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a b s t r a c t

The heart is not only our most vital, but also our most complex organ: Precisely controlled by the

interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in

concert to regulate its filling, ejection, and overall pump function. While numerous computational

models exist to study either the electrical or the mechanical response of its individual chambers, the

integrative electro-mechanical response of the whole heart remains poorly understood. Here we present

a proof-of-concept simulator for a four-chamber human heart model created from computer topography

and magnetic resonance images. We illustrate the governing equations of excitationecontraction

coupling and discretize them using a single, unified finite element environment. To illustrate the basic

features of our model, we visualize the electrical potential and the mechanical deformation across the

human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac

function, we extract the pressureevolume relationship and show that it agrees well with clinical ob-

servations. Our prototype model allows us to explore and understand the key features, physics, and

technologies to create an integrative, predictive model of the living human heart. Ultimately, our

simulator will open opportunities to probe landscapes of clinical parameters, and guide device design

and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic,

pulmonary, tricuspid, or mitral valve.

� 2014 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Motivation

The human heart beats about 100,000 times daily, 30 million

times annually, and 2.5 billion times in an average lifetime (Berne

and Levy, 2001). Only marginally larger than a fist, it is capable of

pumping 7000 liters of blood per day, 2.5 million per year, and 200

million throughout an individual’s life span (Kumar et al., 2005).

Fig. 1 shows an anatomic model of the human heart created from

computer tomography and magnetic resonance images (Zygote

Media Group and Inc., 2013). Our heart consists of four chambers,

the left and right atria and the left and right ventricles, connected

by four valves. Fig. 2 illustrates the four valves, the tricuspid and

mitral valves, which connect the right and left atria to the right and

left ventricles, and the pulmonary and aortic valves, which connect

the right and left ventricles to the pulmonary and systemic

circulation (Zygote Media Group and Inc., 2013). The coordinated

opening and closing of these valves regulates the filling of the

chambers, while the interplay of electrical and mechanical fields

controls their proper ejection. Disturbed valvular opening, stenosis,

disturbed closing, regurgitation, disturbed electrical signals, ar-

rhythmias, and reduced mechanical function, heart failure, can

have devastating physiological consequences (Braunwald, 1997).

Modeling the interplay between electrical excitation and me-

chanical contraction provides insight into these complex phe-

nomena and holds the potential to improve treatment for the

millions of people affected by cardiac disease (Hunter et al., 2003).

Heart disease is the primary cause of death in the industrialized

nations, claiming more than 16 million lives worldwide every year

(American Heart Associatio, 2014). The origin of the heart disease is

often local: Fibrillation and myocardial infarction are classical ex-

amples of local electrical and mechanical dysfunction. However,

irrespective of its nature and initial location, cardiac disease almost

always progresses to affect the entire heart, and eventually impairs

the electrical and mechanical function of all four chambers (Kumar
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et al., 2005). To understand the fundamental pathologies of

different forms of cardiac disease and optimize their treatment

options, it is critical to model the entire heart as a whole, rather

than studying the diseased subsystem in complete isolation

(Trayanova, 2011).

To date, numerous computational models exist to simulate the

behavior of the left ventricle (Eriksson et al., 2013; Klepach et al.,

2012; Lee et al., 2013; Rossi et al., 2014), fewer model exist to

simulate both the ventricles (Berberoglu et al., 2014; Hurtado and

Henao, 2014; Kotikanyadanam et al., 2010; Trayanova et al., 2011),

and only very few models exist to simulate the human heart with

all four chambers (Gonzales et al., 2013; Trayanova, 2011). Creating

whole heart models remains challenging because the atrial wall is

about an order of magnitude thinner than the ventricular wall. In

addition, the atria are typically entangled and their geometry can

be quite complex (Gonzales et al., 2013). This not only complicates

image segmentation, but also atrial discretization and meshing.

Here we create a finite element model of the whole heart on the

basis of existing anatomic and circulatory models illustrated in

Figs. 1 and 2. This allows us to model all four chambers as electri-

cally excitable, deformable, hyperelastic, electroactive bodies con-

nected via in- and out-flow conditions of viscous resistance type.

The remainder of this manuscript is organized as follows: In

Section 2, we summarize the continuum model of electro-

mechanical coupling based on the kinematic equations, the bal-

ance equations, and the constitutive equations. In Section 3, we

illustrate our computational model, based on the strong and weak

forms of the governing equations, their temporal and spatial dis-

cretizations, their linearizations, and the handling of their internal

variables. In Section 4, we document the creation of our human

heart model including the solid model, the finite element model,

the muscle fiber model, the fluid model, and a summary of all

model parameters. In Section 5 we illustrate the simulation of an

entire cardiac cycle. We close with a discussion of the results, the

limitations, an outlook, and some conclusions in Section 6.

