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Abstract

This research examines the ability of six popular web search engines, individually and col-

lectively, to locate URLs containing common marketing/management phrases. We propose and

validate a model for search engine performance that is able to represent key patterns of coverage

and overlap among the engines.

The model enables us to estimate the typical additional bene�t of using multiple search

engines - depending on the particular set of engines being considered. It also provides an estimate

of the number of URLs not found by any of the engines. For a typical marketing/management

phrase we estimate that the \best" search engine locates about 50% of the URLs, and all six

engines together �nd about 90% of the total.

The model is also used to examine how properties of a URL and characteristics of a phrase

being sought a�ect the probability that a given search engine will �nd a given URL. For example,

we �nd that the number of links within a web page increases the prospect that each of the six

search engines will �nd it. Finally, we summarize the relationship between major structural

characteristics of a search engine and its performance in locating relevant web pages.
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1 Introduction

The World Wide Web (WWW) is important to managers in three rather di�erent respects. First,

managers use it to engage in electronic commercial transactions as sellers or as buyers (Alba et al.

1997; Ho�man, Kalsbeek, and Novak 1996). Second, they use it to disseminate information to cus-

tomers or gather information as (business) customers, this function including both web advertising

(acquiring new customers) and after-sales support to retain customers (Bakos 1997; Burke 1996;

Ho�man and Novak 1996). Third, the web is emerging as a rich source of managerial information

that assists in decision-making, e.g. competitive intelligence, demographic information, market

trends and forecasts, general economic information, sources of external expertise or training, inno-

vative managerial tools, tactics and strategies, and regulatory and other governmental information.

Providers of such information include news organizations, governments, educational institutions,

corporations, and nonpro�t organizations (e.g. via press releases), etc.. Web search engines are

commonly used to help locate this kind of information, and it is this performance of such engines

that interests us here.

Search engine performance has begun to attract attention by both researchers and managers.

Selberg and Etzioni (1996) studied the nature of search queries and results from those searches

using various popular search engines, for the period July through September 1995. In a more

recent and comprehensive study of engine performance published in Science, Lawrence and Giles

(1998) examined the URLs returned for a large number of queries during December 1997. They

were particularly interested in the relative number of URLs returned by the various di�erent search

engines and in estimating the number of URLs not found by any (or all) search engines. Coverage

of those �ndings in The Wall Street Journal (1998) showed both the managerial interest in this

performance and also the controversy generated by the �ndings. With signi�cant advertising rev-
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enue at stake, those responsible for the various search engines are sensitive to assessments of their

relative performance. Indeed, such assessments have loomed large in the business press discussion

of the vast sums paid to acquire search engine sites.

In this study we will o�er the following contributions. First, we present and validate a model

for the performance of multiple web search engines in �nding URLs. We also analyze some natural,

relatively simple models (Rasch-type ability/di�culty models, and the capture/recapture model

used by Lawrence and Giles) and �nd that they fail to represent key aspects of search engine

performance (which the proposed model does contain). Second, we analyze the performance of six

popular web search engines in �nding marketing/management phrases. Selberg and Etzioni (1996)

studied all queries submitted to MetaCrawler, and Lawrence and Giles (1998) examined queries

from the scientists at the NEC Research Institute in Princeton. Neither focused on management

information. Third, we show how some characteristics of marketing/management phrases and

of URLs a�ect search engine performance. We also highlight the association between structural

characteristics of a search engine (e.g. size of universe covered, depth of search) and that engine's

search success. Fourth, our empirical model application allows us to do more than just \rate

the search engines", enabling us to describe the distinctive patterns of overlap and distinctiveness

among them. Finally, for these kinds of management phrase searches, we are able to estimate the

number of URLs not found by individual search engines, and indeed by the collection of all these

engines. We also can calculate the incremental bene�t in adding a particular search engine's results

to those already found by one or more engines. The next section o�ers a description of the search

process and search outcomes, some summary statistics regarding search engine performance, and a

conceptualization of factors thought to a�ect that performance. The subsequent sections develop

our model, validate it empirically, and use it to draw several kinds of substantive conclusions.
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2 Searching the Web for Marketing Information

A simple example will help illustrate the research issues of interest. In October 1998, we queried

each of six popular web search engines to �nd documents containing the phrase \mere exposure

e�ect". Alta Vista found 99 documents. Northern Light located 83 documents, though of course

many of these duplicated the ones from Alta Vista. HotBot found fewer URLs (49), but some had

not been discovered by either Alta Vista or Northern Light. Finally, engines Infoseek, Excite, and

Lycos found fewer documents (22, 21, and 9 respectively) but again some new pages were included.

Together, all six engines located 172 documents; so even the \best" search engine (for this phrase)

found less than 60% of this total (i.e. Alta Vista's 99 out of 172).

We should acknowledge at the outset that this study will not attempt to assess the relative

\value" of the various individual sites found, and indeed one might well be skeptical of any mech-

anism that claimed to do so. Di�erent searchers will no doubt have di�erent interests or needs.

Rather, thinking about this simple example leads directly to the �ve research questions that we do

mean to address:

1. Search Engine Performance Across Phrases

Would the search-result pattern above hold up for other marketing phrases? \Mere exposure e�ect"

is relatively new to marketing, and is more associated with academic research than with current

marketing management practice. Perhaps some engines would do better for longer-established

phrases, or those more prevalent among practitioners. Certainly, since web crawlers proceed from

document to document via the links provided, search engines may end up covering relatively sepa-

rate, disparate parts of the space of URLs. Considering the marketing phrase searched above, such

a propensity can be exacerbated by, for instance, the inclination of academic sites to link to other

academic sites (via connection to coauthors, references, etc.).
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2. Factors A�ecting Discovery of URLs

In the search example above, several URLs were found by almost all of the engines, while others

were located by only one. For a given search phrase, what makes some URLs \easy" to locate?

Obviously, in light of the web crawler process mentioned above, the more sites that link to a URL,

the easier �nding that URL will be. Of course, this measure is essentially impossible to observe. It

is also not directly controllable by a site that wishes to be found. Instead we focus on two factors

that are observable and (within limits) controllable: namely, the number of links on a URL (to

other documents), and the domain type (.com, .edu, .org, etc.). The former should be related to

URL discoverability because it indicates sophistication and connectedness of the document, and

may also stimulate reciprocal linkage (i.e. a site linked from this document electing to provide

a link back). The latter factor (domain type) may matter through a propensity for sites to link

within (rather than across) these types.

3. Search Engine Structural Characteristics

Although search engines' operating details are proprietary, they are known to di�er with respect to

some basic characteristics. We will summarize the apparent relationship between such structural

properties and the engines' search performance.

4. Overlap and Sequential Search

We are also interested in the way that patterns of overlap among the search engines determine their

incremental bene�t when combined. In our example above imagine that Alta Vista was the search

engine used �rst. Would using a second engine be expected to add substantially to the number of

documents found? What about a third? How many engines are needed to �nd the \lion's share"

of relevant documents? Which particular engine would be expected to add the most to, say, Alta

5



Vista's results? The proposed model will allow us to answer each of these questions.

5. How Much Information Did We Miss?

Using all six search engines we found cumulatively, 172 documents mentioning \mere exposure

e�ect". But how many documents did we fail to �nd? Note that any single URL's search results

for our six engines can be summarized by a binary six-vector, where the ith element is a \1" if

search engine i found the URL in question, and is a \0" if it failed to �nd the URL. There are of

course 26 = 64 such patterns, and for each phrase searched we can create the full frequency count

among these 64 patterns - except for one. The number of URLs associated with the (0,0,0,0,0,0)

vector is of course not available in the data, since this represents the number of URLs missed by all

six search engines. Of course, after creating a model that represents well the engines' web coverage

and overlap (by �tting the 63 patterns above) we will use it to forecast the frequency of this 64th

pattern - as it indicates the size of the remaining \undiscovered" part of the web.

To build a model that would address these �ve issues, we proceeded through four steps to build

an appropriate database.

Step 1: Marketing Phrases for Search

The marketing phrases searched needed to be diverse enough to represent an interesting universe,

and also vary speci�cally on the factors thought to a�ect search engine performance (i.e. the

substantive research question # 1 above). Accordingly, phrases were selected via three criteria:

1. they are relatively central to marketing thought, appearing in popular reference works (Ben-

nett et. al. 1995; Clemente 1992),

2. they are speci�c enough so that a web search need not be re�ned further to be potentially

useful (e.g. \marketing management" was found on 44,432 web pages by Alta Vista - too

6



many to be helpful without more detail), and

3. they span the two phrase dimensions discussed earlier: managerial versus academic; and

newer versus older. Five phrases were selected in each cell of the resulting 2 � 2 design

matrix, leading to 20 phrases overall.

