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Abstract 

While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe 

disease, children rarely manifest respiratory complications. Therefore, understanding 

differences in the local and systemic response to SARS-CoV-2 infection between children and 

adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To 

address this, we first generated a healthy reference multi-omics single cell data set from 

children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings 

and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell 

populations from infancy, through childhood to adolescence. This has revealed the presence of 

naive B and T lymphocytes in neonates and infants with a unique gene expression signature 

bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent 

data from severe paediatric and adult COVID-19 patients (total n=27), from the same three 

types of samples: upper and lower airways and blood. We found striking differences: children 

with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-

clonally expanded naive T cells in peripheral blood, and a limited interferon-response 

signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells 

and describe a novel inflammatory epithelial cell population. These cells represent a 

transitional regenerative state between secretory and ciliated cells; they were found in healthy 

children and were enriched in paediatric and adult COVID-19 patients. Epithelial cells display 

an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus 

adult COVID-19. Our matched blood and airway samples allowed us to study the spatial 

dynamics of infection. Lastly, we provide a user-friendly interface for this data1 as a highly 

granular reference for the study of immune responses in airways and blood in children.  

 

Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the 

current coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 infection is relatively 

rare in children (1-2% of total cases reported <19 years)2–4, and generally presents with milder 

severity compared to adults2,3,5,6. Hospitalisations, progression to symptomatic respiratory 

failure requiring oxygen due to SARS-CoV-2 pneumonia, ventilatory support in intensive care 

and death are all rare in children, with the most common clinical manifestation of the disease 

reported as fevers, cough, rhinorrhea, myalgia and fatigue7,8,9,10. Differences in disease 

progression between children and adults may hold clues for better treatment of severe SARS-

CoV-2 infection.  
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SARS-CoV-2 employs a host cell surface protein, angiotensin-converting enzyme (ACE) 2, as 

a receptor for cellular entry11. A number of recent studies have suggested that the expression 

of ACE2 is both tissue and age-dependent12,13, and differences in ACE2 expression between 

children and adults were proposed to contribute to less severe disease in children. At single cell 

level, viral entry genes were shown to be most highly expressed in the nasal epithelium in 

healthy adults14. In children, bulk RNA sequencing analysis revealed lower ACE2 gene 

expression both in upper15 and lower airways13,16 compared to  adults, although more recent 

studies found no correlation with age or infection17.  

 

Upon infection, 14% of symptomatic adults develop progressive respiratory failure displaying 

a strong inflammatory immune response18. Recent single cell analysis of this response 

demonstrated the involvement of various types of immune cells, including proinflammatory 

monocytes/macrophages19–21, clonally expanded cytotoxic T cells22–24 and neutrophils22. 

Although these specific cell types are beginning to be resolved in adults19–21,20,22,24,25, they have 

not been as comprehensively characterised in children. So far, only bulk RNA sequencing and 

cytokine studies have compared immune responses between children and adults, suggesting a 

more robust innate immune response, such as increased levels of interferon gamma (IFN-γ) 

and interleukin-17 (IL-17A) in plasma26, and a reduced antibody response and neutralising 

activity against SARS-CoV-2 in children27.  

 

The immune landscape in early life has been shown to be distinct from that of adults28,29,30, in 

keeping with the immune system maturing from an immune tolerant state in utero to a more 

pro-inflammatory state with the increased exposure of new antigens and pathogens over the 

years31. Changes in blood cell counts and immune cell composition throughout childhood are 

well described32, and recently CyTOF (cytometry by time-of-flight) has facilitated a higher 

multiplexed panel-dependent description of cell types, with studies focussing on either early 

childhood29 or reporting comparison to disease33. Unbiased transcriptomic analysis of healthy 

paediatric blood immune cell types over the entire duration of childhood is lacking. Similarly, 

the upper airway mucosa only reaches maturity after puberty, in keeping with the high 

incidence of upper respiratory tract infections in children34, yet unbiased analysis of epithelial 

maturation is still missing. 
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To address these gaps in our knowledge and to identify paediatric-specific responses in 

COVID-19, we collected matched nasal, tracheal, bronchial and blood samples from patients 

across infancy, childhood, adolescence and adulthood and analysed them with single cell 

transcriptomics combined with protein profiling. We compare this with samples from 

paediatric and adult COVID-19 patients and report markedly different responses. In paediatric 

COVID-19, the biggest changes in blood are increased fractions of naive lymphocytes, 

regulatory T cells (Tregs) and innate lymphoid cells (ILCs) and a loss of natural killer (NK) 

cells and monocytes. In contrast, in the airways the proportion of activated macrophages, 

neutrophils and CD8+ T cells goes up whilst B lineage cells are underrepresented. In adult 

blood, we see expanded T clones which encompass distinct T cell subtypes, whilst children 

show less expanded T cell clones, particularly in COVID-19 patients. We also chart the 

complex relationship between immune cell types present in the blood and the nose of the same 

individuals.  

 

Overall, the substantial differences in response to SARS-CoV-2 between children and adults 

reflect the changes of the immune landscape over developmental time, which in children are 

dominated by naive adaptive and innate cell responses, whilst those in adults are dominated by 

memory cell recall adaptive responses, illustrated by expanded lymphocyte clones. Lastly, we 

describe a novel epithelial cell type transitioning from secretory to ciliated cells that is present 

in COVID-19 patients as well as healthy children which, among other epithelial cell types, 

displays a striking antiviral and neutrophil-recruiting signature.  

 

Results 

 

Study cohort 

We have assembled a cohort of 30 healthy children from the five World Health Organisation 

(WHO) age ranges - neonates (0-30 days; n=6), infants (1-24 months; n=6), young children (2-

6 years; n=8), children (6-12 years; n=5), adolescents (12-18 years; n=5) - and profiled the 

cellular landscape in the upper airways (nasal and tracheal brushings) and matching peripheral 

blood mononuclear cells (PBMCs) from blood using single cell RNA sequencing (scRNA-seq) 

(Figure 1a-b). For one individual a bronchial sample was included that matched both nasal 

and blood samples. In addition, we sampled 4 paediatric COVID-19 patients spread across the 

age categories and 18 adult COVID-19 patients with a range of disease severities, with lower 

airways (bronchi) sampled in a subset (Figure 1b). Only patients who tested positive for 
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SARS-CoV-2 by RT-qPCR were enrolled in the study, and symptom onset relative to RT-

qPCR testing and sampling is summarised in Extended Data Figure 1a. For some patients 

blood was additionally sampled on the day of hospital discharge (labeled convalescent) and 

our cohort included patients who were recalled 3 months after recovering from COVID-19 

requiring respiratory support at the time of infection (non-invasive or invasive ventilation), 

labeled as post-COVID (Extended Data Figure 1a-b). Patient characteristics and metadata 

are in Extended Data Table 1a. This includes ethnicity data, but we also used our data set to 

infer ethnicities and found that 48% of our cohort were of European, 16% of Asian, 10% of 

African and 26% of mixed descent (Extended Data Figure 1c).  Nasal, tracheal and bronchial 

brushings were freshly processed by cold digestion and analysed by Chromium 10X 5’ 

sequencing.  Where possible, isolated PBMCs from matching patients were frozen, thawed, 

multiplexed and sequenced with 5’ 10X technology using a 192 antibody CITE-seq panel 

(Figure 1b; Extended Data Table 2 for CITE-seq panel) generating matched transcriptional 

and protein data.  

 

For the upper airways, we generated 138,688 high quality single cell transcriptomes. Of these 

115,726 were epithelial and 22,962 immune cells (Figure 1c, Extended Data Figure 2). For 

the bronchi, a total of 11,672 cells were derived from 4 adult COVID-19 patients (Figure 1d). 

For PBMCs we obtained 317,854 cells of which 181,346 were isolated from COVID-19 

patients (Figure 1e). The full dataset is available at https://www.covid19cellatlas.org/ for easy 

browsing and interactive data analysis.  

 

Detection of SARS-CoV-2 reads 

When aligning transcriptomes, we included the SARS-CoV-2 reference genome, and detected 

viral reads (> 10 reads) in 4 individuals (3 nasal and 1 bronchial). In the upper airways, we 

detected the highest levels of total viral expression in the two most abundant cell types: goblet 

2 and ciliated 2 cell populations (Figure 1f). When examining the percentage of cells with viral 

reads, fractions were similar across all nasal epithelial cell types (Figure 1g), which agrees 

with the expression of ACE2 in our data set (Extended data Figure 3a). Viral reads were also 

detected in lymphocytes and myeloid cells (mostly macrophages), either reflecting active 

infection in macrophages35 or merely the uptake of virions or infected dead cells.  

 

These findings are consistent with previous studies that reported highest levels of expression 

of ACE2 and TMPRSS2 in goblet and ciliated cells in healthy individuals14. Additional genes 
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(NRP136,37, BSG38, TFRC39) have been implicated as secondary entry receptors (Extended 

Data Figure 3a) but in our data set of three individuals with high viral reads, only some 

correlate with actively infected cells (Extended Data Figure 3b). It has been reported that in 

adults, expression of ACE2 is induced by interferon40 and in response to infection25. In contrast, 

we observe no significant increase of ACE2 expression across cell types in children with 

COVID-19 (Figure 1h), consistent with recent bulk RNAseq comparisons17. However, we do 

see a difference in ACE2 expression in adults, with higher expression in acute versus post-

COVID patients (Extended Data Figure 3c). In line with previous reports41,42, no viral reads 

were detected in peripheral blood within our COVID-19 cohort. 

