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ABSTRACT The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic

glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most

common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of

advanced mass spectrometry “omics” approaches and detailed experimentation in cells, mice, and humans, we now understand that

the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert

powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving

field of “hepatokine” biology with a particular focus on delineating previously unappreciated communication between the liver and

other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs,

and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize

the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for

intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD. (Endocrine Reviews 40:

1367 – 1393, 2019)

N onalcoholic fatty liver disease (NAFLD) is
defined by the accumulation of fat in the

liver, in the absence of excessive alcohol con-
sumption and other causes of hepatic steatosis, and
encompasses a spectrum of conditions. Hepatic
steatosis is also known as nonalcoholic fatty liver
(NAFL) and is clinically characterized by the
presence of visible lipid droplets containing tri-
glycerides in .% of hepatocytes when thin sec-
tions are assessed by light microscopy (, ), or a
threshold of ..% when using proton magnetic
resonance spectroscopy (). Liver lipid levels are
regulated by the interplay between the delivery of
lipids to the liver and their hepatic uptake, syn-
thesis, oxidation, and secretion within very low–
density lipoproteins (VLDLs). Alterations in the
equilibrium of one or more of these processes can
promote hepatic steatosis (). NAFL can further
progress to nonalcoholic steatohepatitis (NASH),
which is defined by hepatocyte ballooning, necrosis
near steatotic hepatocytes, and mild inflammation,
with or without different stages of fibrosis ().
Further progression of NASH can lead to life-

threatening conditions such as cirrhosis, hepato-
cellular carcinoma, and terminal liver failure. Ap-
proximately % of adults in industrialized countries
have NAFLD, and the global epidemic of obesity is
driving a dramatic increase of NAFLD that is fore-
casted to result in increased clinical and economic
burden (, ).

Hepatic steatosis/NAFL or early stage NAFLD
is often described as a “benign condition” in the
context of liver disease; however, the effects of
steatosis extend beyond the liver. There are strong
epidemiological links between NAFLD and type 
diabetes, and steatosis is strongly associated with
insulin resistance in the liver, and also in pe-
ripheral tissues such as skeletal muscle and adi-
pose tissue (–). A major focus of current
research is understanding the pathogenic mech-
anisms linking these comorbidities, and in this
review, we focus on the impact of NAFLD on
altering the endocrine function of the liver, and
how the secretion of proteins, metabolites, and
nucleic acids contributes to the pathophysiology
of insulin resistance.
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NAFLD and Diabetes

Prevalence

Concurrent with the increased global prevalence of
obesity (, ), NAFLD has emerged as the most
common chronic liver disorder worldwide, affecting
~% to % of adults in industrialized countries, with
~% of these NAFLD cases classified as NASH (, ).
Importantly, NAFLD prevalence is forecasted to in-
crease by % in the next  years, from . to .
million individuals worldwide, with coincident in-
creases in NASH and liver-related deaths (). Liver-
related deaths are likely due to the development of
fibrosis (), which occurs in ~% of NAFLD patients
() and is a major clinical concern.

NAFLD and insulin resistance

NAFLD is strongly associated with metabolic
comorbidities, including obesity, type  diabetes, and
dyslipidemia. Steatosis prevalence is increased in co-
horts with obesity undergoing bariatric surgery, ranging
from % to % (–), with NASH identified in %
to % (–). Type  diabetes mellitus is closely
associated with NAFLD, with more than three-fourths
of type  diabetes patients reportedly having NAFLD
(–).

Hepatic steatosis is epidemiologically associated
with insulin resistance (, –). Results from small
cross-sectional studies using gold-standard measures of
insulin action have consistently shown that hepatic
steatosis, independent of adiposity, is associated with
impaired insulin action in liver, skeletal muscle, and
adipose tissue in both lean individuals and nondiabetic
individuals with obesity (–). Moreover, relatively
small increases in liver fat are associated with hepatic
and skeletal muscle insulin resistance, and further ac-
cumulation of liver fat beyond this relatively low
threshold (~.% for liver insulin resistance and ~% for
muscle insulin resistance) is not associated with more
severe insulin resistance (). Thus, in contrast to the

widely held idea that hepatic steatosis is a benign
condition, it is now clear that steatosis is closely linked
to impaired insulin action and type  diabetes, and it is
an early predictor of metabolic disorders, particularly

in the normal-weight population (, ). Moreover,

hepatic steatosis precedes the development of skeletal

muscle lipid accumulation, macrophage-related in-

flammation, hepatic, skeletal muscle, and adipose tissue

insulin resistance, and whole-body hyperglycemia and

hyperinsulinemia (–) in mice fed a high-fat diet.

Taken together, these observations are consistent with

the notion that changes occurring in the fatty liver alter

paracrine and endocrine functions to cause insulin

resistance in key glucoregulatory tissues.
Although hepatic steatosis is closely associated with

systemic insulin resistance, it is noteworthy that in-

sulin resistance also predicts the development of

NAFLD. This results primarily from an impaired

ability of insulin to suppress adipose tissue lipolysis,

leading to increased delivery of free fatty acids to the

liver (, ), and from increased de novo lipogenesis

() that results from stimulation of lipogenic enzymes

via sterol receptor–binding protein c (SREBP-c),

even in an insulin-resistant state (). There is also

evidence that triglyceride synthesis is increased through

the Kennedy pathway () and that b-oxidation of

fatty acids is decreased in insulin resistance, although

the latter is controversial (–).
Although the association between NAFLD and

insulin resistance in generally clear in most patients,

this does not always hold true for specific geneti-

cally determined forms of fatty liver. For example,

a frequent sequence variation (IM) in patatin-

like phospholipase domain–containing protein 

(PNPLA) is strongly associated with fatty liver disease

in the absence of insulin resistance or dyslipidemia

(–), and similar dissociations are reported in

individuals with a single nucleotide polymorphism for

acyl-coenzyme A (CoA):diacylglycerol acyltransferase

ESSENTIAL POINTS

· Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes and is the most

common chronic liver disorder worldwide, affecting ~25% to 30% of adults in industrialized countries

· NAFLD is strongly associated with metabolic comorbidities, including obesity, type 2 diabetes, and dyslipidemia

· The liver secretes proteins, metabolites, and noncoding RNA that act as autocrine/paracrine and endocrine factors to

influence metabolism in other tissues

· “Hepatokines” exert pleiotropic effects on lipid and glucose metabolism, as well as insulin action, and their secretion is

impacted by NAFLD

· Liver-derived lipids and metabolites can serve as signaling molecules to regulate insulin action and other metabolic

processes

· Liver-derived miRNAs may regulate glycemic control in NAFLD; however, definitive evidence is lacking
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() and the Lys allele in transmembrane  su-
perfamily  (TMSF) (). In fact, the TMSF ac-
tually protects from cardiovascular disease, despite
high liver fat content and high prevalence for pro-
gression to NASH and cirrhosis (). These observa-
tions highlight the need to understand the mechanistic
bases of NAFLD for predicting the development of
comorbidities and applicability of specific therapeutic
interventions.

Liver Endocrine Function

Protein secretion—the role of “hepatokines”

The role of liver as a major secretory organ has long
been appreciated, particularly with respect to its roles in
regulating coagulation and hemostasis, but only recently
has the potential magnitude for protein secretion be-
come apparent. Mass spectrometry–based quantitative
proteomics of human liver has quantified ~,
proteins (), which parallels observations in mice ().
Given that ~% of the transcripts in liver encode
secreted proteins (), there is clearly a large scope for
significant and varied protein secretion from the liver.

The liver is composed of parenchymal cells, in-
cluding hepatocytes and bile duct cells, which occupy
~% of the liver volume, and nonparenchymal cells,
such as sinusoidal endothelial cells, Kupffer cells, and
hepatic stellate cells. Although there are some differ-
ences in the proteins expressed in these different cell
types, the vast majority of liver proteins are expressed in
all liver cell types, and the hepatocyte proteome con-
stitutes the vast majority of the total liver proteome,
indicating that hepatocytes are quantitively the most
important cell type for liver protein secretion ().

Several anatomical, structural, and functional fea-
tures support the notion that the liver is an important
organ for intertissue communication. The liver is large
(~. kg) and receives ~% of the cardiac output,
providing a substantial volume of blood and thereby
secreted factors for redistribution to other tissues. In this
context, the liver has unique architecture and blood flow
regulation, whereby hepatocytes and nonparenchymal
cells secrete products into the liver sinusoids, which flow
via the central veins to the inferior vena cava and
eventually to the heart for redistribution to peripheral
tissues. The extensive vascular network, and particularly
the “open pore” sinusoids that are located between
hepatocyte planes, also supports the likelihood that
hepatokines are prominent in paracrine and autocrine
regulation of hepatocyte function.

Classical protein secretion

Classical or conventional secretion involves the
transport of newly synthesized proteins through
the organelles of the secretory pathway, including
the endoplasmic reticulum (ER), the ER exit sites, the
Golgi, and eventually to the plasma membrane via

secretory vesicles or secretory granules for delivery of
transmembrane proteins to the plasma membrane and
soluble proteins to the extracellular space. Proteins
secreted in this manner contain a signal peptide on the
N terminus and most often contain posttranslational
modifications that occur at the ER and Golgi (i.e.,
glycosylation) ().

