
The Load Slice Core Microarchitecture

Trevor E. Carlson1 Wim Heirman2 Osman Allam3 Stefanos Kaxiras1 Lieven Eeckhout3

1 Uppsala University, Sweden 2 Intel, ExaScience Lab 3 Ghent University, Belgium

Abstract
Driven by the motivation to expose instruction-level paral-

lelism (ILP), microprocessor cores have evolved from simple,
in-order pipelines into complex, superscalar out-of-order de-
signs. By extracting ILP, these processors also enable parallel
cache and memory operations as a useful side-effect. Today,
however, the growing off-chip memory wall and complex cache
hierarchies of many-core processors make cache and memory
accesses ever more costly. This increases the importance of
extracting memory hierarchy parallelism (MHP), while reduc-
ing the net impact of more general, yet complex and power-
hungry ILP-extraction techniques. In addition, for multi-core
processors operating in power- and energy-constrained envi-
ronments, energy-efficiency has largely replaced single-thread
performance as the primary concern.

Based on this observation, we propose a core microarchi-
tecture that is aimed squarely at generating parallel accesses
to the memory hierarchy while maximizing energy efficiency.
The Load Slice Core extends the efficient in-order, stall-on-use
core with a second in-order pipeline that enables memory ac-
cesses and address-generating instructions to bypass stalled
instructions in the main pipeline. Backward program slices
containing address-generating instructions leading up to loads
and stores are extracted automatically by the hardware, using
a novel iterative algorithm that requires no software support
or recompilation. On average, the Load Slice Core improves
performance over a baseline in-order processor by 53% with
overheads of only 15% in area and 22% in power, leading
to an increase in energy efficiency (MIPS/Watt) over in-order
and out-of-order designs by 43% and over 4.7×, respectively.
In addition, for a power- and area-constrained many-core
design, the Load Slice Core outperforms both in-order and
out-of-order designs, achieving a 53% and 95% higher per-
formance, respectively, thus providing an alternative direction
for future many-core processors.
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1. Introduction

Processor cores have evolved from simple in-order designs
to complex superscalar out-of-order machines. The origi-
nal design goal was to expose instruction-level parallelism
(ILP) in an effort to keep all available execution units occu-
pied and hence improve single-threaded application perfor-
mance [36, 37]. In more recent years, the discrepancy in
processor performance with that of main memory resulted in
a phenomenon typically referred to as the memory wall [41].
Additionally, saturating ILP extraction and power limitations
led to the emergence of multi- and many-core processors. This
move changed the focus from single-thread performance to
energy-efficient cores that maximize total chip performance
within the power budget [28]. Many-core chips also resulted in
increasingly complex on-chip memory hierarchies, driving up
memory latency even further through large on-chip networks
and the need for coherency transactions. Hiding this mem-
ory latency, therefore, has become an ever more important
task of the core. Since ILP-extracting techniques automati-
cally expose memory hierarchy parallelism (MHP) as well,
out-of-order cores are naturally successful in coping with this
problem [10]. (Similar to how MLP is defined for off-chip
accesses by Chou et al. [10], we define memory hierarchy
parallelism, MHP, from the core’s viewpoint as the average
number of overlapping memory accesses that hit anywhere
in the cache hierarchy.) However, this success comes at a
large cost in design complexity, chip power and area budget.
Driven by the increased focus on energy efficiency, many con-
temporary many-core machines have reverted back to simpler,
in-order cores which are much more energy-efficient but are
limited in the amount of ILP and MHP they can extract (e.g.,
Intel Xeon Phi [11], Tilera [29]).

The ideal many-core building block is therefore an energy-
efficient core that can still maximize extraction of memory
hierarchy parallelism, a combination that neither traditional
in-order or out-of-order processors provide. Other techniques
exist to prevent the processor from stalling on pending long-
latency loads. Examples include runahead execution to dis-
cover and prefetch independent memory accesses [15, 25], and
slice processors that — statically or dynamically — extract
independent program slices that can be executed out-of-order
with respect to the blocked instruction flow. Slice processors
make the concept of extracting independent instruction slices,
which are clusters of dynamically executed (not necessarily
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contiguous) instructions, explicit. One category of related
work specifies slices in software [5, 13, 14, 20, 30, 33, 38, 42].
Others identify slices in hardware, either for speculation and
re-execution [4, 8, 15, 24, 25], or they cache these slices for
later re-execution, thus avoiding the overhead of continuously
re-building them [9, 12, 18, 26]. Yet, each of these proposals
result in compromises in one or more areas: they add addi-
tional complex hardware structures, require the recompilation
or modification of existing software, or rely on re-execution of
part of the instruction stream — wasting both time and energy.
(See Section 7 for a more detailed discussion on related work.)

To address these limitations, we reconsider the design of
the processor core. We propose the Load Slice Core microar-
chitecture which is a restricted out-of-order machine aimed
squarely at extracting parallelism from the memory hierarchy.
By restricting slices to memory operations, we do not try to
solve the problem of finding ILP in all forms, but rather focus
specifically on the memory hierarchy. Backward slices are
constructed, stored and finally recalled in an energy-efficient,
hardware-based manner. The Load Slice Core builds on the
commonly used superscalar in-order core with a stall-on-use
policy. Memory hierarchy parallelism is achieved by execut-
ing select instructions out-of-order with respect to the main
instruction flow. By placing strict limitations on which in-
structions can bypass others, and favoring simpler structures
(RAMs and FIFOs) over complex ones (CAMs), the microar-
chitecture can be kept small and efficient, resulting in good
power- and area-efficiency while still performing close to fully
out-of-order designs. Conceptually, the Load Slice Core is
most closely related to the decoupled access/execute archi-
tecture (DAE) [33], which provides separate pipelines for
memory accesses (including address generation) and computa-
tion. The Load Slice Core microarchitecture follows a similar
split with two in-order pipelines: a primary pipeline for the
instruction stream, and a secondary pipeline that handles loads
and address calculations. In contrast to DAE, the Load Slice
Core automatically detects address-generating instructions in
hardware using a novel, iterative technique, and can therefore
be used in combination with unmodified application binaries.

