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Abstract

We give a quantitative proof for a theorem of Martio, Rickman
and Väisälä [14] on the rigidity of the local homeomorphism property
of spatial quasiregular mappings with distortion close to one. The
proof is based on a distortion theory established by using two main
tools. First, we use a conformal invariant between sphere families and
components of their preimages under quasiregular mappings. Secondly,
we use Hall’s quantitative isoperimetric inequality result [9] to relate
two different types of distortion.
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1 Introduction

Let Ω ⊂ Rn be a domain, n ≥ 2. We call a mapping f : Ω → Rn quasiregular,
if f ∈ W 1,n

loc (Ω, Rn), and if there exists 1 ≤ K < ∞ so that

|Df(x)|n ≤ KJf (x)

for almost all x ∈ Ω (the notation will be explained below). The theory
of quasiregular mappings, initiated by the results of Reshetnyak and Mar-
tio, Rickman and Väisälä, shows that these mappings generalize analytic
functions to higher dimensions in a natural way. In particular, Reshetnyak
proved that non-constant quasiregular mappings are discrete, open and lo-
cally Hölder continuous, and map sets of measure zero to sets of measure
zero. The basic references for the theory of quasiregular mappings are [16],
[17], [19] and [12].

One of the most interesting aspects of higher dimensional (spatial) qua-
siregular mappings is the fact that they share certain topological properties
that planar analytic functions do not possess. The most classical result of
this kind is Liouville’s theorem from 1850, later generalized by Gehring and
Reshetnyak (see [16] Theorem 5.10), stating that 1-quasiregular mappings
in dimensions higher than two are in fact restrictions of Möbius transfor-
mations, and thus homeomorphisms in particular. In the study of spatial

1



quasiregular mappings it has turned out that there are also other rigidity
phenomena, particularly when the local homeomorphism property is stud-
ied.

Already in the early stages of the theory of higher dimensional quasireg-
ular mappings, Zorich [24] showed that spatial quasiregular local homeo-
morphisms from Rn are in fact global homeomorphisms i.e. quasiconformal
mappings. This result was generalized by Martio, Rickman and Väisälä
[14]. Zorich’s result fails in dimension two, which is shown by the map-
ping z → exp(z). Also, there are several sufficient conditions for a spatial
quasiregular mapping to be a local homeomorphism. For instance, when f is
sufficiently smooth, it cannot have branch points, see [3], [17] page 12. The
current paper is concerned with the following result of Martio, Rickman and
Väisälä [14]: There exists a constant ε(n) > 0 so that every non-constant K-
quasiregular mapping in dimension n ≥ 3 is a local homeomorphism when
K < 1 + ε(n). This result is proved in [14] indirectly, using Liouville’s the-
orem and a normal family method. In particular, this proof does not give
any estimates for ε(n). The main purpose of this paper is to give a quanti-
tative proof of this result. As far as we know, this is the first proof of such
kind. Also, this is the first geometric proof, so that it does not depend on
Liouville’s theorem.

Theorem 1.1. Suppose that Ω ⊂ Rn, n ≥ 3 is a domain, and f : Ω → Rn a
non-constant quasiregular mapping. If K < (1+ε)

1
3 , where ε is as in (6.30),

then f is a local homeomorphism.

In [14] it is conjectured that the conclusion of Theorem 1.1 is true for
KI < 2, where KI is the inner distortion of f . Thus, conjecturally, the
winding mapping (r, ϕ, y) → (r, 2ϕ, y) in cylindrical coordinates, y ∈ Rn−2,
is extremal for this property. The conjecture has been shown to hold true
in some special cases, namely when the branch set is assumed to be geo-
metrically well-behaved, cf. [8]. In particular, the conjecture is true under
the assumption that the branch set contains a rectifiable curve. The general
problem of describing the branching of quasiregular mappings is discussed
in [11].

The main task in proving Theorem 1.1 is to verify certain ’inverse’ dis-
tortion properties of quasiregular mappings, so that these properties do not
depend on multiplicity. These properties hold also in the plane; the assump-
tion n ≥ 3 is used only at the end of the proof, in the effect of having a
sufficiently large set of branch points. We believe that the distortion re-
sults given in this paper are independently interesting, also in the theory of
quasiconformal mappings.

The main part of the proof consists of combining the well-known path
family method with the method of ’surface’ families, which are families of
(n − 1)-dimensional spheres, and components of their preimages under the
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quasiregular mapping f . Moduli of surface families, as well as more gen-
eral sets, were already studied by Fuglede [5] in 1957. Although there are
some previous results concerning quasiregular mappings and surface fami-
lies, cf. [1], [2], it seems that this theory has not had applications so far.
Here the conformal modulus of such families, combined with a symmetriza-
tion method, allows us to estimate the isoperimetric defect of components of
preimages of balls centered at a fixed point. The idea of using symmetriza-
tion when studying conformal invariants goes back to Gehring [6]. A crucial
result that allows for a more useful interpretation of these estimates (in di-
mensions higher than two, in the plane this is easy) is a theorem by Hall
[9] (see also [10]), which implies that when a component of a preimage of
a ball under a quasiregular mapping looks like a ball in the sense of the
isoperimetric inequality, then it is almost a ball also in the sense of metric
distortion.

This paper is organized as follows. In Section 2 we introduce the nota-
tion and some preliminary results. In Section 3 we establish surface family
inequalities for quasiregular mappings. These inequalities correspond to the
path family inequalities for quasiregular mappings, see [17] Chapter II, and
they are proved by closely following the proofs in the path family case. In
Section 4 we use Hall’s result in order to show that small isoperimetric defect
of certain kinds of domains implies small metric distortion. In Section 5 we
give an estimate showing that when the distortion of a quasiregular map-
ping is small, then we have efficient estimates for the isoperimetric defects
of certain components of preimages of balls under the mapping. Finally, the
results of the previous sections are used in Section 6 to prove Theorem 1.1.
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in this work. We also thank Tero Kilpeläinen and Xiao Zhong for useful dis-
cussions, and Mario Bonk for reading the manuscript.

2 Preliminaries

We will mainly use the notation of [17]. Open euclidean balls with center
x and radius r are denoted by B(x, r), while the corresponding (n − 1)-
dimensional spheres are denoted by S(x, r). Corresponding closed balls are
denoted by B(x, r). In the case x = 0 the notations Br and Sr are often
used. The boundary of a general set E is denoted by ∂E.

Let f be a quasiregular mapping and Df(x) the differential matrix of f .
Set

|Df(x)| = sup
{y∈Rn:|y|=1}

|Df(x)y| and l(Df(x)) = inf
{y∈Rn:|y|=1}

|Df(x)y|.
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We denote the adjoint matrix of Df(x) by D#f(x), and Jf (x) stands for the
Jacobian determinant of Df(x). The inner, outer and maximal distortion
functions will be used:

KI(x) =
Jf (x)

l(Df(x))n
=
|D#f(x)|n

Jf (x)n−1
,

KO(x) =
|Df(x)|n

Jf (x)
=

Jf (x)n−1

l(D#f(x))n
,

K(x) = max{KI(x),KO(x)},

assuming that Jf (x) > 0, otherwise set each distortion function to be zero.
We have

KI(x)KO(x) ≤ K(x)2.