2. Continuum model

We illustrate the continuum model of electro-mechanical

coupling by briefly summarizing the kinematic equations, the

balance equations, and the constitutive equations of excitatione

contraction coupling.

2.1. Kinematic equations

To characterize the kinematics of finite deformation, we intro-

duce the deformation map 4, which maps particles X from the

undeformed reference configuration to particles x ¼ 4 ( X,t ) in the

deformed configuration (Holzapfel, 2000). Its derivative with

respect to the undeformed coordinates X defines the deformation

gradient,

F ¼ F$Fvol ¼ V4; (1)

which we decompose multiplicatively into a volumetric part Fvol

and an isochoric part F ,

Fvol ¼ J1=3I and F ¼ J�1=3F; (2)

with Jacobians Jvol¼det(Fvol)¼det(F)¼J and J ¼ detðFÞ ¼ 1. We can

then introduce the isochoric right Cauchy-Green deformation

tensor,

C ¼ F
t
$F ¼ J�2=3C with C ¼ Ft

$F; (3)

and four of its invariants, which result from its projection onto the

unit tensor I, and the undeformed myocardial fiber and sheet unit

directions f0 and s0,

II ¼ C : I Iff ¼ C : ½f 05f 0�
Iss ¼ C : ½s05s0� Ifs ¼ C : ½f 05s0�:

(4)

The invariants Iff and Iss take the interpretation of the isochoric

fiber and sheet stretch squared as the squared lengths of the

deformed fiber and sheet vectors, f ¼ F,f 0 and s ¼ F,s0, and Ifs
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Fig. 1. Anatomic model of the human heart created from computer tomography and

magnetic resonance images. The model displays the characteristic anatomic features:

The aortic arch, the pulmonary artery, and the superior vena cava; the two upper

chambers, the left and right atria; and the two lower chambers, the left and right

ventricles; adopted with permission from (Zygote Media Group and Inc., 2013).
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Fig. 2. Circulatory model of the human heart created from computer tomography and

magnetic resonance images. The model displays the characteristic circulatory features:

The tricuspid and mitral valves, which connect the right and left atria to the right and

left ventricles; and the pulmonary and aortic valves, which connect the right and left

ventricles to the pulmonary and systemic circulation; adopted with permission from

(Zygote Media Group and Inc., 2013).
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indicates the fiber-sheet shear. In what follows, we denote the

material time derivative as f+$g ¼ df+g=dt and the material

gradient and divergence as V{+}¼d{+}/dX and Div {+}¼d{+}/dX:I.

2.2. Balance equations

We characterize the electrical problem through the mono-

domain version of the FitzHugheNagumo equations (Fitzhugh,

1961; Nagumo et al., 1962) for the electrical potential f and the

mechanical problem through the balance of linear momentum for

the deformation 4,

_f ¼ DivðqÞ þ f f

0 ¼ DivðPÞ þ f 4:
(5)

Here, q is the electrical flux, ff is the transmembrane current, P is

the Piola stress, and f4 is the external mechanical force.

2.3. Constitutive equations

To close the set of equations, we specify the constitutive equa-

tions for the electrical flux q, the transmembrane current f4, the

Piola stress P, and the external mechanical force ff. We introduce

the electrical flux proportional to the gradient of the electrical field,

q ¼ D$Vf; (6)

where D¼disoI þ danif0 5 f0 denotes the conductivity tensor, which

consists of an isotropic contribution diso and an anisotropic

contribution dani to account for faster conductivity along the fiber

direction f0 (Dal et al., 2012). For the transmembrane current,

f f ¼ c f½f� a�½f� 1� � rf; (7)

we assume a cubic polynomial, c 4 [4�a][4�1], which controls the

fast upstroke of the action potential through the parameters c and a

(Fitzhugh,1961; Nagumo et al., 1962), and of a coupling term,which

controls the slow repolarization through the recovery variable r

(Aliev and Panfilov, 1996).We treat the recovery variable as internal

variable, which evolves according to the following equation,

_r ¼ ½gþ r m1=½m2 þ f��½ � r � c f½f� b� 1��; (8)

where the recovery parameters g, m1, m2 and b control the restitution

behavior (Aliev and Panfilov,1996).We assume that the tissue stress

consists of passive and active contributions, P ¼ Ppas þ Pact, and

postulate a Holzapfel-type free energy for the passive tissue stress

(Holzapfel and Ogden, 2009), which we further decompose into

volumetric and isochoric contributions, Ppas ¼ Pvol þ Piso, such that

P ¼ Pvol þ Piso þ Pact ¼ Pvol þ P : Pþ Pact: (9)