In this work, we present and evaluate the Load Slice Core
microarchitecture, making the following contributions:
• We propose iterative backward dependency analysis, a low-

cost, hardware-based technique to select backward instruc-
tion slices from load and store instructions for early execu-
tion. This technique iteratively learns the address generating
instructions that lead up to memory accesses during applica-
tion loops that occur naturally in software.

• We propose the Load Slice Core microarchitecture, a re-
stricted out-of-order, decoupled access/execute-style mi-
croarchitecture. Scheduling decisions are made early in
the front-end of the pipeline, through iterative backward de-
pendency analysis, without the need to modify application
binaries. This technique avoids using expensive wake-up
and selection logic in the back-end of the processor, result-
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Figure 1: Selective out-of-order execution performance (left)
and memory hierarchy parallelism extraction (right).

ing in a small amount of additional hardware over a typical
stall-on-use in-order processor: just 15% area overhead
compared to the ARM Cortex-A7.

• We provide a comprehensive analysis of the Load Slice
Core’s performance, area and power consumption, and com-
pare it to standard in-order and out-of-order alternatives.
The Load Slice Core is 43% and 4.7× more energy-efficient
than in-order and out-of-order cores, respectively. In addi-
tion, we demonstrate that the Load Slice Core, when used
in a power- and area-limited many-core design, outperforms
both in-order as well as out-of-order designs, by 53% and
95%, respectively.

2. Motivation

To characterize the effect of ILP and MHP on performance,
we set up the following experiment. We start from a simu-
lation model for an out-of-order, two-wide superscalar core,
and explore a number of different instruction issue rules and
assess their effect on performance. We use the SPEC CPU
2006 benchmarks, and a modern memory subsystem including
prefetchers; see Section 5 for further methodological details.

Traditional architectures. Figure 1 plots the performance
(in instructions per clock cycle, IPC) and capability of extract-
ing memory hierarchy parallelism (MHP, in average overlap-
ping core memory accesses). All architectures are based on
a two-wide superscalar pipeline with a 32-entry instruction
window. The out-of-order variant (right-most bar) schedules
instructions out-of-order, and can execute any two instructions
provided their operands are ready. (We assume this variant
has a perfect bypass network and disambiguation of load and
store addresses). The in-order variant (left-most bar) can only
issue instructions that are at the head of the instruction win-
dow, making this effectively an in-order, stall-on-use core. As
can be expected, the performance of the out-of-order core,
averaged over all SPEC CPU workloads, is almost double that
of the in-order design.

Out-of-order loads. To quantify the effect of variations on
a hypothetical core that improves memory hierarchy paral-
lelism, we extend the in-order core and allow it to execute
select instructions out-of-order. The out-of-order loads variant
can execute loads once they are ready, i.e., when all operands



needed to compute the address are available and no conflicts
exist with earlier pending stores (this includes speculation
beyond unresolved branches). As in the in-order variant, non-
load instructions execute in program order only. In all cases,
the maximum number of instructions (of any type) to exe-
cute in a given cycle is restricted to two. The out-of-order
loads architecture exposes additional MHP over the in-order
machine, but has the same ILP extraction. Yet, performance
improves over in-order execution, as this architecture is able to
issue loads earlier. This reduces stall time for instructions that
consume the result of the load, and more importantly, enables
loads to bypass instructions that block the head of the window
while waiting for previous loads to complete, hence allowing
more loads to be issued in parallel.

Address-generating instructions. Still, less MHP is ex-
tracted than in a fully out-of-order core since load addresses
can depend on non-load instructions, which are still exe-
cuted in-order. The second variant, ooo loads+AGI, also en-
ables address-generating instructions to be executed early (as
soon as their operands are available). We define an address-
generating instruction (AGI) as any instruction still in the
instruction window for which a dependency chain exists from
that instruction to the load address (potentially across control
flow). The ooo loads+AGI architecture is assumed to have
perfect knowledge of which instructions are needed to calcu-
late future load addresses, and enables all of them to execute
out-of-order. This in turn generates load addresses earlier, en-
abling more loads to be executed out-of-order as well, further
improving performance up to a level that approaches fully
out-of-order execution.

Speculation. The importance of speculating across control
flow is illustrated by the ooo ld+AGI (no-spec.) variant, which
executes both loads and AGIs out-of-order, but not beyond
unresolved branches. Its performance is significantly lower
than even the variant that considers only loads for early ex-
ecution (but still enables speculation), showing that a large
fraction of the performance improvement observed is in fact
because loads can be executed speculatively. An architecture
that wants to expose memory hierarchy parallelism therefore
has to be able to speculate, and contain provisions for recovery
from mispredicted branches.

In-order scheduling. While an implementation of our hypo-
thetical ooo loads+AGI architecture would probably be almost
as complex as a fully out-of-order design, it turns out that we
can make one crucial simplification: we will execute loads and
AGIs in-order with respect to each other, but out-of-order with
respect to the main instruction sequence. Such a scheduling
policy can be implemented efficiently by using two in-order
queues, one bypass queue for loads and AGIs, and a main
queue for all other instructions. The performance of this de-
sign is shown in Figure 1 as the ooo ld+AGI (in-order) variant,
and is 53% better than an in-order core and within 11% of a
core with full out-of-order execution.

Finally, detecting AGIs can be done in hardware very effi-
ciently if we rely on loops, which naturally occur in software,
to build the list of AGIs iteratively. Rather than trying to as-
semble the complete dependency chain for load addresses in
a single execution pass, we find one producer at a time, and
mark instructions as address-generating one backward step
per loop iteration. Only those instructions that were already
marked as AGI in a previous iteration are issued to the by-
pass queue, greatly simplifying the logic needed to dispatch
instructions to the right queue.

Key insights. The design of the Load Slice Core microar-
chitecture relies on three key insights. First, extending an
efficient, in-order stall-on-use processor with the ability to
execute both loads and address-generating instructions out-of-
order, allows these loads to bypass older instructions that are
blocked waiting for memory. This exposes additional memory
hierarchy parallelism, and can lead to a performance level that
is close to full out-of-order scheduling. Second, even though
loads and AGIs execute out-of-order with respect to the main
instruction flow, they do not need to execute out-of-order with
respect to each other. Instruction scheduling can therefore be
implemented using two in-order queues, of which only the
heads are considered for execution, rather than requiring com-
plex wake-up and selection logic present in fully out-of-order
designs. Third, detection of address-generating instructions
can be done iteratively, one backwards step at a time, using
loop behavior present in applications. This allows AGI detec-
tion to be implemented fully in the processor front-end.

