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Abstract

Very little is known about the local power of second generation panel unit root tests

that are robust to cross-section dependence. This paper derives the local asymptotic

power functions of the CADF and CIPS tests of Pesaran (A Simple Panel Unit Root Test in

Presence of Cross-Section Dependence, Journal of Applied Econometrics 22, 265–312, 2007),

which are among the most popular tests around.
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1 Introduction

Cross-section dependence can pose serious problems when testing the null hypothesis of a

unit root, and much effort has therefore gone into the development of so-called “second-

generation” test procedures that are robust to such dependencies.1 Two of the most popular

tests are the cross-section augmented Dickey–Fuller (CADF) and Im et al. (2003) (CIPS) tests

of Pesaran (2007), where the latter is just the cross-section average of the former when ap-

plied to each cross-section unit. In fact, these tests have in recent years become workhorses

of the industry, with a very large number of applications. The popularity of the CADF and

∗Corresponding author: Deakin University, Faculty of Business and Law, School of Accounting, Economics
and Finance, Melbourne Burwood Campus, 221 Burwood Highway, VIC 3125, Australia. Telephone: +61 3 924
46973. Fax: +61 3 924 46283. E-mail address: j.westerlund@deakin.edu.au.

1See Breitung and Pesaran (2008) for a recent survey of the panel unit root and cointegration literature, and
Westerlund and Breitung (2013, Section 5) for a detailed discussion of the effects of cross-section dependence.
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CIPS tests does not stop with applications, but extends also to theoretical work, where they

have been used as a basis for numerous extensions, including tests for a unit root with mul-

tiple common factors, and cointegration (see, for example, Pesaran et al., 2013; Banerjee and

Carrion-i-Silvestre, 2011).

Yet, strangely enough, given their popularity, while much is known regarding the asymp-

totic properties of CADF and CIPS under the unit root null, as far as we are aware, nothing

is known regarding their (local) power properties. The purpose of the current paper is to fill

this gap in the literature. This is an important undertaking, because the small-sample pow-

ers of CADF and CIPS differ quite substantially from those of most existing tests. In order

to illustrate this, let us begin by considering the simulated 5% size and local power reported

in Table 1. The data generating process (DGP) is given by

yi,t = ρiyi,t−1 + γi ft + ǫi,t, (1)

where t = 1, ..., T and i = 1, ..., N index the time series and cross-section units, respectively,

y1,0 = ... = yN,0 = 0, ft is a common factor with loading γi, and ǫi,t is idiosyncratic. In

the simulations, ( ft, ǫi,t)
′ ∼ N(0, I2). The autoregressive parameter ρi is given the following

local-to-unity specification:

ρi = exp(T−1ci), (2)

where ci is the so-called “Pitman drift” measuring the deviation from the unit root (ci = 0).

In the simulations, ci ∼ U(a, b), where a and b are calibrated such that the mean and variance

of ci are equal to µc and σ2
c , respectively. The results are generated for 3,000 panels of size

N = T = 100.2

A typical finding in the panel unit root literature is that theoretically the local power of

tests should only depend on the mean of ci, and therefore there should be no dependence

on the variance, or any other moment for that matter (see, for example, Moon et al., 2007).

This means that, from a theoretical point of view, one can just as well assume that c1 = ... =

cN = c; there are no additional insights to be gained by allowing ci to vary. These results

have been confirmed in numerous simulation studies. In particular, while for small values

of N power is typically decreasing in the variance ci, as N increases this effect tends to go

away (see, for example, Moon and Perron, 2008; Moon et al., 2007).3 In contrast to these

2The appropriate critical values are taken from Pesaran (2007, Tables I (a) and II (a)).
3The fact that power decreases with increases in the variance of ci is partly expected, as most panel unit root
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results, according to Table 1, in a vast majority of cases power is actually increasing in σ2
c ,

and this is true even if N is as large as 100. We also see that this effect is greater the larger is

γ. This is also quite unexpected, because usually (factor model-based) tests of this kind have

asymptotic distributions that are free of nuisance parameters even under the local alternative

(see Moon and Perron, 2004; Westerlund and Larsson, 2012). Hence, power is increasing in

the variance of ci, and the extent of this effect is increasing in the relative importance of the

common component, as measured by γ. The exception is if σ2
c = 0, in which case the effect

of γ is no longer present. This is true for N = T = 100, but holds also for all other sample

sizes attempted.