P is the isochoric projection tensor (Holzapfel, 2000), and the

volumetric, isochoric, and active stresses take the following forms,

Pvol ¼ k
�

J2 � 1
�

F�t

P ¼ a exp
�

b
�

II � 3
��

F

¼ 2aff

h

Iff � 1
i

exp
�

bff

h

Iff � 1
i2�

f5f 0

þ2ass
�

Iss � 1
�

exp
�

bss
�

Iss � 1
�2
�

s5s0

þafsIfsexp
�

bfsI
2
fs

�h

f5s0 þ s5f 0

i

Pact ¼ Tact½f5f 0 þ n s5s0�:

(10)

Here, k is the bulk modulus, a, b, aff, bff, ass, bss, afs, bfs are the

parameters of the orthotropic Holzapfel model (Göktepe et al.,

2011; Holzapfel and Ogden, 2009), and nff and nss are the weight-

ing factors for active stress generation (Rossi et al., 2012; Walker

et al., 2005). The active muscle traction is driven by changes in

the electrical potential and obeys the following evolution equation

(Göktepe and Kuhl, 2010),

_T
act

¼ 3ðfÞ
�

kT ½f� fr� � Tact
�

: (11)

The parameters kT and 4r control the maximum active force and

the resting potential (Nash and Panfilov, 2004). The activation

function 3¼ 30 þ ½ 3N � 30�expð�expð�x½f� f�ÞÞ ensures a smooth

activation of the muscle traction Tact in terms of the limiting values

30 at 4/ �N and 3N at 4/ þ N, the phase shift f, and the tran-

sition slope x (Göktepe and Kuhl, 2010). In the following, we as-

sume that we can neglect the effects of external forces, ff ¼ 0.

3. Computational model

In this section, we illustrate the finite element discretization of

the governing equations, demonstrate their consistent lineariza-

tion, and discuss the handling of their internal variables (Bonet and

Wood, 1997).

3.1. Strong and weak forms

To derive the weak form of the governing equations, we refor-

mulate the electrical and mechanical balance equation (5) in their

residual forms and introduce the electrical and mechanical re-

siduals R4 and R
f throughout the entire cardiac domain B0.

R
f ¼ _f� DivðqÞ � f f^0

R
4 ¼ �DivðPÞ � f 4^0:

(12)

We prescribe Dirichlet boundary conditions f ¼ f and 4 ¼ 4

on the Dirichlet boundary and Neumann boundary conditions

q,N ¼ t
f
and P,N ¼ t

4
on the Neumann boundary with outward

normal N. For simplicity, we assume that all Neumann boundary

conditions are homogeneous, t
f
¼ 0 and t

4
¼ 0. We multiply the

residuals (12) by the scalar- and vector-valued test functions, df

and d4, integrate them over the domain B0, and integrate the flux

terms by parts to obtain the weak forms of the electrical and me-

chanical problems,

G
f ¼

Z

B0

df _fdV þ

Z

B0

Vdf$qdV �

Z

B0

dff fdV^0

G
4 ¼

Z

B0

Vd4 : PdV �

Z

B0

d4$f 4dV^0
(13)

Next, we discretize the weak forms (13) in time and space.

3.2. Temporal and spatial discretizations

To discretize the weak form of the electrical problem (13.1) in

time, we partition the time interval of interest T into nstep discrete

subintervals [tn,tnþ1] of length Dt¼tnþ1�tn,

T ¼ U
nstep

n¼1½tn; tnþ1�; (14)

and adopt a finite difference discretization in combination with a

classical implicit Euler backward scheme to determine the elec-

trical potential 4 at the current time point tnþ1,

_f ¼ ½f� fn�=Dt: (15)

To discretize the weak forms of the electrical and mechanical

problems (13.1) and (13.2) in space, we partition the domain of

interest B0 into nel discrete subdomains Be
0,
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B0 ¼ U
nel

e¼1B
e
0 (16)

and adopt a finite element discretization in combination with a

classical Bubnov-Galerkin scheme to discretize the test functions df

and d4 and trial functionsf and4 in space (Göktepe andKuhl, 2010),

df ¼
P

i¼1

Nidfi d4 ¼
P

j¼1

Njd4j

f ¼
P

k¼1

Nkfk 4 ¼
P

l¼1

Nl4l:
(17)

Here, N are the standard isoparametric shape functions.