To make a working design, two more elements are required.
Through-memory dependencies occur when a load overlaps
with earlier store instructions. To be able to detect these depen-
dencies, we split store instructions in two parts, one part that
calculates the address and another part to collect the data and
update memory.1 The address part of the store uses the bypass
queue, while the data part executes from the main queue. This
way, stores with an unresolved address automatically block
future loads (due to the bypass queue being in-order), while
loads that do execute can check their address against that of all
pending stores in the store queue and block when required to
honor read-after-write dependencies. Finally, by tracking com-
pletion in a scoreboard, precise exceptions can be supported
just as in stall-on-use in-order processors. In the following
sections, we will describe this architecture in more detail.

3. Iterative Backward Dependency Analysis
The Load Slice Core extracts memory hierarchy parallelism by
selecting critical instruction slices for early execution. These
slices end at a load or store instruction and contain all in-
structions needed to generate the memory address. Backward
dependency analysis [43] is one way to identify candidate
slices, with techniques available both for software [14] and

1Most out-of-order processors that perform micro-operation cracking do
in fact already have separate store-address and store-data micro-ops.



out-of-order hardware [12, 24]. Yet, the Load Slice Core does
not need to explicitly generate collections of critical instruc-
tion slices; all that is required is to know whether individual
instructions are part of an address-generating slice or not.

The goal of iterative backward dependency analysis (IBDA)
is to identify address-generating instructions in a low-cost,
hardware-friendly way. IBDA avoids analyzing long traces of
executed or committed instructions in large hardware struc-
tures. Instead, by making use of a program’s natural loop
behavior, we can find the complete backward slice one instruc-
tion at a time, in subsequent loop iterations. Each instruction
that is found is marked as being part of an address-generating
slice, and its producers can be marked one loop iteration later.

IBDA is implemented in the processor front-end, inspecting
instructions as they are being dispatched into the back-end,
and requires two new hardware structures. The instruction
slice table (IST) contains the addresses of instructions that
have been identified as belonging to a backward slice, and is
initially empty. By using the data from the IST at dispatch, the
Load Slice Core can determine whether this instruction has
been marked for bypass: instructions present in the IST are
inserted into the bypass queue, while other instructions use the
main queue instead. The second component of IBDA is the
register dependency table (RDT). The RDT contains an entry
for each physical register, and maps it to the instruction pointer
that last wrote to this register. Starting with a memory access,
the RDT will be used to look up the previous instruction(s) that
produced the registers necessary for address calculation. These
instructions are considered address-generating instructions
(AGIs), and their instruction addresses are recorded in the IST.
For each following loop iteration, the hardware will propagate
this information one additional level backwards, by looking
up producers for known address-generating instructions and
recording them in the IST as well.

The complete IBDA procedure operates on an in-order in-
struction stream. Since the actual (dynamic) instruction that
produced the value has already advanced further through the
processor pipeline (or may even have been committed), it
is not affected and will not be moved to the bypass queue
retroactively. Instead, we rely on the fact that future execu-
tion behavior will see the same dependency chain. The next
time the producer instruction is executed it will use the bypass
queue and in addition, its producers will be added to the IST.

By implementing IBDA in hardware, we enable the use
of original application binaries and do not require recompi-
lation, application analysis or software hints. The IST itself
is organized as a cache and requires only a moderate number
of entries: only the address-generating instructions for the
current inner loop are required while older data can be evicted,
these instructions will be re-discovered during the first few
iterations of their relevant inner loop. We found that for our
set of benchmarks, a 128-entry IST is sufficient to collect most
address-generating instructions relevant to the current loop,
and that after just seven loop iterations the IBDA algorithm

Instruction In-order w/ stall OOO Load Slice Core
@miss @use i1 i2 i3+

(1) mov (r9+rax*8), xmm0 • • • • • •
(2) mov esi, rax • • • • •
(3) add xmm0, xmm0

(4) mul r8, rax • •
(5) add rdx, rax • ◦ •
(6) mul (r9+rax*8), xmm1 • ◦ ◦ •

• overlapped with long-latency load (1)
◦ issued to bypass queue but blocked by dependency in main queue

Figure 2: Example inner loop, marking which instructions can
be overlapped with the initial long-latency load in the various
architectures.

has been fully trained (over 99.9% of all relevant instructions
have been marked). See Section 6.4 for more details on the
trade-offs between performance and the area used by the IST.
Next, we walk through a detailed example of the operation of
IBDA in the Load Slice Core.

Instructive example. To illustrate the potential for extract-
ing memory hierarchy parallelism in the various architectures,
we provide an annotated code snippet (the hot loop from
leslie3d) in Figure 2. Instruction (1) is a long-latency load,
which produces a result (written to register xmm0) that is con-
sumed by instruction (3). Instructions (2), (4) and (5) calculate
the new value of rax which will be part of the address calcu-
lation for a second long-latency load (6).

When executing this instruction sequence on an in-order,
stall-on-miss processor, the pipeline would stall immediately
after issuing the initial missing load (1). An in-order, stall-on-
use processor would be able to perform part of the address
calculation (instruction 2) but stalls at (3), and is again not
able to expose the second load. An out-of-order processor, on
the other hand, can analyze the dependency chain throughout
the complete instruction sequence. It is able to conclude that
only instruction (3) depends on outstanding load (1), and can
therefore execute all address-calculating instructions and the
second load without waiting for the first load to complete.

