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Abstract. The most widely used methods of data assim-

ilation in large-scale oceanography, such as the Simple

Ocean Data Assimilation (SODA) algorithm, specify the

background error covariances and thus are unable to refine

the weights in the assimilation as the circulation changes.

In contrast, the more computationally expensive Ensemble

Kalman Filters (EnKF) such as the Local Ensemble Trans-

form Kalman Filter (LETKF) use an ensemble of model fore-

casts to predict changes in the background error covariances

and thus should produce more accurate analyses. The EnKFs

are based on the approximation that ensemble members re-

flect a Gaussian probability distribution that is transformed

linearly during the forecast and analysis cycle. In the pres-

ence of nonlinearity, EnKFs can gain from replacing each

analysis increment by a sequence of smaller increments ob-

tained by recursively applying the forecast model and data

assimilation procedure over a single analysis cycle. This has

led to the development of the “running in place” (RIP) algo-

rithm by Kalnay and Yang (2010) and Yang et al. (2012a,b) in

which the weights computed at the end of each analysis cycle

are used recursively to refine the ensemble at the beginning

of the analysis cycle. To date, no studies have been carried

out with RIP in a global domain with real observations.

This paper provides a comparison of the aforementioned

assimilation methods in a set of experiments spanning seven

years (1997–2003) using identical forecast models, initial

conditions, and observation data. While the emphasis is on

understanding the similarities and differences between the

assimilation methods, comparisons are also made to indepen-

dent ocean station temperature, salinity, and velocity time se-

ries, as well as ocean transports, providing information about

the absolute error of each. Comparisons to independent ob-

servations are similar for the assimilation methods but the

observation-minus-background temperature differences are

distinctly lower for LETKF and RIP. The results support the

potential for LETKF to improve the quality of ocean analyses

on the space and timescales of interest for seasonal prediction

and for RIP to accelerate the spin up of the system.

1 Introduction

Seasonal and longer climate predictions depend on accu-

rate estimates of the initial state of the ocean. Most fore-

cast centers base their ocean state estimates on data assim-

ilation methods such as Optimal Interpolation or 3D-Var, in

which the calculation is simplified by the assumption of pre-

specified statistics of the model errors (Carton and Santorelli,
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2008; Cummings et al., 2009; Xue et al., 2012). In reality

these errors evolve with the changing circulation. Ensemble

Kalman Filters (EnKF) have been developed as a computa-

tionally efficient way to estimate these evolving errors. How-

ever, to date there are few direct comparisons of the results

of these different approaches in a realistic situation to eval-

uate the improvement in state estimates. This study attempts

to help fill this void by comparing the widely used Simple

Ocean Data Assimilation (SODA) system against the Local

Ensemble Kalman Filter (LETKF) of Hunt et al. (2007), and

the LETKF with RIP (Kalnay and Yang, 2010; Yang et al.,

2012a,b). Here we compare these methods as adapted for the

ocean by Penny 2011) in a set of seven- year-long exper-

iments (1997–2003) using identical forecast models, initial

conditions, and observation data.

Data assimilation blends a weighted combination of ob-

servations and model forecasts to improve their agreement

while remaining consistent with the estimated uncertainties

in each. If the forecast error is unbiased, stationary, Gaus-

sian distributed, homogeneous, and isotropic then the op-

timal weights for the observations in a least squares sense

are given by Optimal Interpolation or equivalently, 3D-Var

(Kalnay, 2003). However, we know that errors are more cor-

related in the direction of wave and fluid flows. For example,

the errors have greater correlation scales in the zonal direc-

tion than in the meridional direction in the tropics. As another

example, error correlations decrease rapidly across oceanic

fronts such as the Gulf Stream.

In the 1990s, variants of the Kalman filter were devel-

oped for ocean data assimilation. These methods used adap-

tive approximations of the background error covariance, but

were computationally expensive. Fukumori et al. (1993) pro-

posed reducing the cost of sequential filtering by using the

asymptotic steady-state form of the Kalman filter. Pham et

al. (1998) proposed a modified form of the Extended Kalman

Filter that approximated the error covariance with a singular

low rank matrix to control only the most unstable dimensions

of error growth. The ensemble Kalman Filter was introduced

by Evensen (1994) as a computationally efficient way to pre-

dict key aspects of the nonstationary, inhomogeneous error

statistics – those associated with the most unstable dimen-

sions of error growth. The ensemble Kalman Filter estimates

these error statistics from examination of the correlations of

O(10–100) ensemble members, each consisting of a model

forecast. The computational cost of the filter is proportional

to the number of ensemble members. The original formula-

tion of Evensen had some limitations, including a tendency

to become unstable, but it led to many alternative implemen-

tations to address these limitations (e.g. Brusdal et al., 2003;

Zhang et al., 2007; Keppenne et al., 2008; Wan, 2008, 2010;

Zhang and Rosati, 2010).

In this paper we explore a formulation known as LETKF

that was introduced by Hunt et al. (2007) and has found wide

application in meteorology. As with other EnKFs, LETKF is

based on the approximation that ensemble members reflect a

Gaussian probability distribution that is transformed linearly

during the forecast and analysis cycle. In the presence of non-

linearity, LETKF can be improved by replacing each analysis

increment by a sequence of smaller increments over a single

analysis cycle. This has led to the development of the “run-

ning in place” (RIP) algorithm by Kalnay and Yang (2010)

in which the weights computed at the end of each analysis

cycle are used to adapt the distribution of ensemble mem-

bers at the beginning of the analysis cycle. This procedure

may be repeated multiple times per analysis cycle, but in this

study it is only applied once per cycle. The RIP algorithm

has been applied successfully in a simple Lorenz system, a

quasi-geostrophic model (Kalnay and Yang, 2010; Yang et

al., 2012a), observing system simulation experiments for ty-

phoon prediction (Yang et al., 2012b) and the forecast of Ty-

phoon Sinlaku (Yang et al., 2013). RIP is implemented here

for the first time in the global domain with historical obser-

vation data.