Nonclassical protein secretion

Proteins that do not contain an N terminus signal
peptide can be secreted as cargo contained within ex-
tracellular vesicles. There are three main types of ex-
tracellular vesicles that differ in terms of size, type of
biogenesis, and composition. Exosomes are the smallest
vesicle, ranging from ~ to  nm in diameter, and are
formed within multivesicular bodies that fuse to the
plasma membrane and are released into the circulation
as exosomes. Microvesicles such as ectosomes and
endosomes range from  to  nm and are formed
by direct budding from the plasma membrane, whereas
apoptotic bodies range from  to  nm and are
secreted as a byproduct of cell death (). These vesicles
contain protein, lipid, and nucleic acid cargo that
somewhat reflects their cell of origin, and the compo-
nents of extracellular vesicles can be rapidly altered in
response to metabolic challenges (), highlighting their
potential role in regulating intertissue communication
and metabolism.

Hepatokines, NAFLD, and insulin resistance

Studies examining hepatocytes isolated from healthy
and steatotic mouse livers have used quantitative
proteomics to show that liver steatosis alters hep-
atokine secretion and that the protein signals origi-
nating from the steatotic liver alter fatty acid
metabolism and induce inflammation and insulin
resistance in other cell types. This section outlines the
classically secreted hepatokines involved in regulating
lipid metabolism and insulin action, and it describes
the effect of NAFLD in these relationships [see Table 
and Fig.  for hepatokine changes in the presence of
NAFLD (–)]. We close this section with a brief
description of the literature pertaining to liver exo-
some proteins and metabolism.

Activin E

Activin E is a member of the TGFb family and is
encoded by the inhibin bE gene (). Activin E is a
newly identified hepatokine () that is elevated in
liver and serum in humans with obesity () and
NAFLD (). Mice that overexpress activin E gain less
fat and have improved glucose tolerance when com-
pared with wild-type mice fed a high-fat diet. This
appears to be mediated by an increase in uncoupled
respiration as evidenced by increased expression of
thermogenic proteins in adipose tissue and higher core
temperature in activin E overexpressing mice (), as
well as an inability of activin E knockout mice to
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Table 1. Hepatokine Links With NAFLD and Insulin Resistance

Hepatokine

Gene (Mouse /

Human)

Molecular

Mass

(kDa)

Expression

in NAFLD Contribution to NAFLD

Contribution to Glucose Tolerance/Insulin

Resistance

Activin E Inhbe/INHBE ~22a Increased Reduces steatosis (50) Activin E overexpression prevents diet-induced glucose

intolerance in rodents (51), unknown in humans

Adropin Enho/ENHO 5 Decreased Suppresses lipogenesis (52) Improves insulin sensitivity (52); stimulates insulin

signaling in skeletal muscle (53)

ANGPTL4 Angptl4/ANGPTL4 45 Increased Promotes hepatic lipid accumulation

(54–56)

Controversial findings: (i) improves insulin sensitivity

(55, 56) by decreasing hepatic glucose output (55);

(ii) causes insulin resistance in liver, skeletal muscle,

and adipose (57, 58)

DPP4 Dpp4/DPP4 ~30 Increased Increases liver CD36 (59), likely to

increase lipid storage

Inhibits incretin levels and impairs insulin secretion

(60)

Ectodysplasin EDA ~46 Increased Unknown Induces insulin resistance in skeletal muscle via JNK

activation (61)

Fetuin A Ashg/ASHG ~67 Increased Unknown Promotes insulin resistance in liver via ER stress and

JNK activation (62); inhibits insulin receptor in

skeletal muscle (63); ligand for TLR4, which

promotes lipid-mediated insulin resistance in

adipose tissue (64)

Fetuin B Fetub/FETUB ~60 Increased Unknown Promotes insulin resistance in myocytes/hepatocytes

(65); impairs whole-body glucose tolerance (65)

FGF21 Fgf21/FGF21 ~23 Increased Increases hepatic fat oxidation and decreases

lipids (66); decreases adipose tissue lipolysis,

reducing lipid availability to the liver (67)

Improves insulin sensitivity, decreases diacylglycerol

(68); promotes insulin secretion of pancreatic

b-cells (69)

Follistatin Fst/FST 38 Increased Promotes IL-1b production, may promote

fibrosis development (70)

Unknown

HFREP1 Fgl1/FGL1 36 Increased Promotes NAFLD (71); increases lipogenesis

through ERK1/2 activation (72)

Causes insulin resistance in skeletal muscle via JNK

activation (72)

HMGB1 Hmgb1/HMGB1 30 Increased Unresolved; blocking HMGB1 protects

against NAFLD (73, 74)

Unknown; however, HMGB1 activates TLR4 and

causes inflammation in hepatocytes that could

impair insulin sensitivity (75)

Inhibin bE Inbe 39 Increased

with

obesity

Unknown Unknown

LECT2 Lect2/LECT2 16 Increased Unknown Promotes insulin resistance in skeletal muscle via JNK

activation (76); impairs insulin signaling via serine/

threonine phosphorylation of IRS1 (77)

PEDF Serpinf1/SERPINF1 50 Increased Interacts with ATGL to increase lipolysis;

ablation promotes steatosis (78, 79).

Promotes insulin resistance in skeletal muscle via JNK

activation (80).

RBP4 Rbp4/RBP4 21 Increased Unknown Equivocal. Overexpression in liver does not alter

glucose homeostasis or insulin sensitivity (81);

whole-body overexpression causes insulin resistance

by activating JNK and TLR4 (82)

SeP Selenop/SELENOP ~60 Increased Unknown Causes insulin resistance in skeletal muscle and liver

(83);inhibits the insulin receptor (83); impairs insulin

secretion from pancreatic b-cells (84)

SHBG Shbg/SHBG 95 Decreased Suppresses lipogenesis in liver, exacerbates

steatosis (85)

Unknown

TSK Tsku/TSKU ~40 Increased Promotes steatosis and NASH (86) Associated with whole-body insulin resistance (86)

Abbreviation: ATGL, adipose triglyceride lipase.
aMolecular weight is predicted and requires form validation.
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maintain body temperature during cold exposure ().
Additionally, administration of recombinant activin E
to mice with activin E deficiency (via global knockout
of follistatin-like ) resulted in hepatic steatosis,
suggesting a role in regulating lipid metabolism ().
The expression pattern in obesity is interesting, and
potentially unexpected, as on the one hand plasma
activin E levels are increased in individuals with
obesity, but on the other hand mice with increased
circulating activin E levels are resistant to weight gain.
Further studies are required to assess how activin E
drives uncoupled respiration and why this mechanism
does not prevent weight gain in individuals with
obesity.

Adropin

Adropin is encoded by the ENHO gene, and ex-
pression is decreased in response to elevated hepatic
lipid availability (). Serum adropin levels are lower in
humans with obesity () and in patients with type 
diabetes (), and although there is no reported link
between serum adropin and NAFLD in humans, high-
fat feeding reduces ENHO expression in parallel with
the development of hepatic steatosis in mice (). In
line with these observations, hepatic steatosis is ex-
acerbated in adropin-null mice, and this is accom-
panied by impaired glucose tolerance and insulin
sensitivity at the whole-body level () and, perhaps
paradoxically, increased hepatic and whole-body fatty
acid oxidation (). In agreement, hepatic steatosis
resulting from high-fat feeding is attenuated in mice
with adropin overexpression, and this occurs in par-
allel with enhanced whole-body insulin sensitivity,

glucose tolerance, and lower fatty acid oxidation ().
Although little is known regarding the direct effects of
adropin on metabolism, acute IP injection of adropin
increases insulin signaling through protein kinase B
(AKT) and AKT substrate of  kDa (AS)
phosphorylation, resulting in greater glucose trans-
porter type  (GLUT) translocation to the sarco-
lemma in skeletal muscle (). Consistent with these
effects, acute administration of recombinant adropin
improves glucose homeostasis in insulin-resistant
diet–induced obese mice, and it is associated with
lower expression of lipogenesis-associated genes, in-
cluding sterol CoA desaturase  and fatty acid syn-
thase, in the liver and adipose tissue (). Others have
shown that adropin increases glucose uptake and
oxidation via activation of pyruvate dehydrogenase,
the rate-limiting enzyme for mitochondrial pyruvate
transport, and is associated with downregulation of
carnitine palmitoyl-transferase I (CPT) activity and
other proteins involved in lipid metabolism, including
the fatty acid transporter CD () (Table ). Hence,
high adropin expression and secretion appear to
improve insulin sensitivity and carbohydrate and lipid
metabolism while suppressing hepatic steatosis. Taken
together, these studies suggest that restoring adropin
levels within the liver and/or blood of patients with
obesity could be a therapeutic approach for NAFLD
and insulin resistance.

Angiopoietin-like protein 4

Angiopoietin-like protein  (ANGPTL) is secreted by
liver and adipose tissue () and plays important roles
in regulating lipid metabolism. ANGPTL increases

Figure 1. General metabolic processes affected by hepatokines in NAFLD. Liver secretion of various proteins are altered with

NAFLD, and selected proteins can influence insulin responsiveness. In adipose and skeletal muscle, many hepatokines affect

pathways involved in inflammation, lipogenesis/lipolysis, and fatty acid oxidation, which can promote insulin resistance.