When a Load Slice Core core executes this instruction se-
quence, initially the IST will be empty. All loads (instructions
1 and 6) will be issued to the bypass queue, while all other in-
structions are issued to the main queue. As in the stall-on-use
in-order processor, instructions (1) and (2) will be executed.
Once (3) reaches the head of the main queue this queue will
block, preventing (4) and (5), and hence load (6) in the bypass
queue, from being executed underneath the initial miss. At
the same time, instruction (5) will be detected as being an
address generator for load (6), and inserted into the IST. In
the second iteration of this instruction sequence, instruction
(5) will be found in the IST at dispatch and will thus enter the
bypass queue. Instruction (4) is still in the main queue, and
is blocked by the initial load’s dependent (3), again prevent-
ing parallelism in the memory hierarchy from being exposed.
But now (4) will be detected as a producer for an instruction
already in the IST (instruction 5), and instruction (4) will be
inserted into the IST. Finally, from the third iteration onward,
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Figure 3: Load Slice Core microarchitecture schematic. The Load Slice Core adds a number of new structures (gray components)
while extending some others (dashed components) over an in-order, stall-on-use baseline (white components).

both (4) and (5) will be found in the IST and issued to the by-
pass queue, and are hence no longer hidden behind (3), which
blocks the head of the main queue. Instructions (4) through
(6) will issue from the bypass queue instead, enabling both
loads to be overlapped. The strength of the Load Slice Core is
that IBDA can dynamically identify critical instruction slices,
across control flow instructions and basic blocks.

4. The Load Slice Core Microarchitecture

Figure 3 provides a high-level overview of the Load Slice Core
microarchitecture. Its design builds on an in-order, stall-on-
use microarchitecture by adding to or modifying a number of
components. First, a second in-order instruction queue, the
bypass queue (B-IQ), is added in addition to the main queue
that exists in in-order processors (A-IQ). The bypass queue
is used to enable memory accesses and instructions identified
as address-generating to potentially be dispatched for early
execution. Instructions in the bypass queue are allowed to
execute ahead of those in the original queue. The RDT and
IST implement IBDA and enable low-overhead detection of
AGIs. To support speculative execution of instructions in the
bypass queue, register renaming has been added. Finally, we
enlarge the memory support structures such as the load-store
queue and MSHRs to enable a larger number of outstand-
ing misses. We now detail the changes that have been made
to the in-order, stall-on-use baseline processor, and describe
other important implementation aspects of the Load Slice Core
microarchitecture.

Front-end pipeline. After instructions are fetched from the
instruction cache, the IST is queried to see if they are known
address-generating instructions. This generates an IST hit bit,
which is set to one for instructions found in the IST, and is
passed down the front-end pipeline for use in the dispatch
stage. The IST is indexed by the instruction pointer, so for
architectures with variable-length instruction encoding this
step is performed after the pre-decode stage, which determines
instruction lengths and boundaries.

Register renaming. Register renaming serves an additional
function in the Load Slice Core in addition to eliminating arti-
ficial dependencies. It enables the core to more easily handle

interactions between the two instruction queues. The goal
of the bypass queue is to continue to make forward progress
as long as the true dependencies of the instruction have been
satisfied. But, as instructions in the B queue may run ahead
of the A queue, keeping track of dependencies and hazards
can become difficult without extending the traditional in-order
core. By using register renaming, the results from the bypass
queue can be computed ahead of time, stored in the register
file, and referenced later by either the bypass or main queues.

Register renaming is implemented with a merged register
file scheme. A register mapping table translates logical regis-
ters into physical registers for each register of an instruction.
If the instruction produces a result, the register mapping table
is updated with a new register from the free list. The physical
registers are used to access the register file, keep track of de-
pendencies and access the RDT. In addition, a recovery log is
used to rewind and recover the register mappings in case of a
branch misprediction or exception, and is completed within
the branch misprediction penalty.

Dependency analysis. A high-level overview of the IBDA
algorithm can be found in Section 3. IBDA is implemented
using two structures: the instruction slice table (IST) and
register dependency table (RDT). The IST is maintained as a
cache tag array; we assume a 128-entry, 2-way set-associative
design with LRU replacement (see Section 6.4 for a further
exploration). The IST stores addresses for all instructions
identified as address-generating, and contains no data bits — a
hit in the IST means the instruction was previously identified
as address-generating, a miss means that either the instruction
is not address-generating or is yet to be discovered as such. In
either case, instructions that miss in the IST are sent to the A
queue. Loads and stores are sent to the B queue automatically,
and hence do not have to be stored in the IST. We assume
complex instructions are broken up into micro-operations,
each of which is either of load, store, or execute type. Load
and store micro-ops automatically go to the B queue, so the
IST applies to the execute-type micro-ops only.

The RDT is used to identify dependencies between instruc-
tions. Each physical register in the RDT contains the instruc-
tion address of the last instruction that wrote to this register.
As instructions are decoded and renamed, their address and



current IST hit bit are written to all RDT entries that the in-
struction writes to. An instruction’s producers can be found
by reading the RDT entries corresponding to all registers read
by the instruction. If the current instruction is a load, store, or
marked address generator, all of its producers are looked up
in the RDT,2 and if the producer’s IST bit (which is cached
by the RDT) was not already set, the producer’s address is
inserted into the IST. Updates to the IST are made off the
critical path, while the producer instruction itself, even if it
is present in the processor further down the pipeline, is not
affected — instructions are never moved from the A to the B
queue retroactively.

Instruction dispatch. Instructions are dispatched into the
appropriate queue, either according to their type (load/store),
or by their IST hit bit. Load instructions are always inserted
into the B queue. Address-generating instructions will go
to the B queue if they were present in the IST at fetch time.
Stores are entered into both queues: store address calculations
are performed from the B queue such that unresolved store
addresses automatically block future loads; while store data
is collected from the A queue, enabling the store to proceed
to update memory in program order only and after ensuring
no exceptions were encountered. All other instructions are
dispatched into the main queue.

Issue/execute. The instruction scheduler can select up to
two instructions for execution, chosen from the heads of the A
and/or B queues. When ready instructions are found in both
queues, the oldest instructions in program order are executed
first.3 For simplicity, we assume all execution units are shared
between the A and B pipelines. An alternative implementation
could further separate the A and B pipelines, giving each its
own cluster of execution resources and further simplifying
instruction scheduling. Since address-generating instructions
usually consist of simple arithmetic operations, this alternative
could restrict the execution cluster for the B pipeline to the
memory interface and simple ALUs. To prevent complex
address-generating instructions from entering the B queue, the
front-end would make an extra selection based on opcode and
insert them into the A queue even if their IST hit bit was set.

