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Unit Root Tests for Panel Data

Jorg Breitung
Humboldt University Berlin
Institute of Statistics and Econometrics
Spandauer Strasse 1, D-10178 Berlin, Germany

Abstract

To test the hypothesis of a difference stationary time series against a
trend stationary alternative, Levin and Lin (1993) and Im, Pesaran
and Shin (1997) suggest bias adjusted t-statistics. Such corrections are
necessary to account for the nonzero mean of the ¢-statistic in the case
of an OLS detrending method. In this paper the local power of panel
unit root statistics against a sequence of local alternatives is studied.
It is shown that the local power of the test statistics is affected by two
different terms. The first term represents the asymptotic effect on
the bias due the detrending method and the second term is the usual
location parameter of the limiting distribution under the sequence
of local alternatives. It is argued that both terms can offset each
other so that the test has no power against the sequence of local
alternatives. This results suggest to construct test statistics based
on alternative detrending methods. We consider a class of t-statistics
that do not require a bias correction. The results of a Monte Carlo
experiment suggest that avoiding the bias can improve the power of
the test substantially.



1 Introduction

In a panel data set, a variable y;; is observed for cross section units i =
1,...,N in t = 1,...,T time periods. A well known problem with such
data is unobserved heterogeneity (e.g. Hsiao 1986 and Baltagi 1995). In a
univariate time series context heterogeneity may result in individuals specific
mean and short run dynamics. For illustration consider an autoregressive

process of the form
Yit = Mi + 0GYit—1 + Eit (1)

where the error term &;; is assumed to be uncorrelated across ¢ and ¢. In
this model individual heterogeneity is represented by the individual specific
parameters y;, ; and 02 = E(e2,). If there are no further assumptions on the
parameters, then the data for each cross section unit can be analyzed sepa-
rately by running N different regressions. In this case, we take no advantage
from pooling the data and, thus, inference may be very inefficient. The other
extreme is that we ignore a possible heterogeneity altogether and estimate a
pooled regression with p; = --- = py, oy = --- = ay and 0 = --- = 0%.
Of course, ignoring heterogeneity in the data may result in biased estimates
(e.g. Baltagi 1995 p. 3f).

Traditional panel data analysis adopts a compromise between these two
extremes and assumes that individual heterogeneity can be represented by
an individual specific intercept p; alone. Furthermore, one often encounters
additional assumptions on the individual effect u;, for example, that it is
random and uncorrelated with the regressors. The latter model is known as
“random-effects model”.

It is not surprising that early work on test for unit roots in panel data
starts from the Dickey-Fuller type regression with individual specific intercept

(e.g. Breitung 1992). Levin and Lin (henceforth: LL) (1993) and Im, Pesaran
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and Shin (henceforth: IPS) (1997) consider more general models by allowing
for individual specific short run dynamics and time trends.

It is well known that the usual dummy variable estimator (or “within-
group” estimator) of dynamic models suffers from the so-called “Nickell bias”
(Nickell 1981). For stationary models this bias is of order O(T!) and, thus
the bias vanishes for 7' — oo. If the autoregressive model has a unit root,
however, the Nickell bias does not die out as 7' — oo. The same is true if
individual specific time trends are estimated by using the dummy-variables
approach. LL (1993) construct a bias adjusted ¢-statistic to test the null
hypothesis of a unit root process. Unfortunately, bias adjusted test statistics
for the model with a constant or a time trend can suffer from a severe loss
of power. For example, the power of the LL (1993) test without an intercept
(and thus without the need to correct for the Nickell bias) against a statio-
nary alternative with an autoregressive coefficient of 0.9 is virtually unity for
N = 25 and T = 25. For the bias adjusted test statistic in the model with
individual specific intercept (trend), the power against the same alternative
drops to 0.45 (0.25). Furthermore IPS (1997) observe a serious size bias if
the bias adjusted LL statistic is augmented with lagged differences.

If there is only a constant in the model, the problem is easily resolved by
subtracting the first observation instead of the mean. As argued in Schmidt
and Phillips (1992), the first observation is the best estimator of the constant
under the hypothesis of a random walk. Furthermore, subtracting the first
observation instead of the mean avoids the Nickell bias and, therefore, the
test does not require a bias correction (cf Breitung and Meyer (henceforth:
BM) (1994)).

To study the asymptotic properties we compare the local power of the

bias adjusted test statistics. Our analysis demonstrates that the local power



of the test depends on two different terms. The first term represents the
asymptotic effect on the bias due the detrending method and the second
term is the usual location parameter of the limiting distribution under the
sequence of local alternatives. It is shown that if the long-run variances are
estimated consistently, both terms cancel out each other so that the test
statistic is centered around zero under the local alternative. Levin and Lin
(1993), suggest to estimate the long-run variances by using a nonparametric
estimator computed from the first differences of the series. An attractive
feature of this approach is that under the alternative the nonparametric
estimator tends to zero so that a the resulting test statistic has power against
the sequence of local alternatives. For the IPS test this problem is less severe.
Nevertheless, the bias term also leads to a loss of (local) power.

To overcome the problem, a class of t-statistics is suggested that do not
require a bias correction. These tests are based on the t-statistic from a
simple least-squares regression of transformed variables and it is shown that
the limiting distribution of these tests is standard normal. The results of
the Monte Carlo experiments suggest that avoiding the detrending bias may
improve the power of the test substantially.

The rest of the paper is organized as follows. In Section 2 the details
of the test statistics are given. The local power of the tests is analyzed in
Section 3. In Section 4 a class of ¢-statistics is suggested in order to avoid
the detrending bias. Since the test are based on asymptotic properties, it
is interesting to consider the relative performance of the tests in small sam-
ples, in particular, if the data are generated by a higher order autoregressive
process. This problem is addressed in Section 5 by using Monte Carlo simula-
tions. Furthermore, the actual power against a sequence of local alternatives

are investigated by means of Monte Carlo simulations. Section 6 offers some



conclusions and makes suggestions for further research.

