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The lncRNA MEG3 downregulation leads 
to osteoarthritis progression via miR-16/SMAD7 
axis
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Abstract 

Background: Osteoarthritis (OA) is a chronic joint disease and there is no a definitive cure at present. Long non-cod-

ing RNAs (lncRNAs) have been confirmed to play important roles in the development of OA. However, the underlying 

mechanism of lncRNA maternally expressed gene 3 (MEG3) in OA has not been well elucidated.

Methods: The rat OA model and interleukin-1β (IL-1β)-induced rat chondrocytes were constructed. The expression 

pattern of lncRNA MEG3 and miR-16 was detected by RT-qPCR assay in cartilage tissues of rat OA model. The effect of 

MEG3 and miR-16 on IL-1β-induced chondrocytes was evaluated on the basis of cell viability and apoptosis. Then, the 

interaction among MEG3, miR-16 SMAD7 was explored by dual-luciferase reporter assay and RIP assay.

Results: It is found that lncRNA MEG3 was down-regulated and miR-16 was up-regulated in rat OA cartilage tissues. 

MEG3 knockdown promoted proliferation and inhibited apoptosis, while miR-16 knockdown suppressed prolifera-

tion and promoted apoptosis in IL-1β-induced rat chondrocytes. Moreover, MEG3 was involved in miR-16 pathway 

and MEG3 suppressed miR-16 expression. Additionally, SMAD7 was a target gene of miR-16 and miR-16 suppressed 

SMAD7 expression in IL-1β-induced chondrocytes. Moreover, the expression of SMAD7 induced by MEG3 or si-MEG3 

was markedly reversed by the introduction of miR-16 or anti-miR-16. Furthermore, MEG3 exerted its anti-proliferation 

and pro-apoptosis by regulating miR-16 and SMAD7.

Conclusion: MEG3 was down-regulated and miR-16 was up-regulated in cartilage tissues of rat OA model. MEG3 

knockdown might lead to the progression of OA through miR-16/SMAD7 axis.
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Background

Osteoarthritis (OA) is a common chronic joint disease, 

mainly characterized by the cartilage loss, the new bone 

formation of joint surface as well as osteophyte forma-

tion [1]. �ere is a high incidence of OA at aged 65 and 

older, which is becoming a major public health problem 

[2]. Recent studies have verified that OA is highly heredi-

tary disease and closely associated with inflammatory 

response [1]. Although the early diagnosis of OA is more 

accurate through the X-ray and new biomarkers, the OA 

causes remain unknown and a definitive cure is still not 

available [3]. �erefore, it is essential for its treatment to 

explore the molecular mechanism of OA.

Long non-coding RNAs (lncRNAs), a series of non-

coding endogenous RNAs comprising a sequence larger 

than 200 nucleotides (nt), have been confirmed to play 

important roles in the development of inflammation-

related diseases [4]. Cui et  al. [5] verified that lnc-IL7R 

was able to suppress the LPS-induced inflammatory 

response. Increasing evidences indicated that a series of 

lncRNAs had vital functions in the progression of OA 

[6], for example, HOTAIR and PCGEM1 Upregulation of 

HOTAIR contributes to IL-1β-induced MMP overexpres-

sion and chondrocytes apoptosis in temporomandibular 

joint osteoarthritis [7]. PCGEM1 stimulates prolifera-

tion of osteoarthritic synoviocytes via targeting miR-770 
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[8]. Maternally expressed gene 3 (MEG3), a maternally 

expressed lncRNA, had closed relationship with flamma-

tion-related diseases, including OA [9]. Recently, Su et al. 

[9] discovered that MEG3 was downregulated in OA tis-

sues and MEG3 might be involved in OA development 

and progression by inhibiting VEGF expression levels. 

However, the underlying molecular mechanism of MEG3 

in OA has not been well illustrated.

Similar with lncRNAs, microRNAs (miRNAs), a type 

of small non-coding RNAs with 18–22 nt in length, also 

play important roles in a series of inflammation-related 

diseases [4]. Recent studies revealed that miR-19b, miR-

30a, miR-301a promoted the progression of periodontitis 

[4] and miR-146a, miR-98 were upregulated to contrib-

ute to the progression of OA [10]. Increasing evidence 

revealed that miR-16 might be essential for cell apopto-

sis by hindering Bcl-2 expression in liver fibrosis [11]. Li 

et al. [12] also confirmed that miR-16-5p contributed to 

the development and progression of OA by regulating 

SMAD3 expression.