3.3. Residuals and consistent linearization

With the discretizations in time (15) and space (17), we can

reformulate the weak forms (13) as the discrete algorithmic re-

siduals of the electrical and mechanical problems,

R
f
I ¼ A

nel

e¼1

Z

Be
0

Ni
f� fn

Dt
þ VNi$q� Ni f

fdVe^0

R
4

J ¼ A
nel

e¼1

Z

Be
0

VNj$P � Nj f
4dVe^0

(18)

The operatorA symbolizes the assembly of all element residuals

at the element nodes i and j to the global residuals at the global

nodes I and J. To solve for the unknown nodal electrical potential fI

and mechanical deformation 4J, we could, for example, adapt an

incremental interactive NewtoneRaphson solution strategy based

on the consistent linearization of the governing equations,

R
f
I þ

P

K

K
ff
IK dfK þ

P

L

K
f4
IL $d4L^0

R
4

J þ
P

K

K
4f
JK dfK þ

P

L

K
44

JL $d4L^0:
(19)

The solution of this system of equation (19) with the discrete

residuals (18) and the iteration matrices,

K
ff
IK ¼ A

nel

e¼1

Z

Be
0

Ni

�

1

Dt
� dff

f

	

Nk þ VNi$D$VNkdVe

K
f4
IL ¼ A

nel

e¼1

Z

Be
0

VNi$dFq$VNldVe

K
4f
JK ¼ A

nel

e¼1

Z

Be
0

VNj$dfP
act NkdVe

K
44

JL ¼ A
nel

e¼1

Z

Be
0

VNj$dFP$VNldVe;

(20)

defines the iterative update of the global vector of electrical and

mechanical unknowns fI) fI þ dfI and 4J) 4J þ d4J. It remains

to specify the fluxes q and P and sources ff and f4 for the residuals

(18.1) and (18.2) and their sensitivities with respect to the primary

unknowns f and 4 for the iteration matrices (20.1) to (20.4) (Dal

et al., 2013; Göktepe and Kuhl, 2010).

3.4. Internal variables

To integrate the evolution equations of the recovery variable r

and the active muscle traction Tact in time, we treat both as internal

variables and update and store them locally on the integration

point level (Göktepe and Kuhl, 2010; Krishnamoorthi et al., 2013).

To solve the nonlinear evolution equation (8) for the recovery

variable r, we locally adopt a finite difference discretization in

combination with a classical implicit Euler backward scheme

(Göktepe and Kuhl, 2009),

_r ¼ ½r � rk�=Dt; (21)

and introduce the local residual Rr ,

R
r ¼ r � rk � gDt þ

m1r

m2 þ f
½r þ c f½f� b� 1��Dt ¼ 0; (22)

and its algorithmic linearization K
r ,

K
r ¼ 1þ

m1
m2 þ f

½2r � c f½f� b� 1��Dt: (23)

to iteratively update the recovery variable as r ) r � R
r / Kr

(Kotikanyadanam et al., 2010). To solve the linear evolution equa-

tion (11) for the active muscle traction Tact, we again adopt a finite

difference discretization in time together with an implicit Euler

backward scheme,

_T
act

¼
�

Tact � Tactk

�


Dt (24)

and solve the resulting equation directly to calculate the active

muscle traction at the current point in time,

Tact ¼
�

Tactk þ 3kT ½f� fr �Dt
�


½1þ 3Dt�; (25)

where the 3¼ 30 þ ½ 3N � 30�expð�expð�x½f� f�ÞÞ (Dal et al., 2013).

Once we have determined the recovery variable r and the active

muscle traction Tact, we calculate the electrical flux q from equation

(6), the electrical source f4 from equation (7), the active stress Pact

from equation (10), and the total stress P from equation (9) to

evaluate the electrical and mechanical residuals (18). Last, we

calculate the sensitivities d4f
4 (Kotikanyadanam et al., 2010),

dF q¼0, dfP
act ¼ vfT

act [nff f 5 f0 þ nss s 5 s0], and dFP (Göktepe

et al., 2011) for the electrical and mechanical iteration matrices

(20).
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Fig. 3. Solid model of the human heart with anatomic details including the aortic arch,

pulmonary artery and superior vena cava, left and right atria, and left and right

ventricles.
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4. Human heart model

In this section, we illustrate the creation of a solid model, a finite

element model, and a muscle fiber model from the anatomic model

in Fig.1 and the creation of a fluidmodel from the circulatorymodel

in Fig. 2. This work was performed as part of the Living Heart

Project.

4.1. Solid model

Fig. 3 shows the solid model of a human heart with well-defined

anatomic details including the aortic arch, the pulmonary artery

and superior vena cava, the left and right atria, and the left and

right ventricles. We adapt the underlying geometry from the three-

dimensional computer-aided design model in Fig. 1 (Zygote Media

Group and Inc., 2013). The model accurately defines the key fea-

tures for our finite element analysis including detailed chamber

volumes and wall thicknesses.