Finally, a word on the notational conventions applied in this paper. A
standard Brownian motion is written as W;(r). Although there are different
Brownian motions for different cross section units 7, we sometimes drop the
index 7 for convenience. This has no consequences for the final results since
they depend on the expectation of the stochastic functionals. Furthermore,
if there is no risk of misunderstanding, we drop the limits and the argument
r (or dr). For example, the term [ rW;(r)dr will be economically written
as [rW. A detrended Brownian motion is represented as V(r) = V =
W — W —12r [rW. As usual in this kind of literature we use [a] to indicate
the integer part of a.

2 The test statistics

Assume that the variable y;; can be represented as
yzt:MZ+ﬂzt+xzta t:1,2,,T, (2)

where z;; is generated by the autoregressive process

p+1

Tit = Z QikZit—k + Eit (3)
k=1

and x;; = 0 for s < 0. It is assumed that e;; is white noise with E(¢?,) = o7
and Ele;|** < oo for all 4, and some § > 0. Furthermore & is assumed to
be independent of ¢, for ¢ # 7 and all ¢ and s.

The null hypothesis is that the process is difference stationary, i.e.,

pt1
Hy: p; = Zaik—lz() foralli=1,...,N . (4)
k=1

Under the alternative we assume that y;; is (trend) stationary, that is, p; < 0

for all 3.



The assumptions concerning ¢;; ensure that there exists a functional limit

theorem such that
[rT]

Tﬁl/QZEit = EiWi(T) ,
t=1
. . . T
where W;(r) is a Brownian motion, 7 = Jim E (Te?) and &; = T7' Y ey

(e.g. Phillips and Solo 1992). The parameter 2 is sometimes called the
“long-run variance”, since it is computed as 27 times the spectral density at
frequency zero.

LL (1993) suggest a test procedure against the alternative p; = --- =
pn < 0. Let e; (v;4—1) denote the residuals from a regression of Ay (vii—1)
on 1,t,Ay;s—1,...,Ay;s—p. Furthermore, let &; = e;/o; and Uy = v /oy,
where in practice o? is estimated using the residuals e;. The LL test is

based on the bias adjusted t-statistic for p = 0 in the regression:

€it = PUit—1 + Mt -
LL (1993) show that under the null hypothesis, the ordinary ¢-statistic tends
to minus infinity if a constant or a time trend is included in the model.
Therefore, they suggest a bias adjusted test statistic given by

N T B
> X [€ubig—1 — (Gi/oi)ar]
_i=1i=1

/\LL - N T ) (5)
bTﬂ Z > ~i2,t71
i=1t=1

where ar and by are the small sample analogs of

6oy = E / Vdv (6)
;-

and V = V(r) is a detrended Brownian motion. LL (1993) suggest to use a

nonparametric estimator for 52 based on on the first differences of the data.
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IPS (1997) relax the assumption of a common parameter p under the
alternative. Accordingly, model (2) is estimated for each cross section unit
separately, yielding an individual specific Dickey-Fuller ¢-statistic 7;. The
IPS statistic is given by:

N
Arps = N V23 [ — mo] Jwr |
i=1

where 7; is the usual augmented Dickey-Fuller ¢-statistic for cross section unit

i, and myp,w? are small sample analogs of

Jvdv

v

IR0\ %
JIv?

If the model does not include a trend term or if it is assumed that the cross

My = F

(8)

N

W = var

(9)

section units possess a common trend such that 3 = 3; = --- = [y, the test
procedure of Breitung and Meyer (1994) can be used. Here we generalize
their procedure by allowing for individual specific short run dynamics. To
remove the individual constants, y;, is subtracted so that E(y; — vyi0) = St.
The advantage of this approach to remove the individual effect is that under
the null hypothesis p = 0 the regressor (y;:—1 — ¥io) is uncorrelated with
the error €;; and, therefore, the t-statistic has a standard normal limiting
distribution. As the LL test, this test can be performed in two steps. First,
we compute u;; and w; ;1 as the residuals from regressions of Ay;; and y; ;1
on the lagged differences Ay;; 1,...,Ay;; , but not on the deterministic
terms. To account for possible heteroscedasticity we standardize the series
as Uy = ui/o; and Wy = wy/o;, where in practice an estimate of the variance

of u;; is used.



The test statistic is the ¢-statistic for p = 0 in the regression

Uit = p(Wip—1 — Wio) + Bt + v (10)
yielding
N T o
> Z: wzt 1= in)Uit

=11

)‘BM_ N
[ 2

To analyze the asymptotic behavior of the tests, it is important to specify the

(11)

||Mq “

71 2
wz’,tq - wio)

relationship between N and T (cf Phillips and Moon 1999). For our analysis
it is convenient to apply sequential limits denoted by (7', N — 00) e, Wherein
T — oo is followed by N — oo. Although such an asymptotic framework
is more restrictive than using a joint limit and requires moment conditions
that are difficult to verify (cf IPS 1997), we follow Kao (1999), Moon and
Phillips (1999) and others and apply a sequential limit. Whether our results
continue to hold for a joint limit theory is an interesting problem for future

research.

Theorem 1: Assume that {y;} is a collection of N independent difference
stationary time series generated as in (2) with p = 0 and 1 = --- = (.
For T — oo and N — oo, the statistic Agy defined in (11) has a standard

normal limiting distribution.

In the proof of the theorem it is shown that under the null hypothesis the

test statistic can be represented as
ABu = 2+ Op(N7Y2) 4 0,(T/?) (12)

where z is a standard normally distributed random variable. The term

O,(T~Y/?) is due to the estimation of individual specific short run dynamics.



If we are willing to assume that the autoregressive parameters are identical
for all cross section units, that is, a;x = ;i for all ¢ # j, then the last term
in (12) cancels and a standard normal limiting distribution is obtained for
fized T and N — oo (BM 1994).