Memory dependencies. In addition to register dependen-
cies, which are known at instruction decode time, there may
exist dependencies through memory from stores to loads with
an overlapping memory address. While some out-of-order
designs speculate on these conflicts, allowing loads to bypass
earlier stores and recover from potential misspeculation, the
Load Slice Core instead sends store instructions to both the
main and bypass queues. Store data is collected from the main
queue, while all address calculation for both loads and stores
is handled through the bypass queue. Because this queue is
in-order, all address calculation is performed in-order so stores

2For stores, only operands relevant to compute the address are considered.
3Experiments where priority was given to the bypass queue, which could

make loads available even earlier, did not see significant performance gains.

Component Parameters
in-order Load Slice Core out-of-order

Core 2 GHz, 2-way superscalar
Reorder logic none 32-entry IQ-A/B 32-entry ROB, sched.
IST — 128-entry, 2-way LRU —
Branch predictor hybrid local/global predictor
Branch penalty 7 cycles 9 cycles 9 cycles
Execution units 2 int, 1 fp, 1 branch, 1 load/store
L1-I 32 KB, 4-way LRU
L1-D 32 KB, 8-way LRU, 4 cycle, 8 outstanding
L2 cache 512 KB, 8-way LRU, 8 cycle, 12 outstanding
Prefetcher L1, stride-based, 16 independent streams
Main memory 4 GB/s, 45 ns access latency
Technology node 28 nm

Table 1: Simulated single-core microarchitecture details.

with an unresolved address automatically prevent future — po-
tentially conflicting — loads from being executed. Once the
operands needed to compute the store address are known, the
store is allowed to execute from the bypass queue, writing its
store address into the store buffer. When the store reaches the
head of the main queue, its data is available as well and the
store can be written out to memory.

Loads that are about to issue can thus be checked against the
addresses of outstanding stores in the store buffer in program
order. This avoids the need for speculative address disam-
biguation. Since unknown store addresses now block loads,
we want store address computation to be executed on the by-
pass queue as well. Therefore, the IBDA algorithm considers
both load and store addresses as roots for finding backward
slices.

Commit. The commit stage checks for exceptions and
makes the (previously speculative) state architecturally visible,
and releases structures such as store buffer entries and rename
registers. Instructions are entered in-order into a scoreboard at
dispatch, record their completion out-of-order, and leave the
scoreboard in-order. This structure operates similarly to the
existing scoreboard in stall-on-use in-order processors which
allows them to support out-of-order completion of variable
execution latencies, although the Load Slice Core enlarges it
to support the larger number of outstanding instructions.

5. Experimental Setup
We use the Sniper multi-core simulator [6] and the cycle-level
in-order and out-of-order core models [7] as baselines for this
work. In addition, we extended the simulator with a detailed,
cycle-level core model for the Load Slice Core microarchitec-
ture. See Table 1 for the main architectural parameters. All
cores are two-wide superscalar, with the same execution units
and cache hierarchy, and use hardware prefetchers. Second-
level cache capacity and main memory bandwidth are rep-
resentative for each core’s fair share in modern many-core
processors [11]. Branch misprediction penalties for the Load
Slice Core and out-of-order architectures are slightly higher
to account for the extra pipeline stages (rename and dispatch)
in the front-end. Experiments are evaluated using the SPEC
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Figure 4: Load Slice Core performance for all SPEC CPU 2006 workloads compared to in-order and out-of-order cores.
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Figure 5: CPI stacks for selected workloads.

CPU2006 benchmark suite (ref input set), where a single, most
representative region of 750 million instructions was chosen
using the SimPoint methodology [32]. In addition to SPEC
CPU2006, we also evaluate multicore scaling with the NAS
Parallel Benchmarks (NPB) (A input set) [19] and the SPEC
OMP2001 application suites (ref input set) [3]. We simulate
representative phases of these parallel applications according
to previous guidelines [17]. Area and power estimates were
obtained from CACTI 6.5 [23] for the 28 nm technology node.
Static power consumption and per-access energy values from
CACTI were combined with activity factors obtained from the
timing simulation to compute per-structure power and energy.

6. Results and Analysis

6.1. Load Slice Core performance

We simulate the performance of the Load Slice Core archi-
tecture, and compare it to in-order and out-of-order baselines.
Figure 4 plots performance in instructions per clock cycle
(IPC) of all three core types for the SPEC CPU 2006 work-

loads. Averaged over the complete benchmark suite, the out-
of-order processor variant outperforms the in-order baseline
processor by 78%. Our proposed Load Slice Core architec-
ture improves performance by 53% over the in-order baseline,
covering more than half the difference with the out-of-order
core.

Performance breakdown. The Load Slice Core microarchi-
tecture is able to exploit both on-chip cache parallelism as well
as off-chip memory-level parallelism and therefore exceeds in-
order performance for both cache-fitting and DRAM-limited
workloads. A performance breakdown in the form of CPI
stacks is provided in Figure 5 for a number of representative
SPEC CPU2006 benchmarks.

The mcf workload (top left) is bound by off-chip access
latency. The in-order core spends over 80% of its execution
time stalled on accesses to main memory, while the out-of-
order core is able to find independent loads, hence exposing
MHP leading to a performance improvement of almost 2×.
The Load Slice Core can similarly expose almost the same
amount of MHP resulting in performance close to that of
the out-of-order core. In soplex (top right), dependencies
exist that prevent off-chip memory accesses from occurring
in parallel (pointer chasing). Neither the out-of-order nor the
Load Slice Core are able to expose significant amounts of
MHP.

In contrast, h264ref is a compute-intensive workload with
few cache misses (bottom left). Still, the in-order core sees
a significant penalty resulting from stalls caused by L1 hits:
even though the L1 access latency is only three cycles, imme-
diate reuse still causes the in-order core to stall. In contrast,
as the Load Slice Core uses the bypass queue for all loads
including L1 hits, it is able to issue those loads earlier and
avoid stalls of the main queue, thereby approaching out-of-
order performance on this workload. Finally, for calculix
(bottom right) the Load Slice Core is able to improve on in-
order performance by overlapping L1 access time, while the
out-of-order core retains a significant performance advantage
as it can expose additional ILP for instructions other than loads
and address producers.