Additionally, some hepatokines influence insulin secretion by the pancreas, which can independently affect peripheral tissue

glucose uptake and metabolism.
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adipocyte lipolysis through a process that is dependent
on its C-terminal fibrinogen-like domain (), and it
suppresses lipoprotein lipase activity via its N-terminal
coiled-coil domain (). This increases plasma free fatty
acids and triglycerides, which is associated with ectopic
lipid accumulation in liver and skeletal muscle (, ,
) and is highlighted by dyslipidemia in mice with
liver-specific overexpression of Angptl (). Consistent
with these functions, individuals heterozygous or ho-
mozygous for the loss-of-function Angptl variant EK
have significantly lower fasting plasma triglyceride levels
() whereas Angptl2/2 mice have increased VLDL
clearance (). Free fatty acids upregulate Angptl
expression via peroxisome proliferator-activated re-
ceptor (PPAR)a activation in the liver and PPARg in
adipose tissue (), demonstrating the likelihood of a
feed-forward loop whereby lipid oversupply drives
Angptl expression and high ANGPTL levels further
drive dyslipidemia. Such regulation would be clinically
unfavorable for PPAR agonists, which are used as
antidiabetic and lipid-lowering agents. Insulin sup-
presses hepatic Angptl expression; however, this
mechanism is likely to be impaired in insulin-resistant
states ().

The role of ANGPTL on insulin action and
glycemic control is controversial. Although mice with
ANGPTL overexpression have severe hepatic stea-
tosis, they exhibit improvements in hepatic and sys-
temic insulin sensitivity (, ). In agreement, ANGPTL
increases insulin-mediated inhibition of gluconeogene-
sis and decreases hepatic glucose production in primary
hepatocytes, and in humans ANGPTL levels correlate
positively with insulin sensitivity (). In contrast,
reducing plasma ANGPTL via genetic deletion in
mice reduces blood lipids, reduces ectopic lipid ac-
cumulation in liver and muscle, enhances insulin
signaling, and improves glycemic control (, , ),
and anti-ANGPTL antibody therapy in obese and
diabetic mice recapitulates this favorable metabolic
phenotype (). Further studies are clearly required
to fully understand the discrepancy in these disparate
findings and to ascertain the potential of ANGPTL
therapeutic applications in dyslipidemia and glycemic
control.

Dipeptidyl peptidase-4

Dipeptidyl peptidase- (DPP) is a ubiquitous serine
protease secreted by the liver that rapidly inactivates the
circulating incretin hormones glucagon-like peptide
(GLP)- and gastric inhibitory peptide (GIP) ().
Incretins are important regulators of whole-body glu-
cose homeostasis, as GLP- and GIP promote insulin
secretion and suppress glucagon secretion, resulting in
peripheral glucose uptake and reduced hepatic glucose
output (). Individuals with NAFLD and insulin re-
sistance have elevated plasma DPP activity (), which
is consistent with lower GLP and GIP levels in the
blood of these individuals (). Consistent with human

studies, liver-specific overexpression of DPP impairs
whole-body glucose tolerance in high-fat–fed mice,
effects that are linked to reduced circulating GLP- ().
DPP is likely to directly affect metabolism in peripheral
tissues, as treatment of primary hepatocytes, adipocytes,
and skeletal myotubes with recombinant DPP impairs
insulin sensitivity (, ). However, a receptor for
DPP has not yet been identified. DPP also drives liver
steatosis, most likely by increasing fatty acid uptake and
storage in hepatocytes (). In agreement with these
observations, genetic ablation () or administration of
oral DPP inhibitors such as vildagliptin () or
sitagliptin () improves both hepatic steatosis and
glucose tolerance, further highlighting the systemic and
autocrine/paracrine actions of DPP.

Ectodysplasin A

Ectodysplasin A is a newly discovered hepatokine that
is associated with obesity and insulin resistance ().
Liver and serum ectodysplasin A levels are increased
in high-fat–fed mice and mice with genetic obesity
(i.e., leptin receptor–deficient db/db mice), and liver
ectodysplasin A mRNA levels increase with steatosis
severity and correlate with a reduction in whole-body
insulin action in humans (). In parallel with these
findings, treatment of CC skeletal myotubes or
whole-body overexpression of ectodysplasin A in mice
induces muscle insulin resistance in association with
activation of c-Jun N-terminal kinase (JNK), and these
effects were reversed upon partial silencing of ecto-
dysplasin A in mice () (Fig. ). Notably, ectodys-
plasin A did not affect hepatic insulin action or other
parameters of energy homeostasis, pointing to a direct
liver-to-muscle crosstalk. Additional work is required
to determine the role of ectodysplasin on lipid
metabolism and confirm the relevance of this protein
in NAFLD and type  diabetes.

Fetuin A

Fetuin A (also known as a--HS-glycoprotein) is a
liver-secreted glycoprotein encoded by the ASHG
gene. Fetuin A is positively associated with circulating
triglycerides, the severity of NAFLD (, ), and
insulin resistance (, ) in rodents and humans. In
this regard, lipid oversupply induces ER stress, which
activates extracellular signal–regulated kinase (ERK)/
and JNK to drive fetuin A production (). The he-
patic expression and secretion of fetuin A is also
regulated by F-box andWD repeat domain-containing
 (FBXW), a ubiquitin protein ligase that degrades
fetuin A. FBXW is suppressed in obese mice and in
humans with obesity in parallel with increased fetuin
A levels (). Fetuin A induces insulin resistance
by several mechanisms (, –) (Fig. ). Fetuin
A inhibits insulin receptor tyrosine kinase activity,
resulting in lower autophosphorylation and impaired
insulin signaling (). Fetuin A also acts as an en-
dogenous ligand for Toll-like receptor (TLR), which
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enables saturated free fatty acids to activate TLR
signaling to induce insulin resistance (). This fetuin
A/free fatty acid interaction predicts the development
of insulin resistance in humans (). In the pancreas,
fetuin A signals to b-cells and impairs glucose sensing
(), which results in impaired insulin secretion (,
) in response to inflammatory processes, including
TLR, JNK, and nuclear factor kB (NF-kB) activation
and the accumulation of lipotoxic lipids (, ).
Mice with global fetuin A deletion show improved
insulin sensitivity and are resistant to diet-induced
obesity (, ), highlighting the likely therapeutic
potential of fetuin A antagonists.

Fetuin B

Fetuin B is encoded by the FETUB gene and shares
% homology with fetuin A. Fetuin B is increased in
patients with NAFLD (, , , ), type  di-
abetes (, ), and gestational diabetes (, ),
and it correlates positively with insulin resistance
(). Although administration of fetuin B induces
insulin resistance in myotubes and hepatocytes in
vitro, administration of fetuin B in lean mice caused
whole-body glucose intolerance but not insulin re-
sistance (), observations that were recapitulated in

humans (). This indicates that fetuin B’s primary
function is the suppression of glucose effectiveness
(), which refers to the ability of glucose to promote
its own disposal, independently of insulin (Fig. ). This
process is at least as important as insulin for glucose
clearance, accounting for ~% of an oral glucose
tolerance test in normal individuals and ~% in
insulin-resistant individuals with obesity (). Ad-
ditionally, there is evidence that fetuin B impairs first-
phase glucose-stimulated insulin secretion (), signifying
a role in b-cell function. The importance of fetuin B in
NAFLD-induced insulin resistance is confirmed by
studies showing that short hairpin RNA suppression
of liver fetuin B protein and reduced fetuin B secretion
improve glycemic control in obese, insulin-resistant
mice ().

Fibroblast growth factor 21

Fibroblast growth factor (FGF) regulates systemic
lipid metabolism in response to diet, exercise, and cold
exposure (, ), and its role in metabolism has
been extensively reviewed (). FGF expression is
increased by activation of PPARa (), and consistent
with this finding, humans with NAFLD have increased
circulating FGF levels (, ). This may be a

Figure 2. The influence of hepatokines on insulin resistance in skeletal muscle or adipose tissue. Hepatokines target pathways

involved in regulating insulin action. Fetuin A (in the presence of palmitate) and RBP4 can activate TLR4 and result in JNK phosphorylation,

greater serine phosphorylation of IRS1, and suppression of insulin signaling and GLUT4 trafficking to the sarcolemma. Fetuin A and SeP can

directly inhibit the insulin receptor, resulting in lower insulin signaling and GLUT4 trafficking. Fetuin A can promote ER stress through

unknown mechanisms, resulting in greater JNK activation and impaired insulin signaling. Follistatin, HFREP1, LECT2, PEDF, and ectodysplasin

are also implicated in impairing insulin signaling secondary to activation of JNK; however, the upstream signaling is unresolved.
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compensatory response designed to limit the impact of
lipotoxic stress, as FGF reduces adipose tissue li-
polysis (, ), increases fatty acid oxidation, lowers
hepatic lipids such as diacylglycerol, enhances insulin
sensitivity, and improves glycemic control (, ,
). FGF also reduces hepatic VLDL secretion and
accelerates VLDL disposal in both white and brown
adipose tissue via coordinated upregulation of CD
and lipoprotein lipase (). The importance of FGF
is highlighted in mouse studies where the deletion of
Fgf, its receptor FGF receptor-c, or the coreceptor
b-klotho, results in greater adiposity, hepatic steatosis,
and liver insulin resistance, increased hepatic glucose
production, and hyperglycemia (). Finally, FGF
promotes pancreatic b-cell function and insulin se-
cretion (). It is for these reasons that FGF has
emerged as a therapeutic agent for the treatment of
type  diabetes and the metabolic syndrome (),
although FGF analogs have failed to lower blood
glucose in humans.