3 Local Power

In this section we study the local power of alternative test procedures. Since
the test of Theorem 1 is designed to test against an alternative with a common
time trend, it is expected that the test lacks power whenever the time series
are stationary around individual specific time trends. To investigate this

problem we consider a sequence of local alternatives given by
Yit = i + Bit + Tyt (13)

where

c
T =1|1-— Tit1+€w, ¢>0 14
t ( T\/N) gt—1 t ( )

and ; is a random variable with

and the assumptions:

E(mi) =0, E(neu) =0, E(n}) =0} .

This random effects specification is used to analyze the asymptotic properties
of the test considered in Theorem 1. For all other tests the assumption on
the drift parameter is irrelevant.

We will further assume that the initial value of y;q is fixed or stochastic

with a finite variance. When the initial conditions are allowed to go into the



remote past, the initial condition plays a role in the limiting distribution of

the process (e.g. Phillips and Lee 1996). In what follows, however, we will

neglect such complications in order to keep the analysis reasonably simple.
In the following Lemma we state the important fact that under the local

alternative the limiting process of x;; is the same as under the null hypothesis.

Lemma 1: Under the local alternative given in (13) — (14) and a sequential

limit (T, N — 00) seq we have

T’l/QxZ-,[,«T] = Wi(r), 0<c¢<o0.

This is an important difference to the asymptotic theory in the usual time
series context, where under the local alternative the limiting process is an
Ornstein-Uhlenbeck process (cf Phillips 1987).

To investigate the asymptotic properties of the tests we first state a useful

lemma.

Lemma 2: Let W = W(r) denote a standard Brownian motion and V =

V(r) is the detrended Brownian motion. Then,
G) E / W2 =1/2
(i) E (/ WdW/W2> —1/3
(i) E (/ W2)2 = 7/12
(i) E/V2 —1/15
w) E (W(l) /W) —1/2.
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The probability limits of the tests depend on the parameters o; and ;. First,

we consider the theoretical value of 2 under the local alternative.

Lemma 3: Under the local alternative (13) — (14) we have

_9 . —1.2 2
o; = lim E(T z:7) =07 .
1 T30 ( ZT) %

In what follows we derive the result assuming that 7 is estimated consistently
for all values of ¢ > 0.

The test considered in Theorem 1 is derived under the assumption that all
cross section units have the same linear trend. Accordingly, the asymptotic
properties of the test crucially depend on the variance of the drift parameter
B;- The following theorem presents the local power for og = 0 and shows

that for 072] > 0 the test is inconsistent.

Theorem 2: Under the sequence of local alternatives given in (13) - (14)
with 0727 = 0 the t-statistic for p = 0 in (10) is asymptotically distributed as
N(—c/V/2,1). For o} >0 the test statistic tends to +oo at the rate VT and,

thus, the test is inconsistent.

Therefore, for this test statistic it is important that there is a common trend
for all cross section units. If the slope of the time trend varies across indi-
viduals the test suffers from a lack of power.

Next we consider the bias corrected test statistics. Under the local alter-
native the bias adjusted (BA) statistic converges to the limit

[E (Jv—lT—1 > g,.tai,“> NS (5 /ai)aoo]
pa0) = lim VN — .
boo\l E <N1T2 > ﬁ%t_1>

1=1t=1
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Notice that numerator and denominator have been normalized so that both
converge to a fixed limit.
Since

git'ljz‘,t—l = [O';IEit — C/(T\/N)’lji’t_l]’lji,t_l

the limit can be written as
N
. -1 A
alc) = ol VY lN &5 am] _ BV
A boo [E [ V2 boo

where we use 7;/0 = 1 under the local alternative and

T
_ 1 1~
Cri=T 'Y o0, 'eubip -
t=1

It turns out that the limit of the bias adjusted statistic depends on two
different terms on the right hand side of (15). The first term is due to the
detrending method represented by the statistic ['z;. The second term is
proportional to /F [V? and is similar to the usual location parameter in
the asymptotic distribution under the null hypothesis. For example, in the
simple regression model y; = ;0 + u; with stationary variables, the location
parameter is proportional to /E(z?).

It is important to notice that the expectation of I'y; enters the test statis-
tic with the factor v/N and, therefore, for the asymptotic analysis the expec-
tation must be determined with an accuracy up to O(N~'/2). The following
Lemma provides an approximation of this expectation that is sufficient for

our purpose.

Lemma 4: Under the local alternative given in (13) — (14) the asymptotic

expectation of I'r; is given by
lim B(Pr:) = (1 /15)c/VN — 0.5+ o(N~*/2) |
—00

12



Since the result of Lemma 4 is crucial for the local power of the bias ad-
justed test, the accuracy of the approximation is investigated in a Monte
Carlo experiments. First, we generate 10,000 realizations of I'r; by letting
T = 200, ¢ = 5 and repeat the experiment with various values for N.» If
Lemma 4 is correct, a regression of the sample means of I'y; on ¢/v/N and
a constant should yield an estimate for the intercept close to —0.5 and a
slope of roughly 1/15=0.067. Using N € {30, 35,40, ...,500} the following
regression function was obtained for the 71 realizations:

E(Tr) ~ —0495  + 0.0629 ¢/V'N ,

(0.00060) + (0.0016) (16)

where standard errors are given in parentheses. The estimated slope coef-
ficient is slightly smaller than 0.067 and a test of the hypothesis that the
true value is 1/15 yields a t-statistic of —2.44. Although, the t-statistic is
significant with respect to a significance level of 0.05, the approximation in
Lemma 4 seems to perform fairly well in finite samples.

Now we present the limiting distribution of the bias adjusted test statistic.

Theorem 3: Consider a sequence of local alternatives given in (13) — (14).
If the estimator for &; converges weakly to o;, the bias adjusted test statistic

is asymptotically distributed as N'(0,1).