We compare the results of the LETKF and LETKF-RIP fil-

ters against an implementation of SODA in the same quasi-

global model for the seven-year period (1997–2003). The pe-

riod was chosen because it contains strong climate signals

beginning with the massive 1997/1998 El Niño, the La Niña

of 1998 and 1999, and the return of El Niño in 2002/2003.

This period is also of interest because of the rich array of

ocean observations available, including temperature, salinity,

and currents from the tropical mooring arrays in the Atlantic

and Pacific, satellite SST, satellite altimetry, and the com-

mencement of the extensive Argo float observing system in

1999.

2 Data and methods

A set of 4.3 million temperature profiles and moored time

series and 1.9 million salinity profiles spanning 1979–2003

was obtained from the World Ocean Database 2005 (Boyer

et al., 2006). This profile data coverage is concentrated along

shipping routes in the Northern Hemisphere and in some

coastal regions. Temperature observations are also concen-

trated in the tropical Pacific while salinity observations are

most prevalent in the North Atlantic and Indian Oceans.

Salinity observation coverage increases rapidly throughout

the experiment period due to the introduction of the Argo

float network. This data underwent minor additional qual-

ity control and was then binned into daily 1◦ × 1◦ horizontal

bins and linearly interpolated onto the model vertical levels

(Fig. 1).

We use validation data from two stations: the ALOHA sta-

tion of the Hawaiian Ocean Time-series (Karl and Lukas,

1996) and Station S of the Bermuda Atlantic Time-series

Study (Steinberg et al., 2001). The hydrography at Station

S consists of a seasonally varying, up to 200 m-thick sur-

face layer whose properties are controlled by local condi-

tions superimposed on a roughly 200–400 m depth layer of

Nonlin. Processes Geophys., 20, 1031–1046, 2013 www.nonlin-processes-geophys.net/20/1031/2013/



S. G. Penny et al.: The local ensemble transform Kalman filter 1033

 

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$'$'()" $'$'(*" $'$'(+" $'$'((" $'$'!!" $'$'!$" $'$'!%" $'$'!&"

,-./-01230-"

41567628"

Fig. 1. Temperature and Salinity super-observation counts from Jan-

uary 1996 to January 2004. Each data point represents a single day’s

Argo and XBT profile data used for data assimilation, after horizon-

tal binning and interpolation to the model’s vertical levels.

quasi-uniform 18 ◦C mode water (Joyce and Robins, 1996;

Phillips and Joyce, 2007). The upper layer experiences shal-

low depths, warming and reduced salinity in boreal summer

and fall, and corresponding cooling, salinification, and deep-

ening in late winter and spring (annual ranges of temper-

ature and salinity near-surface are 6 ◦C and 0.15 psu). Su-

perimposed on this seasonal cycle temperature and salinity

of the upper 200 m undergo year-to-year fluctuations on the

order of 0.5 ◦C and 0.05 psu, with cool temperatures in the

mid-1990s followed by a warming trend, and substantially

reduced salinities for several years in the late 1990s. Below

this layer the mode water thickness and salinity varies as a

function of the intensity of winter storm activity, which was

reduced in the late 1990s and early 2000s.

For observed zonal velocities, we use the Acoustic

Doppler Current Profile (ADCP) data that are part of the

TAO/TRITON array located in the equatorial Pacific. The

available data during the experiment period from 1997–2003

are located on the equator at 165◦ E, 170◦ W, 140◦ W, and

110◦ W. Volume transports were estimated in the model as

the integral of the velocity over a vertical cross section

of each current, from the surface to 700 m depth for the

Gulf Stream and Kuroshio Current, and from the surface to

2400 m depth for the Agulhas Current. The model estimates

are compared to observations of volume transport as reported

by Richardson (1985), Imawaki et al. (2001), and Bryden et

al. (2005). While the major western boundary currents are

not well resolved in this model, the relative impacts of the

different assimilation methods on the general circulation are

noted.

Forecasts are made using an ocean model based on the

Geophysical Fluid Dynamics Laboratory (GFDL) Modular

Ocean Model 2.2 (Pacanowski, 1996). The model resolution

is 1◦×0.58◦×20 levels in the tropics, expanding to a uniform

1◦ × 1◦ × 20 levels in mid-latitude for a total of 936 000 grid

points. The basin domain extends from 62◦ S–62◦ N with a

relaxation to Levitus and Boyer (1994) climatological tem-

perature and salinity at higher latitudes. We make no attempt

to model cryospheric or deep-water formation processes ex-

plicitly. A weak relaxation of the global temperature and

salinity fields to climatological values with a 5 yr timescale is

included in order to reduce weak forecast bias in deep water

masses. Horizontal friction and diffusion coefficients have a

constant value of 6 × 107 cm s−2. Vertical friction and dif-

fusion are Richardson number dependent with a maximum

value of 3 cm s−2. No explicit treatment of model bias was

performed.