The above results suggest that the conventional wisdom that local power should only

depend on µc might not apply in case of CADF and CIPS. The study of the local power

of these tests is therefore interesting not only in its own right, but also for what it might

imply for the local power of second-generation panel unit root tests in general. In fact, the

only other second-generation local power studies that we are aware of are those of Moon

and Perron (2004), and Westerlund and Larsson (2012), who consider similar DGP setups,

although the test statistics are quite different from the ones considered here. The above

results would also seem to have certain implications for empirical work. In particular, given

the completely different power profile of CADF and CIPS when compared to those of other

tests, they indicate that the most powerful test to use in practice will depend critically on the

magnitude of γ and the heterogeneity of ρi, which are both estimable prior to testing.

The purpose of the present paper is to make the discussion in the last paragraph a little

more precise. The paper is organized as follows. Section 2 presents the assumptions that we

will be working under, which are chosen with an eye on simplicity and transparency. Section

3 reports the results of the analysis of the local asymptotic power, which are evaluated using

Monte Carlo simulation in Section 4. Section 5 concludes. Proofs are collected in Appendix.

2 Assumptions

The DGP is similar to the one considered in Section 1, and is given by (1), (2) and Assumption

1.

Assumption 1.

tests are based on pooling, and pooling is only efficient if the autoregressive parameters are homogenous (see
Westerlund and Breitung, 2013, Section 2).
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(i) ǫi,t is independently and identically distributed (iid) across both i and t with E(ǫi,t) = 0,

E(ǫ2
i,t) = σ2

ǫ,i > 0 and E(ǫ4
i,t) < ∞;

(ii) ft is iid across t with E( ft) = 0, E( f 2
t ) = 1 and E( f 4

t ) < ∞;

(iii) ci ≤ 0 is iid with µj = E(c
j
i) and |µj| < ∞ for j ≥ 0;

(iv) ǫi,t, ft and ci are mutually independent;

(v) y1,0 = ... = yN,0 = 0;

(vi) γi is a fixed coefficient such that γ = N−1 ∑
N
i=1 γi → γ 6= 0 and β = N−1 ∑

N
i=1 βi →

β 6= 0 as N → ∞, where βi = γi/σǫ,i.

Note how β2
i = γ2

i /σ2
ǫ,i can be viewed as the ratio of the variance of γi ft relative to

that of ǫi,t. It can therefore be seen as a measure of the relative importance of the common

component, which, as already alluded at in Section 1, is going to turn out to be an important

determinant of the local power of the CADF and CIPS tests.

The above assumptions are roughly the same as those in Pesaran (2007). The only ex-

ceptions are; (a) the local-to-unity specification of ρi, (b) the fixed specification of γi, and (c)

the absence of deterministic constant and trend terms. The local-to-unity specification in (2)

is, of course, key in our paper and is similar to those considered by, for example, Moon and

Perron (2008), and Moon et al. (2007). The main difference is that the rate of shrinking is

not allowed to depend on N. A general formulation of the shrinking neighborhood is given

by N−κ T−1, where κ ≥ 0. The CADF test has non-negligible local power when κ = 0, but

not when κ > 0, which is in agreement with other time series tests. This means that for any

fixed alternative ρi < 1, the power of this test should be flat in N, which is just as expected

given that it is a time series test. The fact that also the CIPS test, which is a pooled panel

test, requires κ = 0 is, on the other hand, unexpected. It means that as N increases CIPS will

tend to be dominated by other panel data tests having non-negligible local power for κ > 0

(see Sections 3 and 4 for a detailed discussion). The requirement that ci has all its moments

is less restrictive than the otherwise so common bounded support assumption (see Moon

and Perron, 2008; Moon et al., 2007), which obviously implies finite moments. In terms of

the notation of Section 1, we have µc = µ1 and σ2
c = µ2 − µ2

1. As for the assumption placed

on γi, while the proofs make use of the fact that γi is non-random, the results provided in
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Section 3 continue to hold also under the random coefficient assumption of Pesaran (2007),

provided that γi is independent of all the other random elements of the model. The effect of

deterministic constant and trend terms is discussed Section 3.

The appropriate null hypothesis in case of CADF is that cross-section unit i has a unit

root, which corresponds to the restriction that ci = 0. The alternative hypothesis is that

ci < 0, in which case yi,t is said to be “locally stationary”. In contrast to CADF, CIPS is a joint

panel test statistic. The appropriate null in this case is therefore that c1 = ... = cN = 0 (all

the units of the panel have a unit root; ρ1 = ... = ρN = 1), while the alternative is that ci < 0

(ρi < 1) for at least some i.

Remark 1. The assumption of serial correlation free errors is restrictive but can be relaxed in

a relatively straightforward manner by means of the usual augmentation trick (see Pesaran,

2007, Section 5).

Remark 2. The assumption that y1,0 = ... = yN,0 = 0 is crucial in the above model with no

deterministic constant or trend terms. It will, however, be unimportant for the models with

a constant and/or linear trend considered in Section 3 (provided that yi,0 = Op(1) for all i).

