replicas
will have to be created to maintain the local semantics.

The algorithm also evaluates the number of replicas that
are required for the other two possible configurations. If
node 1 were to move to M3, we would need three new repli-
cas in M3 since only 2 out of the 5 neighbors of node 1 are
already in M3. In addition, the movement would allow re-
moving the slave of node 5 from M1 because it is no longer
needed. Consequently, the movement would increase the to-
tal number of replicas by 3-1=2, yielding a new total of 6
replicas, which is worse that maintaining the status quo.

In the last step, the algorithm evaluates the number of
replicas for the third allowed configuration: moving the mas-
ter of node 6 in M1. Here, the replica of node 5 in M3 can be
removed because it already exists in M1 and no other node
links to it in M3. Thus, no replica needs to be created. The
change in the number of replicas is -1, yielding a total of 3
replicas.

Moving 6 to M1 minimizes the total number of replicas.
However, such a configuration violates the load balancing
condition and hence, cannot be performed. Thus, the final
action is not to move (status quo) and create an additional
2 replicas.1

Edge removal: When an edge between u and v disappears,
the algorithm removes the replica of u in the partition hold-
ing the master of node v if no other node requires it, and
vice-versa. The algorithm checks whether there are more
than K slave replicas before removing the node so that the
desired redundancy level is maintained.
Server addition: Unlike the previous cases, server addi-
tion and removal do not depend on the events of the social
graph but are triggered externally by system administrators
or detected automatically by the system management tools.

There are two choices when adding a server: 1) force re-
distribution of the masters from the other servers to the new
one so that all servers are balanced immediately, or 2) let
the re-distribution of the masters be the result of the node
and edge arrival processes and the load-balancing condition.

In the first case, the algorithm will select the N

M2+M
least

replicated masters from the M server and move them to the
new server M + 1. After the movement of the masters, the

1One might wonder what happens with power-users like
Oprah. Must all her followers be replicated to the server
hosting her master? Only the direct neighbors from whom
a user is reading must be co-located. Power-users might
have to be replicated across multiple servers but their large
audience does not affect the system negatively. Also, OSNs
impose a limit to the number of people that you can fol-
low or befriend to avoid spammers and bots, e.g. 5000 for
Facebook.
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Figure 3: SPAR Online Sketch

algorithm will ensure that for all the masters moved to the
new server, there is a slave replica of their neighbors to guar-
antee the local data semantics. This mechanism guarantees
that the masters across all the M +1 servers are equally bal-
anced. However, it may not provide a minimum replication
overhead. For this reason, for a fraction of the edges of the
masters involved, the algorithm also triggers a system-replay
edge creation event, which reduces the replication overhead.
As we will see later in the evaluation section, this provides
good replication overhead even under dynamic server events.

In the second case, the algorithm does nothing else to in-
crease the number of available servers. The edge/user arrival
will take care of filling the new server with new users that in
turn attract old users when edges are formed to them. This
leads to an eventual load balancing of the masters across
servers without enforcing movement operations. The only
condition is that the OSN continues to grow.
Server removal: When a server is removed, whether inten-
tionally or due to a failure, the algorithm re-allocates the N

M

master nodes hosted in that server to the remaining M − 1
servers equally. The algorithm decides the server in which
a slave replica is promoted to master, based on the ratio
of its neighbors that already exist on that server. Thus,
highly connected nodes, with potentially many replicas to
be moved due to local data semantics, get to first choose the
server they go to. The remaining nodes are placed wher-
ever they fit, following simple water-filling strategy. As we
will see in the evaluation section, this strategy ensures equal
repartition of the failed masters while maintaining a small
replication overhead.
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5. MEASUREMENT DRIVEN EVALUATION
In this section, we evaluate the performance of SPAR in

terms of replication overhead and replica movements (mi-
grations).

5.1 Evaluation methodology

5.1.1 Metrics
Our main quantitative evaluation metric is the replication

overhead ro that stands for the number of slave replicas
that need to be created to guarantee local semantics while
observing the K-redundancy condition. We also analyze the
number of node movements, i.e. replica migrations between
servers during the operation of SPAR online.