Surface momentum and thermal forcing is provided by

the NCEP/NCAR reanalysis of Kalnay et al. (1996) while

surface salinity is represented with a monthly climatology

from Levitus and Boyer (1994). Surface forcing fields are lin-

early interpolated from monthly averages. The Free Run was

started from a state of rest with climatological temperature

and salinity and run from years 1970 to 2004. Differences

between the observations and the Free Run were calculated

for 1996–2003. These give a point of reference for the back-

ground and analysis errors in the experiments. We assume

the main source of forecast error in the ocean model comes

from the surface forcing. For this study, we focus on wind

stress error, though we acknowledge additional sources of

surface forcing error are important as well. In order to intro-

duce wind error with realistic spatial scales and seasonality

into the stress of the ith ensemble member, τ i , perturbations

were constructed by selecting stresses from the same month

in different, randomly selected years from the entire NCEP

reanalysis period (a similar approach was used by Zhang et

al., 2007). Thus τ i(tk) is the weighted combination at time

tk ,

τ i(tk) = (1 − αwτ (tk) + αwτ i(tk + m · 12 mo) (1)

for some random integer n 6= 0. αw is the weighting that de-

termines the proportion of the historical perturbation used.

For the experiments reported here we used αw = 0.1. A simi-

lar approach was used to generate the initial ensemble, using

the historical Free Run data set as a basis with a weighting

coefficient equal to 0.5.

Our benchmark data assimilation experiment uses SODA

(Carton et al., 2000a, b; Carton and Giese, 2008). SODA

aggregates an extended (±45 day) window of observations,

with observations weighted by a Gaussian taper function

centered at the analysis time. SODA specifies an empirical

anisotropic background error covariance that depends on lat-

itude, depth and dynamic height (see Carton et al., 2000a for

details). The vertical background error covariance is assumed

to be large within the mixed layer, and decreases at deeper

levels where the ocean is well mixed. Observation error is

assumed to be uncorrelated white noise with an amplitude

equal to 20 % of the zero lag model background error vari-

ance for temperature (T ), and 40 % for salinity (S), as spec-

ified by Carton et al. (2000a). The salinity observation error

www.nonlin-processes-geophys.net/20/1031/2013/ Nonlin. Processes Geophys., 20, 1031–1046, 2013
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values are effectively taken from the climatological T/S rela-

tionship to be consistent with the estimated temperature ob-

servation error values. SODA uses the two-stage Incremental

Analysis Update (IAU) time filter of Bloom et al. (1996) to

avoid generation of spurious gravity waves. After perform-

ing the analysis on the 5-day forecast, a 10-day forecast is

performed in which the analysis increment is gradually in-

troduced as a restoring force into the predictive equations for

temperature and salinity.

The second data assimilation algorithm we use is LETKF,

a computationally efficient ensemble Kalman filter designed

by Hunt et al. (2007) that uses the localization method of

Ott et al. (2004) and a transformation between background

and analysis ensemble perturbations similar to Bishop et

al. (2001), Wang et al. (2003) and Ott et al. (2004). The al-

gorithm uses an ensemble of numerical forecast model runs

to estimate the background error covariance and assimilates

observations at the time they occur rather than aggregating

them at a fixed analysis time. A variable localization radius

is used in LETKF to model the reduction of the radius of

deformation with increasing latitude. LETKF’s estimates of

observation error are taken from the SODA assimilation sys-

tem.

The separation of ensemble members in the state space

should occur because of a combination of internal fluid in-

stabilities and variations in surface forcing. The impacts

of internal instabilities are greatly reduced because of our

choice of non-eddy resolving resolution and associated phys-

ical parameterization errors. Additionally, limitations on the

size of the ensemble further reduce the ensemble variance.

We adjust for this missing error variance (1) in the model

by adding perturbations to the wind field (as described

above), and (2) in the data assimilation procedure through

an adaptive error covariance inflation scheme developed by

Miyoshi (2011). Miyoshi’s scheme has been applied to adjust

inflation to automatically balance the background error with

the estimated observation error. Occasionally, the ensemble

spread becomes under-dispersive, meaning that the back-

ground error covariance estimate is small, while the mean

state is “far” from the observations (with respect to the ob-

servation error). In these cases the inflation is automatically

increased and the ensemble spread increases as a direct re-

sult. The ensemble spread continues to increase over multi-

ple analysis cycles until the background error covariance is

large enough that the observations begin to impact the anal-

ysis again. A parameter for adaptive inflation σb allows the

inflation to be smoothed in time to achieve a larger effective

sample size of observations.

Miyoshi’s original method assumed that the spatial struc-

ture of the observing system remains constant in time. When

applied to the oceanographic problem for which the observ-

ing system is constantly changing, Miyoshi’s approach has a

tendency to increase background covariance in areas where

observational coverage declines over time. Here, whenever

observation coverage declines we relax inflation values back

to the initial conditions in order to improve its performance

for the sparse observation network. For the experiments de-

scribed here, this relaxation was only applied in areas where

the analysis spread for temperature was greater than 2 ◦C.

The final data assimilation algorithm is LETKF-RIP, uti-

lizing the iterative dual-pass RIP procedure introduced by

Kalnay and Yang (2010) and Yang et al. (2012a). RIP ap-

plies the weights computed for the end of the LETKF anal-

ysis cycle to the ensemble members at the beginning of the

cycle, and the forecast and analysis steps are subsequently re-

peated. The result is a gradual correction to the background

ensemble mean. Each repetition is based on the same set of

observations, but initiates the dynamical model from differ-

ent initial conditions. While this procedure could be repeated

several times, it is only repeated once per analysis cycle in

this study. Both the standard LETKF and LETKF-RIP use a

5 day analysis cycle so the background and analysis times

correspond with SODA. Both ensemble methods use a 40-

member ensemble in all experiments reported here.