Follistatin

Follistatin is a member of the TGFb family and was
originally recognized for its inhibitory effect on FSH
production in the pituitary () and, later, suppres-
sion of myostatin to support skeletal muscle growth,
which demonstrated actions outside of the re-
productive system (). Follistatin is increased in
serum of individuals with NAFLD () and type 

diabetes (), potentially through forkhead box O
(FOXO)–mediated transcriptional activation ().
In contrast, weight loss following bariatric surgery
leads to a reduction in serum follistatin, which is
accompanied by improvements in insulin sensitivity
and glycemic control (, ). It remains to be
determined whether the decrease in serum follistatin
is a direct mediator of the improvements in glycemic
control. However, it is known that follistatin promotes
proinflammatory cytokine expression, such as IL-b,
that is implicated in fibrosis progression (, ) and
the development of insulin resistance in adipose tissue
() and skeletal muscle (). Similarly, follistatin
overexpression in isolated hepatocytes or livers of mice
impairs signaling in white adipose tissue, insulin-
mediated suppression of hepatic glucose production,
and whole-body glucose tolerance, whereas follistatin
knockdown improves insulin sensitivity () (Fig. ).
Taken together, these studies provide evidence that
follistatin is increased with NAFLD and can pro-
mote inflammation, insulin resistance, and glucose
intolerance.

Hepatocyte-derived fibrinogen-related protein 1

Hepatocyte-derived fibrinogen-related protein 

(HFREP), also referred to as hepassocin or fibrinogen-
like protein , is secreted by hepatocytes and is known
to promote cell growth and proliferation (–).
More recently, HFREP has been implicated in

NAFLD and systemic insulin resistance. HFREP is
elevated in human NAFLD () and NASH (), and
circulating concentrations correlate positively with
plasma glucose levels and insulin resistance (). In
mice, high-fat feeding promotes liver HFREP ex-
pression and NAFLD (), suggesting that elevated
circulating lipids induce hepatic HFREP expression.
In this context, the fatty acid palmitate (C:) dose-
dependently increases HFREP expression in hepa-
tocytes (). Lipid-dependent HFREP expression is
mediated by ER stress and the resultant activation of
the P and CCAAT/enhancer-binding protein b in
hepatocytes, and pharmacological blockade of this
pathway blunts HFREP expression and partially re-
stores insulin action (). This provides a plausible
mechanism for NAFLD-induced HFREP production,
given that ER stress is elevated in humans with
conditions characterized by dyslipidemia such as
NAFLD (), diabetes (), and obesity ().
Moreover, HFREP promotes lipogenesis through
ERK/ activation (), indicating the presence of a
feed-forward mechanism that drives NAFLD. HFREP
has also been shown to cause insulin resistance in
immortalized CC myotubes and skeletal muscle ex
vivo (), which is mediated by decreased 9-AMP–
activated protein kinase (AMPK) phosphorylation
and enhanced JNK activation in a process dependent
on epidermal growth factor receptor and FOXO

phosphorylation (). Administration of recombinant
HFREP or genetic overexpression of HFREP causes
liver and skeletal muscle insulin resistance (), whereas
deletion of liver HFREP protects against diet-induced
insulin resistance in mice () (Fig. ). Reducing cir-
culating HFREP could therefore be a viable approach
for insulin resistance.

High-mobility group box 1 protein

Sterile inflammation caused by free fatty acids,
chemokines, and cytokines stimulates the release of
endogenous molecules termed damage-associated
molecular patterns, and these molecules can activate
TLR signaling in a variety of cell types that promote
inflammatory responses. High-mobility group box 

protein (HMGB) was originally discovered as a
protein that binds to nucleosomes to stabilize DNA
structure and modulate transcription (), but more
recently it has been shown to be secreted from he-
patocytes (). HMGB expression and secretion are
increased in NAFLD, and this process is mediated by
increased free fatty acid availability (). The secreted
HMGB activates TLR signaling and the resultant
NF-kB activation drives inflammation in neighboring
hepatocytes. Given that TLR activation dampens
insulin signaling (), it is possible that HMGB–
TLR signaling may contribute to insulin resistance
in NAFLD, although this requires formal testing.
Blocking HMGB reduces lipotoxic effects in hepa-
tocytes () and protects against NAFLD progression
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in rats (, ), which supports a prominent autocrine/
paracrine role. Whether the pathogenic effects of
HMGB extend beyond the liver in humans is
questionable, as HMGB levels are not associated with
histological severity in NAFLD ().

Inhibin bE

The hepatokine inhibin bE is a member of the TGFb
family and is positively associated with body mass
index and insulin resistance in rodents (, ) and
humans (). Knockdown of hepatic inhibin bE
using small interfering RNA attenuates fat mass gain
in parallel with greater whole-body fat oxidation in
obese db/db mice (); however, no overt metabolic
phenotype was reported in Inhbe knockout mice ().
Additional work is needed to determine whether in-
hibin bE indeed increases fat oxidation and whether
blocking inhibin bE’s actions has therapeutic utility
for NAFLD and perhaps obesity.

Leukocyte cell–derived chemotaxin 2

Leukocyte cell–derived chemotaxin  (LECT) is a
-kDa hepatokine originally described as chemotactic
for neutrophils (). LECT has since been impli-
cated in NAFLD (, ) and insulin sensitivity (,
), and circulating LECT expression is positively
correlated with body weight and insulin resistance in
humans (). Studies in mice show that whole-body
deletion of Lect enhances insulin-stimulated AKT
phosphorylation in skeletal muscle, whereas admin-
istration of recombinant LECT activates JNK ()
and inhibits insulin signaling via increased serine
phosphorylation of IRS () (Fig. ). Interestingly,
pharmacological inhibition of DPP improves glucose
metabolism in mice in parallel with a reduction in
hepatic LECT protein content, and this occurs via
activation of AMPK and suppression of JNK activity
(). Thus, DPP may regulate LECT expression,
indicating likely cross-talk between hepatokines in
NAFLD.

Pigment epithelium-derived factor

Pigment epithelium–derived factor (PEDF) is a
-kDa noninhibitory serine protease originally found
to be secreted by retinal epithelial cells, but it is also
highly expressed in, and secreted by, liver and adipose
tissue (). Liver PEDF expression () and circu-
lating PEDF levels (–) are increased in humans
with obesity, insulin resistance, and NAFLD, and it is
reduced with weight loss (). PEDF is implicated in
the development of insulin resistance and glucose
intolerance in mice (). PEDF increases JNK and
ERK/ activity in skeletal muscle and liver, as well
as NF-kB activity in adipocytes, which corresponds
with reduced insulin signal transduction (, )
(Fig. ). Increasing plasma PEDF by administration of
recombinant PEDF or overexpression of Pedf in ad-
ipose tissue of mice increases adipose tissue lipolysis

via its interaction with adipose triglyceride lipase
(ATGL), the rate-limiting enzyme for triglyceride
hydrolysis, and this coincides with increased ceramide
and diacylglycerol accumulation in liver and muscle
(, , , ). Neutralizing PEDF with monoclonal
antibodies reverses these effects (). Whereas circu-
lating PEDF correlates with hepatic steatosis and in-
sulin resistance, liver-specific overexpression of Pedf
reverses hepatic lipid accumulation (), which likely
reflects higher intrahepatic lipolysis, and it aligns with
lower NASH development (, ). Taken together,
this suggests that the increased production of PEDF
with NAFLD is directed toward secretion and not
retained within the liver, where it promotes insulin
resistance and dyslipidemia.

Retinol binding protein 4

Retinol binding protein  (RBP) is a liver and ad-
ipose tissue secreted protein that transports vitamin
A in the form of retinol (). Serum RBP levels are
increased with NAFLD (, ), insulin resistance
(), and in type  diabetes (), and reduced with
diet-induced weight loss (), bariatric surgery
(), and exercise (). Although these findings in
humans suggest a potential role for RBP in reducing
insulin action, direct examination of RBP effects
in mice are equivocal. RBP overexpression causes
inflammation and insulin resistance in mouse adi-
pose tissue due to activation of JNK and TLR
signaling (), and genetic deletion of Rbp enhances
insulin sensitivity () (Fig. ). However, in a recent
study where RBP was overexpressed specifically in
the liver of mice, glycemic control was not affected
despite significant increases in circulating RBP levels
(). In light of these conflicting data, additional
research is warranted to determine RBP’s role in the
pathogenesis of NAFLD and type  diabetes.

