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Abstract

Motivation: The long non-coding RNA (lncRNA) studies have been hot topics in the field of RNA

biology. Recent studies have shown that their subcellular localizations carry important information

for understanding their complex biological functions. Considering the costly and time-consuming

experiments for identifying subcellular localization of lncRNAs, computational methods are ur-

gently desired. However, to the best of our knowledge, there are no computational tools for predict-

ing the lncRNA subcellular locations to date.

Results: In this study, we report an ensemble classifier-based predictor, lncLocator, for predicting

the lncRNA subcellular localizations. To fully exploit lncRNA sequence information, we adopt both

k-mer features and high-level abstraction features generated by unsupervised deep models, and

construct four classifiers by feeding these two types of features to support vector machine (SVM)

and random forest (RF), respectively. Then we use a stacked ensemble strategy to combine the

four classifiers and get the final prediction results. The current lncLocator can predict five subcellu-

lar localizations of lncRNAs, including cytoplasm, nucleus, cytosol, ribosome and exosome, and

yield an overall accuracy of 0.59 on the constructed benchmark dataset.

Availability and implementation: The lncLocator is available at www.csbio.sjtu.edu.cn/bioinf/

lncLocator.

Contact: hbshen@sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Non-coding RNAs (ncRNAs) have been demonstrated to be im-

portant regulators rather than junk sequences in the genome (Iyer

et al., 2015). There are various types of ncRNAs, including rRNAs,

tRNAs, microRNAs (miRNAs), small nuclear RNAs (snRNAs),

small nucleolar RNAs (snoRNAs), small interfering RNAs

(siRNAs), long non-coding RNAs (lncRNAs), etc. (Mattick and

Makunin, 2006). Due to the inherent complexity of molecular
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mechanisms and functions, lncRNAs-related studies have largely

lagged behind other types of ncRNAs. However, in recent years,

lncRNAs have attracted more and more attentions in life science.

According to our statistics of articles searched in PubMed, around

6000 literatures have the keyword of ‘lncRNA’ or ‘long non-coding

RNA’ in the title or abstract. Particularly, over 95% of them were

published in the last 5 years, suggesting much attention has been

paid very recently. Their essential roles in post-transcription of gene

regulation, translation of genetic information and cellular signal

transduction have been revealed gradually (Batista and Chang,

2013). Moreover, they have been demonstrated to be promising bio-

markers for a variety of diseases (Ayers, 2013; Li et al., 2013).

Therefore, understanding cellular functions of lncRNAs has become

one of the central tasks in the post-genomic era. Considering the

costly and time-consuming wet-lab experiments, automatic compu-

tational tools are highly desired to speed up the lncRNA-related

studies, e.g. for expression analysis (Thomson et al., 2004), target

prediction (Brennecke et al., 2005), functional pathway prediction

(Vlachos et al., 2012), etc.

Similar to proteins, the function of lncRNAs relies on the cellular

compartments where they are located, and the localization informa-

tion can provide important insights into functions (Chen, 2016).

The computational prediction of subcellular localization has been a

hot topic in bioinformatics for the last decade, due to the difficulties

in identifying subcellular location through biological experiments

(Chou and Shen, 2008). However, most existing prediction tools

were designed for proteins (Pierleoni et al., 2011; Shen and Chou,

2007, 2009; Wan et al., 2017; Zhou et al., 2017). As far as we

know, there has been no computational predictor for lncRNA sub-

cellular localization. This could be due to:

1. Traditionally, most lncRNAs are regarded as being located ex-

clusively in nucleus, functioning as the regulators of nuclear

genes (Chen and Carmichael, 2010). Their diverse subcellular

fates have been discovered only very recently. Especially, Cabili

et al. conducted a large-scale study of lncRNA subcellular loca-

tions using FISH (fluorescence in situ hybridization) technique in

2015 (Cabili et al., 2015). They found that a substantial propor-

tion of lncRNAs can be transferred into cytoplasm, and some

lncRNAs are even located in both the nucleus and cytoplasm.

2. The computational prediction of lncRNA subcellular location is

restricted by limited information sources. As for proteins, the

well-established predictors usually utilize multiple types of fea-

tures, including amino acid statistical attributes (Park and

Kanehisa, 2003; Shen and Chou, 2008), signal peptide

(Savojardo et al., 2015), functional domain (Marchler-Bauer

et al., 2005), gene annotation (Chou and Cai, 2003; Zhou et al.,

2017), etc.