LETKF implements localization by choosing observations

around each model grid point subject to a cutoff radius. It

then applies a Gaussian localization function to the esti-

mated observation errors in this radius. The localization is

parameterized by the σ -radius, which is the distance cor-

responding to one standard deviation of the Gaussian lo-

calization function. We report results from two parameter

settings in LETKF, indicated by superscripts (if no super-

script is used the statements apply to both). The first uses

a horizontal σ -radius at the equator of about 300 km with

a cutoff at 1100 km (denoted LETKF1 and LETKF-RIP1),

and the second uses a σ -radius of 1100 km with a cutoff at

about 4000 km (denoted LETKF2 and LETKF-RIP2). Both

decrease linearly to an 80 km σ -radius with cutoff at 300 km

at the ±60◦ latitude. The change in localization exhibited a

nonlinear effect on the inflation values computed with the

adaptive inflation algorithm, thus a smaller time-scaling fac-

tor σb = 0.0001 was used with the larger localization radius,

versus σb = 0.001 for the smaller radius. In the vertical, a σ -

radius of about 80 m with a cutoff of 300 m was used. We will

focus primarily on the results from LETKF1 and LETKF-

RIP1, but include LETKF2 and LETKF-RIP2 for compari-

son.

3 Results

The following experiments are compared: A Free Run of the

model with no data assimilation applied, SODA, LETKF1,2

and LETKF-RIP1,2. We assess the performance of these

data assimilation systems by first examining the consistency

of statistical assumptions used in formulating the assimila-

tion algorithms. In particular we focus on the root mean

square deviation (RMSD) statistic of observation-minus-

background (O–B) and observation-minus-analysis (O–A)

differences evaluated at the observation locations and times.

Nonlin. Processes Geophys., 20, 1031–1046, 2013 www.nonlin-processes-geophys.net/20/1031/2013/
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RMSD O–B and O–A in the top 500 m for Free Run, SODA,

Standard-LETKF1, and LETKF-RIP1. The background data are

shown with dashed lines, and the analysis data with solid lines. In

the legend, the suffix “B” signifies background, while “A” signifies

analysis. For the RIP methods, “B0” is the background of the ini-

tial iteration of LETKF while “B1” and “A1” are the background

and analysis after the 1st iteration of RIP. The mean temperature

observation error in the top 500 m is shown with a dashed gray line.

As cases LETKF-B and RIP-B0 have not used “future” observa-

tions, they are directly comparable and show improvement by RIP.

Because SODA uses a long window of observations, it is more ap-

propriate to compare the background SODA-B versus RIP-B1 and

the analysis SODA-A versus LETKF-A and RIP-A1.

For all methods other than SODA, the (O–B) RMSD are

computed with observations that have not been used at all by

the assimilation up to that time, thus these observations may

be considered withheld for the purpose of comparison. The

(O–A) RMSD at the corresponding time indicates the relative

impact of the assimilation method. Adaptive inflation values

are provided for additional perspective on the performance

of the LETKF-based approaches. An increase in RMSD was

noted as the ensemble size was reduced from 40 to 20 mem-

bers, though results were qualitatively similar.

To evaluate the analyses, we present comparisons to inde-

pendent observations. We examine the relationship between

observed and analysis temperature and salinity in the north-

ern subtropical gyres through comparison to observed time

series at Station S (30.6◦ N, 63.5◦ W) in the western sub-

tropical North Atlantic and the Hawaii Ocean Time-series

site (24.8◦ N, 158.0◦ W) near Oahu, Hawaii in the subtrop-

ical North Pacific. We examine zonal velocity anomalies us-

ing Tropical Atmosphere Ocean (TAO/TRITON) moorings

in the equatorial Pacific (at 165◦ E, 170◦ W, 140◦ W and

110◦ W). Both observation and model data for the stations

and moorings have been smoothed with a monthly average

prior to this comparison. We also compare volume transport

in selected major western boundary currents to observed val-

ues.
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dashed lines, and the analysis data with solid lines. In the legend,

the suffix “B” signifies background, while “A” signifies analysis.

For the RIP methods, “B0” is the background of the initial iteration

of LETKF while “B1” and “A1” are the background and analysis
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in the top 500 m is shown with a dashed gray line. Comparisons

between the background SODA-B versus RIP-B1 and the analysis

SODA-A versus LETKF-A and RIP-A1 show improvement by RIP.

3.1 RMSD

The aggregate RMSD for the final three years of the experi-

ment period are shown for temperature (Table 1) and salinity

(Table 2). Globally, LETKF and LETKF-RIP substantially

improve the temperature fields over the SODA baseline. As

can be seen in Fig. 2, the (O–B) temperature RMSD for

LETKF1 and LETKF-RIP1 both fall below the SODA (O–B)

baseline. The LETKF-RIP1 temperature (O–A) RMSD falls

below the estimated observation error over a year before the

standard LETKF analysis, while the SODA baseline never

reaches this level.

Throughout the experiment period, across all regions, the

temperature fields for LETKF-RIP are as good or better

than LETKF. LETKF-RIP takes advantage of the large esti-

mated observation error (e.g. with a mean 0.67 psu in the top

500 m, as specified by SODA) and increases salinity RMSD

in some regions to facilitate greater improvements in tem-

perature. However, as shown in Fig. 3, by the end of the ex-

periment period the salinity (O–B) RMSD for both LETKF1

and LETKF-RIP1 have fallen below the SODA baseline. The

LETKF-RIP1 salinity (O–A) RMSD falls below the SODA

baseline early in the experiment period, and this occurs over

a year before the crossover by the standard LETKF1 analysis.

Recall from Fig. 1 that there is an order of magnitude

fewer salinity observations than temperature observations.

For the salinity RMSD calculations, a small number of out-

lier observations from the Gulf Stream that caused a spike in

RMSD (for both the Free Run and SODA) in the first two

years of the experiment period were removed, though they

www.nonlin-processes-geophys.net/20/1031/2013/ Nonlin. Processes Geophys., 20, 1031–1046, 2013
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Table 1. Mean (observation-background) temperature RMS deviations (◦C) for each method from January 2001–December 2003 listed

globally, regionally, and by vertical level.