In what follows, KI , KO and K will denote the essential supremums of the
inner, outer and maximal distortions of f , respectively. The Lebesgue n-
measure of a measurable set A is denoted by |A|. The Lebesgue measure of
the unit n-ball is denoted by αn. The (n−1)-dimensional Hausdorff measure
Hn−1 of a measurable set A is defined as

Hn−1(A) = lim
δ→0

inf
{ ∞∑

i=1

λn−1 diam(Ai)n−1 : A ⊂
∞⋃
i=1

Ai,diam(Ai) < δ
}

,

where

λn−1 =
Γ(1

2)n−1

2n−1Γ(1
2(n + 1))

,

and Γ is the familiar gamma function. Furthermore, we denote Hn−1(S1) =
ωn−1 when S1 is (n− 1)-dimensional.

Let f : Ω → Rn be a continuous, sense-preserving, discrete and open
mapping. A domain D ⊂ Ω is called a normal domain (of f), if f(∂D) =
∂f(D). Furthermore, if D is a normal domain and x ∈ D so that f−1(x) ∩
D = {x}, then D is called a normal neighborhood of x. For a domain
U ⊂ Ω and a point y ∈ Rn \ f(∂U), the topological degree of f at y with
respect to U is denoted by µ(y, f, U), see [17] page 16 for the definition. For
a set E ⊂ Ω, we set N(y, f, E) = card{x ∈ E : f(x) = y}. When U is
a normal domain, µ(y, f, U) equals a constant µ(f, U) for each y ∈ f(U),
and µ(f, U) = supy∈f(U) N(y, f, U). The x-component of the preimage of
the ball B(f(x), r) under f is denoted by U(x, f, r). By [17] II Lemma 4.1,
for each x ∈ Ω there exists σx > 0 so that for each s < σx the following
properties hold:

1. U(x, f, s) is a normal neighborhood of x,

2. U(x, f, s) = U(x, f, σx) ∩ f−1(B(f(x), s)),

3. ∂U(x, f, s) = U(x, f, σx) ∩ f−1(S(f(x), s)),
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4. Rn \ U(x, f, s) and Rn \ U(x, f, s) are connected.

The local index i(x, f) of f at a point x ∈ Ω can be defined by setting
i(x, f) = µ(f, U), where U is any normal neighborhood of x; the definition
does not depend on the normal neighborhood U . The set of points in Ω
where |i(x, f)| ≥ 2, i.e. where f is not a local homeomorphism, is called
the branch set of f and denoted by Bf . We shall use the fact that for
quasiregular mappings, |Bf | = |fBf | = 0. See [17] I 4 for further properties
of discrete and open mappings.

The following dilatation functions will be used:

L(x, f, r) = sup
|x−y|=r

|f(y)− f(x)|,

l(x, f, r) = inf
|x−y|=r

|f(y)− f(x)|,

L∗(x, f, r) = sup
z∈∂U(x,f,r)

|x− z|,

l∗(x, f, r) = inf
z∈∂U(x,f,r)

|x− z|.

In this paper we will abuse the terminology by calling general Hausdorff
(n − 1)-dimensional sets, as well as their images and components of their
preimages under a quasiregular mapping, surfaces. When U is a normal
domain of f and Br ⊂ f(U), we denote B′

r := f−1(Br) ∩ U . Also, a similar
notation for components of preimages of spheres will be used.

In what follows, we shall use the facts that quasiregular mappings are
differentiable almost everywhere, and that Jf (x) > 0 almost everywhere,
see [17] I 2.4, I 4.11 and I 4.14. Let µ and ν be measures in sets X and
Y , respectively, and f : X → Y . Then, condition N is defined by requiring
that if E ⊂ X is a set of µ-measure zero, then also ν(f(E)) = 0. Con-
versely, condition co-N is satisfied if for each set F ⊂ Y with ν(F ) = 0 also
µ(f−1(F )) = 0 holds.

3 Modulus of surface families

In this section we give inequalities between the conformal moduli of certain
surface families related to quasiregular mappings. This is done by following
the arguments of the proofs of the corresponding inequalities for path fam-
ilies, see [17] Chapter II. For a family Λ of Borel-measurable subsets of Rn,
set

MS(Λ) = inf
{∫

Rn

ρ(x)
n

n−1 dx : ρ : Rn → [0,∞] is Borel measurable,∫
S

ρ(x) dHn−1(x) ≥ 1
}

.
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We will also use a modification of the definition; we set

Mm
S (Λ) = inf

{∫
Rn

ρ(x)
n

n−1 dx : ρ : Rn → [0,∞] is Borel measurable,∫
S

ρ(x) dHn−1(x) ≥ m

}
.

We shall need a change of variables -type formula for subsets of spheres.
This is given in the following lemma, which follows easily from [13] Theorem
9.2.

Lemma 3.1. Let S(x, r) ⊂ Ω ⊂ Rn be a sphere, and suppose that f : Ω →
Rn is a continuous and weakly differentiable mapping. If the restriction of
f to S(x, r) is a weakly differentiable mapping satisfying condition N (with
respect to Hn−1), then for all measurable subsets E of S(x, r) and for all
measurable functions u : E → R we have∫

E
u(x)|D#f(x)| dHn−1(x) ≥

∫
Rn

( ∑
x∈E∩f−1(y)

u(x)
)

dHn−1(y).

We now have the following inequality that corresponds to the KO-inequality
of quasiregular mappings. This result will not be used later in this paper,
but we state it as it is easy to verify.

Theorem 3.2. Let f : B1 → Rn be a quasiregular mapping, and suppose
that I ⊂ (0, 1) is a Borel set. Let

Λ := {St : t ∈ I}

be a family of spheres inside B1. If ρ : Rn → [0,∞] is a Borel function with
the property ∫

f(St)
N(y, f, St)ρ(y) dHn−1(y) ≥ 1 for all t ∈ I,

then
MS(Λ) ≤ K

1
n−1

I

∫
Rn

N(y, f, B1)ρ(y)
n

n−1 dy.

Proof. Let ρ be a test function as in the theorem. Define a Borel function
ρ′ : B1 → [0,∞] by setting

ρ′(x) = ρ(f(x))|D#f(x)|

when f is differentiable and ρ′(x) = 0 otherwise (recall that f is differentiable
almost everywhere). By the Sobolev embedding thereom the restriction of
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f to the sphere St satisfies condition N with respect to Hn−1 for almost all
t ∈ (0, 1). Thus Lemma 3.1 shows that∫

St

ρ′(x) dHn−1(x) =
∫

St

ρ(f(x))|D#f(x)| dHn−1(x)

≥
∫

Rn

N(y, f, St)ρ(y) dHn−1(y) ≥ 1

for almost all t ∈ I. On the other hand, by quasiregularity of f we have∫
B1

ρ′(x)
n

n−1 dx =
∫

B1

ρ(f(x))
n

n−1 |D#f(x)|
n

n−1 dx

≤ K
1

n−1

I

∫
B1

ρ(f(x))
n

n−1 Jf (x) dx = K
1

n−1

I

∫
Rn

N(y, f, B1)ρ(y)
n

n−1 dx

by the change of variables formula (see [13], Theorem 9.2). The proof is
complete.

We will need an inequality similar to the Väisälä inequality [22] for path
families. Here we shall consider the following situation. Let Ω ⊂ Rn be
a domain, 0 ∈ Ω, and suppose f : Ω → Rn is a quasiregular mapping.
Furthermore, assume that f(0) = 0 and that 1 < σ0, where σx is as in [17]
II Lemma 4.1, so that the 0-component U = U(0, 1) of f−1(B1) is a normal
neighborhood of 0 with µ(f, U) = i(0, f) = m. Since we will only consider
surfaces inside a normal domain, the proofs of the following results are easier
than the proofs of the classical Poletsky and Väisälä inequalities. Also, we
will only concentrate on sphere families and their preimages, whereas the
classical results are stated for general path families. For any normal domain
V ⊂ U with µ(f, V ) = k, define the ’inverse’ mapping gV : f(V ) → Rn by

gV (y) =
1
k

∑
x∈f−1(y)∩V

i(x, f)x.