Hence, for expositional brevity we can just as well set yi,0 to zero.

Remark 3. The requirement that ft has unit variance is an identifying assumption, and as

such it is not a restriction (if the variance is not one, then it is “absorbed” into γi).

3 Local asymptotic power

3.1 CADF

The CADF test statistic applied to unit i is given by

CADFi =
y′i,−1Mx∆yi

σ̂ǫ,i

√

y′i,−1Mxyi,−1

,

where Mx = IT−1− x(x′x)−1x′, x = (∆y, y−1), ∆yi = (∆yi,2, ..., ∆yi,T)
′, yi,−1 = (yi,1, ..., yi,T−1)

′,

∆y = N−1 ∑
N
i=1 ∆yi with a similar definition of y−1, and σ̂2

ǫ,i = T−1(∆yi)
′Mx∆yi.

Remark 4. Note how CADFi is just the conventional Dickey-Fuller test augmented with x.

The intuition for this is very simple. Assuming for simplicity that ρ1 = ... = ρN = ρ, we have

∆yt = (ρ − 1)yt−1 + γ ft + ǫt, or ft = (∆yt − (ρ − 1)yt−1 − ǫt)/γ = (∆yt − (ρ − 1)yt−1)/γ +
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op(1), where the last equality is due to the fact that ǫi,t is mean zero and independent across

i. Hence, ft may be approximated by a linear combination of ∆yt and yt−1, which is also the

reason for the augmentation by x.

Remark 5. Since under the null yi,t and hence also yt are unit root non-stationary, this means

a regression of yi,t onto ∆yt and yt is spurious. Therefore, Mxyi, the defactored data, are go-

ing to behave just like the residuals from a standard time series spurious regression, whose

limiting counterpart depends on the Brownian motion associated with the unit root regres-

sor, here given by yt. This means that the dependence on the common component will not

disappear, not even asymptotically, causing CADFi to be cross-section dependent (as yt is

common for all i). This is unlike most, if not all, other second-generation approaches where

the defactored data are (asymptotically) cross-section independent (see, for example, Bai and

Ng, 2004; 2010; Moon and Perron, 2004; Westerlund and Larsson, 2012). The reason for this

difference is that in these other approaches the estimation is typically carried out while im-

posing the null. In the current context this means setting ρ1 = ... = ρN = 1, and so, by using

the same steps as in Remark 4 above, we have ft = ∆yt/γ + op(1). Since ∆yt is stationary,

the resulting defactoring regression is no longer spurious, and therefore the dependence on

(the Brownian motion associated with) yt is eliminated. It is the cross-section dependence

that gives the CADF and CIPS tests their unique power profile.

To succinctly express the limiting distribution of CADFi (also when deterministic terms

are added to the test regression), it is useful to employ the following notation. Let X(r) and

Y(r) denote two scalar processes on r ∈ [0, 1]. Consider the continuous time regression of

Y(r) on X(r), Y(r) = α̂′X(r) + QXY(r), where α̂ solves minα

∫ 1
0 ||Y(r) − α′X(r)||2dr. The

continuous time regression residual, QXY(r), is defined as

QXY(r) = Y(r)−
∫ 1

0
Y(v)X(v)dv

(

∫ 1

0
X(v)2dv

)−1

X(r).

Making use of this notation, we define

Ai =
∫ 1

0
QJ f

Jy,i(r)(dWǫ,i(r)− βiQJ f
K f (r)dr),

Bi =
∫ 1

0
(QJ f

Jy,i(r))
2dr,
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with

J f ,i(r) =
∫ r

0
exp(ci(r − v))dW f (v),

Jǫ,i(r) =
∫ r

0
exp(ci(r − v))dWǫ,i(v),

J f (r) =
∞

∑
j=0

µj

∫ r

0

(r − v)j

j!
dW f (v),

Jy,i(r) = βi J f ,i(r) + Jǫ,i(r),

K f (r) =
∞

∑
j=0

(µj+1 − µ1µj)
∫ r

0

(r − v)j

j!
dW f (v),

where W f (r) and Wǫ,i(r) are two independent standard Brownian motions, and QJ f
Jy,i(r)

and QJ f
K f (r) are the residuals from regressing Jy,i(r) and K f (r), respectively, onto J f (r).

Theorem 1. Under Assumption 1, as N, T → ∞ with T/N → τ < ∞,

CADFi →w ci

√

Bi +
Ai√
Bi

,

where →w signifies weak convergence.