5.1.2 Datasets
We use three different datasets, each serving a different

purpose to evaluate individual performance metrics.
Twitter: We collected a dataset by crawling Twitter be-
tween Nov 25 - Dec 4, 2008. It comprises 2, 408, 534 nodes
and 48, 776, 888 edges. It also contains 12M tweets gen-
erated by the 2.4M users during the time of the collection.
Although there exists larger datasets [21], they are topic spe-
cific and do not contain all the tweets of individual users.
To the best of our knowledge, this is the largest dataset with
complete user activity. This data allows us to have a good
approximation to what Twitter was as of Dec. 2008.
Facebook: We used a public dataset of the New Orleans
Facebook network [34]. It includes nodes, friendship links,
as well as wall posts and was collected between Dec 2008 and
Jan 2009. The data consists of 60,290 nodes and 1,545,686
edges. This dataset includes edge creation timestamps be-
tween users by using the first wall post. This information,
however, is not available for all users. Therefore, we filtered
the dataset and retained a sub-network containing complete
information for 59,297 nodes and 477,993 edges.
Orkut: Collected between Oct 3 and Nov 11 2006, this
dataset consists of 3, 072, 441 nodes and 223, 534, 301 edges.
Further information about this dataset can be found in [25]
and is the largest of the three datasets.

5.1.3 Algorithms for Comparison

We compare SPAR against the following partitioning al-
gorithms:
Random Partitioning: Key-Value stores like Cassandra,
MongoDB, SimpleDB, etc. partition data randomly across
servers. Random partition is the de-facto standard used in
most commercial systems [30].
Graph Partitioning: There exist several offline algorithms
for partitioning a graph into a fixed number of equal sized
partitions in such a way that the number of inter-partition
edges are minimized [10, 19]. We use METIS [19], which is
known to be very fast and yields high quality partitions for
large social graphs [23].
Modularity Optimization (MO+) Algorithms: We
also consider an offline community detection algorithm [12]
built around the modularity metric [27, 26]. We modified it
in order to be able to create a fixed number of equal sized
partitions [28]. Our modified version, called MO+, operates
by grouping the communities in partition sequentially until
a given partition is full. If a community is larger than the
predefined size, we recursively apply MO [12] to the com-
munity.

5.1.4 Computation of results

The evaluation procedure is as follows:

• The input consists of a graph (one of the datasets described
earlier), the number of desired partitions M and the desired
minimum number of replicas per user’s profile K.

• The partitions are produced by executing each of the al-
gorithms on the input.

• Since we require local semantics, we process the partitions
obtained by the candidate algorithms in the offline algo-
rithms case. We then add replicas when the master of a
user is missing some of its neighbors in the same partition.
• For Facebook, we generate the edge creation trace using
the exact timestamps. For Twitter and Orkut, the times-
tamps are not available. So, we create random permuta-
tions of the edges in order to have an ordered edge creation
trace. In the case of the exact timestamp and a random
permutation of the edge give the same qualitative results,
therefore, we can assume that the same applies for Orkut
and Twiter. Furthermore, there is virtually no quantita-
tive difference across multiple random permutations for any
dataset.

5.2 Evaluation of replication overhead
Fig. 4 summarizes the replication overhead of the different

algorithms over the different datasets for K = 0 and 2 as well
as for different numbers of servers, from 4 up to 512. We see
that SPAR online generates much smaller replication over-
head than all the other algorithms, including traditional of-
fline graph partitioning (METIS) and community detection
algorithms (MO+). The relative ranking of algorithms from
best to worse is, SPAR, MO+, METIS, and Random. Look-
ing at the absolute value of the replication overhead, we see
that it increases sub-linearly with the number of servers –
note that the x-axis is logarithmic. This means that adding
more servers does not lead to a proportional increase in per-
server resource requirement (as given by ro).