Then, by [17] II Lemma 7.1, gV ∈ W 1,n(f(V ), Rn). We have the following
absolute continuity result that corresponds to the Poletsky lemma for path
families [15].

Lemma 3.3. In the situation as above, for almost all r ∈ (0, 1), the re-
striction of the mapping f to S′r satisfies condition co-N (with respect to
Hn−1).

Proof. Consider the sets Ak := {x ∈ U : i(x, f) = k} for k = 1, . . . ,m.
Choose, for each x ∈ Ak, a ball Bx so that the x-component Ux of f−1(Bx)
is a normal neighborhood of x. We can further choose a countable subcollec-
tion {Uxjk

: j ∈ N} of {Ux : x ∈ Ak}, covering Ak. Denote Uxjk
by Ujk and
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Bxjk
by Bjk. Since µ(f, Ujk) = k for each j ∈ N, Ujk is a normal neighbor-

hood of every z ∈ Ak ∩ Ujk. Now, since gUjk
∈ W 1,n(Bjk, Rn), the Sobolev

embedding theorem implies that the restriction of gUjk
to Sr ∩Bjk satisfies

condition N for all r ∈ (0, 1), Sr ∩Bjk 6= ∅, outside a set Ejk ⊂ (0, 1) of lin-
ear measure zero. Notice that, since µ(f, Ujk) = k, for each y ∈ f(Ak)∩Bjk,
gUjk

(y) is the unique point x ∈ Ak ∩ Ujk for which f(x) = y. Hence

hjk := f|Ujk∩Ak
: Ujk ∩Ak → Bjk ∩ f(Ak)

is bijective, and the inverse mapping is the restriction of gUjk
to f(Ak). In

particular, condition co-N holds true for hjk |S′r for all r ∈ (0, 1) \ Ejk for
which Sr ∩Bjk 6= ∅.

Now denote

E =
m⋃

k=1

∞⋃
j=1

Ejk ⊂ (0, 1).

Then E is of linear measure zero. Furthermore, choose r ∈ (0, 1) \E, and a
set F ⊂ S′r so thatHn−1(f(F )) = 0. IfHn−1(F ) > 0, thenHn−1(F∩Ak) > 0
for some k ∈ {1, . . . ,m}. Moreover, then Hn−1(F ∩Ak ∩ Ujk) > 0 for some
j ∈ N. However, this is a contradiction, since condition co-N is satisfied by
the restriction of hjk to S′r. The proof is complete.

We are now in a position to prove a Väisälä-type inequality between the
moduli of sphere families and families of components of their preimages.

Theorem 3.4. Suppose the situation is as above. Let I ⊂ (0, 1) be a Borel
set. If Λ := {St : t ∈ I} and Λ′ = {S′t : t ∈ I}, then

MSΛ ≤
K

1
n−1

O

m
Mm

S Λ′.

Proof. Let ρ : U → [0,∞] be a Borel function such that∫
S′t

ρ(x) dHn−1(x) ≥ m for all t ∈ I.

Set F = Bf ∪ E, where E is the set of all points x ∈ U so that either f
is not differentiable at x or Jf (x) = 0. As noted in the Section 2, we have
|F | = 0. We define a function ρ′ : B1 → [0,∞] by setting

ρ′(y) =
1
m

∑
x∈f−1(y)∩U

σ(x),

where

σ(x) =

{
ρ(x)

l(D#f(x))
, x ∈ U \ F

0 otherwise.
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Then ρ′ is a Borel function, which is seen as in the proof of [17] II
Theorem 9.1. We need to show that for almost all spheres St in Λ,∫

St

ρ′(y) dHn−1(y) ≥ 1.

Fix a sphere St on which the property co-N holds for the restriction of f
to S′t. By Lemma 3.3 almost all spheres in Λ have this property. We also
assume, without loss of generality, that Hn−1(F ∩ St) = 0. We consider the
family of all balls B(x, s) with the following properties:

1. x ∈ St

2. B(x, s) ∩ St ∩ f(Bf ) = ∅

3. each component of f−1(B(x, s)) ∩ U is a normal neighborhood of x.

By Vitali’s covering theorem we find a countable subfamily {Vi} of disjoint
balls that almost covers St. For each Vi there are m quasiconformal homeo-
morphisms hj : Vi → hj(Vi) so that f ◦ hj = Id for each j. By the property
co-N of f on S′t, the property N holds for the restriction of each hj to St.
Hence we can use Lemma 3.1 in order to have∫

Vi∩St

ρ′(y) dHn−1(y) =
1
m

∫
Vi∩St

∑
x∈f−1(y)∩U

σ(x) dHn−1(y)

=
1
m

∑
j

∫
Vi∩St

ρ(hj(y))|D#hj(y)| dHn−1(y)

≥ 1
m

∑
j

∫
hj(Vi∩St)

ρ(x) dHn−1(x) =
1
m

∫
f−1(Vi∩St)∩U

ρ(x) dHn−1(x).

Summing over i yields∫
St

ρ′(y) dHn−1(y) =
∑

i

∫
(Vi∩St)

ρ′(y) dHn−1(y)

≥ 1
m

∑
i

∫
f−1(Vi∩St)∩U

ρ(x) dHn−1(x) ≥ 1
m

∫
S′t

ρ(x) dHn−1(x) ≥ 1,

as desired. In order to estimate the integral
∫
B(0,1) ρ′(y)

n
n−1 dy, we use a

method similar to the one used above. We find a countable family of dis-
joint balls Vi ⊂ B1 so that Vi ∩ f(Bf ) = ∅, f−1(Vi) ∩ U = ∪hj(Vi), where
the mappings hj are the inverse mappings of the restrictions of f to dif-
ferent components of f−1(Vi) ∩ U , and ∪Vi almost covers B1. By Hölder’s
inequality, we have∫

Vi

ρ′(y)
n

n−1 dy =
∫

Vi

( 1
m

∑
x∈f−1(y)∩U

σ(x)
) n

n−1
dy

≤
∫

Vi

1
m

∑
x∈f−1(y)∩U

σ(x)
n

n−1 dy.
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By using the definition of σ(x), quasiconformality of the hj :s and the change
of variables formula, we can estimate the last term, so that

1
m

∑
j

∫
Vi

ρ(hj(y))
n

n−1 |D#hj(y)|
n

n−1 dy

≤
K

1
n−1

O

m

∑
j

∫
Vi

ρ(hj(y))
n

n−1 Jhj
(y) dy

=
K

1
n−1

O

m

∫
f−1(Vi)∩U

ρ(x)
n

n−1 dx.

By summation over i we have

∫
B1

ρ′(y)
n

n−1 dy ≤
K

1
n−1

O

m

∫
U

ρ(x)
n

n−1 dx.

The proof is complete.

By using polar coordinates and Hölder’s inequality, it is easy to see that
for a sphere family Λ as in Theorem 3.4,

MS(Λ) = ω
−1

n−1

n−1

∫
I

dt

t
.

In particular, when I = (r1, r2), we have

MS(Λ) = ω
−1

n−1

n−1 log
r2

r1
.

Also, clearly Mm
S (Λ′) = m

n
n−1 MS(Λ′). In the next two sections we develop

a method to give efficient upper bounds for the moduli MS(Λ′) in the case
where the distortion of f is close to one.