�e competing endogenous RNA (ceRNA) hypothesis 

suggested that lncRNAs functioned as a ceRNA of miR-

NAs to play important roles, for example, PCGEM1 acted 

as a ceRNA of miR-770 in OA [8]. Li et al. [13] discovered 

that MEG3 repressed the expression of miR-125a-5p in 

immune thrombocytopenic purpura. Nevertheless, the 

relationship between MEG3 and miR-16 and their func-

tions in OA remained largely unknown. In this study, it 

is found that MEG3 was down-regulated and miR-16 was 

up-regulated in cartilage tissues of rat OA model. Fur-

thermore, our results suggested that MEG3 might repress 

the progression of OA through miR-16/SMAD7 axis.

Methods

Experimental animals and OA model

Male Sprague–Dawley rats (200–250  g) were obtained 

from Henan Research Center of Laboratory Animal 

(Zhengzhou, China). �e rats were anesthetized by 

30  mg/kg pentobarbital sodium, and destabilization of 

the medial meniscus (DMM) was performed as previ-

ously described [14]. Briefly, in DMM group (n  =  10), 

after the right knee joint was exposed by a medial capsu-

lar incision, the extensor muscles were gentle moved and 

the medial meniscus was transected, then the medial cap-

sular incision and the skin were seamed. In sham group 

(n  =  10), the joint capsule was opened but the medial 

meniscotibial ligament was left intact. After 4  weeks, 

the rats were killed and cartilage tissues were harvested 

under sterile conditions. All animals were treated accord-

ing to the national guidelines of the care and use of labo-

ratory animals with the approval of the Ethics Committee 

for Animal Research.

Cell isolation and cell culture

Chondrocytes were isolated and cultured as previ-

ously described [15]. In brief, rat cartilage tissues were 

cut into small pieces and digested with trypsin (Sigma-

Aldrich, St. Louis, MO, USA). After digested into mon-

olayer cells, chondrocytes were seeded into culture plate 

(Corning, Toledo, NY, USA) in DMEM medium (Gibco, 

Rockville, MD, USA) with 10% FBS (Gibco), 100  U/ml 

penicillin (Gibco), 100  mg/ml streptomycin (Gibco) at 

37  °C. Adherent chondrocytes at 70–80% confluency 

were cultured in serum-free medium for 12 h, and then 

stimulated with 10  ng/ml IL-1β for 2  h to mimick OA 

chondrocytes. HEK 293T cells were purchased from 

American Tissue Culture Collection (ATCC, Manassas, 

VA, USA), which was cultured in MEM medium (Gibco) 

with 10% FBS.

Cell transfection

�e MEG3 and SMAD7 sequences were synthetized 

from Sangon Biotech (Shanghai, China) and cloned into a 

pcDNA3.1 plasmid (�ermo Fisher Scientific, Waltham, 

MA, USA) to construct MEG3 overexpression vector 

(MEG3) and SMAD7 overexpression vector (SMAD7). 

All siRNAs (si-MEG3, si-SMAD7, si-NC), miRNAs mim-

ics (miR-16 mimics, miR-NC), and miRNA inhibitors 

(anti-miR-16, anti-miR-NC) were also obtained from 

Sangon Biotech. Plasmids or oligonucleotides were trans-

fected into IL-1β-induced chondrocytes by using the 

Lipofectamine 3000 transfection reagent (Life Technolo-

gies, Carlsbad, CA, USA) according to the protocols of 

manufacturer.

RNA extraction and RT-qPCR

Total RNA was isolated from cartilage tissues of rat OA 

model and treated chondrocytes using GenElute™ Total 

RNA Purification Kit (Sigma-Aldrich) referring to the 

instructions of manufacturer. 500 ng total RNA was used to 

detected the relative MEG3 and miR-16 expression by using 

QuantiNova SYBR Green PCR kit (Qiagen, Hilden, Ger-

many) on an 7500 fast real-time PCR system (Applied Bio-

systems, Waltham, MA, USA). GAPDH or U6 was used as 

internal reference and the  2−ΔΔCt method was used to cal-

culate the expression. For the RT-qPCR analysis, the follow-

ing primers were used: MEG3: 5′-CTGCCCATCTACAC 

CTCACG-3′ (forward) and 5′-CTCTCCGCCGTCTGCGC 

TAGGGGCT-3′ (reverse); miR-16: 5′-TAGCAGCACGTAA 

ATATTGGCG-3′ (forward) and 5′-TGCGTGTCGTGGA 

GTC-3′ (reverse); GAPDH: 5′-TGCACCACCAACTGCTT 

AGC-3′ (forward) and 5′-GGCATGCACTGTGGTCATG 

AG-3′ (reverse); U6: 5′-GCTTCGGCAGCACATATACTA 

AAAT-3′ (forward) and 5′-CGCTTCACGAATTTGCGTG 

TCAT-3′ (reverse).
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Cell viability assays