SPAR naturally achieves a low replication overhead since
this is the optimization objective. The competing algo-
rithms optimize for minimal inter-server edges. Therefore,
they end up needing more replicas to add the missing nodes
for guaranteeing local semantics in each partition in the
post-processing step.
Low-Cost Redundancy: An important property of SPAR
is that it achieves local semantics at a discounted cost by
reusing replicas that are needed for redundancy anyway (or
the other way around). To see this, lets focus on the example
of 32 servers. If no fault tolerance is guaranteed (K = 0),
then the replication overhead of SPAR to ensure local se-
mantics is 1.72. If we require its profile to be replicated
at least K = 2 times, then the new replication overhead
is 2.76 (rather than 3.72). Out of the 2.76 copies, 2 are
inevitable due to the redundancy requirement. Thus, the
local semantics were achieved at a lower cost 2.76-2=0.76
instead of 1.72. The gain comes from leveraging the redun-
dant replicas to achieve locality, something only SPAR does
explicitly.

We now focus our comparison on Random vs SPAR, since
Random is the de-facto standard. In Fig. 5, we depict the
ratio between the overhead of Random and that of SPAR. In
the case of the Twitter dataset, we see improvements varying
from 12% for a partition of 4 servers – it is low because we
have K = 2, which means 3 replicas of each node to be
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Figure 5: SPAR versus Random for K = 2

placed in 4 servers – to 200% in the case of 512 servers. For
Orkut and Facebook the improvement ranges from 22% and
44% to 174% and 315% respectively. For large number of
servers, the ratio starts decreasing. However, this is likely
not representative of what would happen in a real system,
since the number of replicas per server is artificially small
(given the number of users and the number of servers).

Such small overheads allow SPAR to achieve a much higher
throughput, as we will demonstrate in Sec.7 by running
a real implementation of SPAR on top of Cassandra and
MySQL.

5.3 Dynamic operations and SPAR
So far, we have shown that SPAR online outperforms ex-

isting solutions when measuring replication overhead. We
now turn to other system requirements stated in Sec.3.1.

5.3.1 The Delicate Art of Balancing Loads

We first focus on how replicas are distributed across users.
We take the example of Twitter with 128 servers and K=2.
In this case, the average replication overhead is 3.69: 75.8%
of the users have 3 replicas, 90% of the users have 7 or less
replicas and 99% of the users have 31 or less replicas. Out
of the 2.4M users, only 139 need to be replicated across the
128 servers. Next we look at the impact of such replication
distribution on read and write operations.

Reads and Writes: Read operations are only conducted
on masters. Therefore, we want to analyze whether the ag-
gregate read load of servers, due to read of the master by
their users, is balanced. This load depends on the distri-
bution of master among servers, and on the read patterns
of the users. SPAR online yields a partition in which the
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for Facebook

coefficient of variation (COV) of masters is 0.0019. Thus,
our online heuristic is successful in balancing masters across
servers. To test against workload imbalances, we examine
write patterns. The COV of writes per server is 0.37, which
indicates that they are fairly balanced across all servers and
no single server is the source of a high proportion of writes.
We expect reads to be even more balanced across users: sys-
tems such as Twitter handle reads automatically through
API calls via periodic polling (90% of Twitter traffic is gen-
erated via its API). Further, there is a very low correlation
between heavy-writers and the number of their slave repli-
cas. So, they do not present a big problem for the system.
We have therefore shown that SPAR handles both writes
and reads well in terms of balancing them across servers as
per requirements.

5.3.2 Moving Nodes Around

Next, we turn our attention to the footprint of SPAR in
terms of user’s data movements (migrations). In Fig. 6, we
show a stacked bin time-series of action taken by SPAR on-
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Figure 8: Movement costs for various datasets.

line upon each edge arrival event for the Facebook dataset
with K = 2 and 16 servers. We see that following a transient
phase during which the network builds up, SPAR online en-
ters a steady-state phase in which 60% of edge arrivals do
not create any movements. In the remaining 40% of the
cases, data gets moved.

In Fig. 7, we plot the number of transmissions per edge
arrival, with its CDF as an inset. We see that whenever
a movement occurs, in an overwhelming majority (90%) of
cases, it involves the data of only two users or less. The
largest movement involves moving data of 130 users (nodes).

Fig. 8 summarizes the movement costs on the system for
Facebook, Orkut and Twitter from 4 servers to 512. The
left plot in Fig. 8 depicts the average fraction of do nothing
actions that involve no movement of nodes (users’ data), dis-
counted the transient phase. The right plot in Fig. 8 depicts
the total of number of movements divided by the number of
edges. These figures show that the footprint remains low for
all configurations of datasets and number of servers.