4 Quantitative isoperimetry

In this section we apply a quantitative isoperimetric inequality result by Hall
[9] in order to give ’inverse’ distortion estimates for quasiregular mappings
with small isoperimetric defect. The results presented in this section are
easy to prove in the planar case, and thus we shall restrict ourselves to
dimensions higher than two. Recall that the isoperimetric inequality says
that for a bounded domain (or a more general set) Ω ⊂ Rn, we have

(4.1) |Ω| ≤ CIHn−1(∂Ω)
n

n−1 ,
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where CI = n
−n
n−1 α1−n

n . For domains equality occurs in (4.1) if and only if
Ω is a ball. We define the isoperimetric defect δ(Ω) of Ω by setting

δ(Ω) = 1− |Ω|
CIHn−1(∂Ω)

n
n−1

.

Moreover, the Fraenkel asymmetry λ(Ω) of Ω is defined as

λ(Ω) = min
x∈Rn

|B(x,R) \ Ω|
|Ω|

,

where R is chosen so that |BR| = |Ω|. Here the minimizing point x always
exists, but may not be unique. The following result is a modification of a
theorem by Hall [9] Theorem 1, see also [10] Theorem 6.3. It shows that for
domains small isoperimetric defect implies small Fraenkel asymmetry. In [9]
it is assumed that the boundaries are smooth and that the Fraenkel asym-
metry is small, whereas here we need the result for all domains, assuming
apriori smallness from the isoperimetric defect.

Theorem 4.1. Suppose that Ω ⊂ Rn is a bounded domain and n ≥ 3. If

(4.2) δ(Ω) ≤ 1− (1 + 400−1n
−13
2 )

−n
n−1 =: C1,

then

(4.3) λ(Ω) ≤
(
C(n)

( 1

(1− δ(Ω))
n−1

n

− 1
)) 1

4 =: C2(δ(Ω), n),

i.e.

δ(Ω) ≥ 1−

 1

1 + λ(Ω)4

C(n)

 n
n−1

,

where C(n) = 175000n2n+17/2.

Proof. Only small modifications to [9] Theorem 1 are needed. Let us first
prove the claim for smooth domains. We Schwarz symmetrize Ω with respect
to the coordinate axis xi for each i = 1, . . . , n. The symmetrized domains
are denoted by Ω̃i. It is well known that

Hn−1(∂Ω) ≥ Hn−1(∂Ω̃i) for each i = 1, . . . , n.

Now [9] Theorem 2 implies that if δ(Ω̃i) ≤ C1, then λ(Ω̃i) < 1
2n . Moreover,

[10] Theorem 6.3 says that if maxi λ(Ω̃i) < 1
2n , then

(4.4) λ(Ω) < 1− (2n)−n.

On the other hand, when (4.4) holds, we have λ(Ω)2 < (2n)n(1 − λ(Ω)).
Now the claim for smooth domains is deduced as in [9] page 163.
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Let us then verify the claim for general domains. We first notice that
in [9] the smoothness assumption is only needed for Schwarz symmetrized
sets. Since Schwarz symmetrizations of domains are also domains, it is
sufficient by [9] Theorem 2 to approximate a domain Ω̃, having an axis of
symmetry, by smooth domains Ωj so that ∂Ωj lies in the 1/j-neighborhood
of ∂Ω̃ and Hn−1(∂Ωj) < Hn−1(∂Ω̃) + 1/j. By the symmetry property of Ω̃
we can further assume that Ω̃ is a plane domain whose boundary is a closed
path with finite length. As the boundaries of such domains can easily be
approximated by smooth plane domains with the required properties, the
proof is complete.

Remark 4.2. As noted in [9], the result holds true also without the assump-
tion (4.2), possibly with weaker constant C(n) in (4.3).

Before applying Theorem 4.1, we state, for future reference, a distortion
lemma for the inverse dilatation of quasiregular mappings. Results similar
to this one are standard in the theory of quasiregular mappings, cf. [17]
Lemma 4.1.

Lemma 4.3. Let f : Ω → Rn be a quasiregular mapping and B(f(x), r) ⊂
f(Ω). Suppose that U(x, f, 2L(x, f, L∗(x, f, r)) is a normal domain of f .
Then

(4.5)
L∗(x, f, r)
l∗(x, f, r)

≤ exp
((ωn−1KI√

3Cn

) 1
n−1

)
=: C∗(n, K),

where Cn is a constant only depending on n, given in [21] (10.11).

Proof. Since U(x, f, r) is a normal domain, the closures of the sets V1 :=
f(B(x, l∗(x, f, r))) and V2 := f(B(x, L∗(x, f, r))) both intersect S(x, r). By
[21] Theorem 10.12, we have

MΓ ≥
√

3Cn,

where Cn is as in [21] (10.11) and Γ is the family of all paths joining V1 and
Rn \V2. Consider the lifts of all paths of Γ starting at B(x, l∗(x, f, r)). Since
U(x, f, 2L(x, f, L∗(x, f, r)) is a normal domain, then so is the x-component
U2 of f−1(V2). Since

B(x, L∗(x, f, r)) ⊂ U2 and f∂U2 = ∂V2,

we see that for each path of Γ there exists a lift starting at B(x, l∗(x, f, r))
and terminating at Rn \B(x, L∗(x, f, r)). Denote the family of all these lifts
by Γ′. Then fΓ′ = Γ, and we can use the Poletsky inequality in order to
have √

3Cn ≤ MΓ ≤ KIMΓ′ ≤ ωn−1KI log1−n L∗(x, f, r)
l∗(x, f, r)

,

which yields the claim.
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We will now return to the situation of the end of Section 3; f : Ω →
Rn, n ≥ 2, is a quasiregular mapping, f(0) = 0, U ⊂⊂ Ω is a normal
neighborhood of 0 such that f(U) = B1 and i(0, f) = m. Also, we let the
assumptions of Lemma 4.3 be valid for x = 0 and r = 1 (and thus also for
any r ∈ (0, 1)). Recall that for each point x there exists a radius r satisfying
this assumption, so that no generality is lost in this sense.

For t ∈ (0, 1), set

α(B′
t) = inf

{
R

r
: S′t ⊂ B(x,R) \B(x, r), x ∈ Rn

}
.

We will next show that if the isoperimetric defect δ(B′
t) is small, then α(B′

t)
is close to one, with quantitative bounds depending only on KI and n.

Proposition 4.4. Let the situation be as above. Suppose that

(4.6) δ(B′
t) < min

{
C1, 1−

(
1 +

1
C∗(n, K)4n2(n + 1)4nC(n)

) −n
n−1 }

=: C3,

where C1 and C(n) are as in (4.2) and (4.3), respectively, and C∗(n, K) is
as in Lemma 4.3. Then

α(B′
t) ≤

1 + A

1−A
,

and

(4.7) A = 2(n + 1)
1
n C∗(n, K)C2(δ(B′

t), n)
1

n2 ,

where C2(δ(B′
t), n) is as in (4.3).

Proof. Suppose that

λ(B′
t) =

|B(y, s) \B′
t|

|B′
t|

.

Now, if B(y, d) ∩B′
t = ∅, then by the definition of Fraenkel asymmetry

αndn ≤ λ(B′
t)|B′

t| = αnλ(B′
t)s

n.

