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THE LOCAL ASYMPTOTIC NORMALITY OF A FAMILY
OF MEASURES GENERATED BY SOLUTIONS
OF STOCHASTIC DIFFERENTIAL EQUATIONS

WITH A SMALL FRACTIONAL BROWNIAN MOTION
UDC 519.21

T. ANDROSHCHUK

Abstract. A formula for the likelihood ratio of measures generated by solutions of
a stochastic differential equation with a fractional Brownian motion is established in
the paper. We find sufficient conditions that the family of measures generated by
solutions of such an equation is locally asymptotically normal.

Introduction

We consider the stochastic differential equation

(1) Xt = x0 +
∫ t

0

S(θ, u, Xu) du + εBt, t ∈ [0, T ],

where x0 ∈ R, ε ∈ (0, 1); S(θ, t, x) : R
d × [0, T ]×R → R is a nonrandom function of drift;

θ ∈ Θ ⊂ R
d is an unknown parameter of the system; Bt = BH

t is a fractional Brownian
motion with the Hurst parameter H ∈ ( 1

2 , 1).
Along with equation (1) we consider the deterministic equation

(2) xt = x0 +
∫ t

0

S(θ, u, xu) du, t ∈ [0, T ],

whose solution is x = x(θ).
Equation (1) describes the evolution of a dynamic system with a small noise being

a fractional Brownian motion. The problem of the statistical estimation is well studied
for systems with a small noise being a standard Brownian process (see [1]). In particu-
lar, the consistency and asymptotic normality of the maximum likelihood estimator of
the parameter θ is proved under certain assumptions for systems with Brownian noise.
As shown in the monograph [2, Chapter II], several important properties of statistical
estimators follow from the local asymptotic normality of a system of measures gener-
ated by the random element X

(ε)
θ . Thus the proof of the local asymptotic normality

is a necessary step to obtain results similar to the Kutoyants results [1] in the case of
a fractional Brownian motion. In this paper, we obtain some conditions under which
the family of probability measures {P (ε)

θ , θ ∈ Θ} generated by solutions of equation (1)
that correspond to different parameters θ in the measurable space

(
C[0, T ],BT

)
is locally

asymptotically normal as ε → 0.
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2 T. ANDROSHCHUK

1. Notation, definitions, and conditions for the existence and uniqueness

of a solution

For λ ∈ (0, 1], denote by {Cλ[0, T ], ‖·‖Cλ} the space of Hölder functions f : [0, T ] → R.
The parameter λ determines the norm ‖f‖Cλ defined by

‖f‖Cλ = max
x∈[0,T ]

|f(x)| + sup
x1,x2∈[0,T ]

x1 �=x2

|f(x1) − f(x2)|
|x1 − x2|λ

.

Set Cµ−[0, T ] =
⋂

λ<µ Cλ[0, T ]. In what follows we use the same symbol C for all
constants whose precise value is not important for our consideration.

Definition 1. A continuous Gaussian process with stationary increments and such that
(1) B0 = 0;
(2) E Bt = 0 for all t ≥ 0;
(3) E BsBt = 1

2

(
s2H + t2H − |t − s|2H)

for all s, t ≥ 0

is called a fractional Brownian motion B = BH with Hurst parameter H ∈ (0, 1).

The trajectories of the process BH =
(
BH

t , t ∈ [0, T ]
)

belong with probability one to
the space CH−[0, T ]. Since the process BH is not a semimartingale for H �= 1

2 , one can
define the integral

∫ T

0
f(t) dBt as the limit of integral sums neither in probability nor in

the mean square sense. The integral
∫ T

0
f(t) dBt is constructed pathwise in [3] with the

help of fractional integro-differential calculus. It is shown in [3] that this integral exists
with probability one and coincides with the Stieltjes–Riemann type integral for

f(ω) ∈
⋃

λ>1−H

Cλ[0, T ].

Set

C0 =
1
2
(
(H − 1/2) · H · (1 − H) · B(3/2 − H, 3/2 − H) · B(H − 1/2, 3/2 − H)

)−1/2
,

C1 = B(3/2 − H, 3/2 − H) · C0,(3)

where

B(x, y) =
∫ 1

0

ux−1(1 − u)y−1 du

is the Euler beta function. We also set

(4) z(t, u) = C0u
1/2−H(t − u)1/2−H , w(t, u) = C0u

3/2−H(t − u)1/2−H .

It is shown in [4] that a Wiener process can be constructed from a fractional Brownian
motion and vice versa. The construction uses two steps. First, it is proved that

(5) Mt :=
∫ t

0

z(t, u) dBu

is well defined as a pathwise integral with respect to the flow of σ-algebras

(Ft) = (F{Bu, u ≤ t})
with the quadratic characteristics

[M ]t =
t2−2H

2 − 2H
.