 

Nasal, tracheal and bronchial epithelial cell analysis 

We first focused our analysis on the epithelial cell compartment in the airways. Using 

unsupervised clustering and re-clustering (see methods) we detect 15 distinct epithelial 

populations (Figure 2a) based on known marker gene expression43–45 and indicate their 

distribution within the UMAP with respect to COVID-19 status and age (Figure 2b). In our 

cell type annotation, we used a conservative approach, using a high cut-off of 1000 UMIs per 

cell and normalising the data set by donor identity which ensures that cell type differences are 

consistent between individuals. We identified a small number of melanocytes, in keeping with 

previously reported primary nasal mucosal melanocytes46,47. The major surface epithelial cell 

populations fall into two broad clusters, with the first covering the basal to secretory cell 

differentiation pathway, as visualised using Velocyto (Figure 2c), and these include basal 1, 

basal 2, cycling basal, secretory, goblet 1 and 2, and squamous cells with markers as specified 

in Figure 2d. As previously described48, basal cells express high levels of TP63 and KRT5 and 

we subdivided these by the expression of KRT15 and DLK2, whilst basal 2 cells are high in 

NOTCH1 and the early epithelial differentiation marker DAPL1. Secretory cells express a 

range of secretory proteins such as mucins and antimicrobial peptides and appear to be the 

differentiation intermediates that give rise to the more differentiated club cells that are marked 

by high expression of SCGB1A1 and SCGB3A1. Goblet cells have high levels of MUC5AC, 

but can be further distinguished by the expression of TFF1 in goblet 1 and TFPI2 in goblet 2 

cells (Figure 2d), with the latter expressing higher levels of innate immune genes and a distinct 

mucin profile as assessed by DEGs analysis. Furthermore, we detect squamous cells with the 

characteristic expression of SPRR3 and KRT78. In addition to the unsupervised clustering, we 

visualised markers (KRT14, KRT6A, KRT13, KRT24) that have been associated with “Hillock” 

cells49,44,50 which seem to align along a distinct differentiation trajectory at the edge of the 
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secretory cluster from basal towards squamous cells (Extended Data Figure 4a). Within the 

ciliated cluster, the differentiation trajectory points from ciliated 1 (PIFO, OMG) to ciliated 2 

(CFAP54, DZIP1L) cells. Between the secretory and ciliated clusters, we observe deuterosomal 

cells as intermediates which are marked by CDC20 and FOXN443,44 (Figure 2c).  In addition, 

we also detect a novel, second cell population that forms a second bridge between the secretory 

and ciliated clusters. We refer to these as inflammatory epithelial transit cells (IETCs) as they 

are high in inflammatory markers such as S100A8 and S100A9. They co-express ciliated cell 

markers such as PIFO and express secretory genes such as MUC2, but FOXJ1 expression is 

low. Distinguishing markers are two long non-coding RNAs, FP671120.4 and FP236383.2. 

This population has not been described in previous analyses of adult airways44,43. We detect 

these cells mostly in COVID-19 patients, but also in healthy children (Figure 2b), suggesting 

a function in development and tissue regeneration following injury (see below). We also detect 

rare cell types such as ionocytes, brush cells and neuroendocrine cells, each expressing their 

canonical markers43,44.  

 

Changes of epithelial cell type proportions in healthy and COVID-19 individuals 

We next examined the epithelial cell type proportions in our cohort (Figure 2e,f). To test 

significance, we used a multivariate random effect model (see methods) that allowed us to take 

into account clinical metadata, such as age, sex, ethnicity, tissue, COVID-19 status and six 

technical factors (Figure 2f), of which donor and tissue accounted for the largest fraction of 

variance (Extended Data Figure 4b). Airway epithelial cell type composition does not change 

extensively with age (Figure 2f, Extended Data Figure 4c) but notably with location, with an 

increase in goblet 2 and secretory cells in the nose compared to bronchi and trachea. 

Conversely, there is a decrease in club cells in the nose. Statistical significance is indicated by 

local true sign rate (LTSR), which was greater than 0.999 for the latter observation.   

 

Contrasting COVID-19 versus healthy patients, the most highly enriched cell types are 

inflammatory epithelial transit cells (IETCs), goblet 2 and ciliated 1 cells. In contrast, basal 1 

cells are notably reduced. Ciliated and goblet cells contain the highest number of viral reads 

(Figure 1f), most likely leading to cell death51,50. We hypothesize that increased ciliated 1 and 

goblet 2 cell numbers reflect an ongoing compensatory replacement of these dying cells by 

their precursors to maintain homeostasis as seen in lower airways upon infection52,53. 

Differentiation trajectory analysis suggests that the IETCs serve as an alternative 

differentiation path for repopulation of ciliated cells (Figure 2c), leading to a depletion of basal 
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1 cells, the main stem cell population within the airway epithelium. This is further supported 

by the finding that in post-COVID patients the basal 1 population recovers (Figure 2f). 

 

Weak interferon response in children with severe COVID-19 

In adults viral infection is strongly associated with an interferon response54 and for SARS-

CoV-2 a higher response to interferon has been reported for mild and moderate disease than 

for severe disease50,55,56. We therefore carried out differential gene expression analysis (using 

a multivariate random effect model; see methods) between healthy controls and COVID-19 

patients, followed by a GO term enrichment analysis. For the strongly enriched inflammatory 

epithelial transit cells (IETCs) the DE genes in healthy versus diseased patients were enriched 

for interferon responsive genes (Figure 2h) and were associated with an interferon type I, 

antiviral and cytokine response. When testing interferon-alpha and gamma response signatures 

across epithelial cell types, expression was highest in secretory and goblet cells (Extended 

Data Figure 5a). Healthy children showed an interferon response that increased with age 

(Figure 2g). A comparison across conditions (Figure 2g) showed that the interferon response 

in adult COVID-19 patients was higher than in children with COVID-19. As recent bulk 

RNAseq data suggest that interferon responses correlate with viral load, but not age17, we 

interpret this to indicate that like in adults, severe COVID-19 disease in children is associated 

with reduced interferon responses.  

 

A neutrophil recruiting gene signature associated with COVID-19 

In addition to the above analysis, we also compared gene expression in inflammatory epithelial 

transit cells (IETCs) without correcting for age (Figure 2h) and saw upregulation of innate 

immune response genes with high expression of serum amyloid protein (SAA1), an acute phase 

protein highly expressed in inflammation and tissue injury57, and S100A8 and S100A9 which 

together encode calprotectin. Calprotectin is also highly expressed in myeloid cells and has 

been identified as a key mediator of mild versus severe COVID-1958. Using this gene set in 

GO term analysis highlights neutrophil enrichment as the top enrichment term (Figure 2h), a 

striking finding given that neutrophil infiltration is linked to COVID-19 disease severity59. As 

calprotectin expression has primarily been associated with myeloid cells, we wished to validate 

expression at the protein level in epithelial cells. Figure 2i depicts multiple dual positive cells, 

staining for both calprotectin and the epithelial marker EPCAM in a sample taken from the 

posterior nasal space of an adult COVID-19 patient. At the RNA level, calprotectin is expressed 

across different secretory cell types (Extended Data Figure 6). 
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Comparison to transitional populations in different locations  

Previous studies of adult nasopharyngeal swabs had found a population of interferon 

responsive cells (IRC), as an intermediate between secretory and ciliated cells25. We therefore 

compared the “transitioning” populations in the Chua et al data set with those in our upper 

airway (nose and trachea) and bronchial cells (Extended Data Figure 6). All locations 

contained equivalent deuterosomal cells. The IRC makers ISG15, IFIT1 and CXCL10 were 

widely expressed in all three data sets, but only associated with transitioning cells in the Chua 

et al data set. The inflammatory epithelial transit cell (IETC) markers SAA1, S100A8 and 

S100A9 were found in transitioning cells in both upper airway data sets, but less obviously in 

transitioning populations in the bronchial data set (Extended Data Figure 6). Thus, 

transitioning cells are likely to be plastic in their phenotype48 with exact gene expression 

signatures depending on the site of sampling, the interval between disease onset and sampling 

and other clinical covariates.  

 

Immune cell states in healthy paediatric blood defined by multi-omic data 

Next we examined the cellular landscape of the healthy developing immune system in both 

blood and the upper airways in children. We generated CITE-seq data for 51 blood samples 

using a 192 antibody panel recognising 188 proteins. By integrating gene and protein 

expression data using an integrated Weighted Nearest Neighbor analysis60 and Leiden 

clustering61, we were able to annotate our 317,854 single cells into 31 cell types (Figure 3a, 

quality control metrics in Extended Data Figure 7). While the gene expression data made a 

greater contribution to distinguishing cell types, the protein expression data strongly 

contributed to defining T cell subtypes and monocytes, as visualised by pie charts in Figure 

3a. Notable genes for which protein expression was more informative than RNA expression 

levels included CD4 in T cell subsets, NCR1 and CD56 (NCAM1) in NK cells, and CCR6 and 

IGHD in naive and memory B cells (Figure 3c, Extended Data Figure 8a). CITE-seq also 

allowed us to distinguish between cell type-specific protein isoforms, including CD45RA and 

CD45RO, which are key markers of T cell maturity. While RNA marker genes were consistent 

with previous reports24, the relative contribution of protein data varied significantly between 

cell types (Figure 3a, Extended Data Figure 8a). For example, for T cell subsets 

transcriptional data carried only slightly higher weight than the protein data, whilst 

plasmablasts, cycling T and NK, and haematopoietic stem and progenitor cells (HSPCs) were 

almost entirely assigned on the basis of RNA expression. To validate our manual cell type 

annotation and assess its accuracy, we compared it to an automated annotation by Azimuth62. 
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This revealed that our annotation was highly similar, but not identical to automated annotation 

(Extended Data Figure 8b). 