Hence we find a point x ∈ B′
t so that d = |x − y| < λ(B′

t)
1
n s. Since d < s,

we have

|B(x, s) \B′
t|

|B′
t|

≤ λ(B′
t) +

αn((d + s)n − sn)
|B′

t|
≤ λ(B′

t)

+
αnndsn−1

|B′
t|

≤ λ(B′
t) + nλ(B′

t)
1
n ≤ (n + 1)λ(B′

t)
1
n .(4.8)

Set R = min{h : B′
t ⊂ B(x, h)} and r = max{h : B(x, h) ⊂ B′

t}. Recall that
since U is a normal neighborhood of 0, {f−1(0)} ∩ B′

t = {0}. We will first

13



give an upper bound for R with respect to s. In order to do that we will
need to estimate λ(B′

t).
We next show that there exists a ball inside B′

t, not intersecting B(x, s),
whose size has a lower bound depending on R − s, K and n. We split the
proof of this fact into two cases.
Case 1: 0 /∈ B(x,R− R−s

2 ).
Then by Lemma 4.3 there exists a ball

B(0, h) ⊂ B′
t \B(x, s),

so that

h > min
{

C∗(n, K)−1s,
(R− s)

2

}
.

In view of (4.8) this yields

(n + 1)λ(B′
t)

1
n > min

{
C∗(n, K)−n,

(R− s

2s

)n
}

.

Case 2: 0 ∈ B(x,R− R−s
2 ).

Fix a point z ∈ S′t such that |z−x| = R. Now one may choose a lift γ′ of
the path γ : [0, 1] → Rn; γ(t) = tf(z), so that γ′(0) = 0 and γ′(1) = z. By
our assumption there exists a point w = γ′(t0) so that |w − x| = R − R−s

2 .
Consider the w-component U1 := U(w, f, |f(z) − f(y)|) of the preimage of
the ball B(f(w), |f(w)− f(z)|). Since z ∈ U1,

L∗(w, f, |f(w)− f(z)|) ≥ R− s

2
.

Application of Lemma 4.3 gives

l∗(w, f, |f(w)− f(z)|) ≥ L∗(w, f, |f(w)− f(z)|)
C∗(n, K)

≥ R− s

2C∗(n, K)
,

and so there exists a ball

B(w, h) ⊂ B′
t \B(x, s),

so that
h >

R− s

2C∗(n, K)
.

Thus we have a lower bound also in this case:

(n + 1)λ(B′
t)

1
n >

( R− s

2C(n, K)∗s

)n
.

By combining the two cases we see that

(n + 1)λ(B′
t)

1
n ≥ min

{
C∗(n, K)−n,

( R− s

2C∗(n, K)s

)n
}

=: CR.
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In view of Theorem 4.1, we have

CR ≤ (n + 1)C2(δ(B′
t), n)

1
n

whenever δ(B′
t) < C1. Hence, when

δ(B′
t) < min

{
C1, 1−

(
1 +

1
C∗(n, K)4n2(n + 1)4nC(n)

) −n
n−1 }

where C1 and C(n) are as in Theorem 4.1, the definition of CR implies that( R− s

2C∗(n, K)s

)n
≤ (n + 1)λ(B′

t)
1
n ≤ (n + 1)C2(δ(B′

t), n)
1
n ,

i.e.

(4.9) R ≤ s
(
1 + 2(n + 1)

1
n C∗(n, K)C2(δ(B′

t), n)
1

n2

)
.

Now we will give a lower bound for r with respect to s. Let v ∈ S′t be
a point such that |v − x| = r. Now γ : [1,∞) → Rn; γ(t) = tf(v) has a lift
γ′ starting at v so that γ′([1,∞)) ⊂ Rn \B′

t and so that there exists a point
q = γ′(t0) for which |q − x| = s−r

2 . As in the case 2 above, we can deduce
that there exists a ball

B
(
q,

s− r

2C∗(n, K)

)
⊂ B(x, s) \B′

t.

Hence ( s− r

2C∗(n, K)s

)n
≤ (n + 1)λ(B′

t)
1
n ≤ (n + 1)C2(δ(B′

t), n)
1
n ,

so that

(4.10) r ≥ s
(
1− 2(n + 1)

1
n C∗(n, K)C2(δ(B′

t), n)
1

n2

)
.

The claim follows by combining estimates (4.9) and (4.10).

Remark 4.5. (i) In the setting of Proposition 4.4, the planar case differs
essentially from the higher dimensional case. In particular, the result
is true for any bounded planar domain, with bounds sharper than in
(4.7), cf. [4] and the references therein. In higher dimensions results
like this do not hold for general domains, which is seen by gluing thin
’needles’ to a ball.

(ii) As far as we know, Proposition 4.4 is new also in the case of quasicon-
formal mappings.
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5 Modulus inequalities and isoperimetric defect

Let f be a quasiregular mapping as in the situation described before Proposi-
tion 4.4. We will normalize the set U by setting l∗(0, f, 1) = 1. In this section
we show that, in a certain quantitative and asymptotically sharp manner,
the isoperimetric defects of the sets B′

t can be controlled by the distortion
of f . One essential point in these estimates is the fact that they do not
depend on multiplicity, so that f behaves like a quasiconformal mapping in
this sense. For the linear dilatation H(x, f) = lim supr→0 L(x, f, r)/l(x, f, r)
of quasiconformal mappings, good estimates have been obtained by using
estimates related to the Grötzsch condenser, cf. [20], [18].

We first recall a continuity estimate from [17] III Lemma 4.7.

Lemma 5.1. In the above situation, for all x ∈ B1, we have

(5.1) log
1

C∗(n, K)|x|
≤

(
KI

m

) 1
n−1

log
1

|f(x)|
,

i.e.
|f(x)| ≤ (C∗(n, K)|x|)µ,

where C∗(n, K) is as in Lemma 4.3 and µ = ( m
KI

)
1

n−1 .

Now we want to give an upper bound for the surface modulus of a family
of surfaces S′t with respect to the isoperimetric defects of the sets B′

t. For
this we use a point symmetrization method. See [6], [7] and [23] for results
related to the setting considered here.

For each t ∈ (0, 1), the point symmetrizations of the set B′
t and its closure

will be the open ball B(0, α
−1
n |B′

t|
1
n ) and its closure, respectively. Thus the

symmetrization of each S′t will be a sphere enclosing a ball with the same
volume as the set enclosed by S′t. We define a function p : (0, 1) → (0,∞)
by setting p(t) = α

−1
n |B′

t|
1
n . Thus the image of the set S′t under point

symmetrization is the sphere Sp(t). Note that p is strictly increasing. The
following properties of the point symmetrization are direct consequences of
the definition:

(5.2) Hn−1(Sp(t)) = (1− δ(B′
t))

n−1
n Hn−1(S′t),

if I ⊂ (0, 1) is a measurable set, P = ∪t∈IS
′
t and P̂ = ∪t∈ISp(t) is the

corresponding point symmetrized set, then

(5.3) |P | = |P̂ |.

Properties (5.2) and (5.3) now give a useful estimate for the surface
modulus under consideration. In what follows, we shall integrate over sym-
metrized sets, and so it is convenient to use the following notation: if
s = p(t), we denote the isoperimetric defect of B′

t by

δs := δ(B′
t).
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Lemma 5.2. Suppose that I ⊂ (0, 1) is a Borel measurable set and

Λ = {S′t : t ∈ I}.

Then

Mm
S (Λ) ≤

( mn

ωn−1

) 1
n−1

∫
p(I)

1− δs

s
ds.

Proof. We define ρ : U → [0,∞] by setting

ρ(x) =
{

mHn−1(S′t)
−1, x ∈ S′t for some t ∈ I

0, otherwise.