Then

(6) Wt :=
∫ t

0

uH−1/2 dMu
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LOCAL ASYMPTOTIC NORMALITY 3

is a Wiener process with respect to the same flow (Ft).
The following assertion is a special case of the Nualart and Rǎscanu [5] result con-

taining sufficient conditions for the existence and uniqueness of a solution of a system of
stochastic differential equations with a fractional Brownian motion.

Proposition 1. Let a Borel function S : [0, T ] × R → R be such that

for all N ≥ 0 there exists LN > 0 such that

|S(t, x) − S(t, y)| ≤ LN |x − y| for all |x| , |y| ≤ N and all t ∈ [0, T ];
(7)

there exists M > 0 such that |S(t, x)| ≤ M(1 + |x|) for all x ∈ R and t ∈ [0, T ].(8)

Then the equation

Xt = x0 +
∫ t

0

S(u, Xu) du + εBt, t ∈ [0, T ],

has a unique solution X; this solution belongs with probability one to the class CH−[0, T ].

As in the case of stochastic differential equations with a standard Wiener process, the
following result holds for the stochastic differential equations with a fractional Brownian
motion.

Proposition 2. Let θ ∈ Θ be fixed and let a Borel function S(t, x) = S(θ, t, x) satisfy
conditions (7) and (8). Moreover, assume that LN in condition (7) does not depend on
N , that is, LN = L for some L and all N . If Xt and xt are solutions of equations (1)
and (2), respectively, then

(9) sup
t∈[0,T ]

|Xt − xt| ≤ εC sup
t∈[0,T ]

|Bt| ,

where C = exp {LT}.

Proof. This is a corollary of the Gronwall lemma. �

Following [2] we use the notion of the local asymptotic normality of a system of
measures. Let {X (ε), U (ε)} be a family of measurable spaces and let Θ ⊂ R

d be an open
set. Let Eε =

{
X (ε), U (ε), P

(ε)
θ , θ ∈ Θ

}
be a collection of statistical experiments and X(ε)

be the corresponding observation. The derivative

dP
(ε)
θ2

dP
(ε)
θ1

(
X(ε)

)

of the absolutely continuous component of the measure P
(ε)
θ2

with respect to the measure

P
(ε)
θ1

at the observation X(ε) is called the likelihood ratio.

Definition 2. A family {P (ε)
θ , θ ∈ Θ} is called locally asymptotically normal at a point

θ0 ∈ Θ as ε → 0 if

Zε,θ0(u) =
dP

(ε)
θ0+φεu

dP
(ε)
θ0

(
X(ε)

)
= exp

{
u�∆ε,θ0 −

1
2
|u|2 + ψε(u, θ0)

}

and L
(
∆ε,θ0 | P

(ε)
θ0

)
→ N (0, J) as ε → 0 for all u ∈ R

d and some nonsingular d × d

matrix φε = φε(θ0), where J is the unit d × d matrix and ψ is such that

ψε(u, θ0) → 0 in probability P
(ε)
θ0

as ε → 0

for all u ∈ R
d.
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4 T. ANDROSHCHUK

2. The absolute continuity of measures

Consider two equations

(10) Xt = x0 +
∫ t

0

Si(u, Xu) du + εBt, t ∈ [0, T ], i = 1, 2.

Let Xi be a solution of the equation involving Si and let PXi(dx) be the measure on
(C[0, T ],BT ) generated by the solution Xi, i = 1, 2. The likelihood ratio dPX2

dPX1

(
X1

)
is

established in the following theorem.

Theorem 1. Let the functions S1, S2 : [0, T ] × R → R satisfy the following conditions:
(1) Si ∈ C1([0, T ] × R), i = 1, 2;
(2) there exists a constant M > 0 such that |Si(t, x)| ≤ M(1 + |x|) for all x ∈ R and

t ∈ [0, T ], i = 1, 2.
Then each of equations (10) has a solution. Moreover, the solution of each equation is
unique and belongs almost surely to the class CH−[0, T ]. In addition, PX1 ∼ PX2 and

(11)
dPX2

dPX1

(
X1

)
= exp

{
1
ε
LT − 1

2ε2
〈L〉T

}
,

where

LT =
∫ T

0

[
(2 − 2H)t1/2−H

×
(

C1∆S(0, x0) +
∫ t

0

u2H−3

∫ u

0

w(u, v) d
(
∆S

(
v, X1

v

))
du

)

+ tH−3/2

∫ t

0

w(t, u) d
(
∆S

(
u, X1

u

))]
dWt

=
∫ T

0

[
(2 − 2H)t1/2−H

(
C1∆S(0, x0) +

∫ t

0

u2H−3R1(u) du

)

+ tH−3/2R1(t)
]
dWt

(12)

and

R1(t) =
∫ t

0

w(t, v)
{(

∂

∂v
∆S

(
v, X1

v

)
+

∂

∂x
∆S

(
v, X1

v

)
S

(
θ1, v, X1

v

))
dv

+ ε
∂

∂x
∆S

(
v, X1

v

)
dBv

}
.