5.3.3 Adding/Removing Servers

Adding servers: When a server is added, we can use one
of two policies: (1) wait for new arrivals to fill up the server,
or (2) re-distribute existing masters from other servers into
the new server. We will study the overhead of such policies
in terms of replication costs.

We start with the first case, where we go from 16 to 32
servers by adding one server every 150K new users. This
strategy yields a marginal increase of ro (2.78), compared to
the ro (2.74) that we would have obtained if the system was
dimensioned for 32 servers from the beginning. This shows
that SPAR is able to achieve an efficient state independently
of how servers are added. Although it does not do an ex-
plicit re-distribution, the COV of the number of masters per
server remains very low at the end on the trace (0.004). This
shows that we can gracefully add new servers without extra
overhead.

In the second experiment, we tested the effect of an exten-
sive upgrade of the infrastructure. We double the number of
servers at once and force re-distribution of the masters. This
reduces the number of masters per server by half while being
load-balanced. We tested the addition of 16 servers in two
cases, first after 50% of the edge creation trace is replayed,
and second after 100%. Doubling the number of servers leads
to the expected transmission of half the masters. SPAR,
however, needs to move additional slaves to maintain lo-
cal semantics. Adding a server also causes an increase in
the final replication overhead. For instance, doubling the
initial 16 servers at 50% of the trace produces a transient
increase in the replication overhead by 10% . This overhead
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Figure 9: Sketch of SPAR’s architecture

is progressively reduced as new edges are added, reaching
2.82, only a 2% higher than if we started with 32 servers.
With proactive reshuffling of edges (replay old edges as if
new), described in Sec. 4, the additional overhead caused
by addition of servers on-the-fly becomes almost insignifi-
cant, although the number of movements is higher due to
the proactive reshuffling.
Removing servers: Next, we test what happens when a
server is removed. The average number of movements is
485K, with a marginal increase in ro from 2.74 to 2.87. We
can further reduce ro to 2.77, at the cost of additional 180K
transmissions, if we replay the edges of the nodes affected
by the server removal. One might argue that server removal
seldom happens as systems usually do not scaled down. The
case of server removals due to failures is discussed in Sec. 6.2.

Overall, we have demonstrated that SPAR is able to dis-
tribute load efficiently, and cope with both social network
graph dynamics as well as physical (or virtual) machine dy-
namics with low overhead. Next, we describe the SPAR
system architecture.

6. SPAR SYSTEM ARCHITECTURE
We now describe the basic architecture and operations

of SPAR. Fig. 9 depicts how SPAR integrates into a typ-
ical three-tier web architecture. The only interaction be-
tween the application and SPAR is through the Middle-ware
(MW ). The MW needs to be called by the application to
know the address of the back-end server that contains the
user’s data to be read or written. Once the application has
obtained the address, it uses the common interface of any
data-store e.g. a MySQL driver, Cassandra’s API, etc. The
application logic can be written as if centralized since it is
agnostic to the number of back-end servers, how to operate
them and how to scale out. Making those operations scalable
and transparent is the task of the remaining components of
SPAR: the Directory Service DS, the Local Directory Ser-
vice LDS, the Partition Manager PM and the Replication
Manager RM .

6.1 System Operations
Data Distribution: The data distribution is handled

by the DS, which returns the server that hosts the master
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replica of a user through a key table look-up: Hm(key) →
u. Additionally, the DS also resolves the list of all servers
where the user has replicas in: Hs(i) → {u, v, ..., w}. The
Directory Service is implemented as a DHT with consistent
caching and is distributed across all servers in the data back
end. The Local Directory Service (LDS) contains a partial

view of the DS. Specifically, N(1+ro)
M

of the look-up table Hm

and N
M

of look-up table Hs. The LDS only acts as cache
of the DS for performance reasons and is invalidated by the
DS whenever the location of a replica changes.