Then ρ is a Borel function and∫
S′t

ρ(x)Hn−1(x) ≥ m

for each t ∈ I. By properties (5.2) and (5.3), the use of polar coordinates
yields (here P̂ is as in (5.3))∫

U
ρ(x)

n
n−1 dx = m

n
n−1

∫
P̂

1− δ|x|

ω
n

n−1

n−1 |x|n
dx

=
( mn

ωn−1

) 1
n−1

∫
p(I)

1− δs

s
ds,

as desired.

We are now in a position where we can efficiently apply the surface
modulus inequality, Theorem 3.4. This is done by combining the inequality
with Lemmas 5.1 and 5.2. Recall that the logarithmic measure µ(E) of a
measurable set E ⊂ (0,∞) is defined as the number

µ(E) =
∫

E

dr

r
.

Now for r ∈ (0, 1) and for a positive number h, consider the set

Er
h := {s : δs > h, s = p(t), t ∈ (r, 1)}.

Recall that in our situation l∗(0, f, 1) = 1.

Proposition 5.3. Suppose the situation is as above, and that K < (1+ ε)
1
3 ,

ε < 10−5. Then, for a small enough r ∈ (0, 1), depending only on n,

µ(Er
ε1/4) ≤ 4ε

1
4 log

1
p(r)

.
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Proof. By the distortion Lemma 4.3 and our normalization, we have p(1) ∈
(1, C∗(n, K)). Since

µ
(
(1, C∗(n, K))

)
log 1

p(r)

→ 0 as r → 0,

we may assume that p(1) = 1. Consider the sphere family Λ = {St : t ∈
(r, 1)}, and denote Λ′ = {S′t : t ∈ (r, 1)}. Suppose that r is so small that
l∗(0, f, r) ≤ C∗(n, K)−j−1. By Lemma 4.3,

log
1

p(r)
≤ log

( 1
l∗(0, f, r)

)
≤ log C∗(n, K)j+1

log C∗(n, K)j
log

( 1
C∗(n, K)|x|

)
for some x ∈ S′r. For the right hand side we can use Lemma 5.1, so that

(
1 +

1
j

)
log

( 1
C∗(n, K)|x|

)
≤

(
1 +

1
j

) (
KI

m

) 1
n−1

log
1
r

=
(
1 +

1
j

) (
ωn−1KI

m

) 1
n−1

MS(Λ).

On the other hand, Theorem 3.4, combined with Lemma 5.2, yields(
ωn−1KI

m

) 1
n−1

MS(Λ) ≤
(

ωn−1KIKO

mn

) 1
n−1

Mm
S (Λ′)

≤ (KIKO)
1

n−1

∫ 1

p(r)

1− δs

s
ds,

By combining the estimates we have

(5.4) log
1

p(r)
≤

(
1 +

1
j

)
(KIKO)

1
n−1

∫ 1

p(r)

1− δs

s
ds.

Note that this estimate does not depend on multiplicity m.
Let β be a small positive constant, so that

log
1

p(r)
= k log(1 + β),

where k is an integer. We divide the interval (p(r), 1) to intervals

Ai := ((1 + β)−i−1, (1 + β)−i), i ∈ L = {0, 1, . . . , k − 1}.

Set

J =
{

i ∈ L :
∫

Ai

1− δs

s
ds ≤ (1− ε

1
2 ) log(1 + β)

}
,
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J ′ = L \ J and N = #J . Then∫ 1

p(r)

1− δs

s
ds =

k−1∑
i=0

∫
Ai

1− δs

s
dt =

∑
J

∫
Ai

1− δs

s
ds

+
∑
J ′

∫
Ai

1− δs

s
dt ≤ N(1− ε

1
2 ) log(1 + β) + (k −N) log(1 + β)

=
(
1− Nε

1
2

k

)
log

1
p(r)

,

and combining with (5.4) yields

(5.5)
N

k
≤

(
1 + 1

j

)
(KIKO)

1
n−1 − 1(

1 + 1
j

)
(KIKO)

1
n−1 ε

1
2

.

By choosing r to be so small that(
1 +

1
j

)
K

2
n−1 ≤ K3,

(recall that KIKO ≤ K2), and using our assumption on K, we can estimate
the right hand side in (5.5) in order to have

(5.6)
N

k
≤ ε

1
2 .

This estimate tells us that in most of the annuli Ai, we have

(1− ε
1
2 ) log(1 + β) ≤

∫
Ai

1− δs

s
dt.

Fix such an annulus Ai, and consider the sets

G = {s ∈ Ai : δs ≤ ε
1
4 }, F = Ai \G.

Now there exists a constant C(β), C(β) → 1 as β → 0, so that on Ai we
have

C(β)β(1− ε
1
2 ) ≤ (1− ε

1
2 ) log(1 + β) ≤

∫
Ai

1− δs

s
ds(5.7)

=
∫

G

1− δs

s
ds +

∫
F

1− δs

s
ds

≤
∫ (1+β)−i−1+|G|

(1+β)−i−1

ds

s
+

∫ (1+β)−i−1+|F |

(1+β)−i−1

1− ε
1
4

s
ds

We denote by W ∈ [0, 1] the number for which

W ((1 + β)−i − (1 + β)−i−1) = |F |,
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and estimate the right hand side in (5.7) in order to have∫ (1+β)−i−1+|G|

(1+β)−i−1

ds

s
+

∫ (1+β)−i−1+|F |

(1+β)−i−1

1− ε
1
4

s
ds

= log
(
1 +

|G|
(1 + β)−i−1

)
+ (1− ε

1
4 ) log

(
1 +

|F |
(1 + β)−i−1

)
= log(1 + (1−W )β) + (1− ε

1
4 ) log(1 + Wβ)

≤ (1−W )β + (1− ε
1
4 )Wβ = (1−Wε

1
4 )β,

where the inequality log(1 + x) ≤ x is used. Hence

C(β)β(1− ε
1
2 ) ≤ (1−Wε

1
4 )β,

i.e.
Wε

1
4 ≤ C(β)ε

1
2 + 1− C(β).

We require β to be so small that W ≤ 3
2ε

1
4 , so that

(5.8) µ(F ) ≤ 2ε
1
4 log(1 + β)

when ε < 10−5. By combining the estimates (5.6) and (5.8), we see that

µ(Er

ε
1
4
) ≤ 2(ε

1
2 + ε

1
4 ) log

1
p(r)

≤ 4ε
1
4 log

1
p(r)

,

as desired.

6 Proof of Theorem 1.1

We shall assume that the situation is as in Section 5, so that K ≤ (1 + ε)
1
3

holds. An estimate for ε will be given at the end of the proof. We will here
also assume that n ≥ 3, although this assumption will only be used at the
end of the proof. We assume that 0 is a branch point of f , so that

2 ≤ m = i(0, f) ≤ i(z, f) for all z ∈ Bf .

Now the goal is to arrive at a contradiction, showing that f has to be a local
homeomorphism at 0. Recall that by [17] III Corollary 5.8,

(6.1) m ≤ 9KI ≤ 10

when K is small enough.
We first state a lemma that gives an estimate for the surface modulus of

the family of all surfaces separating the unit sphere and another sphere inside
the unit ball. This result probably appears somewhere in the literature, but
we cannot give a direct reference.
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Lemma 6.1. Suppose that S(x1, 1−u) ⊂ B1. Denote by Λ the family of all
sets separating S(x1, 1− u) and S1. Denote |x1| = Lu, L ∈ [0, 1). Then

MS(Λ) = ω
−1

n−1

n−1 log
1

tanh ρ(L,u)
2

,

where

ρ(L, u) =
1
2

log
(2− u)2 − (Lu)2

u2(1− L2)
.