Here we set ∆S(t, x) = S2(t, x)−S1(t, x), the constant C1 is defined in (3), the function
w(t, u) is given by (4), and the Wiener process Wt is constructed from Bt in the way
described in Section 1.

Proof. Note that conditions (7) and (8) hold if conditions 1) and 2) are satisfied. Thus,
according to Proposition 1, a solution of each of equations (10) exists, is unique, and
belongs to the class CH−[0, T ] if 1) and 2) are satisfied.

For X = Xi, consider the stochastic process

X̃t :=
∫ t

0

z(t, u) dXu =
∫ t

0

z(t, u)S(u, Xu) du + ε

∫ t

0

z(t, u) dBu,(13)

where the function z(t, u) is defined by (4). The process X̃t is well defined for all t ∈ [0, T ],
since both terms on the right-hand side of (13) are well defined. Now we prove that the
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LOCAL ASYMPTOTIC NORMALITY 5

function

I(t) =
∫ t

0

z(t, u)S(u, Xu) du = C1S(0, x0)t2−2H +
∫ t

0

z(t, u)
∫ u

0

dS(v, Xv) du

is differentiable, where the constant C1 is defined in (3).
Fix λ ∈

(
1
2 , H

)
. Since condition 1) holds, we have

s(v) := S(v, Xv) ∈ CH−[0, T ] ⊂ Cλ[0, T ] P -a.s.

Similarly to [6] one can obtain the following result.

Lemma 1. Let H, β, λ ∈
(

1
2 , 1

)
and let f, s : R → R be Hölder functions with exponents β

and λ, respectively. Then the function

J(t) =
∫ t

0

u1/2−H(t − u)1/2−H

(∫ u

0

f(v) ds(v)
)

du

is represented as follows:

J(t) = t2−2H

∫ t

0

δu du,

where

δt = t2H−3

∫ t

0

u3/2−H(t − u)1/2−Hf(u) ds(u)

belongs to the class L1(0, T ), that is,∫ T

0

|δu| du < ∞.

We follow the method of [6] to prove Lemma 1. In doing so, we obtain the estimate

(14)
∣∣∣∣
∫ t

0

u3/2−H(t − u)1/2−Hf(u) ds(u)
∣∣∣∣ ≤ K(f, s)Ht2−H ,

where K(f, s) = CT,β,λ ‖f‖Cβ ‖s‖Cλ . The latter estimate implies Lemma 1 (see [6]).
Applying Lemma 1 to I(t), we get

I(t) = t2−2H

(
C1S(0, x0) +

∫ t

0

α(u) du

)
,

where

α(u) = u2H−3

∫ u

0

w(u, v) dS(v, Xv)

and w(t, u) = C0u
3/2−H(t − u)1/2−H .

Turning to the proof of equality (13) we use notation (5) and write

X̃t =
∫ t

0

γ(u) du + εMt,

where

γ(u) = (2 − 2H)u1−2H

(
C1S(0, x0) +

∫ u

0

α(v) dv

)
+ u2−2Hα(u).

Consider the process

˜̃Xt :=
1
ε

∫ t

0

uH−1/2 dX̃u =
1
ε

∫ t

0

uH−1/2γ(u) du +
∫ t

0

uH−1/2 dMu.

Relation (6) implies that ˜̃X is an Itô process with the differential

(15) d ˜̃Xt = δ(t, X) dt + dWt,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 T. ANDROSHCHUK

where

δ(t, X) =
1
ε

[
(2 − 2H)t1/2−H

(
C1S(0, x0) +

∫ t

0

u2H−3

∫ u

0

w(u, v) dS(v, Xv) du

)

+ tH−3/2

∫ t

0

w(t, u) dS(u, Xu)
]
.

(16)

Note that the mapping

A : CH−[0, T ] � X → ˜̃X ∈ C1/2−[0, T ],

defined as superposition of the mappings

X → X̃t =
∫ t

0

z(t, u) dXu, t ∈ [0, T ],

X̃ → ˜̃Xt =
1
ε

∫ t

0

uH−1/2 dX̃u, t ∈ [0, T ],

has the inverse (see [4]). The inverse mapping A−1 is given by

(
A−1 ˜̃X

)
t
= ε

∫ t

0

ψ(t, u) d ˜̃Xu,

where

ψ(t, u) = C2u
1/2−H

∫ t

u

vH−1/2(v − u)H−3/2 dv,

C2 = (H · (2H − 1))1/2B(H − 1/2, 2 − 2H)−1/2.

Substituting X = A−1 ˜̃X in (15) we obtain

d ˜̃Xt = δt

(
A−1 ˜̃X

)
dt + dWt.