We begin with a brief discussion of local power implications of Theorem 1; then we

also have some general remarks. According to Theorem 1 the asymptotic distribution of

CADFi is a sum of two terms. Since E(Bi) > 0, the first term represents a drift in mean

that is there only under the alternative that ci < 0. Consider the mean of the second term,

which is there even if ci = 0. Since J f ,i(r) and Jǫ,i(r) are independent by assumption, and

E[
∫ 1

0
Jǫ,i(r)dWǫ,i(r)] = 0, we have

E(Ai) = E

(

∫ 1

0
QJ f

Jy,i(r)(dWǫ,i(r)− βiQJ f
K f (r)dr)

)

= −β2
i

∫ 1

0
E[QJ f

J f ,i(r)QJ f
K f (r)]dr.

Let us denote by F the sigma-field generated by {W f (r)}1
r≥0. By using the results provided

in the proof of Theorem 1 (see Appendix), it is not difficult to show that E(QJ f
J f ,i(r)|F) =

QJ f
E(J f ,i(r)|F) = QJ f

J f (r) = 0. Hence,

∫ 1

0
E[QJ f

J f ,i(r)QJ f
K f (r)]dr =

∫ 1

0
E[E(QJ f

J f ,i(r)|F)QJ f
K f (r)]dr = 0,

giving E(Ai) = 0. The mean of the numerator of the second term is therefore (asymptoti-

cally) zero. However, while the mean is unaffected by ci, the variance is not, as captured by

the fact that if ci < 0, then J f ,i(r) 6= W f (r), Jǫ,i(r) 6= Wǫ,i(r) and J f (r) 6= W f (r). Thus, the

presence of ci under the alternative exerts both a mean and a variance effect. The following

7



predictions apply, which are all consistent with the Monte Carlo evidence reported in Table

1:

• While the mean of Ai is unaffected by the presence of βi, Bi and the variance of Ai are

not. Note in particular how the first- and second-order derivatives of Bi with respect to

βi are given by 2
∫ 1

0 QJ f
Jy,i(r)QJ f

J f ,i(r)dr and 2
∫ 1

0 (QJ f
J f ,i(r))

2dr > 0. Therefore, power

should tend to increase with βi.

• If c1 = ... = cN = c, then J f ,i(r) = J f (r), and therefore, since QJ f
J f (r) = 0, we have

QJ f
Jy,i(r) = QJ f

(βi J f ,i(r) + Jǫ,i(r)) = QJ f
(βi J f (r) + Jǫ,i(r)) = QJ f

Jǫ,i(r). Moreover,

since in this case, (µj+1 − µ1µj) = (cj+1 − c1cj) = 0 for all j ≥ 0, we have K f (r) = 0.

The asymptotic distribution of CADFi therefore simplifies to

c

√

∫ 1

0
(QJ f

Jǫ,i(r))2dr +

∫ 1
0 QJ f

Jǫ,i(r)dWǫ,i(r)
√

∫ 1
0 (QJ f

Jǫ,i(r))2dr
,

which is completely nuisance parameter free. In other words, if σ2
c = 0, then power

should be independent of βi.

• If c1 = ... = cN = 0 (so that the null is true), then the limiting distribution of CADFi

simplifies to

CADFi →w

∫ 1
0 QW f

Wǫ,i(r)dWǫ,i(r)
√

∫ 1
0
(QW f

Wǫ,i(r))2dr
,

where QW f
Wǫ,i(r) is the residual obtained by regressing Wǫ,i(r) onto W f (r).

4 Conse-

quently, while power will generally depend on βi, size accuracy will not.

Hence, based on Theorem 1 we can explain most of the observed test behavior, including

the dependence on βi and σ2
c .

Remark 6. Theorem 1 can be easily extended to cover also models with deterministic con-

stant and/or trend terms, if properly demeaned and/or detrended data are used. If the data

are (full-sample OLS) demeaned, then Theorem 1 applies with Jy,i(r) and K f (r) replaced by

the residuals obtained by regressing these processes on D(r) = 1, that is, Jy,i(r) and K f (r) are

4Appropriate left-tail critical values for use with CADFi can be found in Pesaran (2007, Tables I (a)–II (c)).
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replaced by QD Jy,i(r) and QDK f (r), respectively. If the data are detrended, then we simply

set D(r) = (1, r)′.

Remark 7. Because of the dependence on W f (v), while free of nuisance parameters, the local

asymptotic distribution of CADFi is not cross-section independent. However, as remarked

by Pesaran (2007, Remark 3.3), conditional on F the asymptotic distribution is in fact inde-

pendent (and even iid).