Proof. Denote by Γ the family of all of all paths joining S(x1, 1 − u) and
S(0, 1). By [23] (see also [7]), M(Γ) = MS(Λ)

1
1−n . We calculate the hyper-

bolic radius ρ(L, u) of B(x1, 1 − u). Recall that euclidean balls in B(0, 1)
are also balls in the hyperbolic metric. Now 2ρ(L, u) equals the hyperbolic
length of the geodesic segment B(x1, 1− u) ∩ l, where l is the geodesic line
intersecting 0 and x1. Hence we get ρ(L, u) by integrating;

ρ(L, u) =
1
2

∫ Lu−1+u

Lu−1+u

2ds

1− s2
=

1
2

log
(2 + (L− 1)u)(2− (L + 1)u)

(1− L2)u2

=
1
2

log
(2− u)2 − (Lu)2

u2(1− L2)
.

We choose a Möbius transformation T that maps B(0, 1) onto itself so that
the hyperbolic center of B(x1, 1 − u) gets mapped to 0. Since T is an
isometry in the hyperbolic metric, T (B(x1, 1− u)) = D(0, ρ(L, u)) (here D
means hyperbolic ball). Since T is conformal and D(0, ρ(L, u)) = B(0,M)
for some M , we have

M(Γ) = M(Γ′) = ωn−1 log1−n 1
M

,

where Γ′ is the family of all paths joining S1 and SM . By [19] I 2.22, we
have M = tanh ρ(L,u)

2 . The proof is complete.

Remark 6.2. It is essential in Lemma 6.1 that tanh ρ(0,u)
2 = 1−u, tanh ρ(L, u)

is increasing with respect to L and decreasing with respect to u, and

tanh
ρ(L, u)

2
→ 1 as L → 1.

We now proceed with the proof of Theorem 1.1. Let r be small enough,
so that Proposition 5.3 holds true. Fix a constant β > 0 so that

(6.2) − log p(r) = k log(1 + β)

where k is an integer. We will define β more accurately later. As in the
proof of Proposition 5.3, we see that Lemmas 5.1 and 4.3 together imply,
for any i ∈ N and small enough r depending on i, the inequality
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k log(1 + β) = log
1

p(r)
≤

(
1 +

1
i

)(KI

m

) 1
n−1 log

1
r

(6.3)

=
(
1 +

1
i

)(KI

m

) 1
n−1

k−1∑
j=0

log
p−1((1 + β)−j)

p−1((1 + β)−j−1)
.

We shall use the notation

tj :=
p−1((1 + β)−j)

p−1((1 + β)−j−1)
.

Hence,

(6.4) log(1 + β) ≤
(
1 +

1
i

)(KI

m

) 1
n−1 log tj ≤

(
1 +

1
i

)(KI

2

) 1
n−1 log tj

holds for at least one Aj = ((1 + β)−j−1, (1 + β)−j). We fix such a j. By
Proposition 5.3,

(6.5) µ({s : δs > ε
1
4 }) ≤ 4ε

1
4 log

1
p(r)

= 4kε
1
4 log(1 + β) ≤ 1

i
log(1 + β)

by our choice of ε. By scaling we may assume that Aj = ((1 + β)−1, 1). By
(6.5) there exist s1, s2 such that

(6.6) (1 + β)−1 < p(s1) ≤ (1 + β)
1
i
−1 < (1 + β)

−1
i < p(s2) < 1

and
δ(B′

s1
), δ(B′

s2
) ≤ ε

1
4 .

If we assume that ε < C4
3 , where C3 is as in (4.6), then Proposition 4.4

implies that

α(B′
s1

), α(B′
s1

) ≤ 1 + A

1−A
, where(6.7)

A = 2(n + 1)
1
n C∗(n, K)C2(ε

1
4 , n)

1
n2

and C2 is as in (4.3). We assume that ε is so small that

(6.8)
1 + A

1−A
≤ 1 +

1
i
.

Consider the family Λ2 of all spheres St, t ∈ (s2, p
−1(1)) (here it is assumed

that the function p notices the scaling done before (6.6)), and denote Λ′
2 =

{S′t : St ∈ Λ2}. By Theorem 3.4, Lemma 5.1, (6.6) and (6.1), we have

ω
−1

n−1

n−1 log
p−1(1)

s2
= MS(Λ2) ≤

K
1

n−1

O

m
Mm

S (Λ′
2)(6.9)

≤
(KOm

ωn−1

) 1
n−1 log

1
p(s2)

≤
(KOm

ωn−1

) 1
n−1 1

i
log(1 + β)

≤
( 10

ωn−1

) 1
n−1 1

i
log(1 + β),

22



where in the last inequality the fact m ≤ 10 was used. A similar argument
for s1 yields

(6.10) log
s1

p−1((1 + β)−1)
<

10
i

log(1 + β).

By (6.7) and (6.8) there exist some y1, y2 ∈ B1 so that

(6.11) B
(
y1, p(s1)

(
1 +

1
i

)−1)
⊂ B′

s1
, B′

s2
⊂ B

(
y2, p(s2)

(
1 +

1
i

))
.

Now we want to apply Lemma 6.1 to show that the points y1 and y2 are
close to one another. We use a mapping T that is a composition of scaling
and translation, so that T (y2) = 0 and T (B(y2, p(s2)(1 + 1

i )) = B1. Then
T (y1) = x1 and T (B(y1, p(s1)(1 + 1

i )
−1)) = B(x1, 1− u). By (6.6), we have

(6.12)
1

1− u
=

p(s2)(1 + 1
i )

2

p(s1)
≤ (1 + β)

(
1 +

1
i

)2
.

We assume i ≥ 10000, so that

(6.13) log
(
(1 + β)

(
1 +

1
i

)2)
≤

(
1 +

1√
i

)
log(1 + β).

By combining (6.4), the definition of tj , (6.9) and (6.10), we have

log(1 + β) ≤
(
1 +

1
i

)(KI

m

) 1
n−1 log tj

=
(
1 +

1
i

)(KI

m

) 1
n−1

(
log

s2

s1
+ log

s1

p−1((1 + β)−1)
+ log

p−1(1)
s2

)
≤

(
1 +

1
i

)(KI

m

) 1
n−1

(
log

s2

s1
+

20
i

log(1 + β)
)
,

and thus

(6.14) log(1 + β) ≤
(
1 +

40
i

)
m

−1
n−1 log

s2

s1

when i ≥ 100000 and KI ≤ 1 + 1
i . If we denote the family of all spheres St,

t ∈ (s1, s2) by Λ3, and if Λ′
3 = {S′t : St ∈ Λ3}, then Theorem 3.4, Lemma

6.1 and (6.6) give

ω
−1

n−1

n−1 log
s2

s1
= MS(Λ3) ≤

K
1

n−1

O

m
Mm

S (Λ′
3)(6.15)

≤
(KOm

ωn−1

) 1
n−1 log

1

tanh ρ(L,u)
2

,
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where ρ(L, u) is as in Lemma 6.1 and u as in (6.12). By combining (6.12),
(6.13), (6.14) and (6.15), we have

(6.16) log
1

1− u
≤

(
1 +

1√
i

)3
log

1

tanh ρ(L,u)
2

when K ≤ 1 + 1
i . Solving (6.16) with respect to L yields

L ≤
√

u2(1 + T )2 − (2− u)2(1− T )2

2u
√

T
,

where T = (1−u)
1
ν and ν = (1+ 1√

i
)3. Hence, for each I ∈ N we can choose

i to be large enough, so that

(6.17) |x1| ≤ I−1u.