Since δt(A−1 ·) is a nonanticipating functional, we conclude that ˜̃X is a diffusion type
process. According to Theorem 7.7 in [7], the measures P ˜̃X

and PW are equivalent if and
only if

P

{∫ T

0

δ(t, A−1 ˜̃X)2 dt < ∞
}

= P

{∫ T

0

δ(t, X)2 dt < ∞
}

= 1,(17)

P

{∫ T

0

δ(t, A−1W )2 dt < ∞
}

= P

{∫ T

0

δ(t, B)2 dt < ∞
}

= 1.(18)

The ratios
dP ˜̃

X

dPW
(W ) and dPW

dP ˜̃
X

( ˜̃X) are given by

dP ˜̃X

dPW
(W ) = exp

{∫ T

0

δ(t, B) dWt −
1
2

∫ T

0

δ(t, B)2 dt

}
,(19)

dPW

dP ˜̃X

( ˜̃X) = exp
{
−

∫ T

0

δ(t, X) dWt +
1
2

∫ T

0

δ(t, X)2 dt

}
,(20)

respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOCAL ASYMPTOTIC NORMALITY 7

Now we prove that equality (17) holds. Indeed,

∫ T

0

δ(t, X)2 dt ≤ C

[
S(0, x0)2 +

∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v) dS(v, Xv) du

)2

dt

+
∫ T

0

t2H−3

(∫ t

0

w(t, u) dS(u, Xu)
)2

dt

]

= C[I1 + I2 + I3].

Using estimate (14), we get∫ t

0

u2H−3

∫ u

0

w(u, v) dS(v, Xv) du ≤ C0 K
(
1, S(·, X·)

)
tH P -a.s.,∫ t

0

w(t, u) dS(u, Xu) ≤ C0K
(
1, S(·, X·)

)
Ht2−H P -a.s.

It follows from the above inequalities that I2 < ∞ and I3 < ∞. Equality (18) can be
proved in a similar way.

Now we come back to solutions X1 and X2 of equations (10). Let δi(t, X) be defined
by equality (16) for S = Si, i = 1, 2. Write equalities (19) and (20) for ˜̃X1 and ˜̃X2

instead of ˜̃X and then use them to get

dP ˜̃X2

dP ˜̃X1

(
˜̃X1

)

= exp
{∫ T

0

(
δ2

(
t, X1

)
− δ1

(
t, X1

))
d ˜̃X1

t − 1
2

∫ T

0

(
δ2

(
t, X1

)2 − δ1

(
t, X1

)2
)

dt

}

by the chain differentiation rule. Substituting the differential of the process ˜̃X1 to the
latter relation we obtain

dP ˜̃X2

dP ˜̃X1

(
˜̃X1

)

= exp

{∫ T

0

(
δ2

(
t, X1

)
− δ1

(
t, X1

))
dWt −

1
2

∫ T

0

(
δ2

(
t, X1

)
− δ1

(
t, X1

))2
dt

}
.

Note that
dP ˜̃X2

dP ˜̃X1

(
˜̃X1

)
=

d
(
A−1PX2

)
d (A−1PX1)

(
AX1

)
=

dPX2

dPX1

(
X1

)
,

since the mappings A and A−1 are measurable. Thus

dPX2

dPX1

(
X1

)
= exp

{∫ T

0

(
δ2

(
t, X1

)
− δ1

(
t, X1

))
dWt −

1
2

∫ T

0

(
δ2

(
t, X1

)
− δ1(t, X1)

)2
dt

}
.

Now relations (11) and (12) follow by substituting δi(t, X) defined by (16) into the
latter equality. Equality (12) is obtained by applying the chain differentiation rule for a
superposition of a smooth function and a Hölder function (see [3]). �
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3. Local asymptotic normality of a system of measures

generated by solutions of an equation

Theorems 2 and 3 below contain sufficient conditions that a system of probability
measures

{
P

(ε)
θ , θ ∈ Θ

}
generated by solutions of equation (1) is locally asymptotically

normal as ε → 0. Theorem 2 is an analog of Theorem 2.1 in [1] where the case of a
Wiener process is considered. Like Theorem 2.1 of [1], conditions of Theorem 2 are given
in terms of the process X. Note however that conditions of this type are not easy to
check. Theorem 3 contains sufficient conditions for the local asymptotic normality posed
on the function S; thus we avoid the process X in the corresponding assumption.

Let Θ ⊂ R
d be an open set, P

(ε)
θ be a measure in the measurable space(

C[0, T ],BT

)
that corresponds to the solution of equation (1).

Theorem 2. Let, for every θ ∈ Θ, the following conditions be satisfied:
1) S(θ, ·, ·) ∈ C1([0, T ] × R).
2) There exists M(θ) > 0 such that |S(θ, t, x)| ≤ M(θ)(1 + |x|) for all x ∈ R and

t ∈ [0, T ].
3) The derivative ∂

∂θ S(θ, 0, x0) exists.
4) There exist d-dimensional functions q, r : Θ × [0, T ] → R

d such that the limits

lim
ε→0

∥∥∥∥1
ε

(
∂

∂t
S(θ + εY, t, Xt) −

∂

∂t
S(θ, t, Xt)

)

−
(
Y, q(θ, t)

)∥∥∥∥
L2([0,T ],|ln(t)|∨1)

= 0,

(21)

lim
ε→0

∥∥∥∥1
ε

(
∂

∂x
S(θ + εY, t, Xt) −

∂

∂x
S(θ, t, Xt)

)

−
(
Y, r(θ, t)

)∥∥∥∥
L2([0,T ],|ln(t)|∨1)

= 0
(22)

exist in probability P
(ε)
θ for all Y ∈ R

d, where the norm in L2

(
[0, T ], φ(t)

)
is

defined by

‖f‖2
L2([0,T ],φ(t)) =

∫ T

0

f(t)2φ(t) dt.