Free Run SODA LETKF1 LETKF-RIP1 LETKF2 LETKF-RIP2

Global 2.03 1.23 1.03 1.01 1.23 1.17

N Pacific 2.17 1.47 1.35 1.30 1.57 1.50

Eq Pacific 2.19 1.18 0.89 0.89 1.05 1.00

S Pacific 1.43 0.98 0.96 0.94 1.21 1.12

N Atlantic 1.63 1.12 0.99 0.96 1.28 1.19

Eq Atlantic 1.94 1.18 0.94 0.92 1.15 1.09

S Atlantic 1.86 1.66 1.06 0.81 1.39 1.36

Indian 1.61 1.17 1.12 1.09 1.32 1.27

Global SFC 1.91 1.03 0.95 0.91 1.20 1.13

Global 100 m 2.19 1.37 1.12 1.12 1.26 1.10

Global 500 m 1.15 0.68 0.67 0.63 0.88 0.82

Table 2. Mean (observation-background) salinity RMS deviations (psu) or each method from January 2001–December 2003 listed globally,

regionally, and by vertical level.

Free Run SODA LETKF1 LETKF-RIP1 LETKF2 LETKF-RIP2

Global 0.34 0.26 0.26 0.26 0.31 0.31

N Pacific 0.29 0.14 0.12 0.19 0.36 0.31

Eq Pacific 0.25 0.20 0.24 0.26 0.29 0.30

S Pacific 0.19 0.18 0.20 0.24 0.16 0.17

N Atlantic 0.34 0.30 0.25 0.25 0.32 0.31

Eq Atlantic 0.35 0.29 0.25 0.24 0.30 0.30

S Atlantic 0.23 0.11 0.21 0.18 0.20 0.19

Indian 0.30 0.18 0.16 0.15 0.30 0.25

Global SFC 0.34 0.27 0.31 0.30 0.33 0.34

Global 100 m 0.34 0.27 0.24 0.26 0.31 0.30

Global 500 m 0.23 0.21 0.14 0.13 0.20 0.20

were used in the analyses. While the estimated observation

error profiles were used from published results derived for

the second half of the 20th century, the results in Fig. 3 in-

dicate that a more sophisticated estimation of observation er-

rors, varying not only by depth but also geographically and

temporally, may further improve the analyses, particularly

with the increase in quantity and accuracy of in situ salin-

ity observations due to the Argo system.

In Figs. 2 and 3 we show RMSD for both the background

and analysis fields for SODA and LETKF1. Because RIP is

an iterative method, we show the background for the first

(B0) and last (B1) iterations of LETKF-RIP1, as well as

the final analysis (A1). We note that the background fields

for LETKF1-B and RIP1-B0 can be fairly compared since

they do not use future observations, relative to the analysis

time. Because SODA uses a long window of observations

extending both into the past and future relative to the anal-

ysis time, it is more appropriate to compare the background

field SODA-B with RIP1-B1 and the analysis field SODA-

A with LETKF1-A and RIP1-A1. Figure 2 shows that the

RIP-B0 RMSD with the temperature observations is signifi-

cantly smaller than the corresponding LETKF-B during the

spin up of the first four years, indicating that, in agreement

with Kalnay and Yang (2010), RIP is particularly helpful dur-

ing the spin up. During the last 3 yr included in Table 1, the

advantage of RIP over the standard LETKF for temperatures

is smaller but still positive.

Both for salinity and for temperatures, the forecast from

RIP-B1, started from the previous analysis updated with RIP

is about as accurate as the analysis of the standard LETKF,

and the LETKF-RIP analysis is significantly more accurate

in RMSD, indicating that RIP succeeded in improving the

quality of the previous analysis. We note that for reanalysis,

the improvement of the previous analysis can be performed

with the “no-cost smoother” of Kalnay et al., 2007; Yang et

al., 2009, without incurring in the main computational cost

of RIP, which is the re-forecasting of the ensemble.
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Table 3. Adaptive inflation values averaged per region. Values are reported at the end of the experiment period (approximately 1 Jan-

uary 2004). Larger adaptive inflation indicates model deficiencies in representing observed features. Adaptive inflation values are small in

the southern oceans due to low data availability.

Percent Inflation

LETKF1 LETKF-RIP1 LETKF2 LETKF-RIP2

N Pacific 14.1 9.1 5.7 4.2

Eq Pacific 36.6 24.2 16.4 12.6

S Pacific 4.2 2.6 1.1 0.9

N Atlantic 19.3 12.2 6.7 4.6

Eq Atlantic 28.3 18.1 11.2 8.0

S Atlantic 2.8 1.8 0.4 0.3

Indian 9.5 6.6 3.2 2.5

Gulf Stream 24.6 13.6 9.5 6.8

Kuroshio 38.6 22.0 20.6 14.8

Table 4. Mean and standard deviation of volume transports for the Gulf Stream (off Cape Hatteras, 35◦ N, 0–700 m), Kuroshio Current (off

Shikoku Island, ASUKA Line, 0–700 m), and Agulhas Current (off Port Edward, 33◦ S, 0–2400 m) from 1997 to 2003.

Mean Volume Transport in Sverdrups (Sv), and (standard deviation)

Free

Run

SODA LETKF1 LETKF-

RIP1
LETKF2 LETKF-

RIP2
Observed

Gulf Stream 28.8

(1.7)

46.2

(21.1)

38.0

(7.4)

41.5

(10.1)

32.4

(2.0)

34.0

(2.5)

60*

(55)

Kuroshio 34.1

(1.9)

56.7

(16.7)

44.7

(11.0)

46.5

(14.0)

40.1

(3.0)

42.1

(3.9)

42**

(1.3)

Agulhas 77.5

(22.7)

78.3

(23.3)

76.8

(22.7)

76.4

(22.6)

77.4

(22.7)

77.5

(22.8)

69.7***

(21.5)

* Richardson (1985); ** Imawaki et al. (2001); *** Bryden et al. (2005).