Selenoprotein P

Circulating selenoprotein P (SeP) levels are positively
correlated with type  diabetes (), insulin resistance,
and blood glucose levels in humans (–), which
agrees with studies in mice reporting increased liver
expression and secretion of SeP in response to high-fat
feeding (), NAFLD (), and type  diabetes ().
SeP expression and secretion are increased in response
to ER stress and JNK activation, subsequent to TLR
stimulation (). Moreover, activation of AMPK via
the anti-inflammatory drug salsalate or the insulin-
sensitizing drug metformin protects against ER stress
and SeP production (). Taken together, this links
proinflammatory and/or dyslipidemic states to in-
creased SeP expression.

Consistent with a role in metabolic disease, acute
administration of recombinant SeP causes insulin
resistance in mice (). In vitro, SeP administration
impairs insulin receptor phosphorylation in HepG
hepatocyte-like cells, suggesting direct inhibition of

“…ketone bodies signal to

peripheral tissues and the

central nervous system to

regulate metabolism.”
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autophosphorylation at this proximal step of insulin
signaling () (Fig. ). Additionally, SeP impairs
glucose-stimulated insulin secretion in pancreatic
b-cells, effects that are reversed by monoclonal anti-
body neutralization of circulating SeP (). Genetic
deletion and RNA interference–mediated knockdown
of SeP improves systemic insulin sensitivity and glu-
cose tolerance (), whereas SeP-neutralizing anti-
bodies improve insulin secretion and glycemic control
in diabetic mice (), collectively highlighting the
potential therapeutic utility of this hepatokine.

Sex hormone binding globulin

Sex hormone binding globulin (SHBG) is best known
as a transporter of sex steroids (, ). Liver ()
and serum () SHBG levels are lower in individuals
with hepatic steatosis when compared with individuals
with no adverse liver pathology, and plasma SHBG
negatively predicts insulin resistance and hyperinsulinemia
(–). This is accompanied by lower hepatic SHBG
content and lower expression of the transcription factor
hepatocyte nuclear factor a, a key transcriptional reg-
ulator of SHBG (). Additionally, low circulating SHBG
is independently associated with obesity, and weight loss
following bariatric surgery increases circulating SHBG
levels (). Collectively, these data describe a clear as-
sociation between obesity, NAFLD, insulin resistance, and
lower SHBG levels in liver and blood.

The lower expression of SHBG in NAFLD may
occur secondary to inflammation, as an increase in
TNFa in response to JNK and NF-kB activation re-
duced SHBG production in HepG cells (). Given
that insulin promotes SHBG production in vitro (),
and people with type  diabetes have a stronger re-
lationship between insulin levels and SHBG than do
those with type  diabetes (), it is possible that
hepatic insulin resistance could precede a reduction in
SHBG and exacerbate lipid accumulation. This notion
is at least partially supported by the finding that
resveratrol, a polyphenol that improves insulin sen-
sitivity, also increases SHBG levels in mice (). The
mechanisms underpinning the effects of SHBG on
glycemic control are unknown. With respect to lipid
metabolism, overexpression of SHBG suppresses li-
pogenesis (, ) that could reduce hepatic steatosis.

Tsukushi

Tsukushi (TSK) is a highly conserved proteoglycan in
mammals and a newly discovered hepatokine that is
increased in rodent obesity () and NASH ().
Studies in Tsk-null mice highlight an important role
for TSK in regulating energy balance under obesogenic
conditions. TSK is induced in response to increases in
energy expenditure, which blunts sympathetic outflow
and innervation of adipose tissue, thereby reducing
thermogenesis and energy expenditure (). Ablation
of TSK also prevents diet-induced NASH and whole-
body insulin resistance (), which may be mediated

by the improvements in systemic metabolism rather
than direct actions targeting proinflammatory, profi-
brotic, or insulin signaling pathways. Future work
including the identification of the putative TSK re-
ceptor is required to determine the role of TSK in lipid
metabolism and insulin signaling in peripheral tissues.

Hepatocyte exosomes and protein secretion

Exosomes are emerging as an important mode of
intercellular and intertissue communication. Proteo-
mic analysis of exosomes derived from rat primary
hepatocytes identified ~ proteins, some of
which are also denoted as classically secreted hep-
atokines (e.g., DPP). Bioinformatic analysis predicts
that these hepatocyte-derived exosomal proteins are
implicated in intracellular transport, lipid metabolism,
carbohydrate metabolism, metabolite availability, and
protein turnover (). Although the influence of
NAFLD or NASH on liver-secreted exosomes is
poorly understood, in vitro studies showed that pal-
mitate exposure increases exosome/extracellular vesicle
secretion (–), and that these exosomes contained
a greater proportion of proteins involved in regulating
fibrosis (i.e., a-SMA, TGFb, Cola) (). These
exosomes were found to communicate with “healthy”
hepatocytes to promote the progression of fibrosis
(–), suggesting a potential autocrine effect of
exosomes in liver disease. However, this is very much an
emerging field, and the importance of liver-derived
exosomes in regulating cell metabolism and influenc-
ing whole-body glucose homeostasis is currently un-
known. Future work should examine how liver disease
affects the protein composition in liver-secreted exo-
somes, and whether these exosomes are important
mediators of insulin resistance.

Summary

Hepatokines clearly exert pleiotropic effects on lipid
and glucose metabolism and insulin action, and their
secretion is impacted by NAFLD (Table ). Although
there has been one comprehensive examination of the
hepatocyte protein secretome (), which demon-
strates marked changes in response to simple steatosis,
rapid developments in mass spectrometry now
permit a deeper examination of cell/tissue secretomes,
enabling more detailed understanding of the breadth
of protein secretion during the progression of NAFL to
NASH. Performing such experiments in human liver
tissues will be important in driving our understanding
of hepatokines in physiology and NAFLD-related
comorbidities and, by extension, the identification
of therapeutic targets to treat cardiometabolic diseases.
Such studies will also be important for identifying
novel biomarkers that could be used in conjunction
with readily available clinical parameters to identify
the presence and staging of NAFLD/NASH with
higher sensitivity and specificity than current risk-
stratification algorithms used in routine clinical care.
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Metabolite secretion, NAFLD, and

insulin resistance

The liver plays critical roles in regulating systemic
glucose and lipid metabolism, processes that have been
extensively reviewed in the context of NAFLD ().
Glucose and VLDL aside, liver-derived major me-
tabolite classes, including lipoproteins, ketones, acyl-
carnitines, and bile acids, appear to transduce specific
metabolic signals; however, much of the literature on
this topic remains correlative and circumstantial with
regard to their endocrine functions. This mode of
intertissue communication is discussed below with this
caveat in mind.

Ketones

Ketone bodies such as acetone, acetoacetate, and
b-hydroxybutyrate are produced in the liver using
b-oxidation–derived acetyl-CoA as substrate, and they
are then secreted from the liver for transport to other
peripheral tissues. Upon their uptake by peripheral
tissues, ketone bodies are converted back to acetyl-
CoA, which provides substrate for energy production
through the tricarboxylic acid (TCA) cycle and ox-
idative phosphorylation. The excess acetyl-CoA also
increases the capacity for protein acetylation, par-
ticularly of mitochondrial proteins, which regulates
the activity of transcription factors and transcrip-
tional coactivators such as FOXO, PPARg coac-
tivator a (PGCa), and PPARg, all of which play
critical roles in regulating the expression of metabolic
genes, particularly in response to changes in nutrient
availability (, ). In this regard, ketogenesis is
important when carbohydrate is limiting, including
starvation and with the consumption of extremely
low-carbohydrate diets, which are often referred to as
“ketogenic” diets (, ). Ketone bodies con-
tribute up to % of total energy expenditure under
these conditions (, ).

Moving beyond their direct role as an energy
substrate, ketone bodies signal to peripheral tissues
and the central nervous system to regulate metab-
olism. Ketones can cross the blood–brain barrier and
are sensed in the hypothalamus to stimulate food
intake by increasing the expression of the orexigenic
neuropeptides Npy and Agrp () and through the
potentiation of hypothalamic leptin and insulin sig-
naling () (Fig. ). Such signaling is associated with
reduced adiposity and improved systemic insulin
sensitivity (). In the periphery, b-hydroxybutyrate
regulates lipid metabolism in adipocytes via activa-
tion of hydroxy-carboxylic acid receptor  (HCA,
GPRA), which sequentially decreases adenylyl
cyclase activity, protein kinase A activity, and lipolysis
(, ). b-Hydroxybutyrate is also implicated in the
longer-term regulation of metabolism by modifying
histones through two distinct epigenetic processes.
First, b-hydroxybutyrate inhibits class I histone deace-
tylase (HDAC) (), which is associated with reduced

oxidative stress (), a well-documented mediator of
insulin resistance (). Second, b-hydroxybutyrate
directly modulates lysine residues on histones via a
process known as lysine b-hydroxybutyrylation,
leading to activation of starvation-regulated meta-
bolic pathways, including amino acid catabolism,
PPAR signaling, and oxidative phosphorylation ().
Although correlative, HDAC inhibition is reported with
the consumption of ketogenic diets, with subsequent
activation of PPARa and the expected sequalae of
increased expression of lipid metabolism genes (),
greater hepatic fatty acid oxidation and plasma tri-
glyceride clearance, and FGF production (, ).
Thus, b-hydroxybutyrate links changes in metabolite-
directed histone modifications to changes in cellular
metabolism.