5) The limit

lim
ε→0

∥∥∥∥ ∂

∂x
S(θ + εY, t, Xt) −

∂

∂x
S(θ, t, Xt)

∥∥∥∥
Cλ

= 0(23)

exists in probability P
(ε)
θ for some λ ∈

(
1
2 , H

)
and all Y ∈ R

d.
6) The matrix

I(θ, x) =
∫ T

0

Q(θ, t, x(θ))× Q(θ, t, x(θ))T dt

is positive definite, where

Q(θ, t, x) = (2 − 2H)t1/2−H

×
(
C1

∂

∂θ
S(θ, 0, x0) +

∫ t

0

u2H−3

∫ u

0

w(u, v)
(
q(θ, v) + r(θ, v)S(θ, v, xv)

)
dv du

)

+ tH−3/2

∫ t

0

w(t, u)
(
q(θ, u) + r(θ, u)S(θ, u, xu)

)
du.
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LOCAL ASYMPTOTIC NORMALITY 9

Then the family of measures {P (ε)
θ , θ ∈ Θ} is locally asymptotically normal in Θ as ε → 0

and the normalizing matrix is

φε(θ) = εI(θ, x)−1/2.

Proof. Put

δ
(ε)
θ1

(θ2, t, x)

=
1
ε

[
(2 − 2H)t1/2−H

(
C1S(θ2, 0, x0) +

∫ t

0

u2H−3R2(u) du

)
+ tH−3/2R2(t)

]
,

(24)

where

R2(t) =
∫ t

0

w(t, v)
{(

∂

∂v
S(θ2, v, xv) +

∂

∂x
S(θ2, v, xv)S(θ1, v, xv)

)
dv

+ ε
∂

∂x
S(θ2, v, xv) dBv

}
.

According to Theorem 1, the likelihood ratio
P

(ε)
θ+εY

P
(ε)
θ

(X) is given by

P
(ε)
θ+εY

P
(ε)
θ

(X) = exp

{∫ T

0

(
δ
(ε)
θ (θ + εY, t, X) − δ

(ε)
θ (θ, t, X)

)
dWt

− 1
2

∫ T

0

(
δ
(ε)
θ (θ + εY, t, X) − δ

(ε)
θ (θ, t, X)

)2

dt

}
.

If

(25) lim
ε→0

∥∥∥(
δ
(ε)
θ (θ + εY, t, X) − δ

(ε)
θ (θ, t, X)

)
−

(
Y, Q(θ, t, x)

)∥∥∥
L2

= 0

in probability P
(ε)
θ , then we complete the proof of Theorem 2 by following the lines of

that of Theorem 2.1 in [1].
Now we are going to prove (25). First,

∫ T

0

[(
δ
(ε)
θ (θ + εY, t, X) − δ

(ε)
θ (θ, t, X)

)
−

(
Y, Q(θ, t, x)

)]2

dt

≤ C

[∫ T

0

t1−2Hξ0(ε)
2
dt

+
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)
[
(ξ1(ε, v) + ξ2(ε, v)S(θ, v, Xv)) dv

+ ξ3(ε, v)dBv

]
du

)2

dt

+
∫ T

0

t2H−3

(∫ t

0

w(t, u)
[(

ξ1(ε, u) + ξ2(ε, u)S(θ, u, Xu)
)
du

+ ξ3(ε, u) dBu

]
du

)2

dt

]
,
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10 T. ANDROSHCHUK

where

ξ0(ε) =
1
ε

(
S(θ + εY, 0, x0) − S(θ, 0, x0)

)
−

(
Y,

∂

∂θ
S(θ, 0, x0)

)
,

ξ1(ε, t) =
1
ε

(
∂

∂t
S(θ + εY, t, Xt) −

∂

∂t
S(θ, t, Xt)

)
−

(
Y, q(θ, t, xt)

)
,

ξ2(ε, t) =
1
ε

(
∂

∂x
S(θ + εY, t, Xt) −

∂

∂x
S(θ, t, Xt)

)
−

(
Y, r(θ, t, xt)

)
,

ξ3(ε, t) =
∂

∂x
S(θ + εY, t, Xt) −

∂

∂x
S(θ, t, Xt).