 

Our data set allowed us to track changes in gene expression within cell types with age. In 

particular we noticed that both naive CD4+ and CD8+ T cells displayed a developmental pattern 

of gene expression (Figure 3b,d). A number of genes expressed in the neonatal age group were 

associated with cell proliferation or cancer (e.g. CDCA7, BCL11A), possibly reflecting a higher 

proliferative capacity in these early cells. The presence of GZMA (granzyme A) in both CD4+ 

and CD8+ naive T cells and NKG7 (Natural killer cell granule protein 7) in only the CD8+ cells 

may suggest that these early naive T cells have specialised immune functions, with potentially 

higher cytotoxic activity. Other genes regulated over developmental time included those with 

potential immune regulatory functions such as HPGD and TOX, with possible roles in Treg 

and T cell development, respectively63,64. 

 

We also observed age-related gene expression gradients in naive B cells and to a lesser extent 

in monocytes (Figure 3b) and carried out a similar trajectory analysis (Extended Data Figure 

8c). There were clear changes observed for B cells, but less obvious changes for monocytes. 

Genes with changing expression over developmental time in naive B cells have functions 

connected to differentiation, regulation, glycosylation and cell adhesion (including ILR4, 

KLF9, ADAM28, HMGA1, LARGE1 and ITM2C). In addition, markers that point to a more 

innate-like type of immune response, such as CD9 and CD1c, which are associated with the 

marginal zone (MZ) B cell subtype65, are expressed at a higher level in neonates. Such changes 

in the characteristics of circulating B cells at a very young age might also be linked to the 

formation of structures like the marginal zone, which is not fully developed until 2 years of 

age66. Together our data suggests that naive T and B cells that have already entered circulation 

continue to develop and mature during the first year after birth. 

 

Immune cell proportions in blood and nose throughout childhood and in adults 

We further investigated changes in immune cell type proportion over childhood and in disease 

in blood and nose (Figure 3e-h), using the same statistical model as described above. In this 

analysis all samples were considered simultaneously while accounting for technical variation, 

and effects for age and COVID-19 status were plotted for the paediatric and the adult cohort 

(Figure 3g,h, Extended Data Figure 9a). Changes that are associated specifically with 

disease, age or both are highlighted. We first focused on age related changes in PBMCs: in 
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healthy neonates, we observed high proportions of HSPCs, however this was driven by a single 

individual (Figure 3g). Fractions of ‘Cycling T and NK’, ILCs and NK CD56hi were also high 

in neonates but reduced in infants. Levels of RBCs and platelets are shown but may be 

confounded by technical variation. Relative levels of naive CD8+ and CD4+ T cells and Tregs 

were high in neonates and infants and then decreased with age, with very low levels in the 

elderly (adults >65 years), consistent with ongoing immune stimulation over the life span. 

Proportions of conventional dendritic cells (cDCs) type 1 and 2, Tregs, and naive B cells 

increased from neonates to infants, but then decreased with age. In contrast cell types 

associated with an adaptive immune response such as CD8+ cytotoxic T lymphocytes (CTL), 

plasma cells and gamma delta (g/d) T cells all showed a striking increase in young children (2 

to 6 years of age), presumably reflecting greater antigen exposure of children in this age group, 

for example in pre-school nurseries. Non-switched, switched and exhausted B cells were 

highest in young children and children. At the other end of childhood, mucosal-associated 

invariant T (MAIT) cells were increased in children and adolescents. The trend of decreased 

naive and increased adaptive immune cells continued in adults (Figure 3g).  

 

Changes in cell type proportions in blood in COVID-19 

We next compared the relative cell type proportions in relation to COVID-19 (Figure 3b). 

Strikingly and in contrast to adult COVID-19, in paediatric patients with severe COVID-19 the 

proportion of naive B or T cells, Tregs and ILCs is increased (Figure 3e,g), on a background 

of little change in the average lymphocyte counts (Extended Data Table1), consistent with a 

previous report that COVID-associated lymphopaenia is less pronounced in children67,68,69. 

High numbers of naive cells may be due to increased release of immature B and T lymphocytes 

from the bone marrow and thymus respectively, or due to migration of more mature cells to 

the site of infection (also see Figure 3e-h). As expected, in convalescent paediatric COVID-

19 the increase in naive cells was reversed. In addition, we see a decrease in monocytes and 

NK cells, possibly reflecting migration of these cells to the site of infection. Relative to 

children, our adult COVID-19 cohort displayed increased levels of adaptive immune cells, such 

as CD8+ CTL, CD4+ CTL, plasma cells and plasmablasts as well as exhausted B cells. The 

changes in cell type proportions reported here for adults include a comparison to paediatric 

samples, and would therefore not necessarily reflect the changes seen when comparing only 

healthy to diseased adults, where lymphopaenia and an increase in monocytes have been 

reported70. We also examined the interferon response in blood, which was highest in 
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monocytes, and was found to be lower in the paediatric than the adult COVID-19 cohort 

(Extended Data Figure 5b,c). Taken together, we see large differences in SARS-CoV-2 

immune responses between children and adults. Some changes, such as in Tregs, are disease 

specific, whereas others (naive T lymphocytes, monocytes) are associated with both disease 

and age or age only (e.g. increases in cytotoxic T cells). The response to SARS-CoV-2 in adults 

versus children thus strongly reflects the underlying changes in the immune landscape that we 

observe over the life span.  

 

The immune landscape in the upper airways with age and COVID-19 

When investigating the immune cell proportions in the nose (Figure 3f) we again observed 

significant changes over the life span. Because the total number of immune cells retrieved in 

airway samples was far lower than for blood and no protein expression data was available, we 

used a broader T effector cell type annotation. Nevertheless, we annotated 21 different immune 

cell types and detected tissue resident populations such as follicular dendritic cells, 

macrophages, activated macrophages, neutrophils and mast cells. Cell surface markers used 

for classification are consistent with previous studies (Extended Data Figure 9b). Nasal 

brushings harvested both non-immune and immune cells and proportions varied between 

patient groups (Figure 3f, Extended Data Figure 9c). In our data set, we noticed three young 

children with a very high proportion of immune cells, possibly reflecting non-symptomatic 

respiratory infections that are likely to be common in this age group, and treated these patients 

as a separate subgroup.  

 

When examining cell type proportions in the nose with age, the pattern of cell type distribution 

differed greatly between the airways and the blood. In the upper airways, healthy neonates had 

high proportions of activated macrophages, CD14+ monocytes, cDC2 and neutrophils that 

rapidly decreased with age. Young children had higher levels of CD8+ T effector, g/d and MAIT 

cells, that remained relatively high throughout childhood. Within the airway samples, a 

comparison of adolescents to adults and elderly revealed relatively few striking changes. 

Amongst the children with high immune infiltrates there was a very strong overrepresentation 

of B cell lineages (naive B, B exhausted, plasmablasts and plasma cells), follicular dendritic 

cells as well as naive T cells, likely reflecting the different phases of an acute adaptive immune 

response.  
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When comparing COVID-19 to healthy cells, we first examined differences separately, within 

the paediatric cohort and within the adult cohort. Mostly, changes were similar and we 

therefore aggregated the two data sets. The combined analysis showed that in the airways 

COVID-19 samples were enriched for activated macrophages, neutrophils and CD8+ T effector 

cells (Figure 3h). These changes are consistent with those described in other studies20,25, but 

strikingly different to the changes we observe in the same individuals in blood (see below).  

 

Correlation of immune cell types across nose and blood 

In our data set, we have the unique opportunity to compare cell type proportions between the 

upper airways and blood from the same individuals and assess how the relationship between 

these compartments changes over childhood and with disease. We first integrated the immune 

cell data set from the different sites (Figure 4a) and then examined how the cell type 

proportions change with disease or age (within the healthy paediatric data set) across the nose 

and blood (Figure 4b). As not all cell types were represented in both data sets labels on the x 

and y axis are not symmetrical. In healthy children, samples with highest T effector cells, 

MAIT and g/d T cells in PBMCs also contained high levels of analogous cell types in the 

airways. Monocytes and NK cells also correlated across the two sites, but tended to be lower 

when lymphocyte proportions were increased, almost falling into a checker-board pattern by 

unsupervised clustering. This contrasted sharply with the results in adult acute disease, where 

different lymphocyte sub-populations varied strongly in blood and no longer correlated 

uniformly with the T cell subsets in the upper airways.  For example, MAIT cells and CD4+ 

central memory T (Tcm) cells, defined in both compartments, now show anticorrelation 

between the two sites. A significant decrease in circulating MAIT cells, paired with an increase 

in activation markers and infiltration in airways and lungs, has been observed in adults with an 

active infection71,72,73,74, suggestive of migration of MAIT cells to the airway epithelium as part 

of the response against SARS-CoV-2 infection.  

Overall, our findings highlight the need to study the sites of infection such as the upper airways 

as well as blood in order to fully understand the immune response to infections.  