Existing sequence-based protein subcellular localization pre-

dictors can be generally grouped into two categories, homolog trans-

fer and statistical machine learning-based approaches. The former is

trying to find the annotated homology protein for the query se-

quence from a large database, which is straightforward but may fail

when no homologous protein is found or the so-called ‘twilight

zone’ phenomenon (Nair and Rost, 2002). Due to the relative slow

annotation speed for lncRNAs and the great diversity in their se-

quences, finding homology annotated lncRNA sequence is difficult.

Considering this, the statistical machine learning is more applicable

to develop a lncRNA-orientated subcellular localization predictor at

current stage. In such a protocol, three issues are of crucial import-

ance for the predictive performance, i.e. (i) the sequence feature

extraction and representation, (ii) the distribution of training dataset

and (iii) the model used for learning the discriminative pattern.

How to encode raw sequence data into discriminative features is

a vital issue in constructing machine learning-based model. Some

residue-based statistical characteristics can be used as the features,

such as the k-mer frequencies (Park and Kanehisa, 2003). However,

according to our local tests, prediction based solely on the k-mer se-

quence features is a very challenging task. One of the potential rea-

sons is the k-mer features are extracted from the observed sequence,

which is affected by the mutation noise. The other reason is that

when we increase k to cover longer potential motif pattern, the fea-

ture vector dimensions increase exponentially, which may also result

in an over-fitting of the prediction model.

In contrast to the hand-designed features, deep learning models

can capture high-level representation automatically, those models

have achieved remarkable results in different fields, including com-

puter vision, natural language processing, speech recognition and

bioinformatics (LeCun et al., 2015; Min et al., 2017). For instance,

deep network architectures have shed new lights on the feature ex-

traction for protein or RNA sequences in applications of secondary

structure prediction (Heffernan et al., 2015; Spencer et al., 2015),

contact map prediction (Di Lena et al., 2012), lncRNA recognition

(Fan and Zhang, 2015), RNA-protein binding motifs identification

(Pan and Shen, 2017), ncRNA-protein interaction sequential pattern

mining (Pan et al., 2016), etc.

The k-mer and the deep architecture abstraction features are two

completely different strategies for representing the lncRNA sequence

into discriminative features. The former represents observed statis-

tical characteristics, while the latter can reflect the hidden pattern

behind the sequence. They complement each other and thus we in-

corporate both of the two features into the model construction in

this study.

Secondly, statistical supervised machine learning models’ per-

formance is heavily dependent on the training dataset since they

learn the distribution rules of different classes from the data. We

found that the lncRNA subcelluar location dataset shows a severely

imbalanced distribution. For instance, in our benchmark dataset ex-

tracted from RNAlocate database (Zhang et al., 2017), the numbers

of lncRNAs located in cytoplasm, nucleus, cytosol, ribosome and

exosome are 301, 152, 91, 43 and 25, respectively. The largest ratio

between the majority and minority classes reaches �12:1. In such a

case, most machine learning methods will have a preference to the

majority classes while perform poorly on the minority classes.

In general, both under-sampling and over-sampling techniques

can alleviate the impact of data imbalance. Under-sampling is to re-

duce the samples from the majority class to match the minority

class, while the over-sampling is to increase the samples of the mi-

nority class to match the majority class. To keep all available train-

ing samples, we applied the over-sampling approach in this paper.

The unsupervised over-sampling methods include ROS (Random

Over-sampling), SMOTE (Synthetic Minority Over-sampling

Technique) (Chawla et al., 2002), etc. The ROS method replicates

randomly selected samples within the minority set, and the SMOTE

method creates the same number of synthetic samples according to

the existing samples of the existing minority classes. In this study,

we adopted a supervised over-sampling method named SOS

(Supervised Over-Sampling), which is able to take into account the

sample labels to create new synthetic samples (Hu et al., 2014).

In order to integrate the merits of different statistical learning

models, the final prediction model of the proposed lncLocator is an

ensemble predictor. The lncLocator combines four learning ma-

chines using a stacked ensemble strategy. They are random forest
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with features extracted by deep neural networks (RFA), support vec-

tor machine with features extracted by deep neural networks

(SVMA), random forest with raw k-mer features (RFR) and support

vector machine with raw k-mer features (SVMR), respectively. Our

experimental results show that the final ensemble predictor is super-

ior to any single classifier due to the reason that fusing the classi-

fiers’ diversities is helpful to enhance the prediction performance

(Shen and Chou, 2006).