3.2 CIPS

The CIPS test is simply the cross-sectional average of the individual CADF tests, that is,

CIPS = N−1 ∑
N
i=1 CADFi. In view of Theorem 1, and the fact that conditional on F the

asymptotic distribution of CADFi is iid (see Remark 7 above), it is clear that as N, T → ∞

with T/N → τ < ∞,

CIPS = lim
N→∞

N−1
N

∑
i=1

E

(

ci

√

Bi +
Ai√
Bi

|F
)

+ op(1). (3)

Hence, provided that CADFi has finite moments, unconditionally CIPS converges in distri-

bution. To ensure that the required moments exist, Pesaran (2007) used a truncated version

of CIPS (which has finite moments by construction). However, since the truncation almost

never took effect (see Pesaran, 2007, page 278), in what follows we focus on the untruncated

test statistic. As already mentioned, the presence of ci under the local alternative has two

effects on the asymptotic distribution of CADFi. The first, captured by ci

√
Bi, is a drift in

mean, while the second is an increase in variance, as captured by the fact that if ci 6= 0, then

J f ,i(r) 6= W f (r), Jǫ,i(r) 6= Wǫ,i(r) and J f (r) 6= W f (r). The first effect is typically the dominant

one, as is clear from Table 1. In the analysis of the local power of CIPS, we therefore focus on

this term.

Theorem 2. It holds that

E(ci

√

Bi ) ∼ µ1Θi,
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where

Θi = θi −
ω2

1(β4
i + 1)

8θ3
i

− β2
i ω2

3

2θ3
i

− β2
i α1(1 + β2

i )

α4

ω2
4

2θ3
i

− α1(1 + β2
i )

α4

ω2
5

2θ3
i

+
3α4β4

i − 4α1(β4
i + β2

i )

4α4

ω2
6

2θ3
i

− β2
i

4

ω12

θ3
i

+
β4

i

2

ω14

θ3
i

− β4
i

4

ω16

θ3
i

+ β2
i

ω35

θ3
i

− α4β4
i − 2α1(β4

i + β2
i )

2α4

ω46

θ3
i

,

θi =
√

α1 + (α1 − α4) β2
i ,

with ∼ signifying asymptotic equivalence, and α1, α4, ω2
1, ω2

3, ω2
4, ω2

5, ω2
6, ω12, ω14, ω16, ω35 and

ω46 given in Appendix.

Denote by Mc(x) the moment generating function of ci. In Appendix we show that all

constants in Theorem 2 are defined as integrals of Mc(x) over x ∈ [0, 1]. It therefore makes

sense to approximate Mc(x) by 1 + µ1x + µ2x2/2. µ1Θi will therefore be a function of µ1, σ2
c

and βi, a function that can be illustrated graphically. Figure 1 shows that |µ1Θi| is increasing

in βi for different values of µ1 and σ2
c , that is, regardless of how ci is drawn, higher values of

γi relative to σǫ,i result in a larger (in absolute value) drift term, which in turn implies higher

local power for CIPS. This effect is clearly visible in Table 1. Figure 2 illustrates how µ1 and

σ2
c affect µ1Θi when βi = 1 is kept fixed. It is seen that |µ1Θi| is generally increasing in both

µ1 and σ2
c . The same is true for all values of βi. Hence, regardless of the value of βi, the larger

(in absolute value) the values of µ1 and σ2
c , the larger the value of |µ1Θi|, which is in turn

suggestive of higher power. This is again consistent with the evidence reported in Table 1.

Remark 8. The rate of shrinking of the local alternative, T−1, is lower than the usual N−1/2T−1

rate in absence of deterministic constant and trend terms (see, for example, Moon et al.,

2007). The reason for this is that the defactored data are not cross-section independent.

The intuition for this is simple. Consider the asymptotic distribution of CIPS. With ρi =

exp(N−κT−1ci), this distribution can be written as (for N and T large enough)

√
NCIPS = N−1/2

N

∑
i=1

(

N−κci

√

Bi +
Ai√
Bi

)

+ op(1)

= N1/2−κ N−1
N

∑
i=1

ci

√

Bi + N−1/2
N

∑
i=1

Ai√
Bi

+ op(1).

Had Ai and Bi been independent across i, given that it has a zero mean (and four finite mo-

ments), a standard central limit-type argument would suggest that the second term is nor-
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Figure 1: µ1Θi as a function of βi for different values of µ1 and σ2
c .
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mal. Similarly, by a law of large numbers, N−1 ∑
N
i=1 ci

√
Bi = µ1N−1 ∑

N
i=1 E(

√
Bi ) + op(1),

which is Op(1). Therefore, in case of cross-section independence, the appropriate test statis-

tic to use is not CIPS but rather
√

NCIPS, which has non-negligible (and non-increasing)

local power for κ = 1/2.