Fig. 4 illustrates the finite element model of the heart dis-

cretized with 208,561 linear tetrahedral elements and 47,323

nodes. This discretization introduces 47,323 electrical degrees of

freedom for the scalar-valued potential f and 141,969 mechanical

degrees of freedom for the vector-valued deformation4 resulting in

189,292 degrees of freedom in total.

Fig. 5 illustrates the corresponding muscle fiber model with

208,561 discrete fiber and sheet directions f0 and s0. The muscle

fibers wrap helically around the heart. At the epicardium, the outer

wall, muscle fibers point clockwise-upwards whereas at the

endocardium, the inner wall, they point clockwise-downward. We

interpolate the fiber and sheet directions from generic fiber

orientation illustrations and assign their discrete values to each

integration point of the finite element model (Wong and Kuhl,

2014).

4.2. Fluid model

Fig. 6 illustrates the blood flowmodel with a surface-based fluid

cavity representation of the four chambers, the right atrium, the

right ventricle, the left atrium, and the left ventricle (Abaqus 6.13.

Analysis Use, 2013). These chambers are connected through five

viscous resistance models of Windkessel type (Berberoglu et al.,

2014) representing the tricuspid valve, the pulmonary circulation,

the mitral valve, the aortic valve, and the systemic circulation

(Smith, 2004). We adapt the positions of these valves and the

corresponding chamber volumes from the detailed circulatory

model in Fig. 2 (Zygote Media Group and Inc., 2013). We neglect

inertia effects and assume that the flow rate between two neigh-

boring chambers, qc / c þ 1, is proportional to the pressure differ-

ence in the two chambers, pc � pcþ1, scaled by the resistance

Rc / c þ 1 (Frank, 1899),

qc/cþ1 ¼
pc � pcþ1

Rc/cþ1
:

To represent the four chambers, we create fluid cavities from

cubes of unit volume and add the corresponding volume Vc (Abaqus

6.13. Analysis Use, 2013) x11.5. We then define the change in

chamber volume,

_Vc ¼ qc�1/c � qc/cþ1;

as the difference between influx qc � 1/ c and outflux qc/ c þ 1 of

the corresponding chamber. This simplified approach provides a

natural coupling between the structural deformation and the fluid

pressure, in which the fluid is represented exclusively in terms of

the temporally varying blood pressure in the four chambers. Spatial

pressure variations or shear stresses cannot be modeled with this

fluid cavity representation.

4.3. Solid and fluid model parameters

Table 1 summarizes the electrical, mechanical, electro-

mechanical, and flow parameters of the human heart simulation.

For the electrical problem, we choose the initial conditions to

4¼�80 mV throughout the entire heart, except for a short excita-

tion phase, during whichwe locally increase the voltage beyond the

excitation threshold in the region of the sinoatrial node located

between the right atrium and the superior vena cava. For the me-

chanical problem, we adopt a combination of different boundary

conditions. At the epicardium, the outer wall, we fix the heart in

space through connector elements with a moderate elastic stiffness

superior 
vena cava

right 
ventricle

right 
atrium

aortic 
arch

left
ventricle

pulmonary
artery

left
atrium

Fig. 4. Finite element model of the human heart discretized with 208,561 linear

tetrahedral elements, 47,323 nodes, and 189,292 degrees of freedom, of which 47,323

are electrical and 141,969 are mechanical.
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Fig. 5. Muscle fiber model of the human heart with 208,561 discrete fiber and sheet

directions interpolated and assigned to each integration point.
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situated at the intersection between the four-chamber heart and its

vasculature (Abaqus 6.13. Analysis Use, 2013) x31.2, similar to

supporting the heart by linear elastic springs (Göktepe and Kuhl,

2010). At the endocardium, the inner wall, we control the

pressure-volume relation through surface-based fluid cavities

(Abaqus 6.13. Analysis Use, 2013) x11.5. We choose the initial con-

ditions according to a preload step, during which we pressurize the

right atrium and ventricle with 0.266 kPa and the left atrium and

ventricle with 0.533 kPa.

5. Results

To demonstrate the ability of the proposed model to accurately

represent the basic features of cardiac excitation and contraction,

we simulate the electro-mechanical response of the human heart

throughout a representative cardiac cycle.