Data Partitioning: The PM runs the SPAR algorithm
described in Sec. 4 and performs the following functions: (i)
map the user’s key to its replicas, whether master or slaves,
(ii) schedule the movement of replicas, and (iii) re-distribute
replicas in the event of server addition or removal. SPAR
algorithm would allow the PM to be distributed. However,
for simplicity, we implemented a centralized version of PM

and run multiple mirrors that act on the failure of the main
PM to avoid single point of failure2. PM is the only com-
ponent that can update the DS. Note that this simplifies
the requirements to guarantee global consistency on the DS

because only the main PM can write to it.
Data Movements: Data movements (migrations of repli-

cas) takes place when a replica needs to be moved (migrated)
from one server to another. After a movement, all replicas
undergo reconciliation to avoid inconsistencies that could
have arisen during the movement, i.e. the user writing data
while its master changes its location. The same applies when
a replica is scheduled to be removed. We do not propose a
new mechanism to handle such reconciliation events, but in-
stead rely on the semantic reconciliation based on versioning
proposed in other distributed systems (e.g. Dynamo [13]).

Data Replication and Consistency: The Replication
Manager RM runs on each server of the data back-end. The
main responsibility of RM is to propagate the writes that
take place on a user’s master to all her slaves using an even-
tual consistency model, which guarantees that all the repli-
cas will – with time – be in sync. Note that since SPAR relies
on a single master and multiple slaves configuration. This
avoids the inconsistencies arising from maintaining multi-
ple masters. A single master has the additional benefit that
inconsistencies can only arise due to failures or due to move-
ments produced by edge, node or server arrivals and not as
part of the regular operations of read and writes. Note that
the RM is not replacing the data-store, but different data-
stores need different implementations of the RM to adapt to
its interface. In this first iteration of SPAR we provide the
implementation of RM for MySQL and Cassandra although
other data-stores could be equally supported (i.e. Postgres,
Memcached, MongoDB etc.).

Adding and Removing Servers: The PM also con-
trols the addition and/or removal of servers into the back-
end cluster on demand. This process is described in Sec. 4
and evaluated in 5.

Handling Failures: Failure on the servers running the
data back-end are bond to happen, either because of server
specific failures, e.g. disk, PSU failure, etc. or because of
failures at the data-center level, e.g. power outages, network
issues, etc.

SPAR relies on a heartbeat-like system to monitor the

2The current centralized version of PM can handle 52 edge
creations per second in a commodity server.

health of the data back-end servers. When a failure is de-
tected the PM decides the course of action based on the
failure management policy set by the administrator. We
consider two types of policies, one that reacts to transient
failures and another one to permanent failures.

A permanent failure is treated as a server removal. In
this case, slave replicas of the master that went down are
promoted to masters and all their neighbors are recreated.
For more details see Section 4 and 5.

For transient failure events (short lived), one potential
option is to promote one of the slave replicas whose master
went down without triggering the recreation of her neigh-
bors. Consequently, the local data semantics is temporally
sacrificed. In this case, the system would only suffer a grace-
ful degradation since we can leverage a nice property of
SPAR. This property entails that the server hosting a slave
replica of one of the failed masters will also contain a large
portion of the neighbors of such master. Therefore, while
the promotion of a slave does not guarantee local data se-
mantics, it does still provide access to most of the user’s
neighborhood. To better illustrate this point let us take the
example of the Twitter dataset for 16 partitions. In this
case, 65% of users have more than 90% of their direct neigh-
bors present in the server that hosts the best possible slave
replica, which is the candidate to be promoted in the case of
failure. This solution should only be applied for extremely
short lived outages. Otherwise, the user experience of the
OSN would suffer and the system administrator would be
better off implementing the permanent failure scenario.

Current SPAR replication is not meant for high-availability
but for redundancy and to guarantee local data semantics.
However, high-availability in SPAR could be obtained in two
ways: one is to modify the formulation of the problem so
that there are at least K′ master replicas where the local data
semantics is maintained while minimizing MIN REPLICA.
This approach, however, is left for future work. The other
option is a simple brute force approach that mirrors the
SPAR system under K = 0 as many times as desired.3

6.2 Implementation Details
The RM sits on top of a data-store and controls and mod-

ifies its operations. The read events (e.g. selects) are for-
warded directly to the data-store without delay. However,
the write events (e.g.updates, inserts, deletes) need to be
analyzed and can be altered both for replication and perfor-
mance reasons.