Cell viability of treated chondrocytes was assessed by 

Cell Counting Kit-8 (CCK-8, Sigma-Aldrich) referring to 

the instructions of manufacturer. Briefly, IL-1β-induced 

chondrocytes were transfected for 24, 48 and 72 h, then 

10 μl of CCK-8 solution was added to each well and incu-

bated for 2  h. Subsequently, the absorbance at 450  nm 

was measured using a microplate reader (Bio-Rad Labo-

ratories, Hercules, CA, USA).

Flow cytometry

�e apoptosis of treated chondrocytes was determined 

by flow cytometry assay with Annexin V-FITC Apoptosis 

Detection Kit (Abcam, Cambridge, UK). �e apoptotic 

rate was analyzed with a flow cytometer (FACSCalibur, 

Becton–Dickinson, Franklin Lakes, NJ, USA) using Cell-

Quest software.

Western blot analysis

Cells were completely lysed in 200  l of the lysis buffer 

(Takara, Dalian, China) and then centrifuged at 8000g 

for 5  min. Proteins were separated by 12% SDS-PAGE, 

and transferred to PVDF membranes (Millipore, Bill-

erica, MA, USA). �e membranes were blocked by 5% 

skimmed milk in TBS for 2 h. After washed three times 

by TBS containing 0.1% Tween-20 (TBST), the PVDF 

membranes were incubated with anti-Bax (Cell Signaing 

Technology, Danvers, MA, USA), anti-Bcl2 (Cell Signa-

ing Technology), anti-SMAD7 (Cell Signaing Technol-

ogy), anti-β-actin (Cell Signaing Technology) overnight 

at 4 °C, respectively. After washed with TBST, the PVDF 

membranes were incubated with HRP-conjugated sec-

ondary antibodies (Cell Signaling Technology). Lastly, 

the PVDF membranes were exposed to ECL Western 

Blotting Substrate (Solarbio, Beijing, China) for 5  min 

and were quantified using VersaDoc 4000MP imaging 

system (Bio-Rad).

RNA immunoprecipitation (RIP) assay

RNA immunoprecipitation assay was performed by 

Imprint RNA immunoprecipitation kit (Sigma-Aldrich) 

referring to the recommended protocols of manufacturer. 

Firstly, IL-1β-induced chondrocytes were collected and 

resuspended in RIP lysis buffer (Solarbio), subsequently 

centrifuged at 12,000g for 5  min. �en, cell lysate was 

incubated with anti-Argonaute2 (anti-Ago2) or anti-

IgG (negative control) overnight at 4 °C, followed by the 

addition of Protein A magnetic beads to get the immu-

noprecipitation complex. Total RNA was isolated using 

GenElute™ Total RNA Purification Kit (Sigma-Aldrich). 

Lastly, the relative enrichment of MEG3 and miR-16 

were determined by RT-qPCR analysis.

Luciferase reporter assay

�e partial squences of MEG3 and 3′-UTR of SMAD7 

containing the putative binding sites of miR-16 were syn-

thetized and obtained from Sangon Biotech (Shanghai), 

then were cloned into the pmirGLO Dual-Luciferase 

miRNA Target Expression Vectors (Promega, Madison, 

WI, USA) to construct wild-type reporter vectors MEG3 

(WT) and SMAD7 (WT), respectively. �e mutant 

MEG3 sequences and 3′-UTR of SMAD7 sequences 

containing the putative binding sites of miR-16 were 

performed by Q5 Site-Directed Mutagenesis Kit (New 

England Biolabs, Ipswich, MA, USA) and then cloned 

into pmirGLO vectors respectively, to construct mutant-

type reporter vectors MEG3 (MUT) and SMAD7 (MUT). 

�e MEG3 (WT) or MEG3 (MUT) were transfected into 

HEK 293T cells together with miR-NC, miR-16 mim-

ics, anti-miR-NC or anti-miR-16. Similarly, the SMAD7 

(WT) or SMAD7 (MUT) were transfected into HEK 

293T cells together with miR-NC or miR-16 mimics. 