Then∫ T

0

[(
δ
(ε)
θ (θ + εY, t, X) − δ

(ε)
θ (θ, t, X)

)
−

(
Y, Q(θ, t, x)

)]2

dt ≤ Cξ0
2 + C

7∑
k=2

Ik(ε),

where

I2(ε) =
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ1(ε, v) dv du

)2

dt,

I3(ε) = sup
t∈[0,T ]

S(θ, t, Xt)2
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ2(ε, v) dv du

)2

dt,

I4(ε) =
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ3(ε, v) dBv du

)2

dt,

I5(ε) =
∫ T

0

t2H−3

(∫ t

0

w(t, u)ξ1(ε, u) du

)2

dt,

I6(ε) = sup
t∈[0,T ]

S(θ, t, Xt)2
∫ T

0

t2H−3

(∫ t

0

w(t, u)ξ2(ε, u) du

)2

dt,

I7(ε) =
∫ T

0

t2H−3

(∫ t

0

w(t, u)ξ3(ε, u) dBu

)2

dt.

It follows from condition 3) that ξ0(ε)
2 → 0 as ε → 0. Now we estimate I2(ε):

I2(ε) =
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ1(ε, v) dv du

)2

dt

=
∫ T

0

t1−2H

(∫ t

0

∫ 1

0

w(1, v)ξ1(ε, u · v) dv du

)2

dt

≤ C

∫ T

0

t2−2H

∫ t

0

∫ 1

0

ξ1(ε, u · v)2 dv du dt

= C

∫ T

0

t3−2H

∫ 1

0

∫ 1

0

ξ1(ε, t · u · v)2 dv du dt.

We need the following auxiliary result.

Lemma 2. Let ψ ≥ 0 and ψ ∈ L1

(
[0, 1], |ln(u)|

)
. Then∫ 1

0

∫ 1

0

ψ(u · v) du dv ≤
∫ 1

0

ψ(u) |ln(u)| du.
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Proof.∫ 1

0

∫ 1

0

ψ(u · v) du dv = lim
n→∞

n−1∑
k=0

ψ

(
k

n

)
µ

({
(u, v) : 0 ≤ u, v ≤ 1,

k

n
≤ u · v <

k + 1
n

})
,

where µ is the Lebesgue measure in R
2. The measures of the above sets can be estimated

as follows:

µ

({
0 ≤ u, v ≤ 1,

k

n
≤ u · v <

k + 1
n

})
≤ µ

({
k

n
≤ u ≤ 1,

k

n
≤ u · v <

k + 1
n

})

=
∫ 1

k/n

(
k + 1

n
− k

n

)
du

u
=

1
n

(
− ln

(
k

n

))
.

Thus∫ 1

0

∫ 1

0

ψ(u · v) du dv ≤ lim
n→∞

n−1∑
k=0

ψ

(
k

n

)
1
n

(
− ln

(
k

n

))
=

∫ 1

0

ψ(u) |ln(u)| du. �

We turn back to the estimation of I2(ε) and use Lemma 2:

I2(ε) ≤ C

∫ T

0

t3−2H

∫ 1

0

ξ1(ε, t · u)2 |ln(u)| du dt

= C

∫ T

0

t2−2H

∫ t

0

ξ1(ε, u)2
∣∣∣ln (u

t

)∣∣∣ du dt

≤ C

(∫ T

0

t2−2H(1 + |ln(t)|) dt

)
· ‖ξ1(ε)‖2

L2([0,T ],|ln(t)|∨1)

= C ‖ξ1(ε)‖2
L2([0,T ],|ln(t)|∨1) .

Considering (21), we obtain I2(ε) → 0 in probability P
(ε)
θ as ε → 0.

Similarly we prove that the integral involved in the definition of I3(ε) tends to zero;
that is, we prove that

(26)
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ2(ε, v) dv du

)2

dt → 0 in probability P
(ε)
θ .

Note that

(27)

for all δ > 0, there exists N > 0 such that for all ε ∈ (0, 1),

P
(ε)
θ

(
sup

t∈[0,T ]

S(θ, t, Xt)2 > N

)
< δ,

since S(θ, t, x) is continuous, the distribution of Bt does not depend on ε, and since

sup
t∈[0,T ]

|Xt| ≤ εC1 sup
t∈[0,T ]

|Bt| + C2,

where
Ci = Ci

(
LN0 , M(θ), T, sup |xt|

)
, i = 1, 2,

and N0 > 0 is a fixed number. The latter result follows from inequality (8) of [8], since
conditions (7) and (8) hold. The convergence I3(ε) → 0 in probability P

(ε)
θ follows from

(26), (27), and from the inequality

(28) P
(ε)
θ

(
ξ · η(ε) > λ

)
≤ P

(ε)
θ

(
ξ > N

√
λ
)

+ P
(ε)
θ

(
η(ε) >

√
λ/N

)
for all λ > 0, N > 0,
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12 T. ANDROSHCHUK

where we set
ξ = sup

t∈[0,T ]

S(θ, t, Xt)2,

η(ε) =
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ2(ε, v) dv du

)2

dt.