Let us illustrate the inner workings of the RM with an
example of a write operation in MySQL. A user i wants
to create a new event w, which generates the following com-
mand to be inserted in MySQL: insert into event(iid,wid,w) ,
where iid and wid are the pointers to the user and the event’s
content. The RM will react to this command by obtaining
the target table event. The RM knows, through simple
configuration rules, that the event table is partitioned, and
thus the insert needs to be replayed in all servers hosting
the slave replicas of user iid. The RM queries its LDS to
obtain the list of servers to propagate the insert, and issue
the same insert command to the local MySQL. Addition-

3For instance, in the case of Twitter for 128 server, we could
obtain via mirroring three master replicas (with full local
semantics) with a replication overhead ro of 6.63. The one
master plus two slave replicas configuration (K = 2) would
result in a ro of 3.20.
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ally, this event will be broadcast to all the neighbors of the
user. For each contact j of i the application will generate
a insert into event-inbox(iid,jid,wid) and the RMmysql will
replay the same command to all the appropriate servers.

7. SPAR IN THE WILD: EVALUATION
In this section, we study the performance of SPAR on two

data-stores: MySQL (a traditional RDBMS) and Cassan-
dra (a Key-Value used in production). More specifically, we
compare SPAR against random partitioning (for Cassandra)
and full replication (for MySQL).

As the reference OSN application to be scaled we use an
open-source Twitter-clone called Statusnet [5], which relies
on centralized architecture (PHP and MySQL/Postgres).

Our testbed consists of a cluster of 16 low-end commodity
servers: the so-called “little engine(s)”. These servers are
interconnected by a Gigabit-Ethernet switch. Each server
has a Pentium Duo CPU at 2.33GHz with 2GB of RAM
and a single hard drive. The data of what Twitter was as of
end of 2008 (Sec. 5.1.2) is loaded in the data-stores.

7.1 Evaluation with Cassandra
Statusnet is designed to run on top of MySQL or Post-

gres. Therefore, to evaluate SPAR with Cassandra we need
to reproduce the functionality on Statusnet for the data
model specific of Cassandra (version 0.5.0). We define a
data scheme that contains information about users, updates
(tweets) and the list of update streams that the users sub-
scribe to. We implement the data scheme using different
columns and super columns.

To implement SPAR on top of Cassandra, first, we disable
the default random partitioner of Cassandra by creating iso-
lated independent instances of Cassandra. The Cassandra
nodes in our system do not communicate with each other.
So, we have full control of the data placement (users and
updates). We implement the Directory Service DS on top
of the same Cassandra nodes showing that we can piggy-
back on the underlying data-store infrastructure. The DS

is distributed across all servers to avoid bottlenecks.
The SPAR middle-ware for Cassandra is written using a

Thrift interface. We describe what the middle-ware does
for the canonical operation of Statusnet; retrieving the last
20 updates (tweets) for a given user. The middle-ware per-
forms three operations: 1) randomly select a Directory Ser-
vice node and request the location of the master replica of
the user by using the get primitive of Cassandra. 2) connect
to the node that hosts the master and perform a get-slice
operation to request the update-ids of the list of the 20 sta-
tus updates to be shown to the user, and finally 3) do a
multi-get to retrieve the content of all the status updates
and return to Statusnet.

As noted earlier in our evaluation we compare the per-
formance of Statusnet with the SPAR instantiation on Cas-
sandra and the standard vanilla Cassandra (with random
partition). We are interested in answering the following two
question questions: (i) What impact does SPAR have on the
response time as compared to random partitioning? and (ii)
How much does SPAR reduce network traffic?

To answer these two questions, we perform the following
set of experiments. We randomly select 40K users out of
the Twitter dataset and issue requests to retrieve the last
20 status updates at a rate of 100, 200, 400 and 800 requests
per second. Note that this requests are not primitive get/set
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operations on Cassandra but application level requests – a
user getting the status updates from her friends.