It turns out that the bias adjusted test can fail to have power against the
sequence of local alternatives. This finding suggests that the power may be

improved by a modification that avoids the bias correction altogether. Such

'We repeated the experiment for different values of ¢ and T. The results turns out to
be fairly robust.
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a modified test procedure is suggested in Section 4.

It is important to notice that the test suggested by LL (1993) test employs
a nonparametric estimator that converge to zero for a stationary alternative.
Therefore, the unit root tests are inconsistent if the long-run variance is
estimated by using the differences of the time series (cf Phillips and Ouliaris
1990, Theorem 5.3). Phillips and Perron (1988) suggest to estimate 7 by
using the residuals of the autoregression instead of using Ay;;. However, if
the residuals are used to estimate &7, then the estimated long-run variance
converge to o2 (Phillips and Perron 1988) and Theorem 3 implies that such
a test has no power against the local alternative.

Finally the local power of the IPS test is investigated. As in the case
of the bias adjusted statistic considered above, the probability limit of the
test statistic depends on two terms. The first term is due to the detrending
method and depends on

T
tzlai EitVit—1
x* _ 1=
Ui =

Since this statistic is a ratio of correlated random variables, the analytic
evaluation of this bias is very complicated. To obtain a suitable approxi-
mation we apply a similar simulation technique that was also used to check
the reliability of Lemma 4. Using the same setup as before the following
approximation is found for the expectation of I'},;:

ET%,) ~ —2.151 + 0212¢/VN

(0.0030)  (0.0077) (17)

This approximation can be used to compute the limiting distribution of the

IPS test given in
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Theorem 4: For a sequence of local alternative given in (13) — (14) the LL
test is asymptotically distributed as N'(01F5,1), where

Again we find that the local power depends on two terms. Our Monte Carlo

QIPS: C [hm aE(F;z)
¢ —00

Woo [T5% B(c/V/N)

experiment suggests that the derivative of E(I'},) is positive so that the
detrending bias implies a substantial loss of power.

Using 10,000 Monte Carlo replications, the expression F (W) is esti-
mated as 0.243. It is interesting to compare our results for the IPS statistic
to the local power of the statistic Agas that is considered in Theorem 2.
Since 271/2 = 0.707 is larger than (0.212 — 0.243)/wige = 0.0401, where
w100 = V/0.597 is taken from IPS (1997), it is seen that the local power of the
statistic Agys is much higher than the local power of the IPS test. However,
this is no surprise, since the former statistic is based on much more restrictive
assumptions (common time trend, homogeneous alternatives) than the IPS

statistic.

4 Test statistics without bias adjustment

From the local power analysis we found that bias corrections used for the LL
and IPS tests may imply a severe loss of power. It is therefore desirable to
avoid the bias term when constructing the t-statistics. For the case that the
model includes only a constant, such an unbiased statistic is easily obtained
by subtracting the first observation instead of the individual mean. This is
the approach used in BM (1994). However, it was shown in the previous

section that the test procedure may become inconsistent against a sequence
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of local alternatives. In this section we consider a class of test statistics that
do not involve a bias term.?

To facilitate the exposition we will assume that the data is generated by an
AR(1) process and, thus, no augmentation with lagged differences is needed.
For higher order processes, Ay;; and y, ;1 are replaced by the residuals from
regressions of Ay, and y; ;1 on Ay;;_1,..., Ay;—p. Furthermore, we define
the T' x 1 vectors y; = [Ayi, - .., Ayir| and x; = [yio, - - -, Yir—1]'- In order
to construct an unbiased test statistic we use the transformed vectors y; =

Ayi = [y, -, yir) and xf = Bx; = [7}}, ..., Zjp]' such that
E(y";|x*) =0 (18)

for all . Imposing further assumptions to rule out degenerate cases it is
possible to show that a t-statistic based on the transformed variables has a

standard normal limiting distribution.

Theorem 5: Let Ay; be white noise with E(Ayy) = 5i, E(Ayy — 6;)* =
02 >0 and E(Ayy — 5;)* < co. Under the assumption (18) and

lim E (T'y;'y;) >0
T—00
lim E (T7'x; A’Ax}) > 0

T—o00

the statistic

N

—2_ % x
20, Yi X
i=1

Avp = ——
\/E o7 ?x; A'Ax;
i=1

has a standard normal limiting distribution as (N, T — 00)seq-

2 Another possibility is to use alternative estimation methods like the Generalized Meth-
ods of Moments (GMM). Breitung (1997) apply second differences and obtains a unit root
test without bias adjustment by using an appropriate GMM estimator.
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It is important to notice that for this result the lagged levels need not be
trend-adjusted. However, if y; has a (individual specific) time trend under
the alternative, then a test statistic without adjusting for the trend can be
shown to converge to zero in probability and, thus, fails to be consistent.

A simple way to satisfy the assumptions (18) is to use an upper triangu-
lar matrix A, where the elements of each row sum to zero. In other words,
only the present and future observations are used to transform the differ-
ences Ay;. A well known example for such a transformation is the Helmert
transformation given by

Ui = St |Ayir — %(Ayi,t+1+---+AyiT) , t=1,2,...,T—1 (19)
where s? = (T —t)/(T —t +1). This transformation is also used in Arellano
and Bover (1995), for example. An important property of this transformation
is that whenever Ay, is a white noise process with constant variance, then
the same is true for y}. Obviously, if y; is a random walk with (individual
specific) time trend, then y}, has a zero mean and is uncorrelated with v; ;.

Next we consider the local power of the class of unbiased test statistic
given in Theorem 5. As argued before, it is natural to demean Ay;; by using
the “forward filter” given in (19). In this case the matrix A is an upper
triangular matrix. A natural way to adjust the lagged levels for the trend
is to use a “backward filter” based on the past observations of the process.
In this case, the assumption in (18) is obviously fulfilled. However, the
following theorem shows that the resulting test statistic has an expectation

of zero under the local alternative.

Theorem 6: Let A be an upper triangular matrix with the property that the
the elements of each row sums to zero and B is a lower triangular matriz.

