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In 1935, Myers [11] exhibited a decomposition of the cut locus of a
point p in a complete, two-dimensional, real analytic Riemannian manifold
as a one-dimensional simplicial complex. He showed that for each cut
point q there is a direct relation between the number of minimal geo-
desies connecting p to q—this number being called the order of the cut
point q—and the position of q in the simplicial decomposition. Cut points
of order one are extreme points of the simplicial complex; those of order
two are interior to an edge; and those of order k ^ 3 are vertices where
k edges meet. In short, the topology of a neighborhood of a point in
the cut locus is determined by the order of the cut point.

Recently, Ozols [12] and Buchner [3] have shown that the cut locus
of a point p in a real analytic Riemannian manifold admits a simplicial
decomposition. Moreover, Ozols [12] describes the structure of the cut
locus near a non-conjugate cut point q as a finite (depending on the order
of q) intersection of hyperspaces and half-planes, while Buchner [4]
completely classifies the local structure of generic cut loci in low dimen-
sional manifolds. In general, however, the relation between the set,
called the link, of minimal geodesies connecting p to a cut point q and
the structure of the cut locus near q remains obscure.

This paper establishes, as a consequence of Poincare duality, a duality
between the Cech cohomology of the link and the local homology groups
of cut loci in smooth Riemannian manifolds, thereby weakly generalizing
the result of Myers on the order and local topology of cut loci in real
analytic surfaces. Using standard arguments from algebraic topology,
we show that certain local homology groups of cut loci are torsion free.
Finally, we prove interconnections between the dimension of the cut locus
and the vanishing of high dimensional local homology which lead up to a
generalization of a theorem of Bishop [2] on the decomposition of cut loci.

1. Duality. Fixing notation, throughout this paper M denotes a
complete ^-dimensional smooth (C00) Riemannian manifold, and p an
arbitrary but fixed point of M having the cut locus C = C(p) in M.
Given p, q always denotes a cut point in C. S — Sq always denotes the
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unit tangent sphere to M at q, and the link, A — A(p, q), denotes the
non-empty closed subset of S consisting of all unit tangent vectors at q
that are tangent to minimal geodesic segments connecting p to q but
directed from q to p. (See [1, p. 135].) X always denotes an element
of A. Finally, Σ = Σ(p, q) denotes the subset of M consisting of all
points that lie on some minimal geodesic segment connecting p to q. In
other words, Σ is the union of all such geodesic segments, and hence,
Σ is homeomorphic to the suspension of A. Thus, for an abelian group G,

(1.1) Hi+\Σ, p; G) = H\Λ, X; G)
v

by the well known relation between the Cech cohomology of a space and
that of its suspension [6, p. 51].

The complement of the cut locus C in M is the largest open neigh-
borhood of p for which normal coordinates about p can be used. Thus
every point in the complement of C, except for p, lies on a unique
minimal geodesic emitted from p. If 27 c C is a relatively open subset
of C having compact closure, then 27 is a strong deformation retract
of the open set U consisting of all the points of M, except for p,
that lie on a minimal geodesic segment connecting p to some point in
U, where the deformation is to push a point in U into U along the
minimal geodesic segment that it lies upon. Let U be a relatively open
subset of C having compact closure, let q be a point in 27, and let D be
a closed geodesic ball centred at p such that D Γ\ C = 0 . Then the sets
K = (M — U)\JD{J Σ and L = (M - fj) U D are such that L c K and the
closure of K — L is a compact contractible set. See Figure. Thus M is

oriented along the closure of K — L, and therefore a version of Poincare
duality can be applied. (See [6,7.10, p. 296].) Hence, by Poincare
duality, a deformation retraction, and excision:

(1.2) Ht+\K, L; G) S Hn_UM - L, M - K; G)

= H..UU-D, U-(DUΣ);G)

= Hn_UU, U-q;G) = Hn_UC, C - g; (?) .



LOCAL HOMOLOGY OF CUT LOCI 47

However, by excision and by collapsing D to a point (see [6, 6.20,
p. 287].):

(1.3) Hί+\K, L; G) = Hi+\D U Σ, D; G) ^ Hi+\(D U Σ)/D, {D}; G)

= Hi+\Σ, p; G) .