2 Datasets and methods

2.1 Dataset
We extracted the subcellular localization information of lncRNAs

from a comprehensive database, i.e. RNAlocate (http://www.rna-

society.org/rnalocate), which covers localization information of

mRNAs, miRNAs, lncRNAs, etc. The current version of

RNALocate houses more than 37 700 manually curated RNA-

associated subcellular localization entries with experimental evi-

dence. It covers more than 21 800 coding and non-coding RNAs

with 42 subcellular locations across 65 species, mainly including

Homo sapiens and Mus musculus (Zhang et al., 2017). The con-

struction of the benchmark dataset consists of the following steps

(Fig. 1):

1. Total 1361 lncRNA entries were downloaded with curated sub-

cellular localization from the RNAlocate database. Since multi-

locational lncRNAs have multiples records in the database, we

merged the entries with the same gene symbol and got 1074

unique lncRNAs;

2. We screened off the lncRNAs that do not have specific sequence

information in NCBI and Ensembl, and obtained lncRNA se-

quence records in 7 single subcellular locations and 19 combin-

ations of multiple subcellular locations;

3. To reduce the bias of redundant sequences on the classifiers, we

used the cd-hit tool (Huang et al., 2010) to remove the redun-

dant sequences with a cutoff of 80%;

4. Since the multi-locational lncRNAs are too few to have statis-

tical meaning, we only chose the lncRNAs that are associated to

only one location for training. The remaining lncRNAs cover 7

compartments. Then we further removed two of them, i.e. endo-

plasmic reticulum and synapse, because they have too few sam-

ples (<10). Finally, we obtained a benchmark dataset of 612

lncRNAs, covering 5 subcellular compartments (Fig. 2). Table 1

lists the detailed statistics of the dataset.

2.2 Methods
The proposed lncLocator consists of three major steps, as listed in

the following and shown in Figure 3.

Step 1: Feature representation. First, raw k-mer frequency fea-

tures from the input lncRNA sequences are extracted; meanwhile an

unsupervised stacked autoencoder (AE) engine is also used to learn

the high-level abstractions of raw sequences. Then, both raw and

high-level features are fed into the prediction engines.

Step 2: Prediction engine construction. Random forest (RF) and

support vector machine (SVM) are used as the basic classification

models. To reduce the effect of imbalanced distribution of training

set, we apply an over-sampling technique to balance the samples

among different classes.

Step 3: Stacked ensemble. Given the two types of features (Raw

k-mers and AE-based high-level features) and two basic classifiers

(RF and SVM), we then obtain a total of four base classifiers,

namely RFR, SVMR, RFA, SVMA, where RFR and SVMR denote the

models trained using the raw k-mer features, RFA and SVMA denote

 RNAlocate database

1361 lncRNA sequences 

1074 sequences with unique 
official symbol

714 complete sequences

681 sequences

Extract lncRNA entries

Merge lncRNAs with the same 
gene symbol

Remove sequences without 
sequence informa�on 

Use cd-hit to reduce 
sequence redundancy

Drop the mul�-loca�onal samples 
and samples from two minority 

classes

612 sequences with 5 
subcellular loca�ons

Fig. 1. The flowchart of benchmark dataset construction

Cytoplasm

Ribosome

Exosome
Cytosol

Extracell

Nucleus

Endoplasmic
Re�culum

Synapse

Fig. 2. Illustration of the seven subcellular locations included in the bench-

mark dataset

Table 1. Benchmark lncRNA subcellular localization dataset

Subcellular Locations Before 80% cut-off After 80% cut-off

Cytoplasm 307 301

Nucleus 153 152

Cytosol 101 91

Ribosome 47 43

Exosome 34 25

Endoplasmic reticuluma 9 9

Synapsea 1 1

aThese two locations are not included in the following experiments due to

their small sample sizes.
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the models trained using the AE-based high-level features. The out-

puts from the above 4 classifiers are integrated via a stacked ensem-

ble model, which is the final outputs of lncLocator.