Although b-hydroxybutyrate is commonly used in
metabolic studies to represent “ketones,” acetoacetate
constitutes % to % of the total hepatic ketone
body pool (, ) and is thereby a significant source
of acetyl-CoA and a potential signaling molecule.
Acetoacetate can inhibit glucose uptake in skeletal
muscle and heart (, ), although others show no
effect (). Recent work has shown that hepatocyte-
secreted acetoacetate, but not b-hydroxybutyrate,
ameliorates diet-induced hepatic fibrosis (), but
these studies did not assess metabolism, and a better
understanding of acetoacetate roles in metabolism is
needed. Similarly, another ketone, acetone, can be
taken up by tissues but its effects on glycemic control
and insulin sensitivity are unknown. Further detailed
information on ketones and metabolism is available
elsewhere ().

The role of ketones in regulating insulin action and
glycemic control is equivocal (–). These con-
flicting findings result from discrepancies in study
designs, the composition of ketogenic diets, the like-
lihood of “positive” and “negative” responders to ke-
togenic dietary intervention, the duration of the
ketogenic diet, and the myriad of “off-target” changes
that accompany ketogenic diet consumption.

Ketone bodies in NAFLD. Hepatic ketogen-
esis and plasma b-hydroxybutyrate are reportedly
increased (, ), unchanged (–), or decreased
(, ) in rodents and humans with NAFLD. There
is similar uncertainty in NASH, with reports of higher
(, ) or lower levels () of circulating ketone
bodies compared with individuals with steatosis or no
liver pathology. Future studies are required to clarify
this ambiguity and to also identify the potential links
between specific ketones and insulin action.

Lipoproteins

The liver secretes lipids primarily within VLDLs, but
also within extracellular vesicles. Although most lipids
within VLDLs are triglycerides (~%), VLDLs also
contain cholesterol and cholesterol esters (~%)
and phospholipids (~%), with most being :-

“Increased circulating

ceramide and/or ceramide

accumulation in rodents

induces inflammation and

insulin resistance.”
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containing phosphatidylethanolamine (). Addi-
tionally, % to % of liver sphingolipids, mainly
ceramide and free sphingosine, can be released as
components of VLDLs ().

Fatty acids are cleaved from triglyceride con-
tained within VLDLs by lipoprotein lipase that is
localized to the surface of endothelial cells in
capillaries and are transported into cells residing in
close proximity or carried in the blood bound
to albumin. Increasing VLDL-triacylglycerol se-
cretion and delivery to tissues can cause periph-
eral insulin resistance by increasing fatty acid

availability, as shown experimentally by coinfusing
Intralipid (triglyceride emulsion) and heparin
(lipoprotein lipase activator) (, ) (Fig. ).
Increased circulating VLDLs, and thereby tri-
glycerides, is associated with hepatic steatosis,
obesity, and insulin resistance (, ). Once
depleted from triglyceride, lipoprotein particles are
enriched in cholesterol and cholesterol esters to
form intermediate-density lipoproteins or low-
density lipoproteins (LDLs). Insulin resistance in
humans is characterized by high levels of plasma
cholesterol esters (), and high circulating cholesterol

Figure 3. Hepatic metabolite secretion. Different pathways for metabolite secretion are color-coded. Fatty acids (FA) are taken up

by hepatocytes and can be converted to acylcarnitine for oxidation within the mitochondria. These acylcarnitines can be secreted

from the liver and induce insulin resistance in peripheral tissues (green). Ketone bodies are produced during mitochondrial fatty

acid oxidation and can be secreted from hepatocytes, affecting oxidative metabolism, and they may affect insulin sensitivity in

peripheral tissues (orange). The liver plays a significant role in lipoprotein metabolism by taking up chylomicron remnants from the

circulation (blue) and by secreting VLDLs that transport triglycerides (and other lipids) to peripheral tissues (yellow). Cholesterol

synthesized within the liver or taken up as part lipoproteins can be converted to bile acids, which are secreted and affect intestinal

lipid absorption and bile flow, as well as peripheral metabolism through activation of various receptors (blue). Lastly, the liver

secretes exosomes that carry thousands of metabolites, including ceramide and LPC, that were shown to lead to stellate cell

activation and fibrosis in a paracrine manner (red). Changes in those pathways with NAFLD are shown with red arrows (↑ increased,

↓ decreased with NAFLD, ? unknown or controversial). HSC, hepatic stellate cell; TAG, triacylglycerol.

1378 Watt et al Liver Hepatokines and Metabolic Disease Endocrine Reviews, October 2019, 40(5):1367–1393

REVIEW
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/4

0
/5

/1
3
6
7
/5

4
7
9
3
4
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



levels are associated with reduced insulin secretion,
effects that can be normalized with cholesterol depletion
(). Cholesterol accumulation within the plasma
membrane of skeletal muscle is associated with insulin
resistance secondary to reduced GLUT insertion
within the membrane (, ). These studies suggest
that circulating cholesterol (liver derived or from other
sources) has a negative impact on glycaemic control. We
are not aware of any studies assessing the direct impact
of liver-derived VLDL/LDL-associated cholesterol on
glucose metabolism. However, as the liver is a major site
of endogenous cholesterol synthesis and secretion (),
most peripheral effects are most likely related to liver-
derived cholesterol.

Intracellular ceramide accumulation causes insulin
resistance (), and circulating ceramides appear to
induce similar effects. Ceramides contained within
LDLs are transferred to the plasma membrane of
skeletal muscle, which leads to a reduction in insulin-
stimulated GLUT translocation (). LDL ceramides
also induce inflammation in macrophages (), per-
haps via a TLR-dependent mechanism, which can in
turn induce insulin resistance in peripheral tissues ().
Additionally, treatment of macrophages with VLDLs
increases macrophage ceramide content and promotes
an M-like macrophage polarization, leading to adipose
tissue inflammation and insulin resistance in diet-
induced obese mice ().

Lipoproteins in NAFLD and insulin re-

sistance. Hepatic steatosis is associated with in-
creased secretion of VLDLs and increased plasma
triglycerides (, ), and patients with NAFLD
have a reduced capacity for insulin-mediated suppres-
sion of VLDL secretion (), which may contribute to
the insulin resistance and glucose intolerance that is
commonly associated with NAFLD (, ). Fur-
thermore, increased VLDL secretion is associated with
inflammation, particularly increased TNFa production
(), and increases in TNFa can further drive hepatic
VLDL secretion () and insulin resistance ().

VLDL and LDL particles carry ceramide (,
), and hepatic ceramide secretion is increased in
the presence of lipid oversupply (, ). Fur-
thermore, ceramide transported in LDLs is in-
creased in the plasma of individuals with obesity
with type  diabetes and correlates with insulin
resistance (). The liver is the major contributor
to circulating ceramide levels (), and liver
ceramide synthesis is highly dependent on fatty acid
availability (), linking dysregulated adipose
tissue lipolysis to liver-derived ceramide in the
circulation and NAFLD. Increased ceramide se-
cretion in conditions of hepatic steatosis/hepatic
lipid oversupply may reflect an attempt by the liver
to protect itself from the deleterious consequences
of intracellular ceramide accumulation (), al-
though there is presently no known ceramide
sensing mechanism. Increased circulating ceramide

and/or ceramide administration in rodents induces
inflammation and insulin resistance, particularly in
skeletal muscle (, –), whereas a reduction
in liver and plasma ceramide after weight loss is
associated with reduced inflammation and im-
proved insulin sensitivity (, , ). Addi-
tionally, these patients showed reductions in
plasma cholesterol, triglycerides, LDLs, and free
fatty acids (), increased ketone bodies and
acylcarnitines, and reduced levels of branched-
chain amino acids and (lyso)glycerophospholipids
(), suggesting that reductions in plasma ceramide
is one of many changes that mediate systemic meta-
bolic improvements with weight loss. Similarly,
induction of hepatic ceramide degradation through
increased expression of acid ceramidase within the
liver and subsequent reductions in circulating
ceramide are associated with improvements in
hepatic steatosis and systemic insulin sensitivity
(, ).

Acylcarnitines

Acylcarnitines are generated through coupling of
acyl-CoA to carnitine for import into the mito-
chondrial matrix. Once inside the mitochondria,
carnitine and acyl-CoA are regenerated and acyl-
CoA is oxidized through b-oxidation. Acylcarni-
tines are an important energy source within the
mitochondria, and they are also secreted into the
circulation (), either directly into the blood
through the acylcarnitine transporter SLCA
() or within extracellular vesicles (, ). The
liver (, ), but not skeletal muscle (, ),
is the major source of circulating acylcarnitine and
this is most pronounced with fasting (). Acyl-
carnitines can provide up to % of the circulating
carbon product from fatty acids () and are taken
up by skeletal muscle, heart, and brown adipose
tissue (, ). Acylcarnitine accumulation in
muscle has been linked to skeletal muscle insulin
resistance (), which is thought to result as a
product of a mismatch between fatty acid oxidation
and TCA flux, resulting in mitochondrial stress and
reactive oxygen species production () (Fig. ).
Some studies demonstrate increased plasma acyl-
carnitines in humans with insulin resistance (,
), and treating CC myotubes with acylcar-
nitine modestly impairs insulin signaling ().
Whether circulating acylcarnitines impair systemic
insulin action and glucose homeostasis is ques-
tionable because increasing plasma acylcarnitines
via g-butyrobetaine supplementation in mice ()
or carnitine supplementation in rats () does not
affect glucose homeostasis. In addition to their
potential role in (dys)regulating insulin action,
acylcarnitines are taken up by pancreatic b-cells,
leading to insulin depletion as a result of a com-
bination of diminished insulin refill and enhanced
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insulin granule release (). Acylcarnitines acti-
vate proinflammatory signaling in macrophages
(), and liver-derived acylcarnitines are a likely
fuel source for brown fat thermogenesis during cold
exposure, suggesting a role for acylcarnitines in
regulating energy homeostasis () (Fig. ).