Component name Organization Ports Area (µm2) Overhead Power (mW) Overhead

Instruction queue (A) 32 entries × 22B 2r 2w 7,736 0.74% 5.94 1.88%
Bypass queue (B) 32 entries × 22B 2r 2w 7,736 1.72% 1.02 1.02%
Instruction Slice Table (IST) 128 entries, 2-way set-associative 2r 2w 10,219 2.27% 4.83 4.83%
MSHR 8 entries × 58 bits (CAM) 1 r/w 2s 3,547 0.39% 0.28 0.01%
MSHR: Implicitly Addressed Data 8 entries per cache line 2 r/w 1,711 0.15% 0.12 0.05%
Register Dep. Table (RDT) 64 entries × 8B 6r 2w 20,197 4.49% 7.11 7.11%
Register File (Int) 32 entries × 8B 4r 2w 7,281 0.56% 3.74 0.65%
Register File (FP) 32 entries × 16B 4r 2w 12,232 1.10% 0.27 0.11%
Renaming: Free List 64 entries × 6 bits 6r 2w 3,024 0.67% 1.53 1.53%
Renaming: Rewind Log 32 entries × 11 bits 6r 2w 3,968 0.88% 1.13 1.13%
Renaming: Mapping Table 32 entries × 6 bits 8r 4w 2,936 0.65% 1.55 1.55%
Store Queue 8 entries × 64 bits (CAM) 1 r/w 2s 3,914 0.43% 1.32 0.54%
Scoreboard 32 entries × 10B 2r 4w 8,079 0.67% 4.86 1.26%

Load Slice Core 516,352 14.74% 121.67 21.67%

Cortex-A9 1,150,000 155.56% 1259.70 1159.70%

Table 2: Load Slice Core area and power (in µm2 and mW) calculated with CACTI 6.5 in 28 nm. Results compared to a Cortex-A7
CPU core of 450,000 µm2 and 100 mW average power consumption [2]. The 2-wide out-of-order ARM Cortex-A9 is listed for
comparison [1]. All numbers are exclusive of the L2 cache.

6.2. Area and Power Overheads

We compare the area of the Load Slice Core against both an
in-order and an out-of-order design. Our in-order baseline,
the ARM Cortex-A7, is equipped with a 2-wide superscalar
in-order pipeline, and occupies approximately 0.45 mm2 in the
28 nm technology node [2]. As the out-of-order comparison
point we selected the ARM Cortex-A9 processor. It has an
area of approximately 1.15 mm2 in 28 nm, or an overhead of
156% over our in-order baseline [1]. In both cases, we include
the area for the L1 instruction and data caches, but not for
the L2 cache. Both baselines are conservative: the in-order
Cortex-A7 is one of the smaller in-order processors available
(hence overestimating the relative overhead of the structures
added by the Load Slice Core), while the A9 is only partially
out-of-order and is therefore smaller than a more aggressive
out-of-order design (reducing the area advantage the Load
Slice Core has over the out-of-order baseline). The power
used by the Cortex-A9 at 28nm was scaled with an aggressive
ITRS scaling estimate of 35% per technology node as reported
by Esmaeilzadeh et al. [16].

For each major Load Slice Core component, we compute its
area and power consumption using CACTI 6.5 [23] assuming a
28 nm technology node. All components are at or below 0.2 ns
access time, and therefore support a clock frequency of at least
2 GHz (accounting for logic delays). The absolute area and
power values are listed in Table 2. We also list the additional
area and power that each structure needs over its corresponding
equivalent in the in-order core (if any), expressed as a fraction
of the total in-order core area or power consumption. All
values listed in Table 2 use activity factors averaged over
all SPEC CPU applications. The main instruction queue is
increased from 16 entries to 32 entries to allow additional
instructions to enter the bypass queue. The scoreboard holds

(a) Area-normalized
performance

(b) Energy efficiency

0
500

1000
1500
2000
2500

SPECcpu

M
IP

S
/m

m
2

in-order

load-slice

out-of-order

0
1000
2000
3000
4000
5000

SPECcpu

M
IP

S
/W

in-order

load-slice

out-of-order

0

1000

2000

3000

4000

5000

SPECint SPECfp SPECcpu

M
IP

S
/W

in-order load-slice out-of-order

Figure 6: Area-normalized performance and energy efficiency
of the Load Slice Core.

32 entries to support a maximum of 32 in-flight instructions.
The MSHR and register files are also assumed to exist in
partial form in the baseline processor. We extend the MSHRs
to support 8 outstanding misses and double the size of the
register files to support 32 physical registers each. Ports were
sized to allow for the lookup of two instructions per cycle,
with a potential of three input registers and one output register
per instruction, and for a recovery of up to 4 instructions per
cycle. In total, we find the Load Slice Core to increase area of
an in-order stall-on-use baseline processor core by just 15%.
The resulting power consumption overhead of the Load Slice
Core is 21.7% on average, with individual workloads going
up to at most 38.3%.

When combining these power and area estimates with each
core’s simulated performance, we find that the Load Slice
Core outperforms traditional in-order and out-of-order de-
signs in both area-normalized performance and in energy ef-
ficiency. As shown in Figure 6 (which includes the power
and area of the L2 cache), the Load Slice Core achieves an
area-normalized performance of 2009 MIPS/mm2 and an en-
ergy efficiency of 4053 MIPS/W. In contrast, the in-order
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Figure 7: Instruction queue size comparison.

core obtains 1508 MIPS/mm2 and 2825 MIPS/W because
of its (much) lower performance at only slightly lower area
and power consumption, while the out-of-order core is much
less efficient at just 1052 MIPS/mm2 and 862 MIPS/W as it
needs significantly larger and more power-hungry structures to
obtain a limited performance boost over the Load Slice Core.

6.3. Instruction Queue Size

In Figure 7 we explore the size of the instruction queues (we
assume both A and B queues and the scoreboard have the same
size). We plot absolute performance (top) and area-normalized
performance (bottom, MIPS/mm2) for a selection of interest-
ing workloads, in addition to the harmonic mean over the
complete SPEC CPU 2006 suite. For some benchmarks (gcc,
mcf), queue size does not affect performance much, while for
other benchmarks (hmmer, xalancbmk, namd), performance
saturates at a queue size of 32 to 64 entries. Remember that
both queues are executed in-order, but that — since dispatch
stalls whenever one of the queues fills up — the queue size
determines how far instructions from the bypass queue can ex-
ecute ahead of those remaining in the main queue. The queue
size therefore determines how far (in number of instructions)
loads and their address-generating producers can be hoisted
up in front of those instructions that consume load data.