HEK 293T cells were contransfected with SMAD7 (WT) 

and miR-NC, miR-16 mimics, miR-16 mimics + pcDNA, 

or miR-16 mimics + MEG3. �e relative luciferase activ-

ity was analyzed by the Dual-Glo Luciferase Assay Sys-

tem (Promega).

Statistical analysis

Statistical analyses were preformed by Student’s t-test 

or one-way ANOVA using software SPSS 15.0 (SPSS 

Inc., Chicago, IL, USA). All data were presented as the 

mean ± standard deviation (mean ± SD). A P-value less 

than 0.05 was considered statistically significant.

Results

Over-expression of MEG3 inhibited proliferation 

and promoted apoptosis in IL-1β-induced chondrocytes

To investigate the functions of MEG3 in OA, MEG3 

expression pattern was detected by RT-qPCR analy-

sis. From the data, it is found that MEG3 expression 

was drastically decreased in cartilage tissues of rat OA 

model (n  =  10) compared with sham-group cartilage 

tissues (n  =  10, Fig.  1a). Further, chondrocytes were 

stimulated with 10  ng/ml IL-1β for 2  h to mimick OA 

chondrocytes.  �e effect of MEG3 on proliferation and 

apoptosis of IL-1β-induced chondrocytes was explored 

using loss-of-function and gain-of-function experiments 

by transfected with small interference RNA of MEG3 

(si-MEG3) and MEG3 overexpression vector (MEG3). 

As shown in Fig.  1b, the introduction of MEG3 or si-

MEG3 markedly enhanced or inhibited the expression of 

MEG3 compared with the corresponding negative con-

trol (pcDNA or si-NC). In addition, cell viability assay 

revealed that MEG3 knockdown significantly promoted 
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cell proliferation, while MEG3 up-regulation strikingly 

suppressed proliferation of IL-1β-induced chondrocytes 

(Fig.  1c). Moreover, the effect of MEG3 on apoptosis of 

IL-1β-induced chondrocytes was assessed by flow cytom-

etry and western blot assay. �e data showed that IL-1β 

triggered chondrocytes apoptosis and MEG3 down-reg-

ulation significantly inhibited IL-1β-induced chondro-

cytes apoptosis, while MEG3 up-regulation exhibited 

opposite effect (Fig. 1d). Consistently, western blot assay 

showed that MEG3 knockdown led to a suppression of 

apoptosis and MEG3 overexpression led to a promotion 

of apoptosis, revealed by the expression change of apop-

tosis-related proteins Bax and Bcl2 (Fig. 1e). In total, the 

MEG3 overexpression inhibited proliferation and pro-

moted apoptosis in IL-1β-induced chondrocytes. �ese 

results suggested that MEG3 might perform an impor-

tant function in the progression of OA.

Over-expression of miR-16 promoted proliferation 

and inhibited apoptosis in IL-1β-induced chondrocytes

To assessed the effect of miR-16 in OA, miR-16 expres-

sion pattern was detected in cartilage tissues of rat OA 

model. As shown in Fig. 2a, miR-16 expression was evi-

dently increased in cartilage tissues of rat DMM model 

compared to the sham group. Subsequently, miR-16 

mimics and anti-miR-16 were synthesized and then 

transfected into IL-1β-induced chondrocytes to exam-

ine their efficiency. As displayed in Fig.  2b, the expres-

sion of miR-16 was markedly increased or decreased by 

transfecting with miR-16 mimics or anti-miR-16, respec-

tively. �en, miR-16 mimics and anti-miR-16 were used 

to explore the effect of miR-16 on proliferation and apop-

tosis of IL-1β-induced chondrocytes. �ese data revealed 

that miR-16 depletion markedly inhibited proliferation 

and promoted apoptosis in IL-1β-induced chondrocytes 

(Fig.  2c–e). On the other hand, miR-16 overexpression 

evidently promoted cell proliferation and suppressed cell 

apoptosis (Fig.  2c–e). In conclusion, the overexpression 

of miR-16 promoted proliferation and inhibited apop-

tosis in IL-1β-induced chondrocytes. �ese results pro-

posed that miR-16 might be closely associated with the 

development and progression of OA.