 

Lymphocyte Clonality 

From our 5’ 10X single cell libraries we amplified T cell receptor (TCR) and B cell receptor 

(BCR) sequences to analyse clonality. We analysed the VDJ data using scirpy (see methods) 

and found productive single pair TCRa/b chain rearrangements for all T cell subtypes, but also 
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noted cells without productive TCRs (Extended Data Figure 10a-b). The largest number of 

expanded T cell clones derived from peripheral blood, but we found the greatest proportion of 

large clones (>10) in the nose, with trachea also showing evidence of T cell clonal expansion 

(Extended Data Figure 10c). When examining clone size across age, there was a consistent 

increase in expanded clones in older individuals (Figure 4c): in neonates and infants few 

expanded clones were observed, which increased in healthy young children and children, 

consistent with the evidence of stimulation of the adaptive immune system at that stage of 

childhood which we describe above (Figure 3e,f). Over adult life the number of large clones 

continued to increase, with the greatest expansion observed in the elderly (Figure 4c). We saw 

no identical clones between individuals, but we do see shared clones in different samples from 

the same individual (Extended Data Figure 10d), with most large clones coming from blood. 

In line with previous reports, we found that in adults the most highly expanded clones are CD8+ 

CTLs and CD8+ effector memory T (Tem) cells75 as well as CD4+ CTLs (Figure 4d). 

Consistent with expectations we see shared TCRs between CD8+ CTLs and CD8+ Tem and 

CD8+ Tcm; and separately between CD4+ CTL and CD4+ Tcm. In comparison to adults, we 

note that in the paediatric data individual clones were much smaller, and that in our cohort of 

patients the majority of expanded clones were from healthy children. Expanded clones were 

mostly CD8+ CTL and CD8+ T effector cells with fewer CD8+ Tem or CD8+ Tcm cell clones 

(Figure 4d). Low level of clonal expansion seen in COVID-19 paediatric patients could be due 

to overrepresentation of naive T cells, which show minimal clonal expansion (Figure 4d-f), 

and underrepresentation of CD8+ CTLs in paediatric PBMCs (Figure 3e). However, there is 

no evidence of defective activation as the proportions of nasal CD8+ CTLs in COVID-19 

children versus adults are similar (Figure 3e).  

 

We also studied expansion of B cell clones (see methods) (Extended Data Figure 10 e-h) and 

observed a very similar pattern. The number of expanded B cell clones increased with age and 

for the severe COVID-19 paediatric patients we saw fewer expanded clones than in the total 

cohort that included healthy children (Figure 4e).  

 

In conclusion, we observed much greater clonal expansion of T and B cells in adult compared 

to paediatric patients, with a greater frequency of expanded memory and effector cells in adults. 

These observations further characterise the differences in age-specific immune response to 

COVID-19, most likely determined by the differences in the underlying immune landscape.  
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Discussion 

 

The analysis of our multi-omic single cell dataset of matched airway epithelial and blood 

immune samples in healthy and COVID-19 affected children and adults provides several 

significant advances in our understanding of normal immune and airway development, as well 

as COVID-19 pathogenesis. We present a detailed study of the immune and epithelial 

landscapes over healthy childhood development at single cell resolution. We used this to show 

clear differences between the immune and airway epithelial response to SARS-CoV-2 between 

children and adults, while also comparing the immune response in blood and airways in the 

same individuals. Additionally, we identify a novel epithelial cell state which is seen in 

COVID-19 patients and healthy children.  

 

Our key findings in the healthy blood of children is the observation of unique gene expression 

signatures of naive B and T cells in the first year of life, that show hallmarks of innate immune 

responses76. These gene expression signatures are also present in fetal lung (unpublished 

observation) indicating that a number of fetal characteristics of the immune system persist in 

infancy.  

 

A key motivation for our analysis was the current COVID-19 pandemic, which frequently starts 

with infection of the upper airways, where we found the highest total viral load in the surface 

epithelial goblet and ciliated cells. Viral infections are cleared by cell death and removal of 

infected cells77,78, which led to a highly dynamic re-structuring of the airway epithelium with 

a marked increase in developmental intermediates, most notably the novel inflammatory 

epithelial transit cell (IETC) population, which was not found in previous analysis of healthy 

adult airways25,44,43, and a decrease in basal progenitors that is re-balanced post-infection. Upon 

infection, all adult epithelial cell types showed a strong interferon response, which was 

markedly reduced in our paediatric patients. Further analysis of mild paediatric COVID-19 

cases will have to determine whether this characterises all responses in children or is limited 

to severe disease. The lack of interferon signals in the airways may explain why ACE2 

expression is not induced in paediatric COVID-19. In our data set we also see a strong 

neutrophil recruiting signature, driven by expression of calprotectin in different epithelial cell 

types, thus highlighting the key role of epithelial cells in initiating an innate immune response.  
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The major distinguishing feature of the immune response to SARS-CoV-2 in children in blood 

are striking increases in naive B and T cells as well as ILCs, with a loss of CD16 monocytes.  

The lymphocyte response is strikingly different to COVID-19 immune responses in adults, 

described here and by others23,24,56, characterised by general lymphopaenia, but with increased 

CD8+ effector cells, as well as proliferating CD4+ and CD8+ cells in more severe disease. 

Whilst activated B lineage cells are reduced in paediatric COVID-19 patients, adult patients 

show increased plasma cells and plasmablasts, reported to be mainly the IgG subtype, in severe 

disease24. These differences appear to have their origin primarily in the different structure of 

the immune repertoire in children and adults that is further discussed below. Another difference 

we found between children and adults is the upregulation of Tregs and downregulation of NK 

cells in children compared to adults.  

 

A unique aspect of our study is the ability to relate changes in the blood to those in the airways. 

In healthy children the proportions of immune cell types largely correlate between nose and 

blood. However, during active infection this relationship breaks down, highlighting the need 

to study both the active site of primary infection as well as blood to understand the dynamics 

of infection. For example, high levels of CTL CD8+ and MAIT cells in the nose are correlated 

with a reduction in the blood, likely reflecting the migration of these cells to the site of 

infection. 

 

We also examined clonal expansion of B and T cells in our data set. We find that adults have 

far greater numbers of large, expanded T and B cell clones than children who show greater 

immune diversity. The lack of immune diversity due to ongoing expansion of activated clones 

over the lifetime, has been shown to be associated with more severe COVID-19 in adults24 and 

this may add to the evidence base explaining why children usually present with much less 

severe disease. Also, patients with severe disease have been reported to have a greater number 

of expanded, low avidity common cold coronavirus specific clones that may contribute to 

ongoing inflammation79. 

 

One limitation of our work is that only a small number of COVID-19 paediatric patients were 

included due to a very limited number of hospitalised children in the first wave of the pandemic 

and all of these had severe disease. In view of our interesting findings for neutrophil 

recruitment in the airways, we note that we isolated PBMCs from blood, thus excluding 

neutrophils from our analysis. Future studies should address this. 
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Overall, the significant differences in response to SARS-CoV-2 between children and adults 

reflect the changes of the immune landscape over developmental time, which in children are 

dominated by naive and innate responses, whilst those in adults are dominated by adaptive 

responses, illustrated by expanded lymphocytes clones. These studies may help to pinpoint the 

triggers of severe disease in adults with a view towards therapeutic intervention.  

 

Our study demonstrates multiple substantially novel insights from paired multi-omics profiling 

of both airway epithelium and peripheral blood to fill the gap of our understanding of paediatric 

epithelial and immune development in health and the specific response to COVID-19.  
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portal page. The processed data will be available for download from Array Express. Counts 

matrices from bronchial brushings obtained from patients at Northwestern Memorial Hospital, 

Chicago, are available at GEO, accession number GSE168215.  
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Figure Legends 

 

Figure 1: Experimental outline and overview of results. (a) Nasal, tracheal and bronchial 

brushings as well as peripheral blood were collected from across the human lifespan, from 

neonates to the elderly. The brushing samples were processed fresh for 10X 5’ single cell 

capture and sequencing, including TCR and BCR. PBMCs were isolated and then frozen for 

multiplexed processing later on. Upon thawing, PBMCs were stained with Total-seq-C 

reagents and processed for 10X 5’ single cell capture and sequencing, including TCR, BCR 

and CITE-seq. (b). Overview of samples taken in our healthy paediatric patient and COVID-

19 cohorts. COVID-19 severity was classified as mild (symptomatic without oxygen 

requirement or respiratory support), moderate (requiring oxygen without respiratory support) 

or severe (requiring non-invasive or invasive ventilation). (c) UMAP visualisation of annotated 

upper airway (nose and trachea) cells, (d) and bronchial cells, with cell numbers per cell type 

in brackets. (e) UMAP visualization based on the RNA expression data of all PBMC cells 

annotated into broad blood cell types. (f) Total SARS-CoV-2 viral expression detected per cell 
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type. (g) Fraction of cells with detected viral RNA molecules in different cell types and 

sampling locations. (h) ACE2 expression in healthy and paediatric COVID-19 patients per cell 

type.  

 

Figure 2: Epithelial cells (a) UMAP visualisation of annotated airway epithelial cells. (b) 

Airway epithelial cells in the same UMAP as (a), coloured by COVID-19 status and age group.  

(c) RNA velocity of major epithelial cell types. (d) Dot plot showing marker genes for 

annotated airway epithelial cell types, with fraction of expressing cells and average expression 

within each cell type indicated by dot size and colour, respectively. (e) Bar plot comparing 

epithelial cell type compositions across COVID-19 status and age groups. (f) Dot plot showing 

fold change and statistical significance of epithelial cell type proportions across age group, 

location of sampling and COVID-19 status, respectively, estimated by fitting Poisson 

generalised linear mixed models taking into account other technical and biological variables. 