When considering area-normalized performance (Figure 7,
bottom), we can see that a queue size of 32 entries is the
optimum design point: smaller queues degrade performance,
while larger queues do not increase performance to an extent
that justifies their larger area.

6.4. IST Organization

Thus far we assumed an instruction slice table (IST) of 128 en-
tries with a two-way set-associative organization. Figure 8
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Figure 8: IST organization comparison.

explores different IST organizations, including a variant that
forgoes an IST, and a design where the IST functionality is
integrated into the first-level instruction cache. From top to
bottom, the figures plot each option’s absolute performance,
area-normalized performance, and the fraction of the dynamic
instruction stream dispatched to the bypass queue.

In an architecture that forgoes the IST, only loads and stores
use the bypass queue while address-generating instructions
remain in the main queue. Larger ISTs capture progressively
more address-generating instructions, enabling more loads
to be executed out-of-order, but have an additional area cost.
A 128-entry IST suffices to capture the most relevant instruc-
tions, and provides the highest area-normalized performance.

An alternative design to the stand-alone IST is to integrate
its functionality into the instruction cache. In this implemen-
tation, the L1 I-cache is extended with one bit per instruc-
tion (assuming the worst case of one-byte encodings for each
instruction). This dense representation is able to accommo-
date for the widest variety of application patterns, but is not
very space-efficient as most instructions are not on backwards
slices, or can be recognized as loads or stores from their op-
code and should be issued to the bypass queue automatically.

In contrast, a sparse representation using a stand-alone IST
is more space-efficient, since very few instructions actually



Iteration 1 2 3 4 5 6 7
% Coverage 57.9% 78.4% 88.2% 92.6% 96.9% 98.2% 99.9%

Table 3: Cumulative distribution of the number of address-
generating instructions found by subsequent IBDA iterations.

need to be stored at any given time. From the bottom graph
of Figure 8, comparing the no-IST case (which only bypasses
loads and stores) with the larger IST architectures, we can
see that at most around an additional 20% of all (dynamic)
instructions are dispatched to the B queue. The instruction
pointers for these 20% have to be stored in the IST. Since
training the IST is relatively fast (only a few loop iterations
are needed), the IST needs to hold just those instructions
corresponding to the current inner loop. With an inner loop
of at most a few hundred instructions, of which 20% need to
be marked in the IST, an IST structure of 128 entries should
indeed be large enough.

The number of IBDA iterations needed to find all address-
generating instructions is shown in Table 3. This table plots the
cumulative number of instructions found at a given distance
from the memory operation that starts a backward slice, and
hence indicates how many loop iterations are needed before
the IBDA algorithm can discover them. Backward slices are
typically short: only three iterations are needed to find 88%
of all address-generating instructions, while seven iterations
cover 99.9%. Note that address producers that have completed
execution before the dispatch of dependent instructions are not
considered performance-critical, as such we do not consider
them to be part of the backward slice.

Other design choices for the stand-alone IST structure in-
clude its associativity, and the instruction pointer bits used to
address IST sets. We performed an extensive evaluation of
these parameters and found that larger associativities were not
able to improve on the baseline two-way associative design.
To address the IST, we used the least-significant bits of the in-
struction pointer, which works well given x86’s variable length
instruction encoding and yields a good distribution of instruc-
tions over all sets. Other instruction-set architectures with
a fixed encoding length should shift the instruction pointer
address bits accordingly to avoid set imbalance.

6.5. Power-limited Many-core Processors

When considering just single-thread performance, the Load
Slice Core is outperformed by a fully out-of-order design.
However, today nearly all commercial processors contain mul-
tiple cores, and the objective is to maximize their aggregate
performance within strict power and area constraints. We now
consider a power-constrained many-core processor that uses
either in-order, out-of-order, or Load Slice Cores, and compare
the application performance of the various design alternatives.

In the following experiment, we compare three separate
power-limited processors, each with a homogeneous collection
of either Load Slice Cores, in-order cores or out-of-order cores.
With a power budget of 45 W and a maximum area of 350 mm2,

Component Parameters
in-order Load Slice Core out-of-order

Core count 105 98 32
On-chip topology 15×7 mesh 14×7 mesh 8×4 mesh
On-chip network 48 GB/s per link per direction
Coherency protocol directory-based MESI, distributed tags
Main memory 8 controllers × 32 GB/s each
Power consumption 25.5 W 25.3 W 44.0 W
Area 344 mm2 322 mm2 140 mm2

Table 4: Simulated microarchitecture details for the power-
limited processor configuration, where different from Table 1.
The power consumption was capped at 45 W with a maximum
core area of 350 mm2.
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Figure 9: Parallel workload performance on a power-limited
many-core processor, by core type. The 98 Load Slice Cores
are able to outperform both a collection of 105 in-order and a
collection of 32 out-of-order cores.

we can support 105 in-order cores, 98 Load Slice Cores and
32 out-of-order cores. Each core has a private 512 KB L2
cache while the chip has eight memory controllers that each
provide 32 GB/s of bandwidth to on-package memory. On-
chip communication is supported by a 2-D mesh network that
provides 48 GB/s bandwidth per link per direction. Table 4
contains the complete simulated system specifications (core
parameters are identical to those in Table 1).

Figure 9 plots the simulated performance (one over execu-
tion time, relative to the in-order platform) of the NAS Parallel
Benchmarks and SPEC OMP2001 suites, which are collec-
tions of scalable OpenMP workloads. By combining good
single-thread performance with maximum energy efficiency,
the Load Slice Core-based many-core processor outperforms
the design alternatives based on traditional out-of-order or
in-order cores: on average, 98 Load Slice Cores achieve 53%
higher performance than the 105-core in-order design and
are 95% faster than the out-of-order variant which, due to
power constraints, can support only 32 cores. Only equake

performs better on the low core-count out-of-order platform
due to its bad scaling behavior to 98 or 105 cores (although
undersubscription could potentially recover most of the perfor-
mance loss [17]). The Load Slice Core therefore represents a
strong design choice for future power-constrained many-core
processors.