Step 2: Phrase Search Via Search Engine

The six search engines examined in this study (Alta Vista, HotBot, Excite, Infoseek, Northern

Light, Lycos) are the most popular based on user awareness, popular press mentions, and inclusion

in previous studies and in metasearch programs (PC Magazine Online 1998; Beatty 1998). Note

that while Yahoo! is often mentioned by users as a \search engine", the search engine provided

on the site was at the time of our study powered by Inktomi, the same search engine used by

HotBot. The 20 phrases were searched using each of the six engines during October 1998. During

the search two properties of each located URL were recorded: the number of links contained on

that document (0-5, 6-10, or 10+), and the domain type for the URL (.com, .edu, .org, or \other")

indicating whether the site was commercial, academic, an organization, or other (the latter including

sites outside the US - e.g. non-U.S. academic sites). This URL information will allow us to address

the substantive research question #2 above.

Step 3: Integrate Search Results

As noted earlier the search result, for any located URL, can be summarized in a binary 6-vector.

Meaningfully comparing search results across di�erent search engines requires, however, substantial

care. The same document may be reached by di�erent alphanumeric strings, requiring that the

documents themselves be accessed and checked, both for similarity across engines' results and for

duplication within an engine's URLs. URLs were also checked to verify that they were active, and
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that they in fact contained the phrase in question. (Both Excite and Infoseek use heuristics that

may return URLs similar - but not identical - to the phrase searched. These instances were deleted

from the dataset.)

Step 4: Search Engine Characteristics

As in research issue #3, we want the ability to link search engine performance to the characteristics

of the six search engines. Since the number of search engines is small, it would not be useful to

formally incorporate these engine characteristics into the model itself - but we will be able to

investigate an association between overall search performance and structural properties of the

engines. The key properties of interest are size (the total number of pages indexed by the engine)

and several binary indicators of search engine capability. The latter includes Depth (whether an

engine searches an entire site without limit or not), Frame Support (ability to follow frame links),

Image Maps (ability to follow image maps), and Learns Frequency (whether an engine estimates

the frequency with which a page's content changes, and uses that information to determine the

frequency of site visits). Other search engine characteristics would be interesting to include (such

as number of pages crawled per day) but do not appear to be reliably measured and available

(Sullivan 1998). The search engine features above were taken from the Search Engine Watch site

(Sullivan 1998) and were measured for each engine as of August 4, 1998.

Table 1 shows the 20 marketing phrases searched, their categorization regarding newness and

academic/managerial, and the total number of URLs found by each search engine for each phrase.

Note that this table is not the complete data, but rather a summary. For each of the 1588 located

URLs, the data used in our model-development is a binary 6-vector together with the two URL

characteristics (# of links, domain type) and two phrase characteristics (as above).

As a further summary for each search engine, Table 2 shows how the URLs found are distributed
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across phrase and URL characteristics. The table entries provide the proportion of all URLs found

(by any engine) having a particular characteristic that were actually located by the engine in

question. For instance, Alta Vista located 52.1% of all managerial-phrase URLs that were found

by any of the six engines. It did a little better (53.5%) �nding academic-phrase URLs. Relative to

the engine's baseline level of performance across all phrases, Infoseek had the greatest skew toward

locating academic-phrase URLs (.163 academic versus .125 managerial) and Northern Light had

the greatest inclination toward managerial-phrase URLs (.462 academic versus .529 managerial).

Overall, Alta Vista had the best performance in �nding academic-phrase URLs while Northern

Light has the greatest success �nding marketing-managerial phrase URLs. Analogous conclusions

for other phrase/URL characteristics are available via Table 2. Table 3 provides the structural

characteristics of the six search engines.

Before developing our model of search engine performance, it is useful to note what would

happen if search outcomes for any given phrase were independent across search engine - i.e. if each

URL had some probability of being located (possibly engine-speci�c) and one engine's �nding the

URL told us nothing about the probability that any other engine would �nd it. In such a situation,

the substantive research questions #1 and #2 (e�ect of URL and phrase characteristics) could be

addressed by a separate simple model (e.g. logistic regression) for each search engine, and research

question #4 (overlap between engines) would have a very simple answer for any set of engines.

The independence assumption is also the linchpin of the most careful model published so far for

search engine performance (Lawrence and Giles 1998). Accordingly, we begin by considering this

assumption in detail.
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3 Are Search Engine Outcomes Independent?

The simplest, and arguably most natural starting point for representing the URLs found by multiple

web search engines is the model used by Lawrence and Giles (1998) to estimate the size of the web

(for science search queries). It is based on two assumptions. First, for any given search phrase

j, it imagines that any given search engine i �nds any one of the URLs containing that phrase

independently of its �nding other such URLs, and with some probability pij. Second, the model

assumes that the probability pij that search engine i �nds any particular URL containing phrase j

does not depend on the set of URLs found by any other search engine. This pair of independence

assumptions means that the frequency of URL �nds for any given phrase, for the set of search

engines, follows the multinomial distribution.

For a single URL containing phrase j, the data regarding web search engine outcomes can be

written simply as the binary six-vector (y1jk; y2jk; y3jk; y4jk; y5jk; y6jk) where yijk = 1 if the kth

URL for phrase j is found by search engine i, and is 0 otherwise. For URL k and phrase j the

likelihood function is

L(y1jk; y2jk; y3jk; y4jk; y5jk; y6jk) =
6Y

i=1

p
yijk
ij (1� pij)

1�yijk (1)

where pij is the probability that engine i �nds any given URL containing phrase j. Since the

URLs are exchangeable by assumption in this model, the likelihood for the data for phrase j is the

product of (1) across all URLs. (Of course in practice a partial likelihood will be used, since the

(0,0,0,0,0,0) vector will be missing.)

This independent multinomial model has much to recommend it. It is parsimonious: each search

engine i (for each phrase j at least) can be summarized by a single quantity - it's search success
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probability pij. The model can provide an estimate of the number of URLs not found. After any

number of search engines have been used, the expected number of new URLs from another search

engine h is simply (Nj �m)phj where m is the cumulative number of URLs already found and Nj

is the (unknown) number of URLs containing phrase j.

Lawrence and Giles expressed concern about the independence assumption and that concern

was well founded. We report in Table 4 the value for -2logL for this model, and the associated

BIC statistic. Four particular versions of the independent multinomial model were evaluated:

(1) constant p for all engines and phrases, (2) di�erent p for each engine but constant across

phrases, (3) di�erent p for each phrase but constant across engines, and (4) di�erent p for each

engine and phrase. A simple chi-square test on the value of -2logL rejects each of these four

models. Naturally, with over 1500 observations the power of such a test is very high, and may

not in itself present a strong case for substantial interdependence in search results across engines.

Instead, two other considerations will argue for a model that relaxes the independence assumption.

First, we will see later that these goodness-of-�t indicators can be improved substantially via a

spatial interdependence model. Second, we note that the BIC criterion (which penalizes highly

parameterized models for data over�tting) actually prefers, among independence models, the one

where location probabilities di�er only by search engine (and not by phrase). In other words, search

is characterized simply by six pi-values, one for each search engine.

The relative magnitude of these pi-values across engines is simply the total URL count by engine

at the bottom of Table 1. It is easy to show that an estimate of the number of URLs found by all

engines in any 3-engine set (denoted 1,2, t for convenience) under this model is:

n12t =
n212
n1n2

nt: (2)
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Taking, for instance, Alta Vista and HotBot as engines \1" and \2", the actual 3-way overlap

n12t with each of the remaining four engines, and the overlap predicted by the independence model

via (2), are :

Set of Search Engines Actual # URLs Predicted # URLs

Alta Vista, HotBot, Excite 50 22.4

Alta Vista, HotBot, Infoseek 37 22.7

Alta Vista, HotBot, Northern Light 100 77.5

Alta Vista, HotBot, Lycos 19 8.3

In short, looking across our 20 marketing phrases, the independence model substantially under-

predicts the actual overlap in search outcomes for these triplets of search engines. These positive

residuals suggest that two search engines with high coverage (Alta Vista and HotBot) are inclined

to subsume the other four engines. This suggests the use of Rasch-type ability/di�culty models

(Rasch 1966; Andersen 1973), whereby the probability that a given URL is located is a function

of both a \di�culty" parameter associated with that URL and an \ability" parameter associated

with the search engine. In this kind of model the \easy" URLs will tend to be found by all search

engines and the \hard" URLs only by the search engines that �nd many URLs overall. In other

words Alta Vista and HotBot will overlap somewhat, but the other search engines will overlap even

more so with this pair (and hence produce positive residuals above), since the URLs they �nd will

tend to be the \easy" ones already located by the high coverage engines. Of course, other search

engine triplets could show di�erent discrepancies than those observed above. Our main point is the

observation that independence does not appear to be a solidly supported assumption, and a model

where spatial location of search engines determine patterns of overlap may have value.
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4 A General Proximity Model

In this section, we provide initially a heuristic description of our modeling approach for WWW

data. This non-formal description is useful to describe our intuition, why we expect this class of

models to improve on simpler ones described earlier, and the expected limitations and subsequent

improvement in �t as our models become more complex. Needed notation and formal models are

presented after.