MEG3 was involved in miR-16 pathway

To further investigate the underlying mechanism of 

MEG3 in OA, the online software miRcode was used to 

research for the miRNAs interacted with MEG3. Inter-

estingly, it is found that miR-16 have some complemen-

tary bases with the sequences of MEG3, indicating that 

miR-16 might interact with MEG3 (Fig.  3a). To verify 

the binding between MEG3 and miR-16, RNA immu-

noprecipitation (RIP) assay and dual-luciferase reporter 

assay were performed. Argonaute2 (Ago2) protein is a 

key components of the RNA induced silencing complex 

(RISC) and Ago2 antibody may be usefull in captur-

ing mature miRNAs [16]. �erefore, RIP assay was per-

formed using Ago2 antibody to confirm the potentially 

endogenous interaction between MEG3 and miR-16. �e 

data revealed that MEG3 and miR-16 were largely cap-

tured by anti-Ago2 compared with the negative control in 

IL-1β-induced chondrocytes (Fig. 3b). For dual-luciferase 

reporter assay, wild-type (WT) and mutant-type (MUT) 

MEG3 luciferase reporter vectors were constructed and 

transfected into HEK 293T cells together with miR-NC, 

miR-16 mimics, anti-miR-NC or anti-miR-16. �ese 

results displayed that the luciferase activity of MEG3 

(WT) vector was strikingly reduced or enhanced by 

the transfection with miR-16 mimics or anti-miR-16, 

respectively. While mutant of putative sites in MEG3 

reporter vector had little effect in luciferase activity fol-

lowing miR-16 up-regulation or miR-16 down-regulation 

(Fig.  3c). In order to further elucidate the interaction 

between MEG3 and miR-16, the expression of MEG3 

and miR-16 were detected in cartilage tissues of rat 

OA model. As shown in Fig.  3d, MEG3 expression was 

inversely correlated with miR-16. Moreover, MEG3 over-

expression obviously inhibited miR-16 expression, while 

MEG3 down-regulation markedly promoted the expres-

sion of miR-16 (Fig.  3e). Taken together, these results 

proposed that MEG3 was involved in miR-16 pathway.

SMAD7 was a target gene of miR-16

�e online software TargetScan was used to search for 

the endogenic target gene of miR-16. Intriguingly, it is 

found that miR-16 have some complementary bases with 

(See figure on previous page) 

Fig. 1 Over-expression of MEG3 inhibited proliferation and promoted apoptosis in IL-1β-induced chondrocytes. a The medial meniscus of rats right 

knee joint was transected to build a rat OA model. MEG3 expression pattern was detected by RT-qPCR in cartilage tissues of rat OA model (n = 10) 

and sham group cartilage tissues (n = 10). b–e Chondrocytes were isolated from normal rat cartilage tissues and stimulated with 10 ng/ml IL-1β for 

2 h, then transfected with si-NC, si-MEG3, pcDNA-NC or MEG3. b After transfection for 48 h, MEG3 expression was detected in IL-1β-induced chon-

drocytes by RT-qPCR. c Cell viability of IL-1β-induced chondrocytes transfected for 0, 24, 48 and 72 h was determined by Cell Counting Kit-8 (CCK-8) 

at OD450 nm. d Cell apoptosis of IL-1β-induced chondrocytes transfected for 48 h was assessed by flow cytometry using Annexin V-FITC Apoptosis 

Assay kit. e Apoptosis-related proteins Bax and Bcl2 expression were detected by western blot assay in IL-1β-induced chondrocytes transfected for 

48 h. *P < 0.05 vs. negative control
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the 3′-UTR of SMAD7 (Fig. 4a), indicating that SMAD7 

might be a target gene of miR-16. �erefore, wild-type 

SMAD7 luciferase vector (SMAD7-WT) and mutant-

type SMAD7 luciferase vector (SMAD7-MUT) were 

constructed and introduced into HEK 293T cells to verify 

the interaction between miR-16 and SMAD7. As shown 

in Fig.  4b, the relative luciferase activity was markedly 

reduced by the introduction of miR-16 mimics in HEK 

293T cells transfected with the SMAD7 (WT) vector, 

while mutation of the predicated matching sites in the 

3′-UTR of SMAD7 had no effect on luciferase activity 

following miR-16 upregulation. Moreover, western blot 

assay showed that miR-16 over-expression significantly 

repressed the expression of SMAD7, while miR-16 down-

regulation markedly promoted SMAD7 expression in 

IL-1β-induced chondrocytes (Fig. 4c).