Remark 9. Most studies that consider local power in panels suppose that the data are cross-

section independent, and a vast majority of these studies only consider tests based on within

pooling, in which the numerator and denominator are summed over the cross-section before

the ratio is taken (see, for example, Moon and Perron, 2008; Moon et al., 2007). In fact, the

only other local power study of a between-type statistic, such as the one considered here,

is that of Harris et al. (2009). They show more formally that the intuition given in Remark

8 above is correct, and that the normalized average of individual augmented Dickey–Fuller

(ADF) test statistics has non-negligible local power within N−1/2T−1-neighborhoods of the

null.

Remark 10. Not all factor-based second-generation test statistics have negligible local power
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Figure 2: µ1Θi as a function of µ1 and σ2
c when βi = 1.
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for κ > 0. In fact, provided that there are no deterministic constant and trend terms, most

tests of this type have power within N−1/2T−1-neighborhoods of the null (see Moon and Per-

ron, 2004). The reason for this difference lies with the way that the factors are estimated and

removed. Here the defactored data are cross-section dependent, which implies a relatively

low value of κ compatible with non-negligible local power when compared to approaches

in which the defactored data are (asymptotically) cross-section independent (see Remarks 5

and 8).

4 Monte Carlo simulation

In this section we investigate briefly the relative performance of the CADFi and CIPS tests

when compared to some existing second-generation unit root tests. Specifically, the CADFi

and CIPS tests are compared with the ADFê(i) and Pê tests of Bai and Ng (2004), which are

among the most popular ones around with a huge number of applications. Unlike CADFi

and CIPS, ADFê(i) and Pê are based on using the principal components method to estimate

12



ft. While ADFê(i) is a time series test, Pê is a pooled panel test; therefore, the most relevant

comparison here is between, on the one hand, ADFê(i) and CADFi, and, on the other hand,

Pê and CIPS. Our purpose is to evaluate relative power as βi and σ2
c varies. In particular,

given the rather unique power profile of CADFi and CIPS, it seems reasonable to expect that

no one test will be strictly preferred over the others, and that the choice of which test to use

will depend to a large extent on the DGP. This is important because as far as we are aware

there are no other Monte Carlo study that has considered the local power of CADFi and CIPS

(see, for example, Gengenbach et al., 2009; De Silva et al., 2009).

The DGP is the same as in Section 1. Thus, since σ2
ǫ,i = 1, we have βi = β = γ. As before,

all results are based on 3,000 replications. Unlike the tests considered here, ADFê(i) and Pê

can allow for more than one factor. Therefore, to make the results comparable, we assume

that the researcher knows that there is just one factor present.

The results from the size and power comparisons are reported in Tables 2 and 3, respec-

tively. They can be summarized as follows.

• Except for some minor distortions, all four tests are correctly sized.

• The local power of CADFi and CIPS is quite flat in N and T, which is as expected,

because asymptotically there is no dependence on the sample size. In particular, power

should not depend on N (see the discussion following Assumption 1).

• Pê is based on combining p-values, which are independent. It is therefore expected to

have power in N−1/2T−1-neighborhoods of the null, which in turn means that the local

power of this test in the current DGP with ρi = exp(T−1ci) should be increasing in N.

This is true when a = b; however, whenever a 6= b and/or β is not “small”, then this

need not be the case. For example, unreported results suggest that when a = b = −1,

an increase in N = T from 50 to 100 causes power to increase from 75% to 96%. By

contrast, when β ≥ 10, a = −12 and b = 0, an increase in N = T from 50 to 100 actually

leads to a decrease in power, which is partly expected given the previous literature (see

Section 1).

• If a = b = −3, the level of power is unaffected by β, which is in accordance with our

expectations (see the discussion following Theorem 1). In this case, CADFi (CIPS) is

dominated by ADFê(i) (Pê). In fact, according to the results reported in Table 3 the

power of ADFê(i) (Pê) is almost two times that of CADFi (CIPS).
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• If a 6= b, then the relative power depends critically on the value taken by β. In particu-

lar, while the power of CADFi and CIPS is increasing in β, the power of ADFê(i) and Pê

is decreasing. The increase in relative power of CADFi and CIPS is largest among the

smaller values of β. Therefore, any power disadvantage among the smaller values of

β is quickly eliminated as β increases. Based on the results reported in Table 1, CADFi

and CIPS dominate for all γ ≥ 5 (unreported results suggest that the breakpoint is

close to γ = 2).

The above results lead to the following very simple practical guideline: if βi is “large” use

CADFi (CIPS); otherwise, use ADFê(i) (Pê). Of course, in practice βi is unknown; however,

it can be easily estimated. Specifically, while γi and ft are separately unidentifiable, we can

estimate their product, γi ft. In particular, letting f̂t = ∆yt (see Remark 5), γ̂i can be obtained

as the least squares slope in a time series regression of ∆yi,t onto a constant and f̂t. Our

proposed estimator of βi is given by β̂i = γ̂iσ̂f /σ̂ǫ,i, where σ̂2
f = T−1 ∑

T
t=1 f̂ 2

t . As a summary

measure, we recommend using the average β̂i. Another important parameter here is σ2
c ,

which can be inferred by looking at the variation of the estimated values of ρ1, ..., ρN.