4.1 Heuristic and Graphical Descriptions

We posit a general class of models for the ability of WWW search engines based on the proximity

(\distance") from a speci�c engine to a given URL, and the \reach" of an engine. Our basic model

suggests that when an engine and URL are proximate, the engine is likely to �nd that URL, and

unlikely when not. In particular, each engine and URL are hypothesized to \sit" at an unknown

location in D-dimensional space. A URL's location is modeled to be centered around a mean

location determined by both its phrase and covariates speci�c to the phrase and URL (e.g. type of

phrase, URL domain extension, etc... as described in Section 2). Then, from an engine's location,

it \throws out a net" and probabilistically captures URLs within its reach. That is, there is a

monotonically decreasing relationship between distance from engine to URL and the probability a

URL is found by a given engine. Pushing this analogy farther, inferences of interest under the model

are then derived from: (a) the location of each engine in the space (that is, do \weaker" engines

�nd just a subset of those URLs found by the better engines, which would follow if all engines were

located at the same place, or do engines \carve" out their own locations in the space), (b) the size

of the net for each engine (in our model this is the ability of the engine), (c) the shape of the net

(are the underlying dimensions related), (d) the number of underlying dimensions D adequate to
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model the data, (e) the e�ects, if any, of phrase and URL covariates on URL's locations and hence

their probability of being found, and (f) an exponent determining how fast the probability of an

engine �nding a URL drops o� as a function of their proximity. In this research, we considered

three speci�c cases of the general proximity model.

As a point of reference for describing the proximity models, consider the graphical representation

of the independent multinomial model described in Section 3 and shown in Figure 1 panel A. The

horizontal line represents the (D = 1 dimensional) space of URL locations, and the various search

engines di�er in the degree to which they (probabilistically) cover this space, beginning at the

origin. The graph can be interpreted as having each engine stand at the origin and throw out a

line, capturing as many URLs (\�sh") as possible. Since engines with longer �shing lines (i.e. more

ability) reach out farther from the origin, they are likely to \catch" more URLs, although, which

URLs the better engine (engine 1) �nds is unrelated to the speci�c URLs found by the weaker

engine (engine 2). That is, via the independence assumption of the multinomial model, it is as if

the URLs randomly redistributed their locations in the time elapsed between the search by engine

1 and that by engine 2.

As an alternative to this independence assumption, we will examine a D = 1 dimensional prox-

imity model, depicted in Figure 1 panel B and denoted \Model 1" below. Here, each engine is

again located at the origin and casts its probabilistic coverage of the line according to its engine's

\ability". But unlike the independence model above, here the URL locations remain �xed. Ac-

cordingly, some URLs really are more di�cult to locate (i.e. those labeled \D" and \E" in panel

B) than others (e.g. \A" and \B") as they lie far from the origin. As a result, it is unlikely that

the search engines with lesser ability will �nd URLs not found by the better engines. As suggested

earlier in Section 2 (and con�rmed below in Section 5.1) this feature of Model 1 does not �t the

data particularly well. (Even the weakest engine Lycos �nds URLs not found by other engines).
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This suggested the extension of Model 1 in two ways under our general proximity model structure.

First, in Model 2 (Figure 1 panel (C)) we extend to D = 2 dimensions yet leave all of the engine

locations at the origin. A more general version considered in Model 3 (Figure 1 panel (D)) also

allows the engine locations to vary - i.e. as suggested earlier, a search engine may \stake out" a

distinctive part of the URL space not well covered by other engines. As shown below, the results

indicate that Model 3 is necessary to provide an adequate �t to the pattern of web search results

for marketing information.

4.2 Model Notation, Development, and Computational Approach

We consider the case described in Section 2 where each of i = 1; : : : ; I search engines are utilized

on the WWW to locate URLs for each of j = 1; : : : ; J phrases. Let Kj denote the total number of

distinct URLs found for the j-th phrase (by any of the engines) and yijk a binary outcome where

yijk = 1, k = 1; : : : ;Kj , if the k-th URL for the j-th phrase is found by engine i, and 0 otherwise

(as in (1), page 10). The collection of all outcomes yijk is denoted Y . In addition, for each URL we

obtain covariate vector xjk = (xjk1; : : : ; xjkP ) in order to identify known characteristics of phrases

and/or URLs that may make them harder or easier to �nd. The collection of all covariates is

denoted X.

We posit a proximity model for pijk = Prob(yijk = 1) de�ned as a function of the following

engine and URL speci�c parameters. Let �ti = (�i1; : : : ; �iD) and 
tjk = (
jk1; : : : ; 
jkD) denote the

location of the i-th engine and k-th URL for phrase j in D-dimensional space. Additionally de�ne

�i, aD�D dimensional scaling matrix for engine i, and dijk = d(�i; 
jk) = (�i�
jk)
t��1i (�i�
jk), a

squared Mahalanobis distance between engine i and the k-th URL for phrase j. Thus, the diagonal

elements of �i are the abilities (\reach") and the o�-diagonal elements indicate the covariation of
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abilities for engine i in the D dimensions.

We assert a model for pijk as a function of dijk given by

pijk =
1

1 + duijk
(3)

where (as described above) u de�nes the rate at which the probability an engine �nds a given URL

drops o�. In general, spatial/distance models have been utilized in other marketing contexts, espe-

cially brand choice (Elrod 1988; Kamakura and Srivastava 1984). We note that (3) is equivalent to

logit(pijk) = �u � log(dijk), a logistic link where u is the slope of regressor log(dijk). Assuming con-

ditional independence of engines, phrases, and URLs within phrase this yields a product Bernoulli

likelihood for the unknown parameters 
1 = (�1; : : : ; �I ; 
11; : : : ; 
JKJ
;�1; : : : ;�I ; u) equal to

p(Y j
1) =
Y
i

Y
j

Y
k

(
1

1 + duijk
)yijk(

duijk
1 + duijk

)1�yijk (4)

As commonalities are likely to exist among the engines, the phrases, and the URLs, we extend

the model for Y given in (4) to include a set of prior distributions for 
1 allowing for the sharing of

information across units. The choice of priors for the components of 
1 were made in the following

manner. Since the six engines that we consider here represent the engines of interest, we treat the

engine speci�c parameters as �xed e�ects and put non-informative priors on �i;�i, i = 1; : : : ; I.

A non-informative prior is also adopted for u re
ecting our lack of knowledge regarding this pa-

rameter. In contrast, it is of interest to summarize the location of phrase j for which we may

regard 
jk, k = 1; : : : ;Kj as a random sample of URLs drawn from a population distribution. By

convention and for computational convenience, we put a hierarchical multivariate normal-Inverse

Wishart prior structure on the URL locations:
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jk � MVND(�j + �xjk;�j) (5)

�j � MVND(��;��))

�j � W�1
� (S)

where MVND(x; y) denotes a D-dimensional multivariate normal distribution with mean vector x

and covariance matrix y, �j = (�j1; : : : ; �jD) the mean location of phrase j, � a D�P dimensional

coe�cient matrix where �dp is the slope for the p�th covariate in dimension d, �� = (��1; : : : ; ��D) the

population mean of the phrase locations, �j and �� are D�D-dimensional covariance matrices for

phrase j and the population of phrase means, andW�1
� (Q) denotes an Inverse-Wishart distribution

with � degrees of freedom and scale matrix Q. The values of � and S were chosen as uninformative

allowing the data to fully specify the values of �j . As well, a non-informative prior distribution was

utilized for �. We denote the prior level model parameters by 
2 = (�1; : : : ; �J ; �;�1; : : : ;�J ; ��;��)

and the distribution on the prior level parameters by p(
1j
2).