In conclusion, we have

(6.18) B(0, 1− (1 + I−1)u) ⊂ B(x1, 1− u).

By combining (6.6), (6.11) and (6.18), we conclude that, after scaling and
translating the domain Ω again, we have found an annulus B1 \B1−(1+I−1)u,
where

(6.19) u ≤ 1− (1 + β)−1
(
1 +

1
i

)−2
,

so that

(6.20) S′t ⊂ B1 \B1−(1+I−1)u for all t ∈ (s1, s2)

and (6.14) holds. Note that up to this point, the assumption n ≥ 3 has not
been used. In what follows, this assumption will be employed in the study
of certain path families. We next describe these path families.

First, for each t ∈ (s1, s2), S′t must contain a branch point, since other-
wise the restriction of f to S′t would be a homeomorphism onto St, see [17],
pages 69–70 (here the assumption n ≥ 3 gets used). Take, for tb = s1+s2

2 , a
branch point b ∈ S′tb . Then for each t ∈ (s1, s2) there exists a point at ∈ S′t
so that when at and b are connected by a line segment, 0 lies between at

and b in this segment.
Next we denote

Bb = B
(
f(b),

s2 − s1

2

)
.

Furthermore, the b-component of f−1(Bb) is denoted by B′
b. Then µ(f,B′

b) =
m (recall that we assumed that for all branch points x of f , i(x, f) ≥ m)
and B′

b is a normal neighborhood of b. By Lemma 4.3, we have

L∗
(
f(b), f,

s2 − s1

2

)
≤ C∗(n, K)l∗

(
f(b), f,

s2 − s1

2

)
.

24



Since B′
b ∈ B1 \B1−(1+I−1)u,

l∗
(
f(b), f,

s2 − s1

2

)
≤ (1 + I−1)u

2
.

Hence

(6.21) L∗
(
f(b), f,

s2 − s1

2

)
≤ C∗(n, K)

(1 + I−1)u
2

≤ 2
3
C∗(n, K)u.

We consider the family Γb of all paths joining Bb and

Ab := {f(y) : y = at for some t ∈ (s1, s2)}

in the annulus Bs2 \ Bs1 . Note that, by (6.21) and since µ(f,B′
b) = m,

Bb ∩ Ab = ∅. Since both Bb and Ab intersect St for each t ∈ (s1, s2), [21],
Theorem 10.9 gives

(6.22) M(Γb) ≥ cn log
s2

s1
,

where

(6.23) cn = 2−1ωn−2p
1−n
n

and
pn =

∫ ∞

0
t

2−n
n−1 (1 + t2)

1
1−n dt.

We need a sharp estimate for MΓ′b, where

Γ′b = {γ′ : γ′ is a lift of some γ ∈ Γb starting at some at}.

At this point it is important to notice that the fact µ(f,B′
b) = m implies

that each γ′ ∈ Γ′b terminates at B′
b. Also, each γ ∈ Γb has a lift γ′ ∈ Γ′b, so

that M(Γb) = M(fΓ′b).
By the proof of [21] Theorem 10.9,

(6.24)
∫

γ
ρ ds ≥ 1

for all paths γ joining 0 and en in the sphere S(1
2en, 1

2), where ρ is defined
so that

ρ(g(x)) = p−1
n |x|

2−n
n−1 (1 + |x|2)

n−2
n−1 ,

and g is the stereographic projection g : S( en
2 , 1

2) → Rn−1;

g(x) = en +
x− en

|x− en|2
.
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Also, there is equality in (6.24) when γ is a geodesic. We set

ρ′ : B1 \B1−(1+I−1)u → [0,∞]; ρ′(x) =
1

2(1− (1 + I−1)u)
(ρ ◦ g′)(y)

for each x ∈ [0, y
|y| ]∩(B1\B1−(1+I−1)u), where g′ is the restriction of a Möbius

transformation that maps S1−(1+I−1)u onto S(1
2en, 1

2) so that g′(a) = 0,
where

{a} = S1−(1+I−1)u ∩
[
0,

at

|at|

]
for some t ∈ (s1, s2).

Note that at ∈ [0, a
|a| ] for all t ∈ (s1, s2). We choose a positive constant tI

so that

(6.25) p−1
n

∫ ∞

tI

t
2−n
n−1 (1 + t2)

1
1−n dt ≤ 1−

( 1
1 + 1

I

) 1
n
.

Then we may further choose a constant t′I so that

(6.26) |(g ◦ g′)(x)| ≥ tI

for all x ∈ B(−a, t′I) ∩ S1−(1+I−1)u. By estimate (6.21) we conclude that∫
γ′

ρ′ ds ≥
( 1

1 + 1
I

) 1
n

for all γ′ ∈ Γ′b, when u is small enough so that

C∗(n, K)u ≤ t′I .

Hence

M(Γ′b) ≤
(
1 +

1
I

) ∫
B1\B1−(1+I−1)u

ρ′(x)n dx(6.27)

=
(
1 +

1
I

) ∫ 1

1−(1+I−1)u

∫
Sr

ρ′(y)n dy dr

≤ cn

(
1 +

1
I

) (1 + I−1)u
(1− (1 + I−1)u)n−1

,

where cn is as in (6.23). By using (6.19), we see that with our choices of i
and I, given at the end of the proof, we have(

1 +
1
I

)2 u

(1− (1 + I−1)u)n−1
≤ 1.1

1
n−1 u ≤ 1.2

1
n−1 log(1 + u)(6.28)

≤ 1.2
1

n−1 log
(
1 + 1− (1 + β)−1

(
1 +

1
i

)−2)
≤ 1.3

1
n−1 log(1 + β).
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We combine estimates (6.27) and (6.28) with the Poletsky inequality in order
to have

(6.29) cn log
s2

s1
≤ M(Γb) ≤ KIM(Γ′b) ≤ 1.3

1
n−1 KIcn log(1 + β).

By further combining (6.14) with (6.29), we finally arrive at a contradiction:

log(1 + β) ≤
(
1 +

1√
i

)
m

−1
n−1 log

s2

s1
≤ 1.4

1
n−1 KI

(
1 +

1√
i

)
2

−1
n−1 log(1 + β)

≤ 0.7
1

n−1 log(1 + β).

We will finish the proof by giving an account on how the different con-
stants should be chosen. First, if we initially assume that K ≤ 2, say, then
some constants, originally depending on n and K, will only depend on n.
For example, then C∗(n, K) ≤ C∗(n, 2). In the statement of the theorem it
is assumed that

(6.30) K ≤ (1 + ε)
1
3 .

Now ε depends on n, β, i and r, and has to satisfy the following requirements:

ε ≤ C4
3 , where C3 is as in (4.6),

ε ≤ C(n, i) so that (6.8) is satisfied,

ε ≤ (2ki)−4, where k is as in (6.2).

Next, r is a constant depending on n, β and i, so that (6.3) is satisfied,
and r can be estimated as in the proof of Proposition 5.3.

The constant i depends on n, β and I, and has to satisfy

1
i
≤ (1 + β)

−1
2 (2− (1 + β)ν)

−1
2 − 1, ν = 1.001

1
n−1 ,

and inequality (6.17).
Furthermore, the constant β depends on n and t′I , and should satisfy

1− (1 + β)−3 ≤ 1.001
1

n−1 log(2− (1 + β)−3),

β ≤
(
1−

t′I
C∗(n, 2)

)−1
3 − 1.

Finally, I is a dimensional constant so that

I−1 ≤ 1.001
1

8(n−1)4 − 1,

and tI , t′I are dimensional constants so that (6.25) and (6.26) hold true. The
proof is complete.
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