5.1. Electrical and mechanical fields

Fig. 7 displays the spatio-temporal evolution of the electrical

potential, f, the mechanical displacement, u ¼ jj 4�X jj, and the

muscle fiber strain, Eff ¼ E:[f05f0], across the human heart. The

displacement u illustrates the magnitude of the displacement

vector u as the difference between the current position 4 and initial

position X. The muscle fiber strain Eff indicates the strain along the

muscle fiber direction f0. Initially the heart is at rest and its cells are

negatively charged with a potential of f¼�80 mV, see Fig. 7, top

row. The heart is excited from the sinoatrial node, a region between

the right atrium and the superior vena cava, which is the first re-

gion to depolarize with a potential of f ¼ þ20 mV. The excitation

wave spreads rapidly across the atria, arrests briefly at the atrial-

ventricular node, and continues to travel along the septum to

rapidly excite the left and right ventricles. After a short period of

complete depolarization, repolarization spreads gradually across

the left and right ventricles and atria to bring the heart back to its

unexcited baseline state.

The mechanical deformation clearly follows the electrical signal

and spreads from the region that is excited first, the sinoatrial node,

across the entire heart, see Fig. 7, middle row. Once the heart is fully

excited, the electrical potential is homogeneous across the heart;

yet the mechanical deformation is not. This clearly indicates the

importance of the spatially varying fiber orientation, which causes

a local interplay between cellular contraction and secondary effects

induced by neighboring heart muscle fibers. As the electrical po-

tential returns to its baseline state, the deformation gradually de-

cays, the heart relaxes, and prepares for the next filling phase.

The muscle fiber strain mimics the effects of the overall defor-

mation, projected onto the local fiber direction, see Fig. 7, bottom

row. During systole, the muscle fibers contract rapidly and shorted

up to 20% to induce ventricular ejection. This moves the apex up-

ward toward the base and induces a twist along the heart’s long

axis. During diastole, the muscle fibers gradually relax to allow for

ventricular filling and the apex gradually returns to its initial

position.

5.2. Electrical potential throughout a cardiac cycle

Fig. 8 illustrates the local temporal evolution of the electrical

potential f for an individual cardiac muscle cell. During excitation,

the cell depolarizes rapidly and its electrical potential increases

from �80 mV to þ20 mV within the order of milliseconds. This

excitation causes the cell to contract. Unlike nerve cells, cardiac

cells briefly plateau at the excited state before they begin to relax.

During relaxation, cardiac cells gradually repolarize and return to

their stable baseline state at �80 mV.

5.3. Mechanical deformation throughout a cardiac cycle

Fig. 9 illustrates the dynamics of the heart’s long axis. During

ventricular ejection, the distance between apex and base decreases

rapidly and the ventricles shorten by approximately 7 mm. Short-

ening plateaus towards end systole to ensure that enough blood is

ejected. During ventricular filling, the long axis gradually returns to

its initial length as the heart muscle relaxes.

Fig. 10 illustrates the pressure-volume loop of the human heart,

the temporal evolution of the left ventricular pressure and volume

throughout a cardiac cycle. The first phase, ventricular filling, be-

gins with the opening of the mitral valve and continues towards

end diastole, the point of maximumvolume andminimumpressure

in the bottom right corner. The second phase, isovolumetric

contraction, is characterized through a steep increase in pressure

while the ventricular volume remains unchanged. Once the

right 
atrium

   left 
 atrium

right 
ventricle

left 
ventricle

aortic valve

pulmonary 

circulation

tricuspid valve
mitral valve

systemic
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Fig. 6. Blood flow model of the human heart with surface-based fluid cavity repre-

sentation of the right atrium, right ventricle, left atrium, and left ventricle connected

through viscous resistance models of Windkessel type for the tricuspid valve, pul-

monary circulation, mitral valve, aortic valve, and systemic circulation.

Table 1

Model parameters of the human heart simulation.

Electrical

Conduction diso ¼ 2 mm2/ms dani ¼ 6 mm2/ms (Göktepe and Kuhl, 2010)

Excitation a ¼ 0.01 g ¼ 0.002 (Göktepe et al., 2010)

b ¼ 0.15 c ¼ 8 (Kotikanyadanam

et al., 2010)

m1 ¼ 0.2 m2 ¼ 0.3 (Aliev and Panfilov, 1996)

Mechanical

Passive k ¼ 1,000 kPa

a ¼ 0.496 kPa b ¼ 7.209 (Göktepe et al., 2011)

aff ¼ 15.193 kPa bff ¼ 20.417 (Göktepe et al., 2011)

ass ¼ 3.283 kPa bss ¼ 11.176 (Göktepe et al., 2011)

afs ¼ 0.662 kPa bfs ¼ 9.466 (Göktepe et al., 2011)

Active nff ¼ 1.0 nss ¼ 0.4 (Walker et al., 2005)

kT ¼ 0.49 kPa/mV 4r ¼ �80 mV (Dal et al., 2013)