Examining Response Times: Fig. 10 shows the re-
sponse time of SPAR and the vanilla Cassandra using ran-
dom partitioning. We can see that SPAR reduces the aver-
age response time by 77% (400 requests/second). However,
what it is most interesting is the throughput in the aggre-
gate number of request per second given a realistic quality
of service. SPAR can support 800 req/s with the 99th per-
centile response time below 100ms. Cassandra with random
partitioning can only support 1/4 of the request rate with
the same quality of service, about 200 req/s.

Why does SPAR outperform the random partitioning of
Cassandra? There are multiple reasons and we discuss each
one in brief. First, Cassandra is affected by the delay of
the worst performing server. This is due to the heavy inter-
server traffic for remote reads.Our setting runs on Gigabit
Ethernet switches without background traffic and hence net-
work bandwidth is not a bottleneck, as Fig. 11 also shows.
The commodity servers, however, often hit network I/O and
CPU bottlenecks in trying to sustain high rates of remote
reads. With SPAR, as all relevant data is local by design,
remote reads are not necessary. A second and less obvious
reason for the better performance of SPAR has to do with
its improved memory hit ratio that comes as a byproduct
of the non-random partitioning of masters. Indeed, a read
for a user brings in memory from the disk the data of the
user as well as those of her friends. Given that masters
of her friends are on the same server with high likelihood,
and that reads are directed to the masters, there is a good
chance that a read for one of these friend will find most of the
required data already in memory because of previous reads.
The random partitioning scheme of Cassandra destroys such
correlations and thus suffers from a lower memory hit ratio
and the consequent disk I/O penalties.

Analyzing the Network Load: Fig. 11 depicts the
aggregate network activity of the cluster under various re-
quest rates. For random partitioning, requests are spread
among multiple nodes and multi-get operations significantly
increases the network load. Compared to a vanilla Cassan-
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dra implementation, SPAR reduces the network traffic by a
factor of 8 (for 400 reqs/sec).

7.2 Evaluation with MySQL
We now turn our attention to MySQL, a traditional RDBM

system. The first question we want to answer is: can SPAR
scale an OSN application using MySQL? This is impor-
tant as it allows developers to continue using the familiar
RDBMS framework without worrying about scaling issues.
Specifically, we want to answer if we can make Statusnet
deal with the demand of Twitter as of Dec. 2008.

We use MySQL version 5.5 together with the SQL data
scheme that is provided by Statusnet [5]. The schema con-
tains SQL tables related to the users (table user and profile),
the social graph (subscription), updates (notice) and the list
of updates per user (notice inbox ). We adapted our Twitter
dataset to the Statusnet data scheme, so that it contains all
information about users and status updates. We retrieve the
last 20 status updates (tweets) for a given user by perform-
ing a single query using a join on the notice and notice inbox
tables.

To stress-test our setup we use Tsung [6] and two servers
that we use to emulate the activity for thousands of con-
current users. We generate both application read requests
(retrieve the last 20 status updates for the user) and appli-
cation write requests (a user generates a new status update
and updates the inboxes for all her friends). Our experimen-
tal evaluation consists of multiple 4 minute sessions where
we query for the last status updates of a random subset of
users with a constant request rate. We make sure that every
user is queried only once per session, and that the requests
are spread evenly among servers.

Comparison to Full Replication: First, we check if
a scheme based on Full Replication can work in practice.
This would mean loading the entire Twitter dataset on all 16
servers and measuring the number of users that the system
can serve. The average 95th percentile of the response time
is 113ms for 16 req/s (1 request per second per machine),
151ms for 160 req/s, and 245ms for 320 req/s. As expected,
the 99th percentiles are even higher with 152ms for 16 req/s.
On the other hand, when we use SPAR, the cluster can serve
more than 2, 500 req/s with a 99th percentile of less than
150ms. This shows that SPAR using a MySQL data store
is able to withstand Twitter-scale read loads with a small
cluster of commodity machines, whereas a full replication
system cannot cope.

Note that this experiment shows that the same centralized
code of Statusnet that knows nothing about distributed sys-
tems can still support Twitter-scale loads when using SPAR.