3.2 Adaptive inflation parameter by region

As discussed in Sect. 2, inflation is needed to artificially en-

hance growth of the ensemble spread due to the viscous na-

ture of the 1 × 1◦ model grid resolution. The adaptive in-

flation procedure increases inflation for areas in which the

model error is estimated to be too small based on comparison

with local observations. In a well-observed region, smaller

values of inflation indicate a more appropriate ensemble in

approximating the background covariance given the obser-

vation errors, as described by the diagnostic equations of

Desroziers et al. (2005) and Li et al. (2009). Average inflation

values for LETKF and LETKF-RIP are given for each region

in Table 3. In general, the inflation values are larger in the

western boundary currents and in the equatorial regions of

the Atlantic and Pacific oceans. However, because the adap-

tive inflation calculation can only be performed when ob-

servations are present, it is noted that adaptive inflation is

roughly proportional to the number of observations available

in each region over the duration of the experiment period.

The adaptive inflation values for LETKF-RIP are less than

that for LETKF. This indicates a reduced need for inflation

with the RIP method. Both inflation and RIP provide a means

to increase the effect of specific observations on the analysis.

While adaptive inflation builds a long-term “memory” of ge-

ographic areas where the model consistently disagrees with

observations, RIP reforms the initial ensemble to immedi-

ately increase the impact of observations in areas where the

model uncertainty is largest.

3.3 Comparisons with independent observations at

station S and Aloha

Next we present comparisons of the analyses against inde-

pendent time series of temperature and salinity at two sub-

tropical locations in the North Atlantic and North Pacific.

Our comparison of the Free Run and assimilation experi-

ments at Station S shows that the Free Run has a difficult

time representing the mean vertical structure of temperature

(Fig. 4) or salinity (Fig. 5). In particular, it is over 3 ◦C too

warm in the upper 200 m and 3 ◦C too cold in the depth range

200–400 m, implying that it is too strongly stratified, and is

also too fresh by up to 0.5 psu.

All of the assimilation methods reduce this mean stratifi-

cation error. After assimilation the salinity analyses are no

longer uniformly fresh, but develop a pattern of salty and

www.nonlin-processes-geophys.net/20/1031/2013/ Nonlin. Processes Geophys., 20, 1031–1046, 2013
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Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 4. Temperature analysis minus bottle temperature measurement (◦C) at Station S (Bermuda; (30.55–63.5)) from January 1997 to De-

cember 2003 for the top 500 m. From top to bottom: Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2, and LETKF-RIP2. Red shows that

the analysis is too warm, and blue too cold, compared to the independent observation. White gaps indicate missing observation data.

Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 5. Salinity analysis minus bottle measurement (psu) at Station S (Bermuda; (30.55–63.5)) from January 1997 to December 2003 for the

top 500 m. From top to bottom: Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2, and LETKF-RIP2.
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Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 6. Temperature analysis minus bottle measurement (◦C) at Aloha Station (24.75–158.0) from January 1997 to December 2003 for the

top 500 m. From top to bottom: Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2, and LETKF-RIP2.

Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 7. Salinity analysis minus bottle measurement (psu) at Aloha Station (24.75–158.0) from Januar 1997 to December 2003 for the top

500 m. From top to bottom: Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2, LETKF-RIP2.
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Fig. 8. Mean temperature and salinity (analysis minus independent bottle measurements) RMSD at Station S and Aloha Station corresponding

to Figs. 4–7. Results are shown for the Free Run (solid grey), SODA (green), LETKF1 (blue), and LETKF-RIP1 (purple), with the observation

error profile shown for reference (dashed grey).

fresh anomalies that are trapped near the surface. LETKF

seems to still be adjusting mean temperatures throughout

the early years of the experiment and thus are still too cold

between 200–400 m, whereas in SODA they are too warm.

This corrective warming occurs more gradually in LETKF

but is accelerated by LETKF-RIP. All analyses show erro-

neously warm surface temperatures in winter. In most cases,

LETKF-RIP reduces the error compared to LETKF, though

there is a slight increase in errors in the summer of 2000 by

LETKF-RIP1. Both methods seem to improve the warm win-

ter anomalies versus SODA. While LETKF1 does this by

allowing freshwater anomalies at the surface, the effect is

mitigated by LETKF-RIP. The summer of 2002 is unusual

in all three experiments in showing anomalously cool wa-

ter throughout the upper 400 m relative to observed condi-

tions, which were themselves anomalously cool with deep

penetration of the winter mixed layer. During the anoma-

lous conditions of summer 2002, all three assimilation ex-

periments exhibit elevated surface salinities, while SODA

has anomalously low salinity below 200 m. In some cases,

LETKF-RIP reduces the salinity errors exhibited by LETKF,

e.g. below 200 m in 1997–1998, throughout 0–400 m from

1999–2001. The anomalously high surface salinities in sum-

mer 2002 are reduced by LETKF-RIP, though this correction

appears to have caused fresh anomalies in the subsequent

winter months for LETKF-RIP1. In other cases, LETKF-RIP

increases the salinity errors, e.g. the autumn months of 1997,

2000, 2002 and 2003. In winter 2002, errors are improved by

LETKF-RIP1 over LETKF1, but worsened by LETKF-RIP2

over LETKF2.