Based on the above, we further investigated whether 

MEG3 was involved in miR-16/SMAD7 axis in IL-1β-

induced chondrocytes. To validate this assumption, 

dual-luciferase reporter assay was performed by trans-

fecting SMAD7-WT vector into HEK 293T cells together 

with miR-NC, miR-16, miR-16  +  pcDNA and miR-

16 + MEG3. �e data revealed that the luciferase activ-

ity reduced by miR-16 over-expression in HEK 293T cells 

transfected with the SMAD7-WTvector, was markedly 

ameliorated by the introduction of MEG3 (Fig.  4d). On 

the other hand, MEG3 over-expression markedly pro-

moted SMAD7 expression and MEG3 low-expression 

strikingly suppressed SMAD7 expression (Fig.  4e, f ). 

Moreover, the expression change of SMAD7 induced by 

MEG3 or si-MEG3 was markedly reversed by the intro-

duction of miR-16 or anti-miR-16 in IL-1β-induced 

(See figure on previous page) 

Fig. 2 Over-expression of miR-16 promoted proliferation and inhibited apoptosis in IL-1β-induced chondrocytes. a The expression of miR-16 was 

assessed by RT-qPCR in cartilage tissues of rat OA model (n = 10) and sham group cartilage tissues (n = 10). b–e Chondrocytes were stimulated 

with 10 ng/ml IL-1β for 2 h, then transfected with miR-NC, miR-16 mimics, anti-miR-NC or anti-miR-16. b Relative miR-16 expression was detected 

in IL-1β-induced chondrocytes transfected for 48 h. c Cell viability of IL-1β-induced chondrocytes transfected for 0, 24, 48 and 72 h was determined 

by Cell Counting Kit-8 (CCK-8) at OD450 nm. d Cell apoptosis of IL-1β-induced chondrocytes transfected for 48 h was detected by flow cytometry 

using Annexin V-FITC Apoptosis Assay kit. e Bax and Bcl2 expression were detected in IL-1β-induced chondrocytes after 48 h transfection by west-

ern blot analysis. *P < 0.05 vs. negative control

Fig. 3 MEG3 was involved in miR-16 pathway. a Sequence alignment of miR-16 and the putative binding sites within the wild-type MEG3, and 

mutation in the MEG3. b The interaction between MEG3 and miR-16 was detected by RNA immunoprecipitation (RIP) with Ago2 antibody. c The 

luciferase activity was detected in HEK 293T cells transfected with MEG3 (WT) or MEG3 (MUT) reporter vector together with miR-16 mimics or 

anti-miR-16. d The correlation between MEG3 and miR-16 expression in cartilage tissues of rat OA model by RT-qPCR. GAPDH and U6 were used 

as internal reference. e The relative expression of miR-16 was examined in IL-1β-induced chondrocytes transfected with pcDNA-MEG3, si-MEG3 or 

control. *P < 0.05 vs. negative control



Page 8 of 13Xu and Xu  Cell Biosci  (2017) 7:69 

chondrocytes (Fig.  4e, f ). Taken together, our results 

suggested that SMAD7 was a target gene of miR-16 and 

MEG3 was involved in miR-16/SMAD7 axis in IL-1β-

induced chondrocytes.

MiR-16 reversed MEG3-mediated anti-proliferation 

and pro-apoptosis in IL-1β-induced chondrocytes

Whether MEG3 exerted its anti-proliferation and 

pro-apoptosis functions by miR-16 in IL-1β-induced 

chondrocytes were further explored. As shown in Fig. 5a, 

cell viability assay revealed that si-MEG3-mediated pro-

proliferation effect was significantly reversed by the 

introduction of anti-miR-16, and MEG3-mediated anti-

proliferation effect was evidently alleviated after miR-16 

up-regulation. Moreover, si-MEG3-mediated anti-apop-

tosis effect was markedly abrogated by the introduction 

of anti-miR-16, and MEG3-mediated pro-apoptosis effect 

was strikingly reversed by the introduction of miR-16 

Fig. 4 SMAD7 was a direct target of miR-16. a Sequence alignment of miR-16 with the putative binding sites within in MEG3 and mutant miR-16 

binding sites. b Dual-luciferase reporter assays were used to investigate whether SMAD7 could directly interact with miR-16 by the putative binding 

sites in HEK 293T cells cotransfected with wild-type or mutant-type MEG3 luciferase vectors and miR-NC or miR-16 mimics. c SMAD7 expression 

was detected in IL-1β-induced chondrocytes transfected with miR-NC, miR-16 mimics, anti-miR-NC or anti-miR-16. β-actin was used as internal 

reference. d The effect of MEG3 on luciferase activity in HEK 293T cells transfected with SMAD7 (WT) vector and miR-16 mimics was determined. e 