(g) Comparing expression signature of cellular response to type 1 interferon (left) and 

interferon gamma (right) across COVID status in children and adult (top) and across age groups 

in healthy children (bottom). Wilcoxon ranked-sum test and Cuzick’s rank-sum test were used 

for pairwise comparisons and test of trend across age groups, respectively. (h) Differential gene 

expression contrasting COVID-19 and non-COVID-19 samples in inflammatory epithelial 

transit cells (IETCs) without (left) and with (right) age group controlled. Below each are top 5 

enriched biological process GO terms in genes up-regulated in COVID-19 positive IETCs. (i) 

Confocal microscopy image illustrating expression of S100A9 (green) by epithelial cells 

(EpCam, magenta) in the nasal epithelium. Nuclei stained with DAPI (blue). 

 

Figure 3: Immune analyses (a) UMAP visualization of PMBCs based on integrated RNA and 

surface protein expression. UMAP was derived from a WNN graph that incorporates both 

protein and RNA expression data. The modality weights of the RNA and protein data are shown 

as pie charts in the legend. Cell types were annotated based on semi-supervised Leiden 

clustering and marker expression. (b) UMAPs as in (a) in which the COVID-19 status (top 

panel) and the age group (bottom panel) is visualized for each cell. (c) Dotplot of matched 

RNA expression (blue half) and surface protein expression (red half) of cell type markers. The 

size of the dot is scaled to the percentage of cells that have at least one count of each gene or 

protein. The color is scaled to the z-score normalized expression of each gene or protein 

compared to all other cell types (see Extended Date Figure 8a). (d) Heatmap showing the 

relative expression dynamics of the top 50 most changing genes that significantly change over 
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age (FDR<0.001) within naive CD4 T cells (top heatmap) and within naive CD8 T cells. Genes 

that are known to be related to T cell identity are highlighted. The inset UMAP visualizes how 

naïve T cells from different age groups separate after reselecting hypervariable genes within 

this subset. This panel only includes data from healthy paediatric donors. (e-f) Barplots 

showing the average immune cell type proportions in PBMC samples (in e) and in nasal 

brushing samples (in f). Cell types are color coded as shown in f. Samples are grouped on age 

and COVID-19 status. N denotes the amount of samples in each group, while K denotes the 

amount of cells per group. Three healthy young children with very high B cell counts in their 

nasal samples were identified as outliers (see Extended Data Figure 9c) and plotted 

separately. In f, the fraction of immune cells in all cells identified in the nasal brushing samples 

are quantified on top. (g-h) Dot plot showing fold change and statistical significance of 

epithelial cell type proportions across age group, location of sampling and COVID-19 status, 

respectively, estimated by fitting Poisson generalised linear mixed models taking into account 

other technical and biological variables. The cell types that change significantly in at least one 

age and COVID-19 status group, are split and highlighted in green and purple, respectively. 

(a-c,e-h) Tcm, T central memory; Tem, T effector memory; CTL, cytotoxic T lymphocyte; T 

regs, regulatory T; g/d T, gamma/delta T cells; MAIT, mucosal-associated invariant T; NK, 

natural killer; NKT, natural killer T; ILC, innate lymphoid cells; pDC, plasmacytoid dendritic 

cell; cDC, conventional dendritic cell; HSPCs, hematopoietic stem and progenitor cells; RBCs, 

red blood cells. In these figures convalescent nasal brush samples refers to post-COVID airway 

samples only, with post-COVID and convalescent blood samples included in convalescent 

PBMCs. 

 

Figure 4: Immune cell types across compartments (a) UMAP visualisation of the combined 

blood and airway data set, annotated by cell type and by site of sampling. (b) Correlation 

heatmap of the immune cell type proportions in the blood and nose within individuals. 

Spearman's rank correlation coefficient between the relative cell type proportions in the blood 

and nose were calculated within all adult COVID-19 patients (left heatmap) and within all 

healthy paediatric samples (right heatmap). Both heatmaps were ordered using hierarchical 

clustering on the combined heatmaps. We considered only cell types that were present in at 

least half of the samples for correlation analysis. (c) Bar chart depicting the fraction of T cells 

clones (with single pair TCRa/b chains) detected within the full combined scRNA-seq dataset 

(left) and for the COVID-19 positive cohort only, shown as a fraction (middle) and total 
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number (right). Clone size is indicated by colour and group by age. (d) Adult (left) and 

paediatric (middle) T cell clonotype networks coloured by cell type as well as by paediatric 

COVID-19 status. (e) Fraction of B cells clones (with single pair chains) detected within the 

combined scRNA-seq dataset (left) and the COVID-19 positive cohort only, shown as a 

fraction (middle) and total number (right). Note: No COVID-19 positive young children were 

collected so this age category is missing in c and e. 

 

 

Supplemental Data  

 

Extended Data Figure 1: Overview of patient cohort. 

(a) Timeline of sample collections from COVID-19 positive (18 adults and 4 paediatric) and 

post-COVID (4 adults and 2 paediatric) patients enrolled in our study. Sample collections are 

shown relative to symptom onset and a SARS-CoV-2 positive RT-qPCR test, to which all 

patients are aligned. (b) Overview of samples taken in our post-COVID cohort consisting of 

patients who were sampled 3 months after recovering from severe COVID-19 (requiring non-

invasive or invasive ventilation). (c) Ethnicity inferred from scRNA-seq data via principal 

component analysis of SNP genotypes (red points: our samples; others points: 1000 Genomes 

Project samples).  

 

Extended Data Figure 2: Quality control metrics and normalization of airway scRNA-

seq dataset.  

UMAP visualisation of annotated airway scRNA-seq dataset (138,688 high quality scRNA-seq 

transcriptomes) coloured (a) by quality control measurements: percentage cell viability based 

on staining prior to loading cells, UMI count per cell, genes per cell, percentage of 

mitochondrial gene expression, percentage of hemoglobin expression, percentage of ribosomal 

expression, percentage of top 50 genes expressed, scrublet score (cell doublet score) and (b) 

by technical factors and metadata: 10X single cell 5’ Chromium kit used (v1.0 or v1.1 NEXT 

GEM), the hospital patient was recruited from (source), sex, ethnicity, smoking status, Body 

Mass Index and donor ID. GOSH: Great Ormond Street Hospital, UCLH: University College 

London Hospital, Royal Free: Royal Free London NHS Foundation Trust, AFR: African, EAS: 

East Asian, EUR: European, SAS: South Asian, nan: not annotated. (c) Violin plots depicting 

the post-QC distribution of UMI and the percentage of mitochondrial gene expression per cell 

for each sample. 
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Extended Data Figure 3: Expression of viral entry-associated genes in the airways.  

(a) Dot plots showing cell type expression of viral entry-associated genes within healthy 

paediatric airways (n=30), included genes linked to SARS-CoV-2, SARS-CoV, MERS-CoV, 

Rhinovirus-C and Influenza A infections. The fraction of expressing cells and average 

expression within each cell type is indicated by dot size and colour, respectively. (b) Spearman 

correlation between average detected level of viral RNA and average expression of entry 

factors as in (a) across cell types. Dots in red indicate p < 0.05.  (c) Bar plot comparing fraction 

of cells expressing ACE2, between adult COVID-19 positive, adult post-COVID-19, paediatric 

COVID-19 positive, paediatric healthy and paediatric post-COVID-19 positive within the 

airways (nasal and tracheal cells only). 

 

Extended Data Figure 4:  

(a) Expression of “Hillock” cell associated markers (KRT14, KRT6A, KRT13 and KRT24) was 

visualised in the epithelial cell UMAP. Highlighted cells belong to the basal, secretory, goblet 

and squamous cell types, but are a distinct subpopulation. (b) Feature importance plot depicting 

the variance accounted for by each of the clinical and technical factors in our statistical analysis 

of cell type proportions within our airway scRNA-seq dataset. Factors were tissue type (nasal, 

tracheal, bronchial), donor ID (patient), date sample was processed (Date_of_process), 

COVID-19 status (COVID-19 positive, negative or post-COVID-19), patient age (Age_bin), 

cell viability (cell_viabiity), sex, 10X chromium 5’ single cell sequencing kit version 

(10X_kit), smoking status, ethnicity and other factors (residual). (c) Bar chart showing changes 

in nasal epithelial cell type proportions observed across age within our paediatric healthy 

cohort.  

 

Extended Data Figure 5: Response to interferon. 

Scores of GO term gene signatures for the terms: response to type 1 interferon (GO:0035455 

or GO:0034340) and interferon-gamma (GO:0034341) across cell types. Scores were 

calculated with Scanpy as the average expression of the signature genes subtracted with the 

average expression of randomly selected genes from bins of corresponding expression values. 

Scores are shown for both airway (a) and PBMC (b) data sets. (c) Comparison of the gene 

signature scores between COVID-19 positive adult and COVID-19 positive paediatric groups 

as well as COVID-19 positive and convalescent adult groups for cells isolated from blood. 

Results for all cells and monocytes, as the highest responder cell type, are shown.  P-values for 

Wilcoxon rank-sum tests are given on top of each plot. 
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Extended Data Figure 6. 

Comparison of “transitioning” epithelial cell populations between our annotated (a) upper 

(nasal and tracheal) and (b) lower (bronchi) airway datasets, in addition to (c) Chua et al 2020 

data set25. UMAP visualization of deuterosomal (Deu) (CCNO, CDC20B, FOXN4), basal 

differentiating (Ba-d) (KRT4, KRT7, IFT43) and interferon responsive cell (IRC) (ISG15, IFT1, 

CXCL10) and inflammatory epithelial transit cell (IETC) (SAA1, S100A8, A100A9) marker 

gene expression. Ba-d and IRC gene markers used were taken from the Chua et al 2020 paper. 