Therefore (1.1), (1.2), and (1.3) imply the following duality relation.

THEOREM 1.4. H\Λ, X; G) ^ H^^C, C - q; G).

REMARK. By a similar proof, Theorem 1.4 also holds for the cut
locus of a properly embedded submanifold of M, the link now being
defined as the set of unit tangent vectors to geodesies minimizing the
distance from the submanifold to the given cut point. Recall that a
submanifold is properly embedded if the embedding is a proper map.

2. Local homology groups of C(p). The groups H*(C, C — q; G) are
known as the local homology groups of C at q with coefficients in the
abelian group G. Throughout this section, integer coefficients are assumed.
Recall that the word countable allows both finite and infinite.

PROPOSITION 2.1. (1) H*(C,C — q) is countably generated. (2) H^C,
C - q) = 0 for i^n. (3) H^C, C - q) is torsion free for i = 0, 1, n - 2,
and n — 1.

PROOF. By Theorem 1.4, by Poincare duality in the tangent sphere
S, and by the contractibility of S — X,

H&C, C - ?) = Hn-'-\Λ, X) = Has -X,S-Λ)k &US - A)

where the tilde indicates reduced homology. Since S — A is a non-
compact open subset of the (n — l)-dimensional sphere S, (1) and (2) are
true.

As for (3), each case is treated separately. H0(C, C — q) is isomorphic
to the integers if q is a full path component of C and is the trivial
group otherwise. H^C, C — q) = H0(S — A) is a free abelian group whose
rank plus one equals the number of connected components of S — A.
Now a standard argument (see [6, 3.5, p. 261 and exercise 3, p. 266])
proves that under certain conditions on an m-dimensional manifold N and
closed subset F, flm_1(iV, N - F) is torsion free. Thus Hn_2(C, C - q) =
Hn_2(S — X, S — A) has no torsion because N = S — X is an oriented
(n — l)-dimensional manifold containing the closed subset F = A — X,
while Hn^(G9 G - q) s H^U - D,U-(D\J Σ)) (notation as in (1.2)) has
no torsion because N = U — D is an ^-dimensional manifold oriented
along the closed connected set F — Σ — (D Π Σ). q.e.d.
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REMARK. According to Buchner [3], cut loci of compact real analytic
Riemannian manifolds are finite simplicial complexes. Thus the local
homology groups are finitely generated. On the other hand, Gluck and
Singer's example of a nontriangulable cut locus has an infinitely generated
local homology group at some point [7].

PROPOSITION 2.2. The following are equivalent.
(1) HQ(C,C-q)Φθ.
(2) Λ(p,q)=S9.
(3) C(p) = {q}.
( 4 ) Hi(C, C — q) is the group of integers for i = 0, and is the

trivial group otherwise.
If any one, and hence all, of the above hold, then M is homeomorphic

to a sphere.

PROOF. AS in Proposition 2.1, H0(C, C - q) = H0(S - X, S - A).
Since S — X is connected, the second group is non-trivial if and only if
S — A. This shows (1) implies (2). The remaining implications are
trivial. The last last statement follows from [1, p. 142]. q.e.d.

If M is of dimension less than or equal to four, then H*(C, C — q)
is countably generated and torsion free.

There is the possibility of torsion when n ^ 5 . Gluck and Singer's
work on the deformation of geodesic fields allow the construction of such
an example. Let q be the north pole and p be the south pole of the
unit sphere Sn. Consider the north polar cap consisting of all points
whose distance from q is at most ττ/4. The boundary of the polar cap
is an (n — l)-dimensional sphere which is called the arctic sphere. If Y
is a "nice" subset of the arctic sphere, the geodesic cone C over Y with
vertex at q, i.e., the union of all minimal geodesic segments connecting
Y to q, is a good candidate for a cut locus. For by drawing off a
family of geodesies starting in C which head in a southerly direction,
while simultaneously drawing up the geodesies from the south pole, if
the conditions of [7] are satisfied, then the metric can be altered near
the equator so that the two families of geodesies match up, thereby
making C the cut locus of p. Observe HiiC, C — q) = Ht_x(Y)9 since C
is the cone on Y with vertex at q.