7. Related Work
Many techniques exist to prevent the processor from stalling
on pending long-latency loads. In-order stall-on-use proces-
sors continue execution as long as the result of the load is
not required, which results in a very efficient implementation
although their performance benefit (specifically with respect
to ILP) can be limited compared to out-of-order cores. Out-of-
order processors dynamically construct the full dependency
graph of all instructions in a window, and keep executing in-
dependent instructions while pending loads block the head of
the window. This can be considered the most general solution,
but has considerable complexity and low energy efficiency.

Both in-order and out-of-order processors implicitly extract
instruction slices for execution, which are clusters of dynami-
cally executed (not necessarily contiguous) instructions. Other
solutions make the concept of identifying, caching and execut-
ing independent instruction slices explicit in order to improve
performance or energy efficiency.

Hardware-software solutions. Helper threads [21] and
speculative precomputation [13] are software-only techniques
that use SMT [39] hardware contexts to execute key instruction
slices early. Both spawn helper threads, containing instruc-
tions identified by the compiler or manual code additions, to
prefetch data in a timely manner.

Other work combines compiler techniques or up-front ap-
plication processing and analysis with custom hardware archi-
tectures. Examples include DAE [33], the braid microarchitec-
ture [38], speculative slice execution [42], OUTRIDER [14]
and flea-flicker multi-pass pipelining [5]. These works, in a
similar fashion to software-only techniques, rely on decou-
pling critical, performance-degrading program slices [40] from
the rest of the application. Such slices can be the backward
slices of long-latency loads and difficult-to-predict branches
or small chunks of mostly isolated instructions (braids). The
braid microarchitecture modifies software through recompi-
lation or binary translation to identify small, relatively iso-
lated software chunks for parallel execution. Speculative slice
execution [42] spawns additional, speculative SMT threads
using up-front profiling information. In OUTRIDER, a single
application is split into memory and compute slices while ex-
plicit thread communication instructions are inserted between
threads during a compilation step. Each hardware thread con-
text executes independently, enabling address generation and
memory access instructions to potentially execute ahead of
compute and control-flow instructions.

Hardware-only solutions. In order to apply these tech-
niques to operate on unmodified application binaries, in ad-
dition to executing slices, hardware-based solutions need to
identify and potentially cache slices for re-execution. Research
in this area has taken two broad directions.

One direction is to start from an out-of-order design, and
add additional structures that will allow the processor to per-
form even better in the presence of stalling events. Examples

include runahead execution, which continues to execute past
stalling events [22, 25], and designs that attempt to precom-
pute the required data data before it is needed [12, 24, 34, 35].
While these solutions are typically able to obtain high perfor-
mance, they require most of the hardware structures present in
out-of-order processors, and add even more overhead for slice
generation and caching. Their energy efficiency is therefore
the same, if not worse, than a typical out-of-order processor.

An alternative direction is to build up from an in-order pro-
cessor with additional hardware structures, such as multiple
bound, in-order pipelines, to support execution of all types
of slices to improve ILP extraction [27]. Nevertheless, the
ILP that is naturally exposed by out-of-order cores tends to be
both wide and shallow, limiting the ability of multiple in-order
queues from extracting generic ILP in an efficient manner [31].
Out-of-order cores naturally build non-contiguous instruction
slices for execution out of their reorder buffer, but this is not
necessarily the case for strictly in-order processors. This is
because, by the time a long-latency load event has been seen,
it is already too late to try and prefetch its result. Therefore,
prior works have focused on executing forward slices after a
miss event [4, 8, 15, 18, 26], as it is relatively easy to prop-
agate poison bits to squash future instructions or store them
for later processing. To support runahead execution, these
microarchitectures either re-execute instructions, duplicate the
processor pipeline or use large structures to store runahead
state. Flea-flicker two-pass pipelining [4] supports runahead
through the use of an additional back-end pipeline including
functional units, as well as other structures required to merge
the state between the two pipelines and maintain memory con-
sistency. Runahead execution [8, 15] continues executing after
a cache miss, but uses a checkpoint to restore and re-execute
all instructions that run ahead after that miss. In the iCFP
microarchitecture [18], slice buffers are used to store both
the decoded instruction, as well as all intermediate results
computed. SLTP [26], on the other hand, does not re-execute
instructions, but does require additional hardware for the slice
of unexecuted instructions after the miss event, as well as
storage for the intermediate data values and complete register
checkpoints. Simultaneous Speculative Threading [9] is simi-
lar to SLTP except it uses an extra multithreading context to
perform runahead execution.

In contrast, the Load Slice Core focuses only on memory
hierarchy parallelism, rather than expending additional com-
plexity to extract general-purpose ILP which is much more
difficult to exploit in an energy-efficient way. The iterative
identification of backward slices fits well into the in-order
execution paradigm and allows for a simple hardware-based
implementation that retains the energy efficiency of an in-order
processor while significantly improving its performance.

8. Conclusion
We propose the Load Slice Core, a novel processor microar-
chitecture aimed at extracting memory hierarchy parallelism



from unmodified binaries while keeping hardware overheads
to a minimum. This is achieved by extracting backwards
slices containing address-generating instructions through a
novel iterative algorithm that can be implemented efficiently
in hardware. These backward slices are then executed on a
second in-order pipeline, enabling them to bypass instructions
blocked by pending loads. The Load Slice Core design im-
proves on existing work by providing a lightweight, hardware-
based method of executing past pending loads while avoiding
re-execution.

Based on detailed timing simulations and estimates of area
and power, we demonstrate that the Load Slice Core is substan-
tially more area- and energy-efficient than traditional solutions:
average performance is 53% higher than an in-order, stall-on-
use core, with an area overhead of only 15% and an increase
in power consumption of just 22%. This enables a power-
and area-constrained many-core design based on the Load
Slice Core to outperform both in-order and out-of-order based
alternatives, by 53% and 95%, respectively. We therefore
believe that for today’s context of constrained multi-core pro-
cessors, the Load Slice Core strikes a good balance between
single-thread performance and energy efficiency.
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