Coupling

Activation 30 ¼ 0.1/mV 3N ¼ 1.0/mV (Göktepe and Kuhl, 2010)

x ¼ 1/mV f ¼ 0 mV (Göktepe and Kuhl, 2010)

Blood flow

Blood r ¼ 1.025$10�6 kg/mm3 (Shmukler, 2004)

Valves Rtv ¼ 0.0010 kPa ms/mm3 (Smith, 2004)

Rmv ¼ 0.0061 kPa ms/mm3 (Smith, 2004)

Rav ¼ 0.0027 kPa ms/mm3 (Smith, 2004)

Circulation Rpc ¼ 0.0104 kPa ms/mm3

Rsc ¼ 0.0850 kPa ms/mm3
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Fig. 7. Spatio-temporal evolution of electrical potential, mechanical displacement, and muscle fiber strain across the human heart. During systole, the heart depolarizes rapidly from

�80 mV to þ20 mV, the muscle fibers contract and shorten up to 20% to induce ventricular ejection. During diastole, the heart repolarizes gradually from þ20 mV to �80 mV, the

muscle fibers relax and relengthen to their initial length to induce ventricular filling.
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ventricular pressure exceeds the aortic pressure the aortic valve

opens. This is the beginning of the third phase, ventricular ejection,

during which the volume of the ventricle decreases, while the

pressure still remains high. Ejection continues towards end systole,

the point of minimum volume and maximum pressure in the top

left corner. The fourth phase, isovolumetric relaxation, begins with

closure of the aortic valve followed by a drastic pressure drop. A

new cycle starts with the reopening of the mitral valve and the

beginning of ventricular filling.

6. Discussion

Modeling the human heart with all four chambers and all four

valves is increasingly recognized as a critical step towards reliable,

predictive modeling of cardiac function (Trayanova, 2011).

Although the origin of cardiac disease is often strictly local, the

consequences are typically spatially and temporally complex, and

almost always affect the entire heart (Kumar et al., 2005). Until

recently, whole heart simulations were virtually impossible

because of a lack of sufficient image resolution and computational

power. Recent advances in non-invasive imaging and computer

simulation now allows us to create fully three-dimensional models

of the entire human heart to explore the interplay between elec-

trical and mechanical fields under healthy, diseased, and treatment

conditions (Gonzales et al., 2013). With these goals in mind, we

have designed a basic prototype model for excitationecontraction

coupling in the human heart.

In this proof-of-concept study, we have demonstrated that it is

feasible to model whole heart function within a single, unified

finite-element based modeling environment. First, we have shown

that our whole heart simulation predicts spatio-temporal profiles

of the electrical potential, the mechanical deformation, and the

muscle fiber strain, which agree nicely with clinical observations

and engineering intuition (Wong et al., 2013). Throughout the

cardiac cycle, the electrical potential varies between �80 mV

and þ20 mV, the mechanical deformation takes values in the

10 mm regime, and the maximummuscle fiber contraction is in the

order of 20%, see Fig. 7. Second, we have illustrated how our heart

muscle cells locally depolarize rapidly from the resting state at

�80 mV to the excited state at þ20 mV and depolarize gradually

fromþ20 mV back to�80 mV (Göktepe and Kuhl, 2009), see Fig. 8.

Last, we have globally extracted metrics of cardiac function, long-

axis shortening and pressure-volume loops, see Figs. 9 and 10.

Our long-axis shortening of approximately 7.0 mm agrees nicely

with previous simulations of a bi-ventricular human heart model,

which predicted a shortening of 7.6 mm (Wong et al., 2013) and

with clinical observations (Robers et al., 1991). Our pressure-

volume loop with left ventricular volumes between 83 mL and

103 mL and pressures between 5 mmHg and 118 mmHg lies nicely

within the clinically expected range (Berberoglu et al., 2014;

Burghoff, 2013). Our current run time for the electro-mechanical

simulation of an entire cardiac cycle is 94 minutes on a standard

16 CPU machine.

6.1. Limitations and future perspectives

Our geometric representation of the human heart is promising

and our first simulations are encouraging, both from an engineer-

ing and clinical perspective. Yet, our current model has a few lim-

itations, which can be addressed with modular changes and

refinements. In particular, our ongoing work aims to implement the

following enhancements:
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For the electrical module, as a first step, we have assumed that

the cellular response is homogeneous across the heart. Recent

studies have shown that cellular heterogeneity is critical to accu-

rately represent the electrical activation sequence of the heart: The

first regions to depolarize are the last to repolarize (Keener and

Sneyd, 2004). This is true for both regional and transmural activa-

tion and can be addressed via different cell types or via a spatially

varying refractoriness (Hurtado and Kuhl, 2014). In addition,

cellular conduction varies hugely between standard cardiac muscle

cells and Purkinje fiber cells, which are fast-conducting cells that

transmit the electrical signal rapidly from the atrioventricular node

to the apex (Keener and Sneyd, 2004). We can incorporate this fast

conduction, which is critical for bottom up excitation, by adding

one-dimensional cable elements across the inner wall

(Kotikanyadanam et al., 2010).