Now, the Veronese surface V is an embedding of the real protective
plane in Si ([5, p. 88]). If — denotes the antipodal map of S\ V and — V
are disjoint sets. Thus the set 7 = F U ( - F ) is the disjoint union of
two real projective planes. Considering S4 as the arctic sphere of S5,
the above construction gives an example of a cut locus whose local
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homology has torsion.

3. Cut points and conjugate points. The conjugate points of p are
the singularities of the exponential map exp: TP(M) —> M, that is, the
points in the tangent space TP(M) where the differential of the exponential
map exp* fails to be surjective. The multiplicity of a conjugate point
is the dimension of the kernel of exp* at that point. Warner [13]
showed that the locus of regular conjugate points—every regular con-
jugate point has a neighborhood in TP(M) that meets each ray in at
most one conjugate point—is a smooth hypersurface of TP(M) that is
dense in the full conjugate locus. The set of conjugate points nearest
the origin is called the first conjugate locus. Conjugate points arise in
the study of the cut locus since for every cut point q, either there are
at least two minimal goedesics connecting p to q, or q is the first con-
jugate point to p along the unique minimal geodesic between the two
points [10],

PROPOSITION 3.1. If q is a cut point which is not conjugate along
any minimal qeodesic from p to q, then Λ(p, q) is a finite set containing
at least two points. Hence H°(Λ, X) = JBΓn_1(C, C — q) is a non-trivial
finitely generated free abelian group and H\Λ, X) = H^^C, C — q) is
trivial for i Φ 0.

PROOF. The minimal geodesies from p to q are isolated. Thus A is
finite and contains at least two points. q.e.d.

Thus if Hn_γ{C, C — q) = 0, then the cut point q is conjugate to p
along some minimal geodesic connecting p to q.

PROPOSITION 3.2. The set of cut points which are conjugate along
some minimal geodesic has dimension less than or equal to n — 2.

PROOF. By [14, Lemma 1.1], the image under exp of the union of
the set of conjugate points of multiplicity one for which the kernel of
exp* is tangent to the conjugate locus with the set of conjugate points
having multiplicity at least two has dimension at most n — 2. Hence,
it suffices to show that the kernel of exp* is tangent to the conjugate
locus at every conjugate point that is also a cut point. Argue by con-
tradiction. Let 7 be a multiplicity one conjugate point in TP(M) for
which the kernel of exp* is not tangent to the conjugate locus. In a
neighborhood of Y in the conjugate locus, the kernel of exp* decomposes
uniquely into a non-zero radial component and a component tangent to
the conjugate locus. Take an integral curve σ of the tangential com-
ponent that passes through Y. Let Yo be a point on σ which is closer
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to the origin than Y. If we let 7 and 70 be the geodesies determined
by Y and Yo, respectively, then the curve 70 plus exp(<τ), which is not
a geodesic, has the same length, by construction, as 7. Hence the cut
point along 7 occurs before exp(Y). q.e.d.

In particular, the set of q in C with Hn_x(C, C — q) = 0 has dimension
at most n — 2. This can be refined.

PROPOSITION 3.3. Let UcC be a relatively open subset of C. Then
dim( U) <: k if and only if H^C, C — q) = 0 for all q in U and all i > k.

PROOF. Suppose H^C, C — q) = 0 for all q e U and i > k. Since
dim(C) <* n — 1 and Jff̂ C, C — q) = 0 for all qeC and i ^ n, it suffices
to consider k < n — 1.

Let V = exv~\U) Π K where K is the tangent cut locus of p. Then
V is relatively open in K. Hence V is an n — 1 dimensional topological
manifold, and V is contained in the first conjugate locus, since k < n — 1.
Let μ be the least multiplicity of a conjugate point in V. Then the
set of conjugate points in V with multiplicity μ are regular conjugate
points, the reason being that every neighborhood of a singular (non-
regular) conjugate contains a conjugate point of strictly lower multi-
plicity. (See Property (R3) of a regular exponential map in [13].) Thus
the exponential map restricted to the set of points in V of multiplicity
μ is a submersion into M. (This is even true when μ = 1 since the
proof of Proposition 3.2 shows that the kernel of exp* is tangent to the
conjugate locus.) Hence, by cutting down this set if necessary, its image
under exp is a smooth d-dimensional manifold N contained in U where
d = n — 1 — μ. Furthermore, since the multiplicity of every conjugate
point in V is at least μ, and the multiplicity of every singular conjugate
point is at least μ + 1, the argument in [14, p. 202] shows dim(C7) <Ξ d.
Thus to show dim(?7) ^ k it suffices to show k^t d, which we can do,
by assumption on the local homology groups, by showing Hd(C, C — q) Φ
0 for some qe U.