At Station Aloha in the subtropical North Pacific, the up-

per 400 m contains a warm salty layer at 0–200 m with tem-

peratures of 18◦ −23 ◦C and salinities 34.9–35.2 psu, drop-

ping to 14 ◦C and 34.1 psu by 400 m depth. The seasonal cy-

cle at this location is relatively weak. Salinity in this upper

layer typically exhibits a subsurface maximum reflecting its

origin through subduction along the subtropical front. Dur-

ing our period of interest conditions were anomalously dry,

leading to heavier than normal surface water and more exten-

sive exchanges throughout the upper 200 m (Lukas, 2001).

The Free Run at this location has temperatures that are too

cool by several degrees and salinities that are too fresh by

0.3 psu (more consistent with salinities earlier in the decade).

Again, the analyses all show a reduction in the temperature

(Fig. 6) and salinity deviations (Fig. 7) from observations. In

all experiments, temperatures remain too cold in the upper

300 m. SODA, LETKF2 and LETKF-RIP2 remain too fresh

in the upper 200–300 m. This fresh bias is corrected starting

in 2000 by LETKF1, and to a greater degree LETKF-RIP1,

with some slight overshooting. However, as in the case for

Station S, LETKF1 and LETKF-RIP1 analysis errors have

more variation in time than the other methods. This is ex-

pected, as SODA uses a rolling window of observations that

extends well beyond the analysis cycle and is implemented

via a forcing term (via IAU). Both LETKF2 and LETKF-

RIP2 exhibit a more gradual adjustment due to the larger
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Observed

Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 9. Monthly averaged zonal velocity at (0◦ N, 165◦ E) for observations and analyses from January 1997 to December 2003 from 30 to

270 m, with time mean removed. From top to bottom: Observed ADCP data, Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2, LETKF-

RIP2.

spatial localization and the more gradual time smoothing pa-

rameter used for adaptive inflation.

The time mean (A–O) RMSD are shown for the Free Run,

SODA, LETKF1 and LETKF-RIP1, relative to the observa-

tion error profile. At both stations, the mean temperature de-

viations are reduced by all methods. For Station S, LETKF-

RIP1 gives the greatest improvement in the top 200 m, fol-

lowed by LETKF1 and SODA. From 200 to 500 m SODA

give results closest to the observation error profile, followed

by LETKF-RIP1 and LETKF1. LETKF-RIP1 and LETKF1

have larger salinity RMSD at Station S in the upper 270 m,

closer to the estimated observation error profile. While be-

low 270 m, the RMSD is smallest with LETKF-RIP1, then

LETKF1 and SODA, the latter being closest to the estimated

observation error. At Aloha Station all methods give approx-

imately equal RMSD, though LETKF-RIP1 is lower overall.

The salinity RMSD at this station are lowest with SODA and

closest to the estimated observation error with LETKF-RIP1.

3.4 Comparison with independent observations

of velocity

We next compare to the observed zonal velocity profiles in

the equatorial Pacific. Due to the coarse resolution of the

model, all of the methods underestimate the intensity of the

observed zonal velocity. Therefore, we remove the time mean

of each field and examine the monthly mean observed and

analyzed zonal velocity anomalies. Due to the large obser-

vation window used in its analysis cycle, SODA appears

to average out much of the small-scale temporal variability.

In contrast, the ensemble methods exhibit some features on

smaller temporal scales.

At 165◦ E (Fig. 8), a strong positive anomaly occurs

throughout much of 1998. This feature is captured in part by

all methods, but is strongest in LETKF2 and LETKF-RIP2. A

negative anomaly that exists weakly in the Free Run in early

2002 appears to be represented most accurately by LETKF-

RIP1,2. At 170◦ W (Fig. 9), the overall anomaly pattern

that alternates between positive and negative appears to be

represented most accurately by LETKF-RIP1. The positive

anomaly of 1998 is best captured by LETKF2 and LETKF-

RIP2. At 140◦ W (Fig. 10), SODA best represents the strong

positive anomalies, though all of the methods strengthen the

signal compared to the Free Run. LETKF2 has a slight rep-

resentation of the positive anomaly that occurs just after the

strong negative anomaly at the start of 1998. While absent

in the SODA result, some of the weaker signals throughout

www.nonlin-processes-geophys.net/20/1031/2013/ Nonlin. Processes Geophys., 20, 1031–1046, 2013
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Observed

Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 10. Monthly averaged zonal velocity at (0◦ N, 170◦ W) for observations and analyses from January 1997 to December 2003 from

30 to 270 m, with time mean removed. From top to bottom: observed ADCP data, Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2,

LETKF-RIP2.

the experiment seem to be present in LETKF1 and LETKF-

RIP2. At 110◦ W (Fig. 11), the analysis signal corresponding

most to the observed signal appears to come from LETKF1.

All of the methods have a negative anomaly at the surface

that conflict with the observed signal, though SODA has the

largest error. A number of observed positive anomalies are

present in the Free Run and strengthened in the LETKF1

and LETKF-RIP1 analyses. SODA generates some spurious

positive anomalies throughout 2001 and 2002. LETKF1 and

LETKF-RIP1 best capture the negative anomy at the end of

2002, while none of the methods adequately capture the al-

ternating positive and negative anomalies of 2003.

3.5 Volume transport in select western boundary

currents

Volume transports for the Gulf Stream, Kuroshio Current,

and Agulhas Current are given in Table 4 as compared with

published observed values. All assimilation methods im-

proved transport toward observed levels when compared to

the Free Run baseline. The increased transport in the ma-

jor ocean basins, combined with a geostrophic balance as

imposed by the model, implies an increased density gradi-

ent within the basin and thus an increased anomaly of sea

level and heat content. The transports in the Gulf Stream and

Kuroshio are increased slightly toward the observed values.