2.2.1 Feature representation

K-mer nucleotide composition features of lncRNA sequences. We

extract the nucleotide composition features from lncRNA sequences.

Suppose that a lncRNA sequence is represented as:

R ¼ B1;B2;B3;B4; . . . ;BL�1;BL (1)

where Bj is one of the four nucleotide bases, A, C, G and T.

For a consecutive nucleotide segment of length k, i.e.

B1B2B3 . . . Bkf }, there are 4 different choices at each of the k pos-

itions and there are 4k different combinations of bases. Take 4-mer

as an example, we have different combinations of AAAA,

AAAC,� � �, TTTT, and the 4-mer frequency features for RNA se-

quences is a 256-dimensional feature vector:

x ¼ ½x1; x2; . . . ; x256� (2)

where xiði ¼ 1; 2; . . . ; 256Þ is the frequency of the ith 4-mer along

the sequence.

High-level abstraction of lncRNA sequences. Compared to 20

amino acids in proteins, RNAs have a much smaller k-mer combin-

ation space, resulting in a relatively low discriminative ability of the

k-mer features x. Therefore, besides the raw k-mer features, we also

adopt the unsupervised stacked autoencoder model (Vincent et al.,

2010) to extract the high-level abstractions from primal sequences.

Owing to the deep architecture and the reconstruction loss func-

tion, stacked autoencoders can capture high-level abstraction while

keeping the core information of input data. For an original input fea-

ture x, an encoder maps x to y with a nonlinear transform function, f,

y ¼ f ðWxþ bÞ (3)

where W and b are two parameters to be learned.

To validate the effectiveness of the mapping, a decoder is often

used to reconstruct x from y of Eq. (3):

z ¼ gðWTyþ b0Þ (4)

where g is also a non-linear function. In order to derive the proper

mapping parameters in Eqs. (3) and (4), an optimization process is

performed to minimize the loss function between x and z, i.e. ‘ x; zð Þ,
which is defined as the squared error function ‘ x; zð Þ ¼ kx� zk2 in

this study.

Based on such a single-layer autoencoder model as shown in Eqs.

(3) and (4), we construct a multi-layer stacked autoencoder to gener-

ate a deep learning architecture by using the keras library (https://

github.com/fchollet/keras). It is a layer-by-layer structure con-

structed in a sequential manner (Fig. 3). Both the encoder and de-

coder consist of 3 fully connected layers with dropout, where the

dropout probability is set to 0.5. We feed 4-mer features into the

deep model, and use 256, 128 and 64 neurons in the 3 hidden layers.

A greedy layer-wise learning method is used to optimize the object-

ive function for learning the parameters of stacked autoencoder by

using the Adam optimizer.

2.2.2 Prediction engine construction

Supervised over-sampling for balancing the data distribution. As can

be seen from Table 1, the numbers of lncRNA samples in different

subcellular locations differ significantly. This situation may get

worse in dealing with multi-class classification problems. For ex-

ample, if we use the one-vs-rest strategy to discriminate the exosome

lncRNAs from lncRNAs that locate at other subcellular compart-

ment (cytoplasm, nucleus, cytosol and ribosome), the negative to

positive ratio of training samples further increases to �23:1.

The highly imbalanced data distribution significantly affects the

classification performance on the minority classes since the statis-

tical learning algorithms tend to classify the new samples to the

majority classes. Many previous studies have adopted the under-

sampling technique to balance the samples of different classes (Yang

et al., 2013; Yu et al., 2014), i.e. a subset of samples is picked out

from the majority class to be balanced with the minority samples

size. One potential problem for using the under-sampling technique

in this paper is that it will reduce the total number of lncRNA sam-

ples in the training dataset, which may also degenerate the learned

classifier. Considering of these points, we extend our previous super-

vised over-sampling (SOS) algorithm (Hu et al., 2014) from two-

class classification to the multi-class classification of this study.

Fig. 3. The flowchart of the proposed lncLocator. RFA and SVMA denote the models trained using the AE-based high-level features, and RFR and SVMR denote the

models trained using the raw k-mer features. SOS (Supervised Over-Sampling) is used to create new synthetic samples to balance the samples among different

classes
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In contrast to the under-sampling, the over-sampling is to increase

the minority class sample size by generating new synthetic samples,

which results in an overall increase of the total training sample size.