If q is a point in the manifold JV, then Hd(N, N — q) Φ 0. Now one
can reason that the inclusion homomorphismHd(N, N — q)^>Hd(U, U—q)&
Hd(C, C — q) is a monomorphism, thereby proving that Hd(C, C — q) Φ 0.
The way to do this is as follows.

Let W be an open set in M such that U = W Π C. Let B be an open
^-dimensional ball about q in M whose closure is contained in W and
whose intersection with N is an open cί-dimensional ball in N. The map
/ taking U — B to the south pole {*} of the sphere Sd and taking the
open cell B Π N homeomorphically onto Sd — {*} is a continuous map of
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the relatively closed subset N\J(U - B) of U into Sd. Since dim(fT') ^
d, f extends to a map F of U into Sd ([9, p. 83]). Thus the diagram

/*

Hd(U, U-B)

shows the inclusion homomorphism c* is a monomorphism. Since the
family of all such B forms a base for the neighborhoods of q, passing
to a direct limit (or the argument in [6, Lemma 2.2, p. 252], if one
prefers) implies that Hd(N, N — q)-> Hd{ U, U — q) is a monomorphism.

The converse is easier. H^C, C — q) = Ht{ U, U — q) is the direct
limit of the groups Ht( U, U — B) for open neighborhoods B of q. If
dim( U) <Ξ k, then the latter groups vanish for i > k. Thus H^C, C — q)
vanishes for i > k. q.e.d.

In general the vanishing of high dimensional local homology does
not imply that a finite dimensional space has low dimension. Knaster
and Kuratowski [9, pp. 22-25] have an example of a totally disconnected
subset of the plane which is one-dimensional. Being totally disconnected,
each connnected component of this set is a point, and thus the local
homology groups vanish in all dimensions except zero. Proposition 3.3
has several consequences. For example take U — C.

COROLLARY 3.4. dim(C) ^k if and only if Ht(C, C - q) = 0 for all
q in C and all i > k.

The following is a new necessary and sufficient condition for the
coincidence of the tangent cut locus and the first conjugate locus. (See
[8] for similar conditions.)

COROLLARY 3.5. The following are equivalent:
(1) The tangent cut locus and the first conjugate locus at p coincide.
(2) Every q in C is conjugate to p along some minimal geodesic.
( 3) H^iC, C - q) = 0 for all q in C.

PROOF. (1) implies (2) is trivial. By Proposition 3.2, (2) implies that
dim(C) ^ n - 2. Thus (3) follows by Corollary 3.4. If (1) does not hold,
then άim(C) = n—l. Thus (3) implies (1), again by Corollary 3.4. q.e.d.

Looking at local homology suggests the following naϊve decomposition
of the cut locus. For each j = 0, , n, let

Cj = {qeC: H^C, C - ? ) = 0 f o r a l l i^j}.
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Thus Co c Cλ c . c Cn = C and, by Proposition 3.3, dim(Cy) <i i - 1,
o

where Cβ is the relative interior of C5 in C.
Define a cut point q to be a singular cut point if there is exactly

one minimial geodesic connecting p to q, and to be an ordinary cut
point otherwise. If q is singular, then H(Λ, X) = 0 and thus, by duality,
H*(C, C — q) = 0. Hence the singular cut points are contained in CQ.
But Co is empty, since dim(C0) ^ — 1. Thus the set of singular cut
points has empty interior. Consequently, we have the following:

THEOREM 3.5 (Bishop [2]). The ordinary cut points are dense in
the cut locus.

REMARK. Similar results hold for the cut locus and focal locus of a
properly embedded submanifold in a complete Riemannian manifold.
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