Acylcarnitines in NAFLD and insulin re-

sistance. Plasma acylcarnitines have been reported
to be decreased in individuals with hepatic stea-
tosis () and increased in patients with NASH
(–), while others report acylcarnitine species-
specific changes with NAFLD (). The increase in
NASH patients could be attributed to the down-
regulation of carnitine palmitoyltransferase  (CPT)
and a subsequent decrease in mitochondrial fatty acid
entry and oxidation (). These reported differences
may relate to changes in mitochondrial b-oxidation
with NAFLD progression (), as b-oxidation is
reduced in livers with steatosis/NAFL (, ) and
increased in NASH (, ). The mechanisms
underpinning NAFLD stage-specific differences in
lipid metabolism remain unresolved, and it would be
interesting to assess how and why b-oxidation (and
subsequently acylcarnitine secretion) is altered with
the progression of NAFL to NASH. At this point,
it is difficult to reconcile any clear association be-
tween NAFLD, acylcarnitines, and impaired glycemic
control.

Bile acids

Oxidation of cholesterol within the liver results in the
generation of bile acids, including cholic acid, che-
nodeoxycholic acid, and deoxycholic acid. In addi-
tion to well-documented roles in intestinal lipid
absorption and cholesterol metabolism (), bile
acids act as signaling molecules by activating the
nuclear receptors farnesoid X receptor, pregnane
X receptor, and vitamin D receptor, as well as
the G-protein–coupled receptor TGR, which are
expressed within and external to the enterohepatic
system (). For the most part, bile acids induce
favorable metabolic outcomes such as reduced he-
patic gluconeogenesis and improved glucose ho-
meostasis through farnesoid X receptor (, )
and pregnane X receptor activation (), as well as
increased energy expenditure in brown adipose tis-
sue, and improved glucose metabolism and insulin
sensitivity through TGR () (Fig. ). Notably,
these metabolic effects are unlikely to be mediated via
direct actions in muscle and adipose tissue because of
the very low expression of these nuclear receptors in
these tissues. Readers should refer to de Aguiar
Vallim et al. () for an expansive review of bile acid
effects on metabolism.

Bile acids in NAFLD and insulin resistance.

Detailed studies on the interaction between bile
acids in the enterohepatic system and NAFLD are
limited, and the small number of investigations in

this area are contradicting. Most studies report
increases in liver and circulating bile acids with
progressive NAFLD (–), and circulating bile
acids appear to be related to the metabolic phe-
notype associated with NAFLD/NASH, especially
insulin resistance (). Further work is clearly
needed to bridge the gap between the un-
derstanding of bile acid secretion and their met-
abolic functions and influence on metabolic
diseases when considering the development of
targeted therapies in NAFLD.

Metabolite secretion in exosomes

Most hepatic lipids are secreted within lipoprotein
particles, and far less is known about the secretion of
hepatic lipids or other metabolites contained within
extracellular vesicles, including exosomes. In humans,
~% of total lipids found in serum are contained
within lipoproteins (), suggesting that only a minor
component of circulating lipids (~%) are transported
in extracellular vesicles (Fig. ). This relative low
abundance of lipids does not exclude a meaningful
contribution of exosomal lipids as signaling molecules
because exosomes can be targeted to specific cell/tissue
types (). Liquid chromatography–tandem mass
spectrometry and other biochemical approaches have
identified many lipid species in exosomes [e.g., 
lipid species from  lipid classes (),  lipid
species from  lipid classes ()], reflecting a
complex lipid composition. The most abundant lipid
classes found within exosomes are cholesterol, phos-
pholipids, sphingolipids, and the mitochondrial lipid,
cardiolipin (–). Although the lipid composition
of exosomes generally resembles the lipid composi-
tion of the cell of origin, more so than the exosomal
protein content (, ), certain lipids have been
shown to be enriched within all exosomes, as discussed
below.

Little is known about the composition of liver-
derived exosomes, especially in NAFLD. Hepatocytes
secrete exosomes that carry ceramides and preferen-
tially fuse in a paracrine manner with hepatocytes
(), and one study examined the composition of
immortalized Huh hepatocellular carcinoma cell
exosomes and showed that they are enriched in long-
chain saturated free fatty acids (C: and C:),
distearoyl phosphatidic acid [PA(:/:)], various
phospholipids [particularly the phosphatidyl serine
PS(:/:)], lysophospholipids [e.g., lysophos-
phatidylcholines (LPCs), lysophosphatidylserines,
lysophosphatidylglycerol, lysophosphatidylinositol,
lysophosphatidylethanolamine), as well as a variety of
sphingomyelin and cardiolipin species (). Notably,
the composition of human liver-derived exosomes and
the role of the vast majority of exosomal lipids in
intercellular communication are unknown.

One of the more abundant lipids within hepatocyte-
derived exosomes is LPC (). The high LPC
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content within exosomes is not surprising, as LPC is
the most abundantly secreted phospholipid from the
liver (). In addition to being found within exo-
somes, LPC is transported in the circulation bound to
albumin and is the second most prevalent phospho-
lipid in plasma (). Circulating LPCs activate
GRP to enhance glucose-stimulated insulin se-
cretion () and to increase glucose uptake by in-
creasing GLUT translocation (, ), resulting
in lower blood glucose levels in mice with type 

diabetes (). In humans, plasma LPC (and
lysophosphatidylcholine/alkyl-phosphatidylcholine)
levels are reduced in individuals with insulin resistance,
independent of obesity (), indicating that LPC se-
cretion may be increased to protect against the insulin
resistance associated with NAFLD. Irrespective, it re-
mains uncertain as to how LPCs contained within
exosomes or other extracellular vesicles can be transferred
in meaningful quantities to impact cell functions in vivo.

The composition of nonlipid metabolites con-
tained within liver-derived exosomes is not described.
Metabolomic examination in other cells report high

abundance of amino acids and TCA intermediates
in exosomes, including acetate, citrate, pyruvate,
a-ketoglutarate, fumarate, and malate, and these can
used as substrates by surrounding cells (–).

Exosomes in NAFLD and insulin resistance.

Hepatic exosome secretion is increased with
NAFLD or lipid overload in vitro (, , ,
). The increase in exosome release with lipid
overload is mediated by ER stress (), particularly
through IRE/XBP signaling (). These lipid
“overloaded” hepatocytes are enriched in C:
ceramide, and they are packaged into exosomes in
either an IRE/XBP-dependent manner through
ER stress-induced upregulation of the sphingolipid
biosynthesis enzyme serine C-palmitoyltransferase
(SPT) (), or through the activity of StAR-
related lipid transfer domain  (STARD), a
ceramide transport protein (). Increased exo-
somal C: ceramide is also reported in mice and
humans with NASH (); however, direct secre-
tion from the liver was not assessed in this study,
and the exosome source was not verified. Ceramides

Figure 4. Secretion of miRNA into the circulation. Secretion of miRNA encapsulated by (1) exosomes, (2) contained within HDL, or (3)

bound to argonaute 2 (Ago2), which is channeled through vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated

protein 23 (SNAP23). DAG, diacylglycerol; LPC, lysophosphatidylcholine; TAG, triacylglycerol.
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stimulate exosome secretion (–), and hepatocyte-
derived exosomes preferentially accumulate in stellate cells
and hepatocytes, where they can promote stellate cell
activation and exacerbate liver fibrosis (, , ). This
raises the intriguing possibility that exosomal ceramides
promote NALFD progression to NASH through paracrine
interactions (, ).

LPCs are present in hepatocyte-derived exosomes
(), but changes with NAFLD are currently un-
known. Patients with NAFLD show reductions in a
variety of serum LPC and phosphatidylcholine
species (–), which is related to increased gene
expression of proteins involved in LPC degradation
(). Interestingly, greater abundance of plasma
LPC-: can distinguish insulin-sensitive from insulin-
resistant NAFL patients, providing potential diagnostic
value and further supporting an insulin sensitizing role
for LPCs ().