 

Extended Data Figure 7: Quality control metrics and normalization of PBMC scRNA-

seq dataset. 

(a) UMAP visualisation of annotated PBMC scRNA-seq dataset (317,854 high quality scRNA-

seq transcriptomes) by; number of genes detected (log10), number of proteins detected (log10), 

gene UMI count per cell (log10), antibodyderived tag UMI count per cell (log10), sex (male, 

female), sequencing library batch, percentage of mitochondrial gene expression (per read) and 

sample ID. (b) Violin plots depicting the number of gene (top) and antibody derived (bottom) 

UMIs detected per sample. (c) Bar chart showing number of cells detected per sample after 

filtering (see methods). 

 

Extended Data Figure 8. 

(a) Expanded dotplot (from figure 3c) of matched RNA expression (blue half) and surface 

protein expression (red half) of cell type markers. The size of the dot is scaled to the percentage 

of cells that have at least one count of each gene or protein. The colour is scaled to the z-score 

normalized expression of each gene or protein compared to all other cell types. (b) Comparison 

of our manual cell type PBMC annotation vs an automated annotation performed by Azimuth62. 

(c) Trajectory analysis of B naive cells (left) and CD14+ monocytes (right) with age within the 

blood. Gene expression shown as a z-score and indicated by colour.  

 

Extended Data Figure 9.  

(a) Feature importance plots for cell type proportions of nasal immune cells (left) and in nasal 

immune cells (middle) and PBMC samples (right) with COVID-19 status calculated separately 

for adults vs children.  (b) Dot plot showing marker genes for annotated airway immune cell 

types, with fraction of expressing cells and average expression within each cell type indicated 

by dot size and colour, respectively. (c) Bar plots showing the average immune cell type 

proportions collected per patient highlighting the three outliers within the healthy young 
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children (*) presenting B cell hyper infiltration and analysed separately from the rest of the 

group in figure 3f. Cell types are color coded as shown, with K denoting the number of cells 

per individual.  

 

Extended Data Figure 10: BCR and TCR clonal expansion (or T and B lymphocyte 

clonality) 

From our 5’ 10x single cell libraries T cell receptors (TCR) and B cell receptors (BCR) were 

amplified, sequenced and used to study clonality. T cell subtypes were combined/integrated 

across all sites (airway and blood) and visualised in an annotated UMAP coloured by cell type 

(a) and TCR chain pairing (b). (c) Bar chart showing the (top) total number of (single pair TCR 

ab chain) T cell clones and (bottom) fraction of TCR with differing clone sizes detected per 

sample type/location (nasal, PBMC, trachea), where clone size is represented by colour. (d) 

Dandelion plots of T cell clonotypes network by sample ID (left) and sample type/location 

(right). (e) Annotated UMAP of integrated B cell subtypes from across all sites, coloured by 

receptor subtype (left), cell subtype (middle) and BCR chain pairing (right). (f) Bar chart of 

total number (single pair chain) of B cells clones (top) and fraction of BCRs with differing 

clone sizes (bottom) detected per sample type/location (nasal, PBMC and tracheal), where 

clone size is represented by colour. B cell clonotype network by sample ID (g) and sample 

type/location (h). 

 

Extended Data Table 1: Summary of patient metadata.  

 

 

Extended Data Table 2: TotalSeq-C antibody panel. 

List of 192 TotalSeq-C antibodies (Biolegend, 99814) used for CITE-seq staining of PBMCs; 

including DNA_ID, Clone, description of target protein and barcode.   

 

Extended Data Table 3: Viral genomes. 

A complete list of the additional 21 viral genomes used (as FASTA sequences and 

corresponding GTF entries) during the mapping of single cell data, including their NCBI ID, 

viral name and source links.   
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Methods 

 

Study Participants and Design 

The UK cohort: Subjects were included from three large hospital sites in London, United 

Kingdom, namely Great Ormond Street Hospital NHS Foundation Trust, University College 

London Hospitals NHS Foundation Trust and Royal Free London NHS Foundation Trust. All 

healthy paediatric control subjects were obtained from Great Ormond Street Hospital NHS 

Foundation Trust. Ethical approval was given through the Living Airway Biobank, 

administered through UCL Great Ormond Street Institute of Child Health (REC reference: 

19/NW/0171, IRAS project ID 261511, North West - Liverpool East Research Ethics 

Committee), REC reference 18/SC/0514 (IRAS project 245471, South Central - Hampshire B 

Research Ethics Committee) administered through University College London Hospitals NHS 

Foundation Trust and REC reference 18/EE/0150 (IRAS project ID 236570, East of England - 

Cambridge Central Research Ethics Committee) administered through Great Ormond Street 

Hospital NHS Foundation Trust, as well as by the local R&D departments at all hospitals. At 

daily virtual COVID19 co-ordination meetings suitable patients were chosen from a list of 

newly diagnosed and admitted patients within the preceding 24 hours (based on a positive 

nasopharyngeal qRT-PCR test for SARS-CoV-2). Patients with typical clinical and 

radiological COVID-19 features but with a negative screening test for SARS-CoV-2 were 

excluded. Other excluding criteria included active haematological malignancy or cancer, 

known immunodeficiencies, sepsis from any cause and blood transfusion within 4 weeks. We 

did not include cases of paediatric multisystem inflammatory syndrome (PMIS, named by the 

Royal College of Paediatrics and Child Health) which is also referred to as multisystem 

inflammatory syndrome in children (MIS-C) by the World Health Organisation80. Maximal 

severity of COVID-19 was determined retrospectively by determining the presence of 

symptoms, the need for oxygen supplementation and the level of respiratory support (mild - 

symptomatic without oxygen requirement or respiratory support, moderate - requiring oxygen 

without respiratory support, severe - requiring non-invasive or invasive ventilation). Brushings 

and peripheral blood sampling were performed by trained clinicians prior to inclusion in any 

pharmacological interventional trials ideally within 48 hours of positive SARS-CoV-2 

nasopharyngeal sampling.  

Chicago Cohort (adult bronchial samples): Ethical approval for sample collection from 

patients with severe pneumonia was given by Northwestern Institutional Review Board, study 

STU00204868 (PI Richard Wunderink). Samples from patients with COVID-19, viral 
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pneumonia and other pneumonia, and non-pneumonia controls were collected from 

participants enrolled in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) 

study STU00204868 and admitted to the ICU at Northwestern Memorial Hospital, Chicago. 

All study participants or their surrogates provided informed consent. Individuals of at least 18 

years of age with suspicion of pneumonia based on clinical criteria (including but not limited 

to fever, radiographic infiltrate and respiratory secretions) were screened for enrolment into 

the SCRIPT study. Inability to safely perform bronchoalveolar lavage or non-bronchoscopic 

bronchoalveolar lavage were considered exclusion criteria. In our center, patients with 

respiratory failure are intubated on the basis of the judgement of bedside clinicians for 

worsening hypoxaemia, hypercapnia or work of breathing refractory to high-flow oxygen or 

non-invasive ventilation modes. Extubation occurs on the basis of the judgement of bedside 

clinicians following a protocol-driven trial of spontaneous breathing in patients demonstrating 

physiological improvement in their cardiorespiratory status during their period of mechanical 

ventilation. Bronchial brushings were performed during diagnostic bronchoalveolar lavage 

procedure and samples were collected from representative sites at the lobar bronchi.  

 

Sample Collection 

The UK Cohort: Samples were collected and transferred to a Category Level 3 facility at 

University College London and processed within 2 hours of sample collection. Nasal, tracheal 

and bronchial brushings were enzymatically digested to a single cell suspension and processed 

further immediately. Peripheral blood was centrifuged after adding Ficoll Paque Plus and 

PBMCs, serum and neutrophils separated, collected and frozen for later processing.  

Chicago Cohort (adult bronchial samples): Samples were collected in the ICU at 

Northwestern Memorial Hospital, transferred to a research laboratory in the Simpson Querrey 

Biomedical Research Center, Feinberg School of Medicine, Northwestern University, and 

processed within 1 hour of sample collection in biological safety level 2 facility using 

biological safety level 3 practices. Upon collection bronchial brushings were stored in 

Hypothermosol (Stem Cell Technologies, 07935) at 4 °C.  

 

Nasal and tracheal brushing tissue dissociation 

The UK Cohort: Nasal brushing was performed on the inferior nasal concha zone with a 

cytological brush (Scientific Laboratory Supplies, CYT1050). Samples were processed based 

on protocol from Deprez, Zaragosi et al44 with minimal modifications. The brushes were 

immediately placed in a 15 mL sterile falcon tube containing 4mL of transport media on ice. 
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Transport media; αMEM supplemented with 1X penicillin/streptomycin (Gibco; 15070) and 

250 ng/ml amphotericin B (Fisher Scientific; 10746254). Once in the Category Level 3 facility, 

the tube was shaken vigorously to collect cells in suspension. The brushes were then carefully 

transferred into a new falcon tube containing HBSS and shaken to remove residual cells from 

the brush. This was repeated until all cells looked like they had been collected from the brush. 