For a sequence of local alternative given in (18) — (14) the statistic A\yp

17



given in Theorem b5 is asymptotically normally distributed with expectation

lim E()\UB) =0.

T,N—o0

This result suggests that the matrix A (resp. B) should be different from an
upper (lower) diagonal matrix. The following test procedure is based on an
unbiased test statistic with a forward filter given in (19) but using a matrix

B that is different from a lower triangular matrix:
t—1

it = Yis—1 = o YiT (20)

Notice that T ty;p = T—1 E Ay;; is an estimator of 3; and, thus, the trans-
formed variable zj, is adjusted for a time trend. It is easy to verify that
in this case E(y;|x}) = 0 and, thus, Theorem 5 states that under the null
hypothesis this test has a standard normal limiting distribution.

Although the asymptotic null distribution of the test statistic does not
depend on individual specific constants® the power of the test depends on
the individual specific constants (cf BM 1994). To obtain a test statistic
with a power that does not depend on the individual specific constants we
subtract the first observation. Furthermore, the series are adjusted for short
run dynamics and individual specific variances by replacing v}, and z}, by the
standardized residuals from the regression of y;; and xj, on y;, 1,...,y;; .-
Let y;, and zj, denote the resulting residuals that were standardized using
the estimated standard deviations from the residuals corresponding to yj;.

The test statistic is the usual ¢-statistic for ¢ = 0 from the regression
U, =0T, —Tn)" +e, t=23,....,T—1. (21)

The resulting test statistic is called the UB statistic in what follows. Since the

transformation matrix A corresponding to the Helmert transformation (19)

3The reason is that the term a:;f"A' Az} is O,(T?) and, hence, the individual specific
constants do not affect the asymptotic null distribution.
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satisfies A’A =1 so that according to Theorem 5, the t-statistic is asymp-
totically standard normal.
To compute the local power function of this test statistic we need an

approximation for
T

E(ér) =FE T Zy:t(ﬁt - zj)

t=1
that is accurate up to O(N~'/2). Such an approximation is again obtained

as for the LL and IPS statistic by the estimated regression function:

E(&;) ~ —0.0104 — 0.0407 ¢/v/N .
(0.0021) (0.0104)

Since the test statistic is constructed to have an expectation of zero under
the null hypothesis, we expect to find a constant close to zero. The estimated
constant is indeed quite small but nevertheless significant. The slope coef-
ficient is significantly negative so that the test seem to have a local power
larger than the size. The following theorem present further details on the

local power of the UB statistic.

Theorem 7: For a sequence of local alternative given in (13) — (14) the UB
test is asymptotically distributed as N'(0V8,1), where

V8 =c V6 llim OB(Er) ] .
c=0

7% 9(c/V/N)
It is interesting to compare the local powers of the IPS and the UB test.
Since v/6 - 0.0407 > 0.0401, the UB statistic has a location parameter which

is more than twice as large in absolute value compared to the IPS statistic.
Again, however, we emphasize that this comparison is unfair, because the
IPS test is more general than the UB test as it allows for a heterogeneous

autoregressive parameter under the alternative.
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5 Small sample properties

The asymptotic properties of the tests do not depend on number of lagged
differences that are used to account for higher order autoregressive models.
However, as noted by IPS (1997) for a small number of time periods 7,
the null distribution may be substantially affected by the augmentation lag.
They therefore present tables for the mean and the variance of 7; that depend
on the type of deterministics (constant/trend), the number of time periods
T and the augmentation lag p. For example, if there is a trend in the model
and T = 25, IPS (1997) report a mean of —2.167 if no lagged difference is
included, whereas the mean is —1.968, if the regression is augmented by four
lagged differences. This may not seem to matter very much but it should be
noted that the mean between the expectations of the IPS statistics with p = 4
and p=0is \/N(—1.968 + 2.167) = 0.199v/N. Thus, for moderate or large
N the test may be very conservative if the dependence on the augmentation
lag is ignored.

From the usual Dickey-Fuller test for aggregated time series it is known
that the power of the test deteriorates substantially with an increasing aug-
mentation lag. It is therefore expected that also the power of panel unit root
tests are affected by the choice of the augmentation lag.

To study the robustness of the size and power of the tests considered in

the previous sections we generate time series according to the process
Tip = QTjp—1 + Eig (22)

and y;; = p; + Bit +x;- The initial values of the process are set equal to zero.
The errors are i.i.d. with €4 ~ N(0,1). Since all tests are invariant to the
parameters u; and [3;, these parameters are set equal to zero. For the bias

and variance corrections of the LL and IPS tests the tabulated values in LL
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Table 1: Empirical size and power for 7'= 30 and N = 20

LL IPS UB LL IPS UB
«o p=20 p=1

1.00 | 0.026 0.067 0.067 0.003 0.060 0.061

0.95 | 0.058 0.109 0.133 0.011 0.092 0.109

0.90 | 0.176 0.229 0.358 0.038 0.162 0.291

0.80 | 0.809 0.769 0.916 0.242 0.535 0.829
o p=2 p=4

1.00 | 0.000 0.044 0.060 0.000 0.038 0.065

0.95 | 0.000 0.063 0.105 0.000 0.053 0.089

0.90 | 0.000 0.116 0.249 0.000 0.078 0.189

0.80 | 0.000 0.355 0.756 0.000 0.153 0.624

Note: Empirical sizes computed from 5000 Monte Carlo replications of model
(22). p denotes the number of lagged differences. The nominal size is 0.05.

(1993) and IPS (1997) are used. To represent a typical regional panel data
set, we let T = 30 (years) and N = 20 (countries). All rejection frequencies
are computed from 1000 realizations with a nominal significance level of 0.05.

It is important to notice that the autoregressive coefficient is identical for
all cross section units. Thus, our simulation design favors the LL and the
UB statistic that assume a homogenous autoregressive parameter under the
alternative.