Adding Writes: To further stress-test the system, we in-
troduce insertions of updates. We evaluate the effect of the
insertion of 16 updates/s (1 update/s per machine). In this
part we evaluate only SPAR (with MySQL), as full repli-
cation using MySQL performs very poorly. Note that the
insertion of a new status update to the system can generate
thousands of updates, since the system needs to insert to
the notice inbox table one entry for every user that should
receive the status update (to all the followers in Twitter
terminology). How we treat these inserts is crucial for the
overall performance. A naive implementation, that performs
single or multi inserts into the notice inbox can completely
saturate the system.

We group the inserts and control the rate at which we

introduce them in the system. Under this scenario, we show
that we can achieve a 95th percentile response time below
260ms for 50 read req/s and below 380ms for 200 read req/s
while a constant rate of 16 updates/s. We should note here
that the median response time in both cases is very low,
around 2ms. Performance will only get better as we add
more machines.

In this section, we have shown that using SPAR leads to
high throughput (reqs/sec) and better scalability when com-
pared to full replication solutions and random partitioning,
at the cost a very modest replication overhead.

8. RELATED WORK
To the best of our knowledge this is the first work to

address the problem of scalability of the data back-end for
OSNs. In this section we compare and contrast the approach
presented in this paper (and our prior work in the area [28,
29]) with related work in the literature.

Scaling Out: Scaling out web applications is one of the
key features offered by Cloud providers such as Amazon EC2
and Google AppEngine. They allow developers to effort-
lessly add more computing resources on demand or depend-
ing on the current load of the application [4]. This scaling
out however, is only transparent as long as the application is
stateless. This is the case of typical Web front-end layer, or
when the data back-end can be partitioned into independent
components. We deal with scaling of the application back-
end when data is not independent as in the case of OSNs by
providing means to ensure local semantics at the data level.

Key-Value Stores: Many popular OSNs today rely on
DHTs and Key-Value stores to deal with the scaling prob-
lems of the data back-end (e.g. Twitter is migrating to Cas-
sandra). While Key-Value stores do not suffer from scala-
bility due to their distributed design, they rely on random
partition of the data across the back-end server. This can
can lead to poor performance in the case of OSN workloads
(as we show in this paper). SPAR improves performance
multi-fold over Key-Value stores as it minimizes network
I/O by keeping all relevant data for a given request local to
the server. Keeping data local helps prevent issues like the
‘multi-get’ hole observed in the typical operation of Key-
Value stores[1].

Distributed File Systems and Databases: Distribut-
ing data for the sake of performance, availability and re-
silience has been widely studied in the file system and database
systems community. Ficus [15] and Coda [31] are distributed
file systems that replicate files for high availability. Farsite
is a distributed file system that achieves high availability
and scalability using replication [8]. Distributed RDBMS
systems like MySQL cluster and Bayou [33] allow for dis-
connected operations and provide eventual data consistency.
SPAR takes a different approach as it does not distribute
data, but maintains it locally via replication. This approach
is more suitable for OSNs since their typical operation re-
quires fetching data from multiples servers in a regular basis.

9. CONCLUSIONS
Scaling OSNs is a hard problem because the data of users

is highly interconnected, and hence, cannot be subjected to
a clean partition. We present SPAR, a system based on
partitioning of the OSN social graph combined with a user-
level replication so that the local data semantics for all users
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is guaranteed. By local semantics, we mean that all relevant
data of the direct neighbors of a user is co-located in the
same server hosting the user. This enables queries to be
resolved locally on a server, and consequently, breaks the
dependency between users that makes scalability of OSNs
so problematic.

Preserving local semantics has many benefits. First, it
enables transparent scaling of the OSN at a low cost. Sec-
ond, the performance benefit in throughput (requests per
second) served increases multifold as all relevant data is lo-
cal and network I/O is avoided. Third, network traffic is
sharply reduced.

We designed and validated SPAR using real datasets from
three different OSNs. We showed that replication overhead
needed to achieve local data semantics is low using SPAR.
We also demonstrated that SPAR can deal with the dynam-
ics experienced by an OSN gracefully. Further, we imple-
mented a Twitter-like application and evaluated SPAR on
top of a RDBMS (MySQL) and a Key-Value store (Cassan-
dra) using real traces from Twitter. We showed that SPAR
offers significant gains in throughput (req/s) while reducing
network traffic.
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