All falcon tubes were centrifuged at 400 g for 5 min at 4 °C. The cell pellet was collected from 

each tube and then put in a dissociation buffer consisting of 10 mg/mL protease from Bacillus 

Licheniformis (Sigma-Aldrich, P5380) and 0.5 mM EDTA in HypoThermosol (Stem Cell 

Technologies, 07935) for dissociation on ice for 30 min. Every 5 min, cells were gently 

triturated using a 21 G and 23 G needle. After incubation, protease was inactivated by adding 

200 µL of inactivation buffer (HBSS containing 2% BSA). The suspension was centrifuged at 

400 g for 5 min at 4 °C and the supernatant was discarded.  Cells were resuspended in 1 mL 

wash buffer (HBSS containing 1% BSA) and centrifuged again. Red blood cell lysis was 

performed if needed, followed by an additional wash. The single-cell suspension was forced 

through a 40 µm Flowmi Cell Strainer. Finally, cells were centrifuged and resuspended in 30 

µL of resuspension buffer (HBSS containing 0.05% BSA). Using Trypan Blue, total cell counts 

and viability were assessed. The cell concentration was adjusted for 5000 targeted cell recovery 

according to the 10X Chromium manual before loading on 10X chip (between 700-1000 cells/ 

µL) and processing immediately for 10X 5’ single cell capture using either the Chromium 

Single Cell V(D)J Reagent Kits V1.0 (Rev J Guide) or the newer chromium Next GEM Single 

Cell V(D)J Reagent Kit v1.1 (Rev E Guide). 

Chicago Cohort (adult bronchial samples): Samples were processed using the protocol from 

Deprez, Zaragosi et al44 with minimal modifications. Specifically, dissociation was performed 

without EDTA and trituration was performed by pipetting using a regular bore 1000 µL tip 

every 5 minutes. Dissociation was visually confirmed by inspecting an aliquot of the single 

cell suspension using phase contrast on an inverted microscope. Cell count was performed 

using AO/PI reagent on K2 Cellometer (Nexcelom). Approximately 300,000-500,000 cells 

were obtained per brush with viability of 97% and above. Cells were captured on a 10X 

Chromium Single Cell Controller using Chromium Single Cell V(D)J Reagent Kits V1.0 (Rev 

J Guide).  

 

PBMC isolation from peripheral blood 

Peripheral blood was collected in EDTA immediately after the nasal brushing procedure. The 

blood was diluted with 5 mL of PBS containing 2 mM EDTA (Invitrogen, 1555785-038). 10 
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to 20 mL of diluted blood was carefully layered onto 15 mL of Ficoll-Paque Plus (GE 

healthcare, 17144002). If the sample volume was less than 5 mL, blood was diluted with an 

equal volume of PBS-EDTA and layered onto 3 mL Ficoll. The sample was centrifuged at 800 

g for 20 min at room temperature. The plasma layer was carefully removed and the peripheral 

blood mononuclear cell (PBMC) layer was collected using a sterile Pasteur pipette. The PBMC 

layer was washed with 3 volumes of PBS containing EDTA by centrifugation at 500 g for 10 

min. The pellet was suspended in PBS-EDTA and centrifuged again at 300 g for 5 min. The 

PBMC pellet was collected followed by both cell number and viability being assessed using 

Trypan Blue. Cell freezing medium (90% FBS, 10% DMSO) was added dropwise to PBMCs 

slowly on ice and then the mixture was cryopreserved at -80 °C until further full sample 

processing. 

 

CITE-Seq staining for single-cell proteogenomics 

Frozen PBMC samples were thawed quickly at 37 °C in a water bath. 20-30 mL of warm 

RPMI1640 medium containing 10% FBS was added slowly to the cells before centrifuging at 

300 g for 5 min. This was followed by a wash in 5 mL RPMI1640-FBS. The PBMC pellet was 

collected, and cell number and viability were determined using Trypan Blue. PBMCs from four 

different donors were then pooled together at equal numbers - 1.25x105 PBMCs from each 

donor were combined with the other PBMCs to make up 5.0x105 cells in total. The remaining 

cells were used for DNA extraction (Qiagen, 69504). The pooled PBMCs were resuspended in 

25 µL of cell staining buffer (Biolegend, 420201) and blocked via a 10 minute incubation on 

ice with 2.5 µL Human TruStain FcX block ( Biolegend, 422301). The PBMCs pool was then 

stained with TotalSeq-C antibodies (Biolegend, 99814) according to manufacturer’s 

instructions. The full list of TotalSeq-C antibodies can be found in Extended Data Table 2. 

After incubating with 0.5 vial of TotalSeq-C for 30 min at 4 °C, PBMCs were washed three 

times by centrifugation at 500 g for 5 min at 4 °C. PBMCs were counted again and processed 

immediately for 10X 5’ single cell capture (Chromium Next GEM Single Cell V(D)J Reagent 

Kit v1.1 with Feature Barcoding technology for cell Surface Protein-Rev D protocol). Two 

lanes of 25,000 cells were loaded per pool on a 10X chip.  

 

Library Generation and Sequencing 

Either Chromium Single Cell 5’ V(D)J Reagent Kit (V1.0 chemistry) or Chromium Next GEM 

Single Cell 5’ V(D)J Reagent Kit (V1.1 chemistry) was used for scRNAseq library construction 

for all airway samples, with Chromium Next GEM Single Cell V(D)J Reagent Kit v1.1 with 
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Feature Barcoding technology for cell surface proteins used for PBMCs. Gene expression 

libraries (GEX) and V(D)J libraries were prepared according to the manufacturer’s protocol 

(10X Genomics) using individual Chromium i7 Sample Indices. The cell surface protein 

libraries were created according to the manufacturer’s protocol with slight modification that 

included doubling the SI primer amount per reaction and reducing the number of amplification 

cycles to 7 during the index PCR to avoid the daisy chains effect. GEX, V(D)J and cell surface 

protein indexed libraries were pooled in 1:0.1:0.4 ratio respectively and sequenced on a 

NovaSeq 6000 S4 Flowcell (paired-end (PE), 150-bp reads) aiming for a minimum of 50,000 

PE reads per cell for GEX libraries and 5,000 PE reads per cell for V(D)J and cell surface 

protein libraries.  

 

Single Cell RNA-seq Computational Pipelines, Processing and Analysis 

The single cell data was mapped to a GRCh38 ENSEMBL 93 derived reference, with 

an additional 21 viral genomes (featuring SARS-CoV2) included as additional FASTA 

sequences and corresponding GTF entries. A complete list of the included viruses, along with 

their respective NCBI IDs and source links, can be found in Extended Data Table 3. 

Antibody-derived tag counts (ADT) and gene expression counts in CITE-seq data were jointly 

quantified using Cellranger 3.0.2. The alignment, quantification and preliminary cell calling of 

airway samples were carried out via the STARsolo functionality of STAR 2.7.3a, with the cell 

calling subsequently refined with Cell Ranger 3.0.2's version of EmptyDrops81. This algorithm 

has been made available as emptydrops on PyPi. Initial doublets were called on a per-sample 

basis by computing Scrublet82 scores for each cell, propagating them through an over-clustered 

manifold by replacing individual scores with per-cluster medians, and identifying statistically 

significant values from the resulting distribution, replicating the approach of Pijuan-Sala et al, 

201983 and Popescu et al, 201984. The clustering was performed with the Leiden61 algorithm 

on a KNN graph of a PCA space derived from a log(CPM/100 + 1) representation of highly 

variable genes, following SCANPY protocol85, and overclustering was achieved by performing 

an additional clustering of each resulting cluster. The primary clustering also served as input 

for ambient RNA removal via SoupX86.  

 

Confocal microscopy method 

Nasal epithelial biopsies were placed in Antigenfix (Microm Microtech) for 1-2 h at 4°C, then 

30% sucrose in PBS for 12-24 h at 4°C, before cryopreservation in OCT (Cell Path). 30µm 

sections were permeabilised and blocked in PBS containing 0.3% Triton (Sigma), 1% normal 
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goat serum, 1% normal donkey serum, and 1% BSA (R&D) for 1-2 h at room temperature 

(RT). Samples were stained with a 1 in 50 dilution of anti-human S100A9 conjugated to FITC 

(clone: MRP 1H9, Biolegend) and a 1 in 50 dilution of anti-human EpCam conjugated to APC 

(clone: 9C4, Biolegend) in blocking buffer overnight and washed for 3 x 10 minutes in PBS 

before mounting with Fluoromount-G containing DAPI (Invitrogen). Images were acquired 

using a Leica SP8 confocal microscope. Raw imaging data were processed using Imaris 

(Bitplane).  

 

Airway single cell RNA-seq data processing 

 

Quality control and normalization 

To account for large quality variance across different samples, quality control was done for 

each sample separately. QC thresholds were automatically established by fitting a 10-

component Gaussian mixture model to log-transformed UMI count per cell and to percentage 

of mitochondrial gene expression and finding the lower or higher bounds where probability 

density falls under 0.05. For three samples (NP32-NB, NP39-NB and AP10-NB) for which the 

automatic procedure failed to find reasonable thresholds, the distribution of quality metrics 

were examined and thresholds were determined manually. We also excluded genes expressed 

in fewer than 3 cells. Expression values were then normalised to a sum of 1e4 per cell and log 

transformed with an added pseudo-counting of 1. 

 

Developmental trajectory inference 

RNA velocity analysis was performed to infer developmental trajectory for the major epithelial 

cell types (excluding melanocytes, ionocytes, brush cells and neuroendocrine cells). Spliced 

and unspliced UMI counts were generated via the STARsolo functionality of STAR 2.7.3a. 

scvelo was used to fit a dynamical model as previously described87, based on top 2,000 highly 

variable genes with at least 20 UMI for both spliced and unspliced transcripts across all cells. 