Table 1 presents the rejection frequencies for the different tests. For p > 0
the LL test turns out to be quite conservative. This was also observed by
IPS (1997) and, therefore, the values for the mean and variance of this test
should also be tabulated for different augmentation lags. With respect to
the power of the test it turns out that for p = 0 the power of the LL and IPS
test are roughly similar. For p > 0 the IPS test tends to be more powerful
than the LL test, at least if the critical values of the LL test are not adjusted

for different augmentation lags.
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Table 2: Power against local alternatives

LL LL* IPS UB
N T Nand T — oo
25 25 0.378 0.064 0.384 0.668
50 50 0.269 0.056 0.300 0.660
70 70 0.210 0.033 0.296 0.608
100 100 0.170 0.050 0.261 0.579
T fixed, N — oo
50 25 0.235 0.038 0.342 0.575
70 25 0.156 0.038 0.313 0.535
100 25 0.090 0.028 0.273 0.450
N fixed, T" — o0
25 50 0.415 0.061 0.419 0.724
25 70 0.378 0.020 0.421 0.742
25 100 0.298 0.028 0.402 0.783

Note: This table reports the rejection rates computed from 5000 replications of
model (22) with @ = 1—20/(T+/N). The significance level is 0.05. The statistic
LL* is similar to the LL test but using the residuals from the autoregression
to estimate o). For this test the values for the expectation and variances are

computed by Monte Carlo simulations.

The UB statistic suggested in Section 4 appears to be substantially more
powerful than the LL and IPS tests. Furthermore the size and power of the
UB test is much more robust with respect to the augmentation lag. Notice
that for the UB test no tables are required for different values of p and 7.

Next a simulation experiment is performed to assess the validity of the
theoretical results for the actual power of the test. For this purpose we set
o =1-20/(TV/N). If the test does not have power against such alternative,
we expect that the power of the test tends to the size as N — oo and T — oc.
In our Monte Carlo comparison we also include a variant of the LL test that
estimate the long-run variances by using the residuals instead of the first

difference of the process. As shown in Section 3 such a test has a local power
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equal to the size. The critical values for this test are computed by Monte
Carlo simulation. The resulting test is denoted by LL*.

Table 2 presents the outcome of such a Monte Carlo experiment. As
predicted by Theorem 3, the power of the LL* test is close the size for all
N and T. All other tests appear to converge to a limit larger than than the
size, where the limiting power of the UB test is roughly twice as large as the
limiting power of the IPS test.

The results of the Monte Carlo experiment can be compared to the results
of our theoretical analysis. From Theorem 4 it is expected that the IPS test
has a power of ®(z.), where ®(-) denotes the c.d.f. of the standard normal
distribution and

Ze = —1.65 + —(0.031 £ 0.0077) ,
wr

where +0.0077 indicates plus/minus one standard deviation of the regression
estimate in (17). From « = 0.9 we obtain ¢ = 21.9 so that Theorem 4 predicts
a power in the interval [0.167,0.282]. The empirical power for N = 100 and
T = 100 is 0.261, which corresponds well to the results of Section 3. An
analog calculation using the results for the UB statistic yields an (fairly
wide) interval of [0.490, 0.862]. The empirical power presented in Table 2 fall
into this interval so that the simulation results are in line with the findings
in Section 3.

Finally it is interesting to note that the power of the tests appears to
deteriorate with fixed 7" and increasing N. For the LL test the local power

seem to tend slowly to the size as T is fixed and T" — oo.

6 Conclusion

In this paper we have considered the local power of some well known tests and

a new test for unit roots in panel data. We found that the LL and IPS tests
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suffer from a severe loss of power if individual specific trends are included.
Therefore, a class of test statistic is suggested that does not employ a bias
adjustment and it is found that the power of this test is substantially higher
than the LL and the IPS tests. Furthermore, it turns out that the LL test
is very sensitive to the augmentation lag and the short run parameter. It is
therefore recommended to apply tables for the mean and variance that take
into account the lag-augmentation of the test.

The results further indicate that the power of the tests is very sensitive
to the specification of the deterministic terms. If there is only a constant
or a joint linear trend, then subtracting the first observation yields a very
powerful test. Including individual specific trends when it is unnecessary
leads to a dramatic loss of power. Hence, in practice it is desirable to have
a test for a common deterministic trend against the alternative of individual
specific time trends.

As pointed out by a referee, there are other detrending methods that may
be used to construct an improved test procedure. A natural candidate is
the “quasi difference” detrending suggested by Elliot, Rothenberg and Stock
(1996) (see also Phillips and Xiao 1998). Unfortunately, it can be shown that
a t-statistic computed from quasi differenced data also suffers from a (Nickell
type) bias so that again a bias correction is required to obtain a reasonable
test procedure. Nevertheless, a test procedure based on quasi differences may
perform better than test procedures with OLS detrending. In this paper, our
strategy is to avoid the bias term altogether. The comparison of our approach

to a test procedure based on quasi differences is left for future research.
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Appendix
Proof of Theorem 1:

For convenience we will assume that o7 is known and without effect on the

main result we set 0-2 =1. Let 2 = [Az;41,...,Ax;;,|" and a superscript

”

indicates that the respective series is adjusted for a common time trend.

That is, @;} is the residual from a pooled regression of 1;; on a time trend.
Then,

W g, = wigaug = (Tipo1 — i) (€ — bt)

where b and & denote the least-square estimates from the regressions

Eit = bt+Vit

/
Tit—1 = CZit+ Cit -
For these estimates we have

b = O(T*’N~'/?%)

&G = 0p(1).
It follows that
N T _
D> (@ig—1 — Gaa)bt = Oy(T) .
i=11=1

Furthermore, since z;; is uncorrelated with ¢;; we have

Z Z Cizi(€i — bt Op(T1/2N1/2)

1=1t=1
so that
N T N T
SN (@ — @) ig =303 wiien + Op(T) + O, (TV2NY?)
1=1t=1 i=1t=1
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Furthermore,

ZZ(wzﬂ,—tfl wj(—))2 = Op(TQN)
i=1t=1
so that
PIDD (wi,t—l — Wip) gy
ABM = ZZI;ZZIT =z+ OP(T_I/Q) + OP(N_I/Q) )
2 i — wiy

where z is a standard normally distributed random variable.