Inferences for the model parameters 
1 and 
2 were derived by obtaining samples from the

marginal posterior distributions p(
1jY;X) and p(
2jY;X) using a Markov chain Monte Carlo

(MCMC) sampler (Gelfand et al. 1990, Rossi et al. 1996). For each of Model 1, Model 2, and

Model 3, we report results obtained by running three independent chains of the sampler for 3000

draws from overdispersed starting positions, discarding the initial 500 draws of each chain after

determining convergence (Gelman and Rubin (1992)), and estimating the quantities of interest

using the remaining 7500 draws. Further details of the computational methods are provided in the

Appendix.
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5 Results

5.1 Model 1: One-dimensional ability/di�culty model

We �rst considered a simple special case of the general proximity model de�ned by (3), (4), and (5)

which consisted of a D = 1 dimensional model with all engines located at the origin �1 = : : : �I = 0.

To identify the model, we set as a reference point �1 = 1, the ability of Alta Vista indexed as

i = 1, and set the rate factor u = 0:5. This model, in which each engine (\examinee") has a

unidimensional ability �i and each URL has a unidimensional location 
jk (\test item di�culty")

is similar in spirit to the Rasch (1960) model commonly used in the modeling of educational testing

data.

Model 1 was applied to the set of 20 phrases and 1588 URLs described in Section 2. A summary

table of results for engine abilities, presented as �i is given in column 2 of Table 5. The ordering

of engine abilities suggested (Alta Vista, Northern Light, Hot Bot, Excite = Infoseek, Lycos) is

unambiguous in all comparisons (true for all 7500 obtained draws) except for the comparison (a)

Alta Vista > Northern Light, p = 0:78 and (b) Excite � Infoseek, p = 0:48. The results from

Models 2 and 3, better �tting models, described later will further re�ne these relations.

Inferences under Model 1 regarding the e�ects of the phrase and URL covariates (i) domain

extension: .edu, .com, .org, other, (ii) # of Links on the URL page: 0-5, 6-10, 10+, (iii) Type of

Phrase: Managerial/Academic, (iv) Age of Phrase: Newer/Older, and (v) the interaction between

(iii) and (iv), on the mean of URL locations 
jk and hence pijk are given in column 2 of Tables

6 and 7. In Table 6, we report the posterior median, standard error, and probability of the e�ect

being greater than 0 for each covariate. Table 7 gives the adjusted phrase mean for URLs with a

given covariate level. To interpret these �ndings, we note that all engines for Model 1 are located
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at the origin and hence any positive coe�cient suggests that the covariate level makes URLs of

that type harder to �nd and vice-versa. We observe strong evidence that URLs with fewer links are

harder to �nd than those with the most number of links (10+), and modest evidence that URLs

having domain extensions .edu, or .org are slightly easier to �nd. Other inferences related to the

parameters were: (a) there was no signi�cant di�erence in the phrase locations (posterior median

of �� = 0:001) which is consistent with the stable hit rates for each engine by phrase reported in

Table 1 and the log-likelihoods for various models reported later in Table 10, and (b) URL variances

�j were inversely related to the number of URLs found for each phrase (r = �0:85).

A more detailed and informative look at the performance of Model 1 is presented in columns 3-6

of Table 8. Here we consider the number of URLs showing each of the 26 = 64 possible engine-hit

patterns. The table provides the observed number nobs for each pattern (excluding (0,0,0,0,0,0)),

as well as the 2.5%, 50%, and 97.5% percentiles for the predicted frequency of that pattern. Some

interesting residuals are evident. First we note that Model 1 tends to underpredict the number

of unique URLs found by each engine as seen in the unique engine-hit patterns 32, 48, 56, 60,

and 62 (pattern 63 is slightly over-predicted). Secondly and related to the underprediction in the

number of uniques, Model 1 also tends to overpredict the number of URLs found by exactly two

engines as seen in patterns 16, 24, 28, 30, 44, 46, 47, 52, 54, 59, and 61 (patterns 31, 55, and 58 are

adequately �t, and pattern 40 is underpredicted). These results were not surprising as suggested

in our heuristic description of Model 1 since each engine is located at the origin and casting its

\�shing line" in the same direction.

One further inference that can be derived from the model is an estimate of the number of URLs

that are missed by all six of the engines. This question has managerial relevance from two per-

spectives. One, a manager searching for URLs on a speci�c topic may wish to know the fraction of

those related URLs he or she is likely to �nd by using these six engines. A second issue relates to
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the owner of a URL wanting his or her webpage to be found. Under the model, we can compute

the posterior distribution of the number of URLs not found, K, by noting that

P(all engines miss a URL) =
Y
i

(1� pijk)) (6)

P(at least one �nds it) = 1�
Y
i

(1� pijk))

nobs = (1�
Y
i

(1� pijk)) �K )

K =
nobs

1�
Q

i(1� pijk)

These results are shown in pattern 64 and suggest that the 95% posterior interval for the number

of missing URLs for the 20 phrases is (253.94, 330.30) with posterior median 283.43. This indicates

that Model 1 predicts 283:43=(1588+283:43) � 15% of the URLs are missed by using all 6 engines.

5.2 Model 2 and Model 3 Results

We considered two additional special cases of the general proximity model to improve on Model

1. Model 2 consisted of a D = 2 dimensional version of Model 1 where each engine was located

at the origin (�11 = �12 = : : : �I1 = �I2 = 0). As a scale identi�ability constraint we set �11, the

ability of Alta Vista on dimension 1, equal to 1. By de�nition, the addition of a second dimension

would improve the �t over Model 1; however, we suspected that locating each engine at the origin,

as per a pure ability/di�culty model, would still provide an inadequate �t to the data. In Model

3, we generalize Model 2 to allow individual search engines to carve out a distinctive portion of

(2-dimensional) URL space, i.e. the engine locations (�i1; �i2) were allowed to vary. In �tting Model

3, we set �11 = �12 = 0, �21 = 0, restricted �31 > 0, and put �11 = 1 as shift, y-axis rotation, x-axis

rotation, and scale identi�ability constraints respectively.

Model 2 and 3 results for engine abilities �i11;�i22 and the correlation between dimensions
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�i12 is given in Table 5 columns 3-8. A graphical representation of the engine performances for

Model 3 is given in Figure 2, panels A and B. The results suggest that there are indeed two unique

dimensions in which each engine operates. Model 2 �ndings give the ordering in dimension 1 of

Northern Light, Alta Vista, HotBot, Excite, Infoseek, and Lycos whereas dimension 2 results give

the ordering Alta Vista, Northern Light, HotBot, Infoseek, Excite, and Lycos. This is consistent

with the Model 1 �ndings of an ambiguous ordering of Alta Vista versus Northern Light and Excite

versus Infoseek. However, we note that the total \area" of the space covered by Northern Light

is superior to that of Alta Vista as its posterior median abilities (2.670, 1.020) suggest greater

coverage than Alta Vista's of (1.000, 1.760). These �ndings are replicated in Model 3 in which

Northern Light is far superior to Alta Vista on dimension 1 (3.720 versus 1.000) and almost equal

on dimension 2 (1.870 versus 1.960). This is suggested by Northern Light's high number of unique

�nds (pattern 62), indicating its location far from the other engines, but still high hit rate 785/1588

(i.e. high ability to \compensate" for a distant location). The remaining ordering of engines for

Model 3 are similar to those described for Model 2.

The engine locations for Model 3 are given in Table 9 (also seen in Figure 2) and suggest that the

engines do carve out di�erent locations in the 2 dimensional space. Northern Light, and HotBot

are located the farthest distance from Alta Vista indicating their abilities to have unique �nds.

Infoseek and Lycos are located \half-way" between Northern Light and Alta Vista, and in a sense

are \maximizing" their ability to �nd URLs that happen not to be found by either of the two best

performing engines. Excite's location near Alta Vista suggests, as described more fully in Section

6.3, that the additional bene�t of using Excite if Alta Vista has already been used is less than that

for Infoseek, despite the fact that they are \equally able" engines.