 

CITE-seq data processing 

 

Demultiplexing and doublet removal of PBMC samples 

For pooled donor CITE-seq samples, the donor ID of each cell was determined by genotype-

based demultiplexing using souporcell version 2 88. Souporcell analyses were performed with 

‘skip_remap’ enabled and a set of known donor genotypes given under the ‘common_variants’ 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.09.21253012doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.09.21253012
http://creativecommons.org/licenses/by/4.0/


32 

parameter. The donor ID of each souporcell genotype cluster was annotated by comparing each 

souporcell genotype to the set of known genotypes. Droplets that contained more than one 

genotype according to souporcell were flagged as ‘ground-truth’ doublets for heterotypic 

doublet identification. Ground-truth doublets were used by DoubletFinder 2.0.3 89 to 

empirically determine an optimal ‘pK’ value for doublet detection. DoubletFinder analysis was 

performed on each sample separately using 10 principal components, a ‘pN’ value of 0.25, and 

the ‘nExp’ parameter estimated from the fraction of ground-truth doublets and the number of 

pooled donors. 

  

CITE-seq background and ambient RNA subtraction 

Background and non-specific staining by the antibodies used in CITE-seq was estimated using 

SoupX version 1.4.886, which models background signal on near-empty droplets. The 

‘soupQuantile’ and ‘tfidfMin’ parameters were set to 0.25 and 0.2, respectively, and lowered 

by decrements of 0.05 until the contamination fraction was calculated using the ‘autoEstCont’ 

function. Gene expression data was also corrected with SoupX to remove cell free mRNA 

contamination using default SoupX parameters. 

  

CITE-seq quality control and normalization 

CITE-seq data was filtered by removing droplets with fewer than 200 genes expressed or with 

more than 10% of the counts originating from mitochondrial genes. Gene expression data was 

normalized with a log + 1 transformation (log1p), and 2000 hyper variable genes were selected 

with the vst algorithm in Seurat version 3.9.9.902490. Antibody derived tag counts were 

normalized with the centered log-ratio (CLR) transformation. 

  

Integrated embedding and clustering of CITE-seq data 

Principal component analysis was run separately on gene expression and antibody derived tag 

count data, followed by batch correction using harmony91 on the sequencing library identifier. 

Nearest neighbor graphs and uniform manifold approximation and projections (UMAP) were 

generated based on the first 30 harmony-adjusted principal components. The first 30 harmony-

adjusted principal components of both gene expression and antibody derived tag count data 

were used to compute a weighted nearest neighbor (WNN) graph 

[https://doi.org/10.1101/2020.10.12.335331] with Seurat and embedded using UMAP. Cells 

were clustered with the Leiden algorithm using the igraph R package, with a resolution of 4. 

After initial clustering of all PBMCs, subsets of all T and NK cells, all B and plasma cells, and 
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all monocytes and DCs were reclustered after hypervariable gene selection within each subset. 

Cells in WNN-based clusters with less than 100 members were reassigned based on the closest 

multimodal neighbour. 

  

Comparison PBMCs and Azimuth 

The manual blood cell-type annotation was validated using the Azimuth tool 

(http://azimuth.satijalab.org/app/azimuth). A randomly sampled subset of 100,000 PBMCs 

were uploaded to predict their cell type identity. Exhausted B, switched B, non-switched B, 

complement expressing monocytes, NKT and plasma cells in our annotation were not present 

in the Azimuth annotation, while intermediate B, ASDC and double negative T cells were not 

present in our annotation. 

  

Differential expression analysis in naïve T cells, B cells and monocytes 

Two subsets of all naïve CD4 and CD8 T cells from healthy paediatric donors were reclustered 

after hypervariable gene selection within each subset to generate the UMAP in Figure 3d. 

Differential gene expression across age within these subsets was tested by fitting a gamma-

poisson generalized linear model on log2 transformed age and by creating pseudo-bulks of each 

donor with the glmGamPoi package91,92 [https://doi.org/10.1093/bioinformatics/btaa1009]. 

 

Differential expression analysis in airway data 

In addition to the differential expression analysis correcting for various metadata that was 

performed on the whole airway and PBMC data sets as described below, results shown for 

subsets of the data were obtained with a simpler method. After subsetting cell types and/or age 

groups, a Wilcoxon rank-sum test (implemented in Scanpy85) was performed to compare gene 

groups. The sets of differentially expressed genes were further analysed with the g:Profiler 

toolkit93 (g:Profiler version e102_eg49_p15_7a9b4d6, database updated on 15/12/2020) for 

functional enrichment analysis. 

  

Correlation analysis on circulating versus resident immune cells 

To harmonize the cell type annotation in the airway samples with the manual annotation of cell 

in PBMC samples, we integrated the airway immune cells with the PBMC data by 

IntegrateData function in Seurat on the top 30 principal components. Immune cell types that 

were unique to the airway samples were (activated) macrophages, neutrophils, follicular DCs 

and mast cells, and were therefore manually annotated. Airway CD8 T cells were annotated as 
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CD8 naïve or effector cells because further CD8 effector subtypes were less pronounced in 

airway samples. The relative immune cell type proportions in matched nasal and blood samples 

were correlated using the Spearman rank-order method, where we only tested the correlation 

of cell types that were present in at least half of the nasal samples in each comparison. 

Inference of ethnicity from single cell RNA-seq data 

The latest biallelic SNP genotype data (GRCh38) was obtained from 1000 Genomes Project 

(see URL: 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/201

81203_biallelic_SNV/). Allele specific counts of RNA-seq reads at the SNP location in 1000 

Genomes Project data were generated for each airway sample. Because the read coverage from 

the scRNA-seq data was strongly enriched around the 5' end of a gene, SNP loci covered at 

least 20 reads for more than 90% of samples that were used (19,733 genome-wide SNP loci in 

total). The SNP genotype from allele specific expression was determined as a maximum 

posterior genotype after fitting a beta-binomial mixture distribution with underlying 

probabilities of 0.01, 0.5 and 0.99 for reference homozygote, heterozygote and alternative 

homozygote, respectively. The overdispersion parameter of the beta-binomial distribution was 

estimated for each sample independently shared across all SNPs. The genotype data from 1000 

Genomes samples were combined with the genotype data for our samples, and principal 

component analysis was performed on the scaled genotype data (mean 0 and standard deviation 

equal to 1 for each SNP locus). The ethnicity of each sample was determined by the 

Mahalanobis distance to the four major ethnic groups in the 1000 Genomes Project (African, 

East Asian, European and South Asian). The first three principal components were used to 

compute the cluster centre and the covariance matrix for each ethnic group. 

 

Cell type composition analysis 

The number of cells for each sample and cell type combination was modelled with a generalised 

linear mixed model with a Poisson outcome. The five clinical factors (age, sex, ethnicity, tissue 

and COVID-19 status) and the six technical factors (donor, date of sample processing, 10X kit, 

technician, sequencing batch and sample) were fitted as random effects to overcome the 

colinearity among the factors. The effect of each clinical/technical factor on cell type 

composition was estimated by the interaction term with the cell type. The ‘glmer’ function in 

the lme4 package implemented on R was used to fit the model. The standard error of variance 

parameter for each factor was estimated using the numDeriv package. The conditional 

distribution of the fold change estimate of a level of each factor was obtained by the ‘ranef’ 
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function in the lme4 package. The statistical significance of the fold change estimate was 

measured by the local true sign rate (LTSR) which is an area under the curve of the posterior 

distribution of a log fold change over the positive domain when the point estimate is greater 

than 0 (over the negative domain for the point estimate less than 0). 

 

Differential expression analysis using metadata 

We performed differential gene expression analysis for both airway and PBMC data. We use 

the 7 clinical (Donor, Age group, Sex, Ethnicity, Tissue, Smoking status and COVID-19 status) 

and the 4 technical factors (Batch, 10X kit version, the number of expressed genes and the 

number of mapped fragments) to adjust confounding effects. For PBMC data, the tissue and 

10X kit are identical across samples and not included in the model. We utilised the linear mixed 

model proposed in Young et al94 to adjust for the 11 confounding factor effects and the effect 

of cell type as a random effect in differential expression analysis. We fit the model on a gene-

by-gene basis using the estimated variance parameters to test each factor k explaining a 

significant amount of transcription variation. If the focal factor k is a categorical variable with 

L levels (e.g., COVID-19 status with 3 levels), we partitioned the levels into one of two groups. 

There are 2L-1 contrasts which were tested against the null model (removing the focal factor k 

in the model) to compute Bayes factors. Then, those Bayes factors were used for fitting a finite 

mixture model to compute the posterior probability as well as the local true sign rate (ltsr) (See 

Supplementary Note of Young et al94 Section 1.3 for more details). We used g:Profiler 2 

implemented in R (version 2.0.1.5) to identify which pathways are enriched for differentially 

expressed genes for each contrast. We used genes whose ltsr is greater than 0.5 to perform the 

analysis (both upregulated and downregulated genes separately). 

 

Single-cell VDJ-sequencing data analysis 

TCR and BCR sequencing data was processed using the Cellranger software and downstream 

analysis was performed using the scirpy package (version 0.6.1)95. Briefly, we integrated TCR 

and BCR data with gene expression from T cell and B cell subsets, respectively. After 

categorizing cells based on the detection of productive antigen receptor chains, we selected 

cells with a single pair of productive chains for further analysis. Clonotypes were defined at 

the nucleotide level and considering both receptor chains. 
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