Proof of Lemma 1:

From Phillips (1987) it follows that for a local alternative with e=%/7VN
1 —¢/(TV/'N) the limiting process is given by

Jery = Wi(r) + (¢/V'N) J§ er=*cW;(s)ds  (as T — o)
= Wi(r) (as N — o0) .

Hence, the limiting process is the same as for the case ¢ = 0.
Proof of Lemma 2:
(i) The expression E [ W? is equal to the limit of
T t 2 T
-2 * —2
j=1 t=1

t=1

= 1/2+0(1),
where €} is a standard normally distributed white noise process.

(ii) The finite sample analog of [ WdW is

T
T (e +--+ei e (A.1)

t=1
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and for [ TW? the finite sample analog is

T
T2y (i +---+e))(ef+--+ep) (A.2)
t=1
In the latter expression the cross products (¢ie}),..., (e;_,&;) enter with a

factor 2. These cross products also occur in (A.1). All other terms in (A.2)

are uncorrelated with (A.1). It follows that

B (Es)4] B ) (9]

= 2T—3§T:§tjj +0(1)

t=2 j=1

= 2773 zT:tQ/z +0(1)

t=2

=1/3+0(1) .

i
(iii) Let S; = 3° €. Then, the expression E(f W?)? is equal to the limit
i=1

T 2
. —4 2

For ¢t < r we have for k£ > 0:

(525t+k) =

i=1j=1
k)

t
E |
=1
= 2%+t

g*
+t(t+

where the first term on the right hand side results from the products (g;€7)?
and (gfe})(gjef)? fori,j = 1,...,t and the second term is due to the products
(e5)?(e5)? fori=1,...,tand j=1,...,t + k.

2

28



From

2

T _
=37(52)% +2 Z S282,, +2 Z S282,, +

t=1

e

it follows that

2

4EL§S§] - 2/ /7537« +rs+o(1)
(1/2)

= (1/2)+ (1/12) + o(1) = 7/12 + o(1) .

(iv) We have

/VQ:/W2—(/W>2—12[/(r—1/2)W]2 .

First consider for £ > 0

T
A
7j=1

t-1
— Z]
j=1

and, thus, F(/ W)? is identical to the limit

(g Yvar— [ [ rdrd
(z) = [frar— [ [raras

= 1/3.
Similarly, it can be shown that

2
lim E |T

T—oo

2
lim 12F
T—00

72 (- 17257)

t=1

_ 12/01(7« —1/2)rdr — 12/01(3 ~1/2) [(r=1/2)(r = s)ar ds
- 1/10.
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With these results we get

1 1 1 1
V2:—————:—.
/ 2 3 10 15

(v) From the finite sample analog of W (1) [ W we conclude

reef[sd] [n5a]} - Ey
= T(T+1)/2T?

= 1/2+0(1)

and, thus, E[W (1) [W] =1/2.

Proof of Theorem 2:

(1) We first consider the case 02 = 0. Without affecting the asymptotic
results, we assume that o2 is known. However, since the result depends on
the individual specific variances, we do not set ¢? to unity. Furthermore,
under the local alternative we have 7;/0; — 1.

Using the fact that the estimate of 3 is super-consistent with 8 — 8 =
O,(T~3/2N~1/2) we have under the sequence of local alternatives given in
(13) - (14)

T T
TN (Wip 1 — Wio)ty = T 07 [wip 1 — waolles — ¢ TN 22, 1] + 0,(1)
t=1

t=1

T T
=TS 0720 164 — c 0] 2N~ 72 > oat +o0p(1)

t=1 t=1
so that by using 772z, .71 = o;W(r) we get
T

TN (@501 — o)y = / WdW — (¢/v'N) / w2,

t=1
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Using E(f WdW) = 0 we obtain
1/2p—1 Al 2
N,lﬂl“r—r>looE [N T ;tzzl(wi’t,l — wio)uit] = —cF [/W :| .
Furthermore, we have
PR 2

Nl%rgooE[ VAR ]=E[/W]

so that by using Lemma 2 (i)
. _ N
Jim Blsu] = —c | [E [/W ] N

For the variance we obtain

OINTYV2eE(f WdW [W?2) — N2R[E(f W2)2 — (E [ W?2)2]

V&I"[)\BM] = 1- EIWQ +0(1) y
where we make use of the fact that E' [ WdW = 0. It follows that Nl:irm var(Agm) =

T —00
1.

For o7 # 0 we have

T T
T Z(Uji,tfl — W)Uy = T2 2052[371',1571 — xio + mi(t — 1))
=1 =1
€th C/T\/_ -th 1+ 7 +OP(1)
= 0_27712(T - 1)T/2T2 +0,(1) = 0; %07 /2 + 0,(1)

and
N T
N_lT_zzZ wzt 1= sz uzt = 1/1002/2

i=1t=1

where 1)y = N ! Z 0_2 For the denominator we obtain
=1

N T T
NTIT3 N S (Wi — W) = T2y 07207t — 1)+ 0,(1)
t=1

1=1t=1
= $o0;/3 + 0p(1)



and, thus

T
E wzt l_wzo)

t=11=1 /3¢002T/2 + 0, (TY2).

N T
> Y (W1 — Wip)?

1=11t=1

It follows that Agas tends to infinity with v/N.