5 Conclusion

The CADF and CIPS tests of Pesaran (2007) are two of the most popular second-generation

panel unit root tests around. Strangely enough, however, while the small-sample properties

of these tests has been heavily scrutinized (see, for example, Gengenbach et al., 2009; De

Silva et al., 2009; Pesaran, 2007), as far as we are aware nothing is known regarding local

power. This is true in small samples, but also in theory, which presently only covers the

behavior under the null hypothesis of a unit root (see Pesaran, 2007). As a response to this,

the current paper offers an in-depth analysis of the local asymptotic power of CADF and

CIPS. The new results are shown to deliver significant insights that go a long way towards

explaining the observed test behavior.
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Appendix: Proofs

Proof of Theorem 1.

Let xt = (∆yt, yt−1)
′, where ∆yt and yt−1 are as in the text, ρ = E(ρi), θ = (1,−ρ)′/γ and

f̂t =
1

γ
(∆yt − (ρ − 1)yt−1) = θ′xt (4)

such that

f̂t = ft +
1

γ
(ǫt + rt−1(ρ)), (5)

where ri,t(ρ) = (ρi − ρ)yi,t, rt(ρ) = N−1 ∑
N
i=1 ri,t(ρ), and similar definitions of γ and ǫt. It

follows that

yi,t = ρiyi,t−1 + γi ft + ǫi,t = ρiyi,t−1 + γi f̂t − γidt + ǫi,t = ρiyi,t−1 + γiθ
′xt − γidt + ǫi,t,

where dt = f̂t − ft = (ǫt + rt−1(ρ))/γ, or, in vector notation,

∆yi = (ρi − 1)yi,−1 + γixθ − γid + ǫi, (6)

where ∆yi, yi,−1 and x are as in the text, ǫi = (ǫi,2, ..., ǫi,T)
′ and d = (d2, ..., dT)

′ = (ǫ +

r−1(ρ))/γ with ǫ = (ǫ2, ..., ǫT)
′ and r−1(ρ) = (r1(ρ), ..., rT−1(ρ))

′.

Consider the numerator of CADFi, y′i,−1Mx∆yi. Making use of (6) and the fact that Mxx =

0, it is clear that the following must hold:

y′i,−1Mx∆yi = (ρi − 1)y′i,−1Mxyi,−1 − γiy
′
i,−1Mxd + y′i,−1Mxǫi. (7)

By further use of the definition of Mx, the first term on the right-hand side can be expanded

as

y′i,−1Mxyi,−1 = y′i,−1yi,−1 − y′i,−1x(x′x)−1x′yi,−1,

where, letting DT = diag(
√

T, T),

D−1
T x′xD−1

T =

[

T−1(∆y)′∆y T−3/2(∆y)′y−1

T−3/2y′−1∆y T−2y′−1y−1

]

=

[

T−1(∆y)′∆y 0
0 T−2y′−1y−1

]

+ Op(T
−1/2),

T−1y′i,−1xD−1
T = (T−3/2y′i,−1∆y, T−2y′i,−1y−1) = (0, T−2y′i,−1y−1) + Op(T

−1/2).
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It follows that, by Taylor expansion,

T−2y′i,−1Mxyi,−1 = T−2y′i,−1yi,−1 − T−1y′i,−1xD−1
T (D−1

T x′xD−1
T )−1T−1D−1

T x′yi,−1

= T−2(y′i,−1yi,−1 − y′i,−1y−1(y
′
−1y−1)

−1y′−1yi,−1) + Op(T
−1/2).

Consider T−1/2yt. Define J f ,i,t = T−1/2 ∑
t
s=1 ρt−s

i fs and Jǫ,i,t = T−1/2 ∑
t
s=1 ρt−s

i ǫi,s. Hence,

since yi,0 = 0, we can use repeated substitution to obtain

T−1/2yi,t = γi J f ,i,t + Jǫ,i,t, (8)

which in turn implies

T−1/2yt = N−1
N

∑
i=1

γi J f ,i,t + Jǫt.