SMAD7 expression pattern was detected by western blot assay in IL-1β-induced chondrocytes transfected with pcDNA-NC, MEG3, miR-NC or miR-

16. f SMAD7 expression pattern was detected in IL-1β-induced chondrocytes transfected with si-NC, si-MEG3, anti-miR-NC or anti-miR-16. *P < 0.05 

vs. negative control
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Fig. 5 MiR-16 reversed MEG3-mediated anti-proliferation and pro-apoptosis in IL-1β-induced chondrocytes. IL-1β-induced chondrocytes were 

transfected with si-NC, si-MEG3, si-MEG3 + anti-miR-NC, si-MEG3 + anti-miR-16, pcDNA-NC, MEG3, MEG3 + miR-NC or MEG3 + miR-16 mimics. a 

Cell viability of treated IL-1β-induced chondrocytes was determined at OD450 nm by Cell Counting Kit-8. b Cell apoptosis of treated IL-1β-induced 

chondrocytes was assessed by flow cytometry using Annexin V-FITC Apoptosis Assay kit. c Bax and Bcl2 expression were detected in treated IL-1β-

induced chondrocytes by western blot analysis. *P < 0.05 vs. negative control
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Fig. 6 MEG3 exerted its effect on anti-proliferation and pro-apoptosis by regulating SMAD7. IL-1β-induced chondrocytes were transfected with 

si-NC, si-MEG3, si-MEG3 + pcDNA-NC, si-MEG3 + pcDNA-SMAD7, pcDNA-NC, pcDNA-MEG3, pcDNA-MEG3 + si-NC or pcDNA-MEG3 + si-SMAD7. 

a Cell viability of treated IL-1β-induced chondrocytes was determined. b Flow cytometry of cell apoptosis in treated IL-1β-induced chondrocytes. c 

Bax and Bcl2 expression were detected in treated IL-1β-induced chondrocytes. *P < 0.05 vs. negative control
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(Fig. 5b). Consistently, western blot assay also verified the 

finding of apoptosis showed in Fig.  5b, revealed by the 

expression change of Bcl2 and Bax (Fig. 5c). In conclusion, 

these results suggested that miR-16 reversed MEG3-medi-

ated anti-proliferation and pro-apoptosis in IL-1β-induced 

chondrocytes. In other words, MEG3 might regulate cell 

proliferation and apoptosis by miR-16 in OA.

MEG3 exerted its anti-proliferation and pro-apoptosis 

effect by regulating SMAD7

To further investigate the underlying molecular mecha-

nism of MEG3 in OA, cell proliferation and apop-

tosis were detected in IL-1β-induced chondrocytes 

transfected with si-MEG3  +  PBS, si-MEG3  +  SMAD7, 

MEG3  +  PBS, MEG3  +  si-SMAD7, or corresponding 

negative controls. Interestingly, the data showed that si-

MEG3-mediated pro-proliferation effect was evidently 

reversed after SMAD7 up-regulation, while MEG3-medi-

ated anti-proliferation effect was markedly ameliorated 

by SMAD7 knockdown (Fig. 6a). As shown in Fig. 6b, si-

MEG3-mediated anti-apoptosis effect was significantly 

ameliorated by SMAD7 overexpression, and MEG3-

mediated pro-apoptosis was strikingly abrogated by the 

introduction of si-SMAD7. Furthermore, western blot 

assay also verified the finding of apoptosis, revealed by 

the expression change of Bcl2 and Bax (Fig. 6c) in IL-1β-

induced chondrocytes. In conclusion, these results sug-

gested that MEG3 might exert its anti-proliferation and 

pro-apoptosis effect by regulating SMAD7 in OA.

Discussion

Osteoarthritis (OA) is a common joint disease and has 

became a major public health problem [1]. Because the 

underlying mechanism of OA is not fully learned, there is 

no fundamental therapy [3]. Recently, a series of studies 

have revealed that lncRNAs play important roles in the 

development and progression of OA [17]. Some lncRNAs 

were verified to contribute to OA progression, including 

HOTAIR [7], GAS5 [18], others could be a potential ther-

apeutic target for OA, including PCGEM1 [8], lncRNA-

CIR [19]. LncRNA MEG3 was verified to as a tumor 

suppressor by targeting p53 in multiple cancers, for 

example, in meningiomas [20]. Intriguingly, Su et al. [9] 

discovered that MEG3 was down-regulated and MEG3 

might be involved in OA development and progression 

by the regulation of VEGF levels. In accordance with the 

findings [9], our data showed that MEG3 expression was 

drastically decreased in cartilage tissues of rat OA model 

and MEG3 knockdown significantly promoted prolif-

eration and inhibited apoptosis in IL-1β-induced chon-

drocytes. �e results in this study suggested that MEG3 

might perform an important function in OA.