The e�ects of the phrase and URL covariates on dimensions 1 and 2 for Models 2 and 3 are

given in Tables 6 and 7. The posterior probabilities of the e�ects being greater than 0 (Table 6
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columns 4,6,8,10) indicate that in fact domain extension, # of links, and type and age of phrase do

have a signi�cant impact on the mean phrase location for a given URL. To interpret their e�ects

on the probability that a given URL is found, consider Table 7 which gives the coordinates of the

mean phrase location for a URL with each of the given covariate attribute levels, and that of a URL

with each covariate level at the baseline condition. Since under Model 2, all engines are located

at the origin, and the mean phrase under the baseline condition is at (0.130,-0.080) any covariate

level that brings the phrase mean closer to the origin will increase the probability a URL is found

and vice-versa. The results indicate that less than 10+ links and managerial phrases move the

mean farther from the origin and hence lower the probability these URLs are found. The domain

extension .com, .org, and the interaction of new and managerial phrase condition move the mean

phrase locations closer to the origin. The remaining covariate levels have results which depends on

the ability of a given engine in each dimension. The covariate-e�ect results for Model 3 generally

need to be examined separately for each search engine as the locations of the engines vary. This

examination is straightforward, using the phrase/URL locations from Table 7 and the search engine

locations from Table 9. The results for Model 3 do however indicate one consistent �nding across

search engines: the 0-5 and 6-10 Link conditions move the mean phrase locations further away from

the locations of the engines decreasing the predicted probability they are found. For the remaining

cases, the results depend on the covariate and the speci�c engine.

A more detailed analysis for Models 2 (columns 7-9) and 3 (columns 10-12) of the 26 engine-hit

patterns with observed counts nobs and 2.5%, 50%, 97.5% quantiles is provided in Table 8. We

observe a signi�cant improvement in Model 3 �t for the uniques (patterns 32, 48, 56, 60, 62, 63)

relative to Models 1 and 2. We also note that for 14 of the 15 engine pairs (excluding pattern 59)

the 95% interval for Model 3 contains the observed �nd count compared to 3 out of 15 for Model

1 and 12 out of 15 for Model 2. An estimate of the fraction of URLs not found is also obtained
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in pattern 64. The estimates under Model 2 (174.756/(1588+174.756)�10% and that for Model 3

(192.704/(1588+192.704)�11% are consistent with each other and suggest that these six engines as

a whole, for these 20 phrases, cover a signi�cant proportion of the total URLs. A global comparison

of model �t is presented next.

5.3 Model Comparison and Cross-Validation

A global goodness-of-�t comparison was performed for each of Models 1 - 3 against the following

reasonable and simple \strawman" independence models for the data: (1) constant p for all engines

and phrases, (2) di�erent p for each engine but constant across phrases, (3) di�erent p for each

phrase but constant across engines, and (4) di�erent p for each engine and phrase. These are of

course the special cases of the independent multinomial model discussed earlier. Table 10 presents

the number of parameters, -2 * loglikelihood (-2logL) and the BIC criterion for each model. The

results for Models 1 - 3 are the mean value of -2logL and BIC averaged across all 7500 MCMC

draws.

The relative performance among these seven models is assessed by comparing the di�erence

in -2logL across a pair of models with the �2 distribution having degrees of freedom equal to the

di�erence in number of model parameters, or by using the BIC criterion. (This chi-square test

is strictly appropriate among the four independence models, and among Models 1-3, since these

2 groups each represent a set of nested models. It is also defensible in comparing Model 3 with

the four independence models, since the latter group are a limiting case of Model 3. In comparing

Models 1 and 2 with the independence models, the chi-square test is a heuristic.) In the end, Model

3 is selected using both criterion. Interestingly, we note that Model 1 does not defeat the simple

model of constant p for each engine and phrase or a di�erent p by engine in terms of -2logL or BIC
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and only defeats two models in terms of BIC.

To assess the predictive ability of our model, we employed a version of Bayesian cross-validation

(Rust and Schmittlein 1985) where we dropped out in turn each of the 1588 URLs, re-estimated

the model for each reduced data set, and predicted the engine �nd pattern for the left our URL. To

make this approach computationally feasible under a MCMC simulation structure, we employed

the method of Bradlow and Zaslavsky (1997) in which case deletion of URLs is implemented by

importance reweighting the parameter draws from the full data posterior distribution. Due to

the conditional independence structure of the likelihood given in (4), the importance reweighting

scheme is trivial and computationally cheap in that each parameter draw is reweighted for URL

jk by the inverse of the contribution of the likelihood of that observation to the total likelihood,

i.e. p(yjkj
1;
2)
�1. The total number of predictions made under this approach 9528 (1588 URLs

by 6 engines) provides an adequate basis for validation. The results of the validation experiment

indicated that Models 1-3 respectively were able to predict 58%, 72% and 81% of the URL correctly

(all results signi�cant at the 0:05 level) suggesting an adequate predictive ability of the modeling

approach, and a substantial preference for the search-engine spatial locations in Model 3.

6 Discussion and Conclusions

We set out to better understand the performance of popular web search engines in �nding marketing

phrases. This required development of a model (Model 3) able to capture distinctive patterns

of overlap and coverage among the engines. Furthermore, we wanted to understand how some

characteristics of the phrase being searched, and of the URL being sought, would a�ect search

outcomes for particular engines. As discussed in Section 5.2, two phrase characteristics (newer/older

and managerial/academic) and two URL characteristics (number of links, domain type) signi�cantly
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a�ected search engine outcomes. The e�ect of number-of-links happens to be consistent across

engines: the more links, the more likely the document will be located. Given the disparity in web

engine coverage patterns (as in Figure 2), the other substantive e�ects di�ered by engine. For

instance, a search for an academic phrase (as opposed to managerial) aided Infoseek's prospect for

locating URLs, but hindered that of Northern Light.

To elaborate on our empirical and model-based results we conclude by addressing four simple

questions:

- What search engine \works best"?

- Why do certain search engines �nd more URLs than other engines?

- What are the bene�ts to sequential search?, and

- How much information is still unaccounted for?

6.1 What Search Engine \Works Best"?

We again acknowledge that \best" here means simply locating more URLs containing the desired

reference marketing phrase. Overall, based on the Model 3 estimates in Table 8 (and consistent with

the results in Table 1) we can make �ve simple statements concerning the \best engine question":

1. Overall, for a randomly chosen marketing phrase and URL, the search engine most likely to

�nd it is Alta Vista. BUT,

2. Northern Light is a very close second, and in fact does slightly better than Alta Vista in

�nding the managerial phrases, and
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3. HotBot is a very respectable third, locating a little over 50-60% as many URLs as Alta Vista

or Northern Light,

4. Excite and Infoseek trail more substantially, locating 20-30% as many documents as the two

leading engines, and

5. Lycos found 10-15% as many documents as the two leaders.

Of course, these �ndings pertain speci�cally to the time period of search (October 1998), the

information domain of interest to us (marketing phrases), and the particular 20 phrases selected.

With respect to this last restriction, however, we note that the variation in mean locations across

phrases (after accounting for our covariates) was very small. (The variance across phrases in

the baseline mean phrase location (��1; ��2) from Table 7, is only .0027 for ��1 and 0.002 for ��2.)

That is, another set of 20 phrases drawn at random from our marketing-phrase universe would

have essentially no chance to change our �ndings. We next consider possible explanations for the

di�erential performance of the engines.

6.2 Why Do Certain Engines Find More URLs?

Research question 3 in Section 2 asked how structural characteristics of search engines would a�ect

the observed search results. Recall that some fundamental measures of this sort were provided

in Table 3. Since the number of popular search engines (here 6) is small relative to the infor-

mation in this table, it was not desirable to embed these features formally in our URL-location

model. Armed, however, with overall performance statistics engine-by-engine we can conduct an

exploratory analysis linking search engine properties to overall search e�ectiveness.

Of course, the factor that looms largest in such an analysis is search engine size - i.e., the total
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number of web pages indexed by that engine. Not only would it be extraordinary if \size did

not matter", but it could be well argued that \size is everything", i.e. that the number of URLs

found by search engine A relative to engine B is entirely predicted by their relative sizes. This last

hypothesis was essentially tested with the independence model of search outcomes, and rejected,

in Section 3. In other words, our Model 3 with search engines that are somewhat distinct in the

space that they cover (as in Figure 2) argues that structural characteristics beyond size may have

an impact on search outcomes, and motivated us to examine the full set of characteristics in Table

3.

Accordingly, our pro�ling search outcomes based on engine characteristics was done in two

sequential steps. The �rst examined the relationship between size and overall URLs found. The

second looked at any deviations from a \size/total-URLs" connection to see if those deviations are

associated with other engine properties from Table 3. Essentially, the factor size represents a very

simple \par" model for engine performance, and we examine in step 2 engines that overperform

(and underperform) relative to size.