The transport in the Agulhas is relatively unchanged com-

pared to the observed and modeled variance.

4 Conclusions

We have performed a comparison of the Local Ensemble

Transform Kalman Filter (LETKF) to a benchmark ocean as-

similation system (SODA) using an identical global ocean

model with identical observed temperature and salinity pro-

file data set, initial conditions, and surface forcing. Two ver-

sions of LETKF were examined: the standard LETKF and

LETKF-RIP, which uses the “running-in-place” (RIP) algo-

rithm of Kalnay and Yang (2010) and Yang et al. (2012a,b).

The results from each experiment were evaluated through

two approaches: (1) through comparison of the background

field to the (not yet assimilated) observations of tempera-

ture and salinity, and (2) through comparisons of the anal-

yses to independent observations that included ocean station

time series in the North Pacific and North Atlantic subtropi-

cal gyres, ADCP zonal velocity in the equatorial Pacific, and

major western boundary transports.
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Observed

Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 11. Monthly averaged zonal velocity at (0◦ N, 140◦ W) for observations and analyses from January 1997 to December 2003 from

30 to 270 m, with time mean removed. From top to bottom: observed ADCP data, Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2,

LETKF-RIP2.

Examination of temperature observation-minus-

background differences shows a reduction of errors

compared to the SODA baseline when using both LETKF

and LETKF-RIP, with the latter showing the greatest impact

especially during the first four years of spin up. Globally,

temperature observation-minus-background differences

were smaller for LETKF-RIP than for SODA while salinity

remained relatively unchanged compared the magnitude of

estimated observation errors. We emphasize that both the

LETKF and LETKF-RIP background fields, which did not

use future data relative to the analysis time and whose RMS

deviations were computed against observations that were not

yet assimilated, achieved lower RMSD than SODA which

did use future data. Regionally the same results were found

for temperature, while salinity RMSD was typically smaller

in well-observed areas and larger in poorly observed areas.

The reduction in background error implies a corresponding

improvement of the prior analysis, however additional

comparisons were made to independent observed data to

assess the analyses themselves.

In order to evaluate the performance of the experiments

in the subtropical gyres the analyses were compared against

withheld ocean station time series at Aloha near Hawaii, and

Station S near Bermuda. At these stations the Free Run has

substantial biases of both temperature and salinity. These bi-

ases were reduced by all assimilation methods. At Aloha a

cool, fresh bias remains in the high salinity upper 200 m,

while a slight warm bias with elevated salinity is generally

present between 200–400 m. The time series at Aloha is no-

table for cool anomalies in 1998–1999, and for a period of

enhanced salinity beginning in the late 1990s where salin-

ities exceeded 35.1 psu. These anomalies were weak in the

Free Run, but better reproduced in the assimilation experi-

ments. During the years of the high salinity anomaly SODA

has salinity errors below 0.4 psu. LETKF-RIP shows much

smaller average salinity errors, but with stronger year-to-year

variability.

At Station S the Free Run also exhibits large biases in tem-

perature and salinity, with too warm temperatures in the up-

per 200 m, too cold temperatures below, and too fresh every-

where. The three assimilation experiments all reduced these

mean biases, though all three have a residual seasonal bias

in near-surface temperature (too warm in winter, too cold

in summer) likely reflecting errors in surface heating. As-

similation substantially reduced the fresh bias in all three

experiments. Both LETKF1 and LETKF-RIP1 exhibit more

year-to-year variations in salinity error than SODA, while

LETKF2 and LETKF-RIP2 exhibit somewhat less, indicating
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Observed

Free Run

SODA

LETKF1

LETKF-RIP1

LETKF2

LETKF-RIP2

Fig. 12. Monthly averaged zonal velocity at (0◦ N, 110◦ W) for observations and analyses from January 1997 to December 2003 from

30 to 270 m, with time mean removed. From top to bottom: observed ADCP data, Free Run, SODA, LETKF1, LETKF-RIP1, LETKF2,

LETKF-RIP2.

that the localization and inflation parameters can be tuned

to control how rapidly LETKF adjusts to available observa-

tions.

Due to model resolution, the modeled zonal velocities at

the equator were much weaker than observed. After remov-

ing the time mean, comparisons to observed zonal velocities

in the equatorial Pacific still showed that many of the ob-

served anomalies were either weak or not present in the Free

Run. However, all of the assimilation methods improved the

pattern of anomalies, typically strengthening both the posi-

tive and negative anomalies to better coincide with the ob-

served anomalies.

This study has a number of limitations. The model, cho-

sen for its computational efficiency, does not resolve the

ocean mesoscale. The lack of mesoscale processes likely

contributes to the presence of large mean biases. The ex-

periments are limited to a seven-year period, which is insuf-

ficient to examine the impact of differences in assimilation

on longer time-scale processes. While we made great efforts

to make a fair comparison between methods, differences in

practical implementation made a truly exact comparison im-

possible.

This LETKF system has been implemented at the National

Centers for Environmental Prediction (NCEP) with the op-

erational GFDL ocean model that is currently used by the

Global Ocean Data Assimilation System (GODAS), which

is a component of NCEP’s Coupled Forecast System (CFS).

The LETKF algorithm will form the ensemble component

of a hybrid ocean data assimilation system that is being de-

veloped for use by NCEP. For the purpose of reanalysis, the

practically cost-free RIP step applying the LETKF weights

obtained at the end of each assimilation window to the en-

semble at the beginning of the window may be used to im-

prove the previous analysis and thus smooth the overall time

evolution of the analyzed fields. In addition, this LETKF

system will be used to assimilate the ocean component of

a strongly coupled data assimilation system that is currently

being designed by the University of Maryland for India’s Na-

tional Monsoon Mission.
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