Now we estimate I4(ε). Fix λ ∈
(

1
2 , H

)
such that condition 5) holds. According

to (14) we have

I4(ε) =
∫ T

0

t1−2H

(∫ t

0

u2H−3

∫ u

0

w(u, v)ξ3(ε, v) dBv du

)2

dt

≤
∫ T

0

t1−2H

(∫ t

0

C0K
(
ξ3(ε), B

)
HuH−1 du

)2

dt

= C ‖ξ3(ε)‖2
Cλ[0,T ] ‖B‖2

Cλ[0,T ] .

(29)

The convergence I4(ε) → 0 in probability P
(ε)
θ follows from condition 5) and inequal-

ity (28).
The terms I5, I6, and I7 are estimated similarly to the terms I2, I3, and I4, respectively.

�

The following result contains conditions placed upon the function S(θ, t, x) that yield
relations 4) and 5) of Theorem 2. Note that conditions 4) and 5) are expressed in terms
of the process X.

Theorem 3. Let a function S(θ, t, x) be such that
1) for any θ ∈ Θ there exists L(θ) > 0 such that

|S(θ, t, x) − S(θ, t, y)| ≤ L(θ) |x − y|
for all x, y ∈ R, t ∈ [0, T ];

2) the derivatives

∂2

∂θ ∂t
S(θ, t, x),

∂2

∂θ ∂x
S(θ, t, x)

exist and are continuous for all θ ∈ Θ, t ∈ [0, T ], and x ∈ R;
3) for every compact set B ⊂ R and for every point θ0 ∈ Θ, the functions

∂2

∂θ∂t
S(θ, t, x) and

∂2

∂θ∂x
S(θ, t, x)

are continuous in θ at the point θ0 uniformly in t and x belonging to the set
[0, T ] × B;

4) αB , βB ∈ L1([θ, θ + Y ]) for all Y ∈ R
d with |Y | = δ for some δ > 0, all θ ∈ Θ,

all compact sets B ⊂ R, and some λ ∈
(

1
2 , H

)
, where

αB(θ) = sup
t∈[0,T ]

∥∥∥∥
∣∣∣∣ ∂2

∂θ∂x
S(θ, t, ·)

∣∣∣∣
∥∥∥∥

C1(B)

,

βB(θ) = sup
x∈B

∥∥∥∥
∣∣∣∣ ∂2

∂θ∂x
S(θ, ·, x)

∣∣∣∣
∥∥∥∥

Cλ[0,T ]

.

Then assumptions 4) and 5) of Theorem 2 hold with

(30) q(θ, t) =
∂2

∂θ∂t
S(θ, t, xt), r(θ, t) =

∂2

∂θ∂x
S(θ, t, xt).
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Proof. Set

f(θ, t, x) =
∂

∂t
S(θ, t, x).

Now we prove that the limit

lim
ε→0

∥∥∥∥f(θ0 + εY, t, Xt) − f(θ0, t, Xt)
ε

−
(

Y,
∂

∂θ
f(θ0, t, xt)

)∥∥∥∥
L2([0,T ],|ln(t)|∨1)

= 0

exists in probability P
(ε)
θ0

for all Y ∈ R
d.

Indeed, we obtain from the equality

f(θ0 + Y, t, x) − f(θ0, t, x) =
∫ 1

0

(
Y,

∂

∂θ
f(θ0 + sY, t, x)

)
ds

that ∥∥∥∥f(θ + εY, t, Xt) − f(θ, t, Xt)
ε

−
(

Y,
∂

∂θ
f(θ, t, xt)

)∥∥∥∥
=

∥∥∥∥
∫ 1

0

(
Y,

∂

∂θ
f(θ + εsY, t, Xt) −

∂

∂θ
f(θ, t, xt)

)
ds

∥∥∥∥
≤ |Y |

(∥∥∥∥
∫ 1

0

∣∣∣∣ ∂

∂θ
f(θ + εsY, t, Xt) −

∂

∂θ
f(θ, t, Xt)

∣∣∣∣ ds

∥∥∥∥
+

∥∥∥∥
∣∣∣∣ ∂

∂θ
f(θ, t, Xt) −

∂

∂θ
f(θ, t, xt)

∣∣∣∣
∥∥∥∥
)

≤ |Y |2 C

(∫ 1

0

sup
t∈[0,T ]

∣∣∣∣ ∂

∂θ
f(θ + εsY, t, Xt) −

∂

∂θ
f(θ, t, Xt)

∣∣∣∣ ds

+ sup
t∈[0,T ]

∣∣∣∣ ∂

∂θ
f(θ, t, Xt) −

∂

∂θ
f(θ, t, xt)

∣∣∣∣
)

.