Table 11 reports the results of these analyses. Columns (a) and (b) show clearly that our

marketing phrase search outcomes are correlated substantially with search engine size (� = 0:833).

They also show that size is far from the only factor that matters. Column (c) reports the ratio

of URLs found to engine size. The variation in these values shows that much more is going on in

search engine success than simply indexing more pages. Based on column (c) three of the search

engines did substantially better in locating URLs than their size would indicate: Northern Light,

Alta Vista, and Infoseek. At the other extreme, note that Lycos not only was tied for smallest

size; but it also found fewer URLs relative to its size, in this study, than any of the other engines

examined. Taking the overperformance of Northern Light and Alta Vista alone, one might suggest a

convex relationship between size and URLs found (increasing returns to size) as opposed to a linear
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one posited in column (c); but this explanation is inconsistent with HotBot's underperformance

and with Infoseek's overperformance.

Instead, we sought to understand the variation in column (c) via the other search engine char-

acteristics from Table 3. Speci�cally, we created a simple index of search sophistication from the

characteristics Depth of Search, Frames Support, Image Maps, and Learns Frequency. For each

engine, we summed the binary indicators for each of the four variables (\1" = more sophisticated

search, \0" = less sophisticated) and report the resulting index in Table 11 column (d).

Our measure of sophistication does a good job of explaining which engines overperform relative

to their size. The three overperforming engines in column (c) are also leaders with respect to the

sophistication index - though Infoseek and HotBot were admittedly tied. Overall, the correlation

between overperformance in column (c) and the sophistication index in (d) is � = 0:658, which shows

that these structural properties of search engines are substantially related to engine performance,

and in a way not re
ected in the engine's size.

6.3 Sequential Search

One practical question of managerial interest is \which search engine should I use?" We believe

that the previous two subsections summarize what our data and modeling say about that issue.

Another practical question is \Now that I have used search engine X should I do an additional

search, and if so what engine Y should I use?" Let's examine the �rst part of this question. Based

on the results for Model 3 (Table 8), Alta Vista would be one's best single search engine choice

and it is expected to �nd 48% of the marketing phrase URLs that exist. This is pretty good, but

there is still plenty to �nd. More to the point, there is still plenty that can readily be found. Now

turning to the second part of our question above, if one added a second search engine after using
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Alta Vista, which should it be? Figure 2 by itself does not provide a clear answer. Instead, this

�gure shows that a putative case could be made for four of the other engines. HotBot's coverage

does not overlap much with Alta Vista's, but Northern Light also does not overlap completely and

covers a great deal of the URL space. Alternatively, Alta Vista will not actually �nd all URLs in

its Figure 2 coverage area as indicated by the probability values 0.5 and 0.3 for the iso-probability

curves, and many URLs exist to be found close to the origin. Excite and Infoseek are centered near

the origin and accordingly are well-positioned to locate those residual URLs.

As it turns out, Northern Light is easily the best choice here for �nding additional URLs. This

can be established both by Table 8 using the actual search pattern �nds (column 3) or Model 3's

predicted search pattern outcomes. For our purposes it will su�ce to simply tally the incremental

URLs (not found by Alta Vista) for each of the remaining �ve engines. These are, in order, Northern

Light (actual incremental = 443, predicted incremental using Model 3 = 468), HotBot (actual =

271, predicted = 259), Infoseek (actual = 136, predicted = 124), Excite (actual = 110, predicted

= 109), and Lycos (actual =35, predicted = 42). Thus we conclude that in general it is important

to consider both overall coverage ability and overlap in selecting combinations of search engines.

6.4 How Much Information Is Still Unaccounted For?

We have seen that combined search outcomes from multiple engines improves greatly on any one

engine's performance. Yet, how much marketing information remains unlocated, even after using

all of our six search engines? For our 20 marketing phrases, the results in Table 8 provide an

answer to that question. Based on the estimate from Model 3, the fraction of total relevant URLs

missed by all six search engines is just 10.8% (192.704/1786.967). So the search engines collectively

�nd 89.2% of all URLs. Given the small variation in phrase location for our 20 marketing phrases
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searched, the reader should feel con�dent that the search engines cover about 90% of what exists

to be found for these kind of phrases.

This is quite di�erent - and much better - than the web coverage estimated by Lawrence and

Giles (1998) for their scienti�c-phrase searches. There, the six search engines were estimated

to cover about 60% of the indexable URLs. Two explanations for the discrepancy across studies

suggest themselves readily. First, the estimated number of URLs not found could be highly sensitive

to the particular model speci�cation selected. As we have seen, the data reject the independent

multinomial model used by Lawrence and Giles to estimate this quantity, as that model does not

e�ectively capture the patterns of overlap for sets of engines. So if we had to select one model

to estimate the size of the web we would propose our Model 3 as a more appealing approach.

Nonetheless, if the estimated web size is so sensitive to model speci�cation one might well question

the ability of any of these models to provide a reliable estimate, at least without exhaustive checking

of individual assumptions of the model. Fortunately, this situation has not arisen. While we do not

recommend using the independent multinomial model, its estimate of cumulative URL coverage by

our six search engines (across all twenty phrases) is 89.6% - very close to the value found using

our Model 3. In short, while the independent multinomial model methodology is suspect, it too

indicates high coverage of marketing information by the set of search engines. Accordingly, the

di�erence between our results and those of Lawrence and Giles does not stem from hypersensitivity

to model assumptions.

This brings us to the second explanation for the di�erence; namely, that these kinds of mar-

keting/management documents are relatively easy to locate. While we cannot prove this, it is a

reasonable hypothesis. Parts of the web are of course much more \active" than others, with respect

to both availability of hyperlinks from one document to another, and the degree of use of those

links. This interconnectedness is the key to a search engine's performance. Documents containing
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our marketing research and marketing management phrases may well be relatively active in this

respect. That is, other web documents may be particularly likely to link to the commercial sites

(e.g. company descriptions of a marketing technique), educational sites (e.g. university research

available on the web) or organizations' sites (e.g. sponsored research) that contain the information.

While our results do not say that web-based marketing information providers can simply count on

search engines bringing multitudes to their location, they do indicate that much of the marketing

information currently on the web can be located readily - if one uses multiple search engines.

We hope that this paper has provided some useful data, and some insight, concerning use of

web search engines to �nd managerial information. Our proposed (and validated) spatial coverage

model provides both a \snapshot summary" of the search engines vis-a-vis each other (as in Fig-

ure 2), and also yields predictions regarding cumulative performance of engine combinations. Of

course the search engines themselves will evolve, and patterns of coverage and overlap can change

accordingly. Nonetheless, our model framework should continue to provide a basis for summarizing

these patterns. Furthermore, we have shown that certain characteristics of search engines, search

phrases, and URL locations, a�ect the probability that a given engine will locate a given URL

containing a given phrase. The marketing information base on the web is evolving - and expanding

- very rapidly. For many purposes it has (and will continue to) outstrip the ability of managed

directories, lists, and the like to provide focused useful direction - or even to keep up with change.

The web search engines are well positioned to meet this challenge in the future, and currently they

collectively - if not individually - can do so for marketing information.
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Appendix

Inferences for parameters 
1 and 
2 are obtained from the marginal posterior distributions

p(
1jY ) /

Z
p(Y j
1)p(
1j
2)d
2; and (7)

p(
2jY ) /

Z
p(Y j
1)p(
1j
2)p(
2)d
1 (8)

de�ned by the likelihood and priors given in (4) and (5). The non-conjugate likelihood and prior

structure prevent closed-form integration of (7) and (8). The approach taken here to solve these

intractable integrals is iterative simulation via a Markov chain Monte Carlo (MCMC) sampler.

This approach states that under certain regularity conditions, samples from (7) and (8) may be

obtained by repeatedly sampling values 

(t+1)
1 from the conditional distribution p(
1jY;


(t)
2 ) and



(t+1)
2 from p(
2jY;


(t+1)
1 ) until convergence, and treating draws thereafter as draws from the

desired marginal posterior distributions.

Unfortunately, for our model, the conditional distributions p(
1jY;

(t)
2 ) necessary to straightfor-

wardly implement an MCMC sampler can't be sampled from directly. We note that the conditional

distribution of p(
2jY;

(t+1)
1 ) can be sampled directly due to the conjugate multivariate normal -

Inverse Wishart prior structure chosen for 
1. To sample 

(t+1)
1 from p(
1jY;


(t)
2 ) we implemented

a Metropolis-Hastings jumping algorithm (Hastings, 1970) where for each parameter that was un-

constrained, we utilized a symmetric Gaussian jumping distribution with mean at the previously

drawn value 

(t)
1 , and variance set to provide a high acceptance rate for the draws. For those

parameters constrained to the positive real line (variances, u, and �31 in Model 3) we utilized a

Gamma distribution kernel with shape parameter k(

(t)
1 )2 and scale parameter k


(t)
1 which has

mean equal to the previous draw 

(t)
1 and variance 1=k. The value of k was set di�erently for each
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parameter to obtain an adequate acceptance rate.