Suppose D ¼ D1 [ D2 [ . . . [D5 is the training dataset of 5

lncRNA subcellular locations as shown in Table 1, our purpose is to

generate a new dataset bD by synthesizing new minority class sam-

ples under a supervised process. The process of our SOS method

proceeds as the following:

Step 1: Initial model construction. We first train an initial classifier,

denoted as random forest Cmodel on the original training dataset D:

TrainingðDÞ ! Cmodel (5)

Step 2: Synthetic new sample generation. In order to synthesize a

new sample for the minority class Dk, we randomly select two exist-

ing samples Dk
i and Dk

j from Dk and generate the new sample Dk
n as

Eq. (6):

Dk
i þ kðDk

i �Dk
j Þ ! Dk

n (6)

where k is a random value ranging from 0 to 1.

Step 3: Qualification test of the new sample. We apply the initial

classifier Cmodel of Eq. (5) to predict Dk
n . If Dk

n is classified to Dk

with a probability of P Dk
n

� �
2 ½Tlow;Thigh� by Cmodel, then Dk

n will

be accepted otherwise, it will be rejected. In this paper, we set

Tlow¼0.3 and Thigh¼1.

The above steps are repeated until the minority class has grown

to twice the size it was before expansion. To illustrate the SOS idea

more clearly, Figure 4 shows an example.

2.2.3 Stacked ensemble

Neural network-based ensemble decision. We use two types of fea-

tures to encode the lncRNA sequences: raw k-mer nucleotide com-

position feature x (Eq. (2)), and the high-level feature y (Eq. (3))

outputted from the stacked autoencoder. Based on x and y, we

trained RF and SVM classifiers, denoted as RFR, SVMR, RFA,

SVMA, respectively. As expected, different classifiers have varying

abilities to identify categories as shown in the following experi-

ments. Considering the diversities of different classifiers, we con-

struct a consensus model to enhance the prediction performance,

which aims to fuse multiple base classifiers to yield higher perform-

ance. A key to achieve better performance is how to integrate differ-

ent predictors. Some widely used strategies include majority voting

(Breiman, 2001), averaging individual classifier results (Pan et al.,

2011), stacked ensemble using logistic regression (Pan et al., 2016),

etc.

We adopt a stacked ensemble using a 3-layer neural network

(NN) to combine the prediction results from individual classifiers

for the final decision. The input to the decision NN model is the

outputs from RFR, SVMR, RFA and SVMA. Each individual model

outputs 5 scores, indicating the probabilities of current query

lncRNA belonging to the five subcellular localizations, respectively.

Thus, the input layer of NN has 20 nodes, and the output layer has

5 nodes, each of which corresponds to a subcellular location class.

Our final NN-based ensemble model is also implemented using

keras library and scikit-learn (Pedregosa et al., 2011). Figure 3

shows the flowchart of our prediction model.

2.2.4 Evaluation criteria

To evaluate the performance of the lncLocator model, we use accur-

acy, F1 score and Recall as the evaluation criteria in our experiments

through a 5-fold cross validation.

Accuracy ¼ Numðpred ¼ labelÞ
NumðpredÞ (7)

PrecisionðiÞ ¼ TPðiÞ

TPðiÞþFPðiÞ
(8)

RecallðiÞ ¼ TPðiÞ

TPðiÞþFNðiÞ
(9)

F1 ¼
1

n

Xn

i¼1

2� PrecisionðiÞ � RecallðiÞ

PrecisionðiÞ þRecallðiÞ
(10)

Recall ¼ 1

n

Xn

i¼1

RecallðiÞ (11)

where TPðiÞ, FPðiÞ and FNðiÞ represent true positive, false positive and

false negative of the class i, respectively.

3 Results and discussions

3.1 Comparison between different k-mer frequency

features for lncRNAs
We compared the performance of 4-mer, 5-mer and 6-mer frequency

encoding for sequences, and the results are shown in Table 2. We

did not test much higher k-mer features as the feature dimensions

will increase exponentially. For instance, the 7-mer feature dimen-

sion is as high as 16 384, which is far beyond the number of training

examples. In this case, the model has a high risk of overfitting.

An interesting phenomenon can be observed from the results: as

the input dimension increases, models trained on the raw k-mer fea-

tures and on the high-level features respond completely differently.