Proof of Lemma 3:

Under the local alternative we have

C
Az = —m%,t—l + €i

so that the k’th autocovariance of Az, results as

I T
Yei = lim F 1-1_1 Z AxitA:ri,t—k]

T—00 t—k+1

C
= lim FE |T Tip-1 T € ) (——331'7 k-1 T €&, k) .
Tosoo _ t%J( T\/_ t—1 t T\/N t 1 t

Since the variance and covariance is an monotonic increasing function of the

autoregressive parameter we have

2 2t
E|T™! Z T Lit—1%it—k—1 < T Z
i1 TPN t=k+1 TZN
(T + 1)2¢0?
2T3N

— 0 forT 5>o0cor N— o0,

c? Tco?
E|T! ——— T 1€ < .
2 TN ] TN

— 0 forT = o0or N —= o0
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and

E

71 i . N o? for k=0
Lo e 0  fork#0

for T' — oo. Collecting all results we obtain

Thi = Y0i +2 )i = 07 -
k=1

Proof of Lemma 4:

First, assume that ¢ = 0 and, thus, the null hypothesis is true. From the

definition of V'(r) we have

lim B(T'r,) = ~E [W(l)/W]—E{lQ [/(r—l/?)W] [/(r—1/2)dW]} .

Using Lemma 2 (v), the first term on the right hand side is equal to 1/2. For
the second term we obtain from the finite sample analog

17 ()] - e

,7:

12T*E {

- 2T T/ X - T/ o)
— [ =1/ [ - 12drds + ot
= o(1),

where &} ~ i.i.N (0, 1).
To analyze this expression under the local alternative, let « = 1 —

¢/(T+/N). Then, we obtain for the above expressions result as
, T -1 T
TE Y Y dep [Ea;ﬁ]
t=1j=0 t=1
T T
N

t=1 j=t
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and

12T*E {

té(t —T/2) Cé afg;_j)] [i(t - T/Q)e;‘] }

t=1

= —127* i(t —T/2) ZT:(]' —T/2)a’ " .

j=t
A Taylor approximation of o/t around unity gives
ot =1—(j—t)c/(TVN) + o(N?) .

We therefore have

T”iioﬂ'—t = (1/2) - [// T’—sdrds]c/(T\/_) o(N~1/?)

o = (1/2) — ¢/(6VN) + o(N~/?)

and

T T
121y (t—1T/2) Z j—T/2)ad™"

=-T [/01(3 — 1/2)/5 (r—1/2)(r — s)drds] ¢/(TVN) + +o(N~1/?)
=0.1¢/VN +o(N"Y?) .

Collecting these results gives

E(lr) = —1/2+ [é - %] ¢/VN +o(N7'7?)
= —(1/2) 4 (1/15)¢/V'N + o(N~/?) .

Proof of Theorem 3:

Using (15), 6; = 0; and Lemma 4 we obtain

v _ c/15 c/E[V?
Balc) = b erQ - boy
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For the variance we have
var ([ VdV) — 2¢N~2cov (f VAV, [ V?) + 2N~ var ([ V?) +o(1)
v E([V?) ’

var(Aga) =

so that T}\IIILIOO var(Apa) = 1.

Proof of Theorem 4:

Under the local alternative the expectation of T, depends on c¢/(T+v/N).
If we take the limit according to 7" — oo, the limit of I'}, still depends
on ¢/v/N. Assuming that limy_,., F(T%,) is a differentiable function with
respect to ¢/v/N, it admits the expansion
lim E(I'};) = my + lim OE(I't:)
T % 3(c/v/N)

We therefore have under the local alternative

Cc

c=0 \/N

+o(N 12

ir9)0) = Jim Eurs) = = [ 2EER () fva)]

Furthermore:

Tlim var(r;) = w2 — N Y29¢ cov ({/%, 1//{/2) + N1 var (”/VQ)
— 00 V

so that T}\lfIBoo var(Arps) = 1.

Proof of Theorem 5:
From assumption (18) and the law of iterated expectations we have

E(yi'x}) =0

var(yi'x}) = 02 FE(x} A'Ax]) .

1
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For some fixed 7T the central limit theorem implies as N — oo

N N
N 123 yi'xt = N(o,leafE(x;*’A'Ax;*)> :

i=1 i=1

Furthermore, as T — oo we have

N T N
NTPT2S S X A'Ax; = Y 02B(T %] A'Ax])
=1 t=1 =1
and, thus, the t-statistic

N

—2 % x
_Z 0; Yi X
=1

o R—
BA —

N,
> 0; xi AAx]
i=1

is asymptotically standard normal as (N, T — 00)seq-

Proof of Theorem 6:
Under the local alternative we have

E(z;B'Ay;) = E[tr(B'Ay;z})]
_ —T\C/Ntr[B'AE(xix;)]
“% t\[B'AH]
= ———tr
TV'N ’

where H = min(j, k), x=1,..7—1. It is easy to verify that since B'A is a upper

triangular matrix we have B'’AH = 0 and, therefore, the expectation is zero
for any T and N.

Proof of Theorem 7

First consider the expectation of
T-1 T-1
T2y ay = T2 [y — 20t = Vyiemryar/T + (t = 1)y /T7
t=1 t=1
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/W2 oW (1) /TW +W(1)? / r2dr + o,(1) .

From Lemma 2 (i) it follows that f W? = 1/2. From the finite sample analog
of W(1) [ rW we obain
T T t T
E[zg:;] vyl = reye
t=1 t=1 \j=1 t=1

= 1/3+0(1)
so that E[W(1) [rW]=1/3.
Furthermore we have E[W(1)? [ r2dr] = 1/3 so that

limE[ 2295 ]: (1/2) = (2/3) +(1/3) =1/6 .

T—o00

Assuming that 71im E(&ry) is differentiable with respect to (c/v/N), we
— 00

obtain from the Taylor expansion

C

lim E(&r;) = lim OB (ér) L IN

T—00 T—o00 8(0/\/N)

It follows that

+o(N7?) .

App(e) = Jim EQAyp) = ¢ V6 .

As for the case of the LL and IPS statistics it is straightforward to show
that

- %\1&100 var(Ayg) = 1.
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