Three independent streams for each of the three models was running using overdispersed starting

values obtained from an initial run of the sampler. Computing time for Models 1-3 was 3, 12, and

14 seconds per iteration on an HP7000 workstation using Fortran 77 code.
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Table 1: Number of URLs Found By Search Engine and Marketing Phrase. Manag. = 1 indicates
a managerial phrase, 0 an Academic phrase. Newer = 1 a newer phrase, 0 an older phrase.

Search Engine� Total:

Phrase Manag. Newer AV HB EX IS NL LY 6 Engines


anker brand 1 1 9 9 1 6 5 0 19
umbrella branding 1 1 38 21 7 4 51 0 76
second mover advantage 1 1 8 9 4 2 20 1 26
professional respondents 1 1 41 19 12 7 31 0 62
audience fragmentation 1 1 106 59 37 36 120 14 215
category development index 1 0 18 11 0 2 19 2 29
modi�ed rebuy 1 0 40 23 5 3 33 1 78
perceived value pricing 1 0 19 14 4 6 21 5 38
simulated test market 1 0 25 15 8 15 35 7 66
unaided recall 1 0 92 45 29 14 67 13 150
low involvement learning 0 1 10 11 5 7 13 4 22
elimination by aspects 0 1 61 35 21 8 57 4 114
mere exposure e�ect 0 1 99 49 21 22 83 9 172
preference map 0 1 29 21 10 35 41 1 101
decision calculus 0 1 74 54 28 32 55 14 134
multiattribute attitude models 0 0 17 6 2 1 26 2 37
Reilly's law 0 0 27 13 6 3 20 0 40
wheel of retailing 0 0 68 28 12 10 44 2 113
beta binomial model 0 0 39 13 9 10 33 4 64
di�usion of innovation model 0 0 20 13 6 7 11 2 32

Total 840 468 227 230 785 85 1588

* AV=Alta Vista, HB=HotBot, EX=Excite, IS=Infoseek, NL = Northern Light, LY=Lycos



Table 2: Search engine results by phrase age, phrase type, URL # of links, and domain extension.

Age Type Links Domain
Engine New Old Manag. Acad. 0-5 6-10 10+ .edu com .org other

AV 0.504 0.564 0.521 0.535 0.523 0.545 0.548 0.495 0.557 0.644 0.530
HB 0.304 0.280 0.297 0.293 0.284 0.288 0.328 0.312 0.269 0.328 0.288
Ex 0.155 0.125 0.140 0.144 0.146 0.138 0.137 0.140 0.142 0.164 0.143
IS 0.169 0.109 0.125 0.163 0.135 0.155 0.167 0.153 0.110 0.205 0.147
NL 0.506 0.478 0.529 0.462 0.481 0.551 0.505 0.502 0.526 0.521 0.458
LY 0.050 0.058 0.056 0.050 0.044 0.080 0.066 0.056 0.088 0.041 0.026

Table 3: Structural Characteristics of Search Engines�

Search Engine
Characteristic AV HB EX IS NL LY

Size (million pages) 140 110 55 30 80 30
Depth of Search No Limit No Limit No Limit Sample No Limit Sample
Frames Support Yes No No No Yes No
Image Maps Yes No No Yes Yes No
Learns Frequency Yes Yes No Yes No No

* Source: Search Engine Watch (Sullivan 1998)

Table 4: Global goodness-of-�t for independence models. Reported are -2 * Log-Likelihood, and
the BIC criterion.

Model # Parameters -2*LL BIC

Constant p 1 11236.72 11245.88
Di�erent p by engine 6 9602.83 9657.80
Di�erent p by phrase 20 11197.58 11380.82
Di�erent p engine by phrase 120 9276.17 10375.60

Table 5: Posterior median engine abilities on Dimensions 1 and 2 (�11;�22), correlation (�12), and
distance factor u for Models 1, 2, and 3. Posterior standard errors are in parenthesis.

Model 1 Model 2 Model 3
Engine Dim 1 Dim 1 Dim 2 � Dim 1 Dim 2 �

AV 1.000 (�) 1.000 (�) 1.760 (.41) 0.005 (.01) 1.000 (�) 1.960 (.40) 0.020 (.01)
HB 0.128 (.03) 0.157 (.01) 0.199 (.00) 0.006 (.01) 0.074 (.01) 0.761 (.01) 0.020 (.00)
Ex 0.017 (.00) 0.040 (.01) 0.024 (.01) -0.586 (.01) 0.020 (.01) 0.060 (.01) -0.630 (.01)
IS 0.017 (.00) 0.010 (.01) 0.040 (.01) 0.593 (.01) 0.055 (.01) 0.052 (.01) 0.640 (.01)
NL 0.945 (.08) 2.670 (.48) 1.020 (.40) -0.007 (.09) 3.720 (.52) 1.870 (.45) -0.003 (.00)
LY 0.001 (.00) .0004 (.00) 0.001 (.00) 0.000 (.00) .0003 (.00) .0008 (.00) 0.000 (.00)

u 0.500 (-) 0.369 (.02) 0.354 (.015)



Table 6: Phrase and URL covariate slopes (�) for Models 1, 2, and 3. Reported are the posterior
medians (standard deviations) and posterior probability of the e�ect being greater than 0. Int. is
the interaction between managerial and newer.

Model 1 Model 2 Model 3
Cov. Dim 1 Dim 1 Dim 2 Dim 1 Dim 2
.edu -0.052 (.06) 0.177 -0.104 (.05) 0.050 -0.145 (.07) 0.008 -0.208 (.06) 0.000 0.017 (.04) 0.653
.com 0.018 (.07) 0.610 -0.223 (.09) 0.003 0.008 (.08) 0.423 -0.213 (.09) 0.003 -0.182 (.04) 0.000
.org -0.090 (.12) 0.117 -0.134 (.11) 0.005 0.020 (.10) 0.633 -0.222 (.10) 0.018 0.057 (.05) 0.998
0L-5L 0.099 (.05) 0.957 -0.280 (.06) 0.005 -0.030 (.08) 0.470 0.138 (.06) 0.990 -0.146 (.03) 0.000
6L-10L 0.136 (.09) 0.947 0.090 (.10) 0.733 -0.017 (.09) 0.360 0.042 (.09) 0.673 -0.132 (.05) 0.005
Man. 0.067 (.11) 0.733 0.198 (.11) 0.990 0.370 (.12) 1.000 -0.114 (.10) 0.148 0.148 (.10) 0.913
Newer 0.106 (.11) 0.807 0.137 (.08) 0.930 0.082 (.15) 0.635 -0.230 (.08) 0.000 0.280 (.04) 1.000
Int. -0.112 (.15) 0.237 -0.457 (.15) 0.000 -0.388 (.22) 0.010 0.026 (.13) 0.560 -0.374 (.10) 0.000

Table 7: E�ect of phrase and URL covariates xjk on the mean phrase location. (��1; ��2) is the
mean phrase location with all covariates at baseline levels. (�1; �2) = (��1 + �1xjk; ��2 + �2xjk)
are the new coordinates including the covariate e�ects. Model 1: �� = 1:020, Model 2: (��1; ��2) =
(0:130;�0:080), Model 3: (��1; ��2) = (0:225; 0:068)

Model 1 Model 2 Model 3
xjk �1 (�1; �2) (�1; �2)

.edu 0.968 (0.026, -0.225) (0.017, 0.085)

.com 1.038 (-0.093, -0.072) (0.012, -0.114)

.org 1.011 (0.004, -0.060) (0.003, 0.125)
0L-5L 1.119 (-0.105, -0.110) (0.363, -0.078)
6L-10L 1.156 (0.220, -0.097) (0.268, -0.064)
Man. 1.087 (0.328, 0.290) (0.111, 0.216)
Newer 1.126 (0.267, 0.000) (-0.005, 0.348)
New + Man. 1.081 (-0.008, -0.016) (-0.113, 0.112)