Take RFR and RFA for example, on 4-mer, 5-mer and 6-mer feature

sets, the F1 scores of RFR are 0.295, 0.275 and 0.250, respectively,

showing a decreasing trend; whereas for RFA, the performance tends

to increase, i.e. 0.316, 0.323 and 0.327, respectively. The potential

reason is that as k increases, more sequence order information is re-

tained while more noise is introduced, then it is difficult for SVMR

to find real discriminative features from the vast number of input

features, thus leading to a low generalization power. In contrast,

SVMA uses high-level abstraction features, which benefit from more

abundant input information with the increasing k.

The other point we can see from Table 2 is that the models

trained on the high level abstraction features (RFA and SVMA)

achieve generally better performance than the models on the raw

k-mer features (RFR and SVMR). This could be due to that the high-

level abstraction features generated from the stacked autoencoder

can grasp the hidden correlation behind high dimensional rawFig. 4. The flowchart of Supervised Over-Sampling
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features, thus resulting in a higher discriminative capability. All

these results demonstrate that the raw features and high-level

abstraction features complement each other, and the fusion of them

is expected to give a further improvement on the prediction

performance.

3.2 NN ensemble decision improves the performance
In lncLocator, we applied a NN-based stacked ensemble strategy to

integrate 4 predictors (RFR, SVMR, RFA, SVMA) for the final deci-

sion. We compared it with the stacked ensemble method using logis-

tic regression (Pan et al., 2016) and averaging ensemble model (Pan

et al., 2011). The results on 4-mer features are shown in Table 3.

The stacked ensemble method was superior to the 4 individual meth-

ods and other ensemble methods on our constructed lncRNA bench-

mark dataset. The results indicate that our stacked ensemble is a

promising approach for integrating different predictors and improv-

ing the final performance through combining diversities.

3.3 Prediction enhancement by using over-sampling

technique
In previous experiments, we did not balance the training dataset. In

order to alleviate the class imbalance problem, we adopted the over-

sampling method, SOS. We first locally tested different models by

applying the SOS approach on the 4-mer, 5-mer and 6-mer features.

We found that the results on these feature encoding systems are very

comparable. Considering the time cost, we choose the 4-mer fea-

tures in the following experiments and as input in our final

lncLocator. The results of different models on the balanced dataset

(4-mer features) are shown in Table 4 and Figure 5. By comparing

Tables 3 and 4, we can find that the SOS method improves the F1

score and Recall of NN ensemble from 0.343, 0.356 to 0367, 0.363,

respectively, while keeping the comparable total accuracy. This is

because that after balancing the dataset, the model has increased its

ability for predicting the samples in the minority class. Furthermore,

Supplementary Table S1 has provided the standard deviations of the

statistical difference between different models. In addition, we also

compared the ROC curves among RFR, SVMR, RFA, SVMA and NN

ensemble as shown in Figure 6, where the results show that the NN

ensemble method can achieve the highest AUC of 0.76.

In the imbalanced classification problem, the minority classes

are often very important although they have much fewer samples

than the majority classes. For instance, only a small proportion of

lncRNAs are currently observed locating in exosome, and correctly

predicting the samples in this class is not easy, as the trained models

will give more preference to the majority classes, e.g. cytoplasm.

Biologically, the functions of lncRNAs at exosome have not been

well characterized, and correctly recognizing the lncRNAs of this

class will give more samples for the following experimental studies.

Figure 7 illustrates the confusion matrix of different models on the

five subcellular location classes. As can be seen from this figure,

none of samples in exosome have been correctly recognized by tested

RFR, SVMR, RFA, LoR ensemble and average ensemble, indicating

developing a better predictor for accurately recognizing lncRNAs at

exosome is still a very challenge future task.