Recently, lots of studies verified the ceRNA hypoth-

esis that lncRNAs functioned as a ceRNA of miRNAs 

and lncRNAs exerted their function by antagonizing 

the target miRNAs effects and regulating the expres-

sion of miRNAs endogenous targets in a variety of dis-

eases [21]. LncRNA MEG3 also was found to function as 

a ceRNA of several miRNAs, for instance, miR-125a-5p 

in immune thrombocytopenic purpura [13], miR-770-5p 

in Hirschsprung’s disease [22]. �erefore, the online 

software miRcode was further used to research for the 

miRNAs interacted between MEG3 in OA. Interest-

ingly, the data showed that miR-16 might interact with 

MEG3, which was in accordance with a previous report 

[12]. In present study, MEG3 was involved in miR-16 

pathway and MEG3-mediated anti-proliferation and pro-

apoptosis effect was abated by miR-16 in IL-1β-induced 

chondrocytes.

A series of previous studies showed that miR-16 

enhanced cell apoptosis by targeting the oncogene Bcl2 

in hepatic stellate cells [11], and miR-16 acted as putative 

tumor suppressor by targeting VEGF-A in multiple mye-

loma [23]. Intriguingly, Wang et al. [24] found that miR-

16 was up-regulation in systemic inflammatory response 

syndrome (SIRS), which might be useful biomarkers for 

SIRS diagnoses. In this study, miR-16 expression was sig-

nificantly increased in cartilage tissues of rat OA model 

and up-regulated miR-16 elevated cell proliferation and 

inhibited apoptosis in IL-1β-induced chondrocytes. 

Increasing evidence showed that miRNAs exerted their 

function by regulating the expression of endogenous tar-

gets [25], then software algorithms was used to search for 

the target gene of miR-16. Similar with precious studies 

[26], having shown that caprin-1, cyclin E and HMGA1 

were the targets of miR-16 in MCF-7 cell lines, it is veri-

fied that SMAD7 was a target gene of miR-16 by dual-

luciferase reporter assay and miR-16 markedly repressed 

SMAD7 expression in IL-1β-induced chondrocytes. 

Interestingly, previous reports verified that miR-16-5p 

contributed to the development of OA through targeting 

SMAD3 [12] and SMAD7 knockdown might contribute 

to OA development in 6-month old mice [27].

Acted as an intracellular antagonist of TGF-β signal-

ing pathway, SMAD7 plays an important role in many 

inflammation-related diseases [28]. Montelenoe et al. [29] 

discovered that SMAD7 down-regulation maintained 

the chronic production of proinflammatory cytokines to 

drives the inflammatory respond in inflammatory bowel 

disease. Lan et  al. [30] revealed that SMAD7 played a 

critical role in anti-inflammation through repressing 

NF-κB signaling pathway in chronic kidney diseases. As 

previous reported [29, 30], our results suggested that 

SMAD7 might play an suppressor role on the develop-

ment of OA.
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In this study, it is found that MEG3 was involved in 

miR-16/SMAD7 axis in IL-1β-induced chondrocytes. 

Moreover, MEG3 exerted its anti-proliferation and pro-

apoptosis by regulating miR-16 and SMAD7. Taken 

together, the results in this study suggested that MEG3 

might ameliorate the development and progression of 

OA through regulating miR-16/SMAD7 axis. Similar 

with our findings, Sun et al. [31] discovered that lncRNA 

NEAT1 and miR-377-3p had a vital function in non-

small cell lung cancer by regulating the target E2F3. Liang 

et al. [32] also found that lncRNA H19 acted as a ceRNA 

of miR-138, which antagonized miR-138 effects and reg-

ulated the target gene ZEB1 in colorectal cancer.

In conclusion, MEG3 was down-regulated while miR-

16 was up-regulated in cartilage tissues of rat OA model, 

and MEG3 konckdown might lead to promoting prolifer-

ation and inhibiting apoptosis in IL-1β-induced rat chon-

drocytes through miR-16/SMAD7 axis, indicating that 

MEG3 could be a useful marker and potential therapeutic 

target in OA.
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