Table 8: Table of Web Engine Patterns and 95% con�dence intervals for Models 1-3

# Pattern nobs Model1 Model 2 Model 3
2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

1 111111 2 0.020 0.032 0.052 0.019 0.113 0.825 0.017 0.104 0.623
2 111110 3 0.573 0.901 1.262 0.453 2.009 9.105 0.385 1.796 11.195
3 111101 1 0.024 0.041 0.060 0.016 0.096 1.009 0.021 0.115 0.843
4 111100 2 0.809 1.120 1.415 0.372 2.006 11.473 0.467 2.067 9.218
5 111011 3 0.175 0.284 0.450 0.153 0.805 3.599 0.155 0.616 3.553
6 111010 21 5.641 7.762 10.218 3.647 13.798 38.908 3.794 10.159 46.521
7 111001 0 0.225 0.353 0.509 0.148 0.740 4.358 0.162 0.706 4.677
8 111000 18 7.946 9.418 11.372 3.569 13.459 55.313 4.115 10.819 43.796
9 110111 3 0.179 0.289 0.425 0.190 0.625 6.061 0.213 0.788 3.075
10 110110 16 5.911 7.831 9.669 5.174 11.833 44.923 4.465 13.090 38.602
11 110101 1 0.246 0.357 0.509 0.121 0.619 4.927 0.263 0.794 3.828
12 110100 9 8.188 9.518 11.848 3.874 11.461 45.196 4.783 13.902 42.832
13 110011 7 1.721 2.556 3.427 1.243 4.902 20.107 1.478 4.284 16.198
14 110010 45 56.218 68.057 76.816 39.428 89.492 227.409 33.747 80.826 149.755
15 110001 2 2.220 3.086 4.035 1.198 4.844 18.233 1.495 5.245 19.813
16 110000 64 77.743 82.908 94.274 36.453 83.855 203.724 38.321 89.130 174.093
17 101111 3 0.071 0.111 0.176 0.045 0.220 1.527 0.053 0.252 1.727
18 101110 5 2.090 2.957 3.983 0.807 4.139 19.556 0.944 4.334 25.004
19 101101 0 0.089 0.139 0.212 0.040 0.195 1.360 0.057 0.264 1.962
20 101100 4 2.947 3.648 4.577 0.751 3.936 20.847 1.097 4.850 20.581
21 101011 4 0.631 0.973 1.431 0.253 1.671 7.866 0.400 1.569 8.107
22 101010 25 20.300 25.408 32.607 6.517 27.677 91.151 9.312 26.298 123.853
23 101001 1 0.825 1.210 1.782 0.371 1.481 7.023 0.423 1.669 9.798
24 101000 25 28.132 31.949 36.674 5.151 27.985 109.350 11.617 28.970 106.308
25 100111 2 0.681 0.971 1.415 0.412 1.388 11.372 0.539 1.893 8.642
26 100110 20 21.908 26.016 31.929 8.630 24.931 92.002 13.482 32.703 98.609
27 100101 4 0.883 1.176 1.710 0.343 1.290 8.354 0.545 2.091 9.668
28 100100 19 28.950 32.011 37.390 6.627 24.896 115.699 12.236 35.924 129.168
29 100011 9 6.364 8.431 11.262 3.053 10.262 41.608 3.704 12.416 38.137
30 100010 174 206.952 225.715 244.697 89.316 194.995 394.634 102.703 209.021 379.458
31 100001 8 7.843 10.398 14.566 2.678 9.751 30.043 4.200 13.789 42.763
32 100000 340 259.575 279.628 303.729 47.639 186.828 347.876 197.822 290.697 378.992
33 011111 2 0.024 0.040 0.059 0.019 0.115 0.716 0.017 0.091 0.435
34 011110 1 0.747 1.097 1.440 0.688 2.015 7.967 0.386 1.451 8.018
35 011101 0 0.031 0.050 0.075 0.014 0.107 0.703 0.019 0.096 0.587
36 011100 3 1.025 1.331 1.661 0.479 1.970 11.391 0.414 1.675 7.726
37 011011 0 0.217 0.348 0.512 0.146 0.822 3.502 0.101 0.566 3.300
38 011010 9 7.311 9.215 11.637 4.358 15.006 51.108 3.175 9.224 33.472
39 011001 0 0.289 0.424 0.631 0.176 0.718 2.900 0.098 0.600 4.482
40 011000 24 9.909 11.462 13.131 3.415 13.234 60.630 2.877 10.249 36.014
41 010111 3 0.235 0.351 0.495 0.190 0.752 4.655 0.229 0.723 2.877
42 010110 11 7.567 9.521 11.487 4.499 12.636 45.393 3.630 11.113 40.041
43 010101 2 0.303 0.432 0.624 0.147 0.666 3.678 0.140 0.799 3.564
44 010100 8 9.834 11.614 14.324 3.495 11.751 58.152 2.893 13.000 40.329
45 010011 3 2.199 3.041 3.941 1.410 5.082 22.546 1.281 4.111 14.191
46 010010 54 73.643 81.158 91.576 31.988 99.461 192.606 26.370 76.380 144.021
47 010001 2 2.703 3.684 5.172 3.182 5.192 17.191 1.211 4.632 19.091
48 010000 149 88.824 100.612 113.904 28.300 94.545 244.392 68.209 124.176 164.069
49 001111 1 0.087 0.135 0.201 0.056 0.245 1.740 0.046 0.236 1.440
50 001110 4 2.732 3.597 4.634 1.248 4.310 21.954 0.908 4.136 22.126
51 001101 0 0.111 0.166 0.261 0.043 0.204 1.232 0.054 0.245 1.673
52 001100 2 3.636 4.416 5.447 0.787 3.936 19.224 1.057 4.550 21.405
53 001011 0 0.798 1.180 1.700 0.294 1.680 9.401 0.260 1.500 8.731
54 001010 16 26.524 31.352 37.340 8.416 31.783 127.606 6.588 26.053 85.965
55 001001 1 0.986 1.417 2.314 0.304 1.759 6.933 0.320 1.580 10.571
56 001000 47 31.994 37.984 46.043 5.575 31.091 116.979 6.935 47.154 90.273
57 000111 5 0.873 1.159 1.651 0.426 1.675 9.338 0.496 1.734 7.448
58 000110 36 27.684 31.448 36.390 7.405 28.992 86.199 9.828 29.417 98.250
59 000101 0 1.058 1.401 2.210 0.370 1.423 6.813 0.405 1.862 9.071
60 000100 58 33.064 39.282 45.388 8.765 25.982 87.026 8.498 52.983 114.146
61 000011 7 7.793 10.255 13.397 8.992 51.819 36.697 3.479 11.115 38.810
62 000010 291 260.756 273.615 289.516 80.482 213.347 416.143 111.628 289.659 340.592
63 000001 9 9.430 12.453 18.961 2.735 10.615 27.031 2.946 11.953 40.908
64 000000 NA 253.938 283.431 330.301 44.592 174.756 327.190 82.149 192.704 354.000



Table 9: 2.5%, 50%, and 97.5% posterior percentiles for Model 3 engine locations (�1; �2).

Dimension 1 Dimension 2
Engine 2.5% 50% 97.5% 2.5% 50% 97.5%
AV 0.000 0.000 0.000 0.000 0.000 0.000
HB 0.000 0.000 0.000 -2.100 -1.820 -1.340
EX 0.150 0.265 0.626 -0.321 0.010 0.187
IS -1.080 -0.800 -0.350 -0.110 0.330 0.600
NL -2.140 -1.640 -1.377 -0.316 -0.004 0.184
LY -0.949 -0.799 -0.645 -0.091 0.162 0.418

Table 10: Global goodness-of-�t for various models. Reported are -2 * Log-Likelihood, and the
BIC criterion.

Model # Parameters -2*LL BIC

Constant p 1 11236.72 11245.88
Di�erent p by engine 6 9602.83 9657.80
Di�erent p by phrase 20 11197.58 11380.82
Di�erent p engine by phrase 120 9276.17 10375.60
Model 1 63 10643.00 11220.21
Model 2 140 8152.45 9435.13
Model 3 149 8020.71 9385.85

Table 11: The Relation Between Search Engine Performance and Search Engine Structural Char-
acteristics

(a) (b) (c) (d)
Engine Total URLs Found Size (millions) URLs/Size Sophistication Index�

AV 840 140 6.0 4
NL 785 80 9.8 3
HB 468 110 4.3 2
IS 230 30 7.7 2
EX 227 55 4.1 0
LY 85 30 2.8 0

* Sum of indicators for high performance in Depth of Search,
Frames Support, Image Maps, and Learns Frequency from Table 3