3.4 A comparison to homology-transfer baseline

method
The homology-transfer based approach can be considered as a near-

est neighbor predictor, where the distance between two lncRNAs is

measured by their sequence identity. Here, we used the blastn in the

blastþ toolbox (Camacho et al., 2009) to search each test sequence

against the training dataset through the same five-fold cross-valid-

ation protocol. The subcellular localization of the query sequence is

decided by the localization of the sequence with the lowest E-value

in the training dataset. Our results show that the average accuracy,

F1-score and recall of the homology-based method are 0.493, 0.339

and 0.338, respectively, which are lower than the proposed

lncLocator method. These results indicate that when the experimen-

tally verified training samples are not enough, the homology-transfer

Table 2. Performance of different k-mer frequency features for lncRNA prediction

4-mer featurea 5-mer featurea 6-mer featurea

ACC F1 Recall ACC F1 Recall ACC F1 Recall

RFR b 0.575 0.295 0.311 0.562 0.275 0.292 0.553 0.250 0.272

SVMR b 0.534 0.226 0.253 0.506 0.155 0.212 0.501 0.146 0.207

RFA b 0.564 0.316 0.327 0.601 0.323 0.337 0.605 0.327 0.339

SVMA b 0.557 0.287 0.315 0.583 0.307 0.325 0.588 0.347 0.356

aThe feature dimensions for 4-mer, 5-mer and 6-mer features are 256, 1024 and 4096, respectively.
bRFR and SVMR are trained with raw k-mer features, RFA and SVMA are trained on the high-level abstract features derived by stacked autoencoder.

The significance of bold is the maximum value of each column.

Table 3. Performance of different models on the original lncRNA

benchmark dataset with 4-mer features without SOS

Method ACC F1 Recall

RFR 0.575 0.295 0.311

SVMR 0.534 0.226 0.253

RFA 0.564 0.316 0.327

SVMA 0.557 0.287 0.315

LoR ensemblea 0.585 0.314 0.332

Average ensemble 0.588 0.310 0.328

NN ensembleb 0.598 0.343 0.356

aThe ensemble learning using logistic regression.
bThe ensemble learning using neural networks in lncLocator.

Table 4. Performance of different models for classifying lncRNA on

4-mer features with class sample size balanced with SOS over-

sampling

Method ACC F1 Recall

RFR 0.570 0.330 0.337

SVMR 0.531 0.334 0.325

RFA 0.572 0.353 0.354

SVMA 0.527 0.349 0.347

LoR ensemble 0.580 0.328 0.335

Average ensemble 0.585 0.326 0.337

NN ensemble (lncLocator) 0.591 0.367 0.363
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approach will hard to get satisfactory results. The machine learning-

based model shows a more powerful performance in the lncRNA sub-

cellular localization prediction at current stage.

3.5 The performance through an independent test

protocol
Five-fold cross-validation is applied in our previous experiments. To

better evaluate the performance of our model, we also tested it

through an independent test protocol. We constructed a stand-alone

test dataset containing 40 sequences (Supplementary Table S2), and

the remaining 572 sequences used as the entire training set. The re-

sults on the test dataset are shown in Table 5, which are similar to

the five-fold cross validation protocol on F1 and recall metrics. The

final NN ensemble model yields the best performance among tested

approaches.

3.6 Discussions
Accurate prediction of the subcellular locations of lncRNAs is a

much more challenging problem than prediction of protein subcellu-

lar locations due to there are only four states of the nucleotides.

Besides, features directly extracted from the nucleotide sequences

will also be biased from probable mutations, resulting in a potential

noise effects in the features. In this study, we propose to use un-

supervised stacked autoencoder to extract high-level abstractions of

the k-mer features, which is demonstrated significantly helpful for

enhancing the subsequent classification. The reason is that deep

learning architecture is capable to learn complicate statistical char-

acteristics hidden in the raw data (Zhou and Troyanskaya, 2015).

The k-mer frequency features are similar to words in the document,

and deep learning model can extract the high-level abstractions like

topics in articles. The compressed representation also avoids the

curse of dimensionality via eliminating irrelevant variabilities, espe-

cially for high-dimensional k-mer frequency features. The improved

performance on the consensus model by fusing the raw features and

high-level abstractions also demonstrate that these two types of fea-

ture encoding systems complement each other very well.

Different predictors have their own advantages. Specifically, no

single method can surpass others in all respects. In this study, the

stacked NN ensemble method is designed to integrate different mod-

els in lncLocator. Different from average voting or majority voting,

the stacked NN ensemble can combine the strengths of individual

predictors with automatic weight learning. We also show that the

NN model is also superior to the widely-used logistic regression en-

semble approach in this study.