For the mechanical module, probably the most significant lim-

itation is the parameter identification, which has been performed

on explanted tissue samples. Recent studies have indicated that

in vivo properties can be up to four orders of magnitude different

from ex vivo properties (Rausch and Kuhl, 2013). Ideally, a series of

in vivo experiments should be designed around calibrating these

parameters in the beating heart (Tsamis et al., 2011). While the

passive properties are relatively easy to access, identifying the

active properties can be challenging. Here we have assumed a

phenomenological representation of active contraction through

equations (10) and (11). Integrating cellular phenomena such as

calcium release, actin-myosin sliding, and cross bridging could

provide a more mechanistic representation of active force genera-

tion (Murtada et al., 2012). The current trend is to replace active

stress with active strain (Göktepe et al., 2014; Pezzuto et al., 2014), a

property that is easier to interpret, easier to bound with physically

meaningful values, easier to link to tissue microstructure (Rossi

et al., 2014), and easier to measure overall.

For the interaction between the electrical and mechanical fields,

we have assumed that coupling is primarily uni-directional:

Changes in the electrical field f induce major changes in the me-

chanical field 4, while changes in the mechanical field only induce

marginal or no changes in the electrical field. The entries of the

coupling matrices K
4f
JK and K

f4
IL and in equations (20.2) and (20.3)

provide quantitative insight into the nature of these coupling ef-

fects, which manifest themselves in the active stress Pact, the

electrical flux q, and the electrical source fphi. Our current model

neglects the effects of mechanical deformation on the electrical

field (Göktepe and Kuhl, 2010). These phenomena, which are

commonly believed to be of minor importance, come in two fla-

vors: A mechanically sensitive flux q(F) would mimic stretch-

induced changes in conductivity, whereas a mechanically sensi-

tive source f f(F) would mimic the effect of stretch-activated ion

channels (Markhasin et al., 2003). Neglecting these effects allows

us to solve the electrical and mechanical problems in a decoupled

way. While we ultimately aim to solve the coupled problem of

electro-mechanics in equation (19) fully monolithically, here, we

solve the electrical module (19.1) using Abaqus/Standard 6.13 and

the mechanical module (19.2) using Abaqus/Explicit 6.13 (Abaqus

6.13. Analysis Use, 2013).

For the fluid module, we have assumed a simplified resistance

model of Windkessel type (Frank, 1899). While some approaches

suggest to improve this model with additional capacitors or time-

varying resistances (Smith, 2004), our ultimate goal is to replace

the compartment approach with a real fluid simulation. A fully

coupled fluidestructure interaction model of the human heart is

highly desirable, albeit hugely challenging, and the major research

thrust in numerous groups around the world. Including fluid flow

would allow us to predict shear stresses on the myocardial wall,

and more importantly, on the four heart valves, throughout the

entire cardiac cycle (de Hart et al., 2003). This presents tremendous

opportunities to better understand the mechanisms of valvular

disease and optimize their treatment in the form of valve repair or

replacement, either through open heart surgery or minimally

invasive intervention (Gessat et al., 2014).

6.2. Concluding remarks

We have presented a proof-of-concept simulator for cardiac

excitation and contraction in the human heart. Using human

computer tomography and magnetic resonance images, we have

created a whole heart model with all four chambers, connected

through four valves. The coordinated opening and closing of these

valves regulates the filling of the chambers; the controlled interplay

of electrical and mechanical fields coordinates their ejection. To

simulate the blood flow from chamber to chamber, we have

adopted a classical resistance-basedWindkessel model. To simulate

passive filling and active contraction, we have implemented a two-

field finite element formulation based on coupled electrical and

mechanical fields. We have shown that our model is capable of

predicting the spatio-temporal evolution of electrical potentials

and mechanical deformation across the heart. From these, we have

extracted two common metrics of cardiac function, long-axis

shortening and pressure-volume loops, which agreed well with

clinical observations. Our ultimate goal is to employ our human

heart simulator to probe landscapes of clinical parameters, and

guide device design and treatment planning in cardiac diseases of

the aortic, pulmonary, tricuspid, or mitral valve such as stenosis,

regurgitation, or prolapse, and in other forms of cardiac

dysfunction.
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