Condition 1) of Theorem 3 and Proposition 2 imply that

(31) sup
t∈[0,T ]

|Xt − xt| ≤ εC(θ) sup
t∈[0,T ]

|Bt| ,

whence we derive that

sup
t∈[0,T ]

∣∣∣∣ ∂

∂θ
f(θ, t, Xt) −

∂

∂θ
f(θ, t, xt)

∣∣∣∣ → 0 in probability P
(ε)
θ

in view of condition 2). Furthermore, relation (31) implies (27) and this together with
condition 3) proves that

∫ 1

0

sup
t∈[0,T ]

∣∣∣∣ ∂

∂θ
f(θ + εsY, t, Xt) −

∂

∂θ
f(θ, t, Xt)

∣∣∣∣ ds

= sup
t∈[0,T ]

∣∣∣∣ ∂

∂θ
f(θ + εs̃Y, t, Xt) −

∂

∂θ
f(θ, t, Xt)

∣∣∣∣ → 0 in probability P
(ε)
θ

for some s̃ ∈ [0, 1]. Therefore relation (21) is proved.
Relation (22) is proved in the same way.
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Now we prove that condition 5) holds. Put

I(θ, ε) =
∥∥∥∥ ∂

∂x
S(θ0 + εY, t, Xt) −

∂

∂x
S(θ0, t, Xt)

∥∥∥∥
Cλ

=
∥∥∥∥
∫ 1

0

(
εY,

∂

∂θ∂x
S(θ0 + εsY, t, Xt)

)
ds

∥∥∥∥
Cλ

≤ ε |Y |
∫ 1

0

∥∥∥∥
∣∣∣∣ ∂

∂θ∂x
S(θ0 + εsY, t, Xt)

∣∣∣∣
∥∥∥∥

Cλ

ds.

(32)

It is straightforward from the definition of the Hölder norm that

‖G(·, X·)‖Cλ[0,T ] ≤ sup
t∈[0,T ]

‖G(t, ·)‖C1(X[0,T ]) · ‖X‖Cλ[0,T ] + sup
x∈X[0,T ]

‖G(·, x)‖Cλ[0,T ] ,

where X[0, T ] = {Xt, t ∈ [0, T ]}. Using this bound in (32) we get

(33) I(θ, ε) ≤ ε |Y |
(∫ 1

0

αX[0,T ](θ0 + εsY ) ds · ‖X‖Cλ[0,T ] +
∫ 1

0

βX[0,T ](θ0 + εsY ) ds

)
.

Relation (27) together with representation (1) for the process Xt implies that

(34)
for all δ > 0 there exists Nδ > 0 such that for all ε ∈ (0, 1),

P
(ε)
θ

(
‖X‖Cλ[0,T ] > Nδ

)
< δ,

since Xt is a sum of a smooth process

x0 +
∫ t

0

S(θ, s, Xs) ds

and εBt. Using relation (33) and conditions (27), (34), and assumption 4) of Theorem 3
we get I(θ, ε) → 0 in probability P

(ε)
θ as ε → 0. �

Example 1. Let S(θ, t, x) = θ · t ·x. Then the solution of the deterministic equation (2)
is given by

xt = (x0 − 1) + exp
(

θ

2
t2

)
, t ∈ [0, T ].

It is clear that the function S satisfies conditions 1)–3) of Theorem 2 in this case. It
is also obvious that assumptions of Theorem 3 hold, whence conditions 4) and 5) of
Theorem 2 follow. The functions q(θ, t) and r(θ, t) defined by equalities (30) and the
function Q(θ, t, x) = Q(θ, t) defined in assumption 6) of Theorem 2 are such that

q(θ, t) = xt = (x0 − 1) + exp
(

θ

2
t2

)
, r(θ, t) = t,

and

Q(θ, t) = (2 − 2H)t1/2−H

∫ t

0

u2H−3

∫ u

0

w(u, v)
(
1 + θv2

) (
(x0 − 1) + exp

(
θ/2v2

))
dv du

+ tH−3/2

∫ t

0

w(t, u)
(
1 + θu2

)(
(x0 − 1) + exp

(
θ/2u2

))
du,

respectively. Note that the function Q(θ, t, x) = Q(θ, t) can be expressed explicitly in
terms of generalized hypergeometric functions.

Therefore all the assumptions of Theorem 2 hold, so that the family of probability
measures {P (ε)

θ , θ ∈ Θ} generated by the solution of equation (1) with S(θ, t, x) = θ · t ·x
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is locally asymptotically normal in Θ as ε → 0. In this case, the normalizing factor is

φε(θ) = ε ·
(∫ T

0

Q(θ, t)2 dt

)−1/2

.

4. Conclusion

A formula for the likelihood ratio of measures generated by solutions of a stochastic
differential equation with fractional Brownian motion is obtained in this paper. Sufficient
conditions that a family of probability measures {P (ε)

θ , θ ∈ Θ} be locally asymptotically
normal as ε → 0 are given for the case where the measures are generated by solutions of
a stochastic differential equation that depends on a parameter θ and involves fractional
Brownian noise.
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