Classification for the minority lncRNA class (e.g. exosome) is a

particular challenging problem in this study. As shown in Figure 7,

none of samples in exosome have been correctly recognized by tested

RFR, SVMR, RFA, LoR ensemble and average ensemble. This could

be due to that the pattern of lncRNA samples in exsome is very simi-

lar to other classes and also because there are too few samples in

exosome. The statistically learned model will naturally give more

preference to the majority class, resulting in a very bad performance

for the minority class. In this study, we have proposed the SOS algo-

rithm for generating some synthetic samples in the minority classes

(e.g. exosome) to balance the dataset distribution. Our results show

that this could be a promising strategy, although much work is still

needed to further enhance the minority class classification

performance.

We also analyzed the impact of sequence similarity on the pre-

dictive performance, and tested the models with sequences redun-

dancy at different cutoff values. Beside the 80% cutoff value tested

above, the results of other cut-offs of 50, 60 and 70% are shown in

Fig. 6. ROC comparison among different methods. RF, SVM, RF(AE),

SVM(AE) represent RFR, SVMR, RFA, SVMA, respectively

A

B

C

Fig. 5. The performance comparisons of different models between with-SOS

(dataset with minority class samples over-sampling) and without-SOS (ori-

ginal imbalanced dataset). (A): accuracy, (B): F1 score and (C): Recall
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Supplementary Tables S3–S6. On all the tested sets, the final NN-

ensemble model is superior to other tested methods in most cases.

The benchmark dataset with 50% cutoff yields the lowest F1-score

and recall, probably due to the lower sequence similarity and fewer

number of training samples.

Our results show that the prediction performance will be af-

fected by the sequence length. The length of lncRNAs in our

constructed dataset ranges from 192 to 91 671. We divided it into 5

intervals [192, 1000), [1000, 2000), [2000, 3000), [3000, 5000) and

[5000, 91 671]. The corresponding accuracies in the 5 intervals are

0.521, 0.654, 0.612, 0.598 and 0.463, respectively (Supplementary

Table S7). The longest sequences have relatively lower accuracies,

while the sequences in [1000, 2000) have the highest accuracy. For

the shorter sequences with length in [192, 1000], they may contain

insufficient information for accurate prediction compared to se-

quences with medium length in [1000, 5000); while for the se-

quences in [5000, 91 671], they could be too long for the classifier

to extract high quality features.

Although the lncLocator automatically extracts high level fea-

tures using deep neural networks and those learned high-level fea-

tures show higher discrimination power, these features are still not

well explained from the biological perspectives. In future work, we

will explore better network architectures to learn high level features

with biological insights. In addition, the over-sampling strategy has

been used to alleviate the imbalance problem here and our results

show that the performance is affected by the sampling ratios

(Supplementary Table S8). With the progress of RNA annotations,

Fig. 7. Confusion matrix of the lncRNA classification with SOS. (A): RFR, (B) SVMR, (C) RFA, (D) SVMA, (E) LoR ensemble, (F) Average ensemble and (G) NN ensem-

ble (lncLocator)

Table 5. Performance of different models for classifying lncRNA on

4-mer features using SOS over-sampling on the stand-alone test

dataset

Method ACC F1 Recall

RFR 0.425 0.289 0.340

SVMR 0.375 0.249 0.300

RFA 0.400 0.276 0.320

SVMA 0.375 0.254 0.300

LoR ensemble 0.425 0.333 0.360

Average ensemble 0.425 0.294 0.340

NN ensemble (lncLocator) 0.450 0.351 0.380
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we expect to collect more labeled samples and expand the bench-

mark dataset to train a more powerful model. The features we cur-

rently used in lncLocator is only k-mer frequency features, there are

many other useful features that could be integrated for better iden-

tifying the subcellular location. For instance, GO features and sec-

ondary structure information features.

4 Conclusion

In this study, to the best of our knowledge, we present the first com-

putational method lncLocator to predict lncRNA subcellular local-

ization, which is an ab initio approach only requiring the nucleotide

sequences as inputs. We have designed the unsupervised deep

stacked architecture to extract high-level abstraction features and in-

tegrate the outputs from different models. Our results have demon-

strated the efficacy of the ensemble model. Considering the data

imbalance in this study, we propose to use the over-sampling

method to improve the performance of the model, without reducing

the total sample size in the dataset. A future challenge is to explore a

better way to further improve the prediction performance in the mi-

nority classes. We plan to mine more biologically targeting motifs

specifically for these locations by designing better network

architectures.
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