Summary

Many studies in mice and humans have demonstrated
that several liver-derived lipids and metabolites can
serve as signaling molecules to regulate insulin action
and other metabolic processes. Recent advances in
metabolomic technologies have progressed the field by
confirming correlational relationships in large human
cohorts and for the identification of novel metabolites
with relationships to metabolic diseases. However, the
causality of most of these metabolites for the regu-
lation of cell functions remains to be elucidated. This

has been hindered by the inability to deliver lipids in
aqueous environments (e.g., blood, culture medium)
in a reproducible, physiologically relevant manner, and
new technologies are urgently required to move this
field forward.

miRNA secretion

miRNAs and intracellular metabolism

miRNAs are noncoding RNAs of ~ nucleotides
that regulate gene expression by binding to the 9

untranslated region of mRNAs to repress translation
or guide mRNAs for degradation in lysosomes ().
miRNAs typically target mRNAs transcribed from
gene clusters rather than single genes, which facili-
tates critical roles in fundamental biological pro-
cesses, including cell proliferation, differentiation,
and apoptosis. Intracellular accumulation of specific
miRNAs can regulate diverse metabolic functions
in a variety of tissues, including skeletal muscle in-
sulin action, insulin secretion from pancreatic b-cells,
and adipocyte lipolysis (, ), thereby impli-
cating miRNAs in the pathophysiology of metabolic
diseases such as type  diabetes. One specific example
is miR-a and miR-b, which are increased in
NAFLD and target IRS and mRNAs encoding en-
zymes essential for lipid transport and b-oxidation,
such as CPTa and AMPK a subunit, to simulta-
neously inhibit insulin signaling and lipid-supported
ATP synthesis in the liver ().

Regulation of miRNA secretion

It is now clear that miRNAs are secreted by cells and
can be delivered to recipient cells where they func-
tion as endogenous miRNAs. Although miRNAs
are rapidly degraded by ribonucleases in the plasma
(), miRNAs encapsulated by extracellular vesicles
() are highly stable in the circulation ().
Moreover, miRNAs can also travel through the blood
in association with proteins such as argonaute
(Ago), a key element of the RNA-induced silenc-
ing complex that suppresses gene expression, and
within high-density lipoproteins (HDLs) (, ).
The Ago–miRNA complex is secreted by the in-
teraction of vesicle-associated membrane protein 

(VAMP) and synaptosomal-associated protein 

(SNAP) to create a pore allowing export of the
complex (Fig. ).

Although a detailed discussion of the factors reg-
ulating miRNA secretion is beyond the scope of this
review, there is evidence that neutral sphingomyelinase
 (nSMase), an enzyme that catalyzes the synthesis of
ceramides from sphingomyelin, and ceramide accu-
mulation are important for exosome secretion and
miRNA sorting within vesicles (, ). Moreover,
nSMase can inhibit the export of miRNA by HDLs
(), suggesting an important role for the nSMase–
ceramide axis in regulating miRNA secretion. This has

Figure 5. Potential roles of miRNA in regulating metabolism in peripheral tissues. miRNAs can be

transported in the circulation and delivered to other tissues to influence metabolic functions.
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important implications for miRNA “crosstalk” in
NAFLD/NASH, which is characterized by increased
nSMase activity and ceramide accumulation ().

Liver-derived miRNAs and metabolic regulation

To our knowledge, no study has reported changes
in miRNA secretion from the liver/hepatocytes
with NAFLD. However, it is clear that many
miRNAs are increased in the liver with NAFLD,
that many of these miRNAs are also increased in
the circulation, and that these same miRNAs can
regulate insulin secretion and insulin sensitivity in
various cell types (–) (Fig. ). For example,
miR- (), miR- (), and miR- ()
impair insulin secretion in pancreatic b-cells, and
miR- (, ), miR-a (), miR- (),
miR-b (), miR- (), and miR- ()
impair insulin sensitivity in the liver, skeletal
muscle, or adipose tissue. Although these data
suggest a potentially important role for liver-
derived miRNAs in regulating glycemic control
in NAFLD, definitive evidence for causality is
missing, as these miRNAs are also expressed by,
and secreted from, other tissues. Approaches
aimed at tracking the destination cells of adipose-
produced miRNAs have been developed (),
and the use of this technology would help to clarify
the capacity for liver-derived miRNAs to regulate
gene expression and metabolism in distant tissues.
miRNAs constitute a minor fraction of all noncoding
RNAs and other regulatory nucleic acids such as
P-element–induced wimpy testis (PIWI)-interacting
RNAs and long noncoding RNA have the capacity to
regulate gene expression and to regulate glycaemic
control and lipid homeostasis (–), and they
have been detected in exosomes. Given their rela-
tively recent discovery, it is not surprising that the
relevance of these noncoding RNAs for the physi-
ological and pathophysiological regulation of meta-
bolism remains to be elucidated.

Conclusion

NAFLD is the most common chronic liver disorder in
developed nations, and the notion that NAFLD is
closely linked to the development of insulin resistance
and type  diabetes is well accepted. Work during the
last  years has identified a number of hepatokines
that play critical roles in regulating lipid metabolism

and insulin action, both in the liver and in distant
tissues. The discovery of new hepatokines and an
understanding of their biological functions have
provided new targets for intervention strategies to stop
the rise of metabolic disease, with FGF analogs
being a prominent example.

However, we are only beginning to appreciate
the sheer magnitude of factors secreted by the liver
and how these are altered in NAFLD. Rapid de-
velopments in mass spectrometry have allowed for a
deeper understanding of cell/tissue secretomes, and
the depth of information is certain to grow. In this
review, we have summarized the metabolic effects of
individual hepatokines, and although this knowledge
is beneficial in advancing the understanding of
metabolism, both in health and NAFLD, these dis-
coveries are tempered by the reality that a diverse
array of changes link NAFLD to insulin resistance. In
this context, transomic approaches using tissues
obtained from well-characterized, clinically relevant
human cohorts will need to be incorporated using
systems biology approaches to interrogate the com-
plex control underpinning changes in liver-secreted
products and their relationship with metabolic
diseases ().

A central problem with NAFLD is that it rarely
manifests specific symptoms and diagnosis is
frequently incidental. Currently, the only reliable
means of diagnosing and staging NAFLD is by
liver biopsy, which is unsuitable for routine use on
individuals at risk for NAFLD. Hence, noninvasive
tests are increasingly being used in clinical
practice to assess NAFLD, leading to concerted
efforts to identify new serum biomarkers. Aside
from informing on basic biology, future studies
that interrogate the hepatocyte or liver secretomes
using “omics” approaches are well positioned to
identify new biomarkers for the development of
readily available serum tests able to differentiate
the clinically significant forms of NAFLD and to
monitor disease progression noninvasively.

In closing, the field of “hepatokines” biology is
rapidly evolving, and it is our hope that future
work in this domain will help unravel the com-
plexities associated with hepatokine regulation of
insulin resistance in NAFLD, to delineate pre-
viously unappreciated communication between
the liver and other organs in metabolic control,
and advance the clinical management for the
treatment of NAFLD-related comorbidities.
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A, Häring HU, Stefan N. The hepatokines fetuin-A

and fetuin-B are upregulated in the state of hepatic

steatosis and may differently impact on glucose

homeostasis in humans. Am J Physiol Endocrinol

Metab. 2018;314(3):E266–E273.

111. Jung CH, Kim BY, Kim CH, Kang SK, Jung SH, Mok

JO. Associations of serum fetuin-A levels with in-

sulin resistance and vascular complications in pa-

tients with type 2 diabetes. Diab Vasc Dis Res. 2013;

10(5):459–467.

112. Shim YS, Kang MJ, Oh YJ, Baek JW, Yang S, Hwang IT.

Fetuin-A as an alternativemarker for insulin resistance

and cardiovascular risk in prepubertal children.

J Atheroscler Thromb. 2017;24(10):1031–1038.

113. Zhao J, Xiong X, Li Y, Liu X, Wang T, Zhang H, Jiao Y,

Jiang J, Zhang H, Tang Q, Gao X, Li X, Lu Y, Liu B, Hu

C, Li X. Hepatic F-box protein FBXW7 maintains

glucose homeostasis through degradation of fetuin-

A. Diabetes. 2018;67(5):818–830.

114. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H,

Flier JS. TLR4 links innate immunity and fatty

1386 Watt et al Liver Hepatokines and Metabolic Disease Endocrine Reviews, October 2019, 40(5):1367–1393

REVIEW
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/4

0
/5

/1
3
6
7
/5

4
7
9
3
4
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



acid-induced insulin resistance. J Clin Invest. 2006;

116(11):3015–3025.

115. Mathews ST, Singh GP, Ranalletta M, Cintron VJ,

Qiang X, Goustin AS, Jen KL, Charron MJ, Jahnen-

Dechent W, Grunberger G. Improved insulin sen-

sitivity and resistance to weight gain in mice null for

the Ahsg gene. Diabetes. 2002;51(8):2450–2458.

116. Pierre N, Deldicque L, Barbé C, Naslain D, Cani PD,
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A, Hernandez C, Selva DM. Molecular Mechanism

of TNFa-induced down-regulation of SHBG ex-

pression. Mol Endocrinol. 2012;26(3):438–446.

194. Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition

of sex hormone-binding globulin production in the

human hepatoma (Hep G2) cell line by insulin and

prolactin. J Clin Endocrinol Metab. 1988;67(3):

460–464.

195. Saez-Lopez C, Brianso-Llort L, Torres-Torronteras J,
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361. López-Riera M, Conde I, Quintas G, Pedrola L,
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