Clearly,
√

NJǫt = N−1/2 ∑
N
i=1 Jǫ,i,t = Op(1). Moreover, by substitution of ρi = exp(ciT

−1)

and then Taylor expansion of the type exp(x) = ∑
∞
j=0 xj/j!,

N−1
N

∑
i=1

γi J f ,i,t = N−1
N

∑
i=1

γiT
−1/2

t

∑
s=1

ρt−s
i fs

= N−1
N

∑
i=1

γiT
−1/2

t

∑
s=1

∞

∑
j=0

(ciT
−1(t − s))j

j!
fs

= γT−1/2
t

∑
s=1

E

(

∞

∑
j=0

(ciT
−1(t − s))j

j!

)

fs +Op(N−1/2)

= γJ f t + Op(N−1/2),

where J f t = T−1/2 ∑
t
s=1 E(ρt−s

i ) fs. The third equality holds, because, defining µj = E(c
j
i) for

j ≥ 0, then N−1 ∑
N
i=1 γic

j
i = γµj + N−1 ∑

N
i=1 γi(c

j
i − µj) = γµj + Op(N−1/2). It follows that

T−1/2yt = N−1
N

∑
i=1

γi J f ,i,t + Jǫt = γJ f t + Op(N−1/2). (9)

Thus, defining MJ = IT−1 − J f ,−1(J′f ,−1 J f ,−1)
−1 J′f ,−1, where J f ,−1 = (J f 1, ..., J f T−1)

′ stacks

J f t−1, we can show that

T−2y′i,−1Mxyi,−1

= T−2(y′i,−1yi,−1 − y′i,−1y−1(y
′
−1y−1)

−1y′−1yi,−1) + Op(T
−1/2)

= T−2(y′i,−1yi,−1 − y′i,−1γJ f ,−1(γJ′f ,−1γJ f ,−1)
−1γJ′f ,−1yi,−1) + Op(T

−1/2) + Op(N−1/2)

= T−2y′i,−1MJyi,−1 +Op(T
−1/2) + Op(N−1/2). (10)
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Next, consider the second term on the right-hand side of (7). Again, by the definition of

Mx,

y′i,−1Mxd = y′i,−1d − y′i,−1x(x′x)−1x′d,

where D−1
T d′x = (T−1/2d′∆y, T−1d′y−1). Consider

T−1/2d′∆y =
1

γ

T

∑
t=2

T−1/2∆yt(ǫt + rt−1(ρ)).

By using Taylor expansion of the type (ρi − ρ0) = Op(T−1), where ρ0 ∈ {1, ρ}, we have that
√

Trt−1(ρ0) = N−1 ∑
N
i=1 T(ρi − ρ0)T−1/2yi,t is of the same order of magnitude as T−1/2yi,t

(for T → ∞ and a fixed N). In fact, it is not difficult to show that with ρ0 = ρ and (ρi − ρ) =

T−1(ci − µ1) + Op(T−2),

√
Trt−1(ρ) =

√
TN−1

N

∑
i=1

(ρi − ρ)yi,t−1

= T−1/2
t−1

∑
s=1

N−1
N

∑
i=1

(ci − µ1)ρ
t−s
i (γi fs + ǫi,s) + op(1)

=
∞

∑
j=0

T−1/2
t−1

∑
s=1

(T−1(t − s))j

j!
N−1

N

∑
i=1

(ci − µ1)c
j
i(γi fs + ǫi,s) + op(1)

=
∞

∑
j=0

T−1/2
t−1

∑
s=1

(T−1(t − s))j

j!
N−1

N

∑
i=1

(ci − µ1)c
j
iγi fs + Op(N−1/2), (11)

which is Op(1). By using this, the fact that ∆yt = rt−1(1) + γ ft + ǫt, and the assumed inde-

pendence of ft and ǫi,t, we can show that

T−1/2
T

∑
t=2

∆ytǫt = T−1
T

∑
t=2

√
Trt−1(1)ǫt + T−1/2

T

∑
t=2

γ ftǫt +
√

TN−1T−1
T

∑
t=2

(
√

Nǫt)
2

= Op(N−1/2) + Op(
√

TN−1),

T−1/2
T

∑
t=2

∆ytrt−1(ρ) = T−3/2
T

∑
t=2

√
Trt−1(1)

√
Trt−1(ρ) + T−1

T

∑
t=2

γ ft

√
Trt−1(ρ)

+ T−1
T

∑
t=2

ǫt

√
Trt−1(ρ)

= Op(T
−1/2) + Op((NT)−1/2).

Hence, provided that max{N−1/2, T−1/2} <

√
TN−1,

T−1/2d′∆y =
1

γ

T

∑
t=2

T−1/2∆yt(ǫt + rt−1(ρ)) = Op(
√

TN−1),
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which is op(1) provided that
√

T/N = o(1). Making use of this assumption, the previously

obtained result for D−1
T x′xD−1

T , and then T−1y′i,−1xD−1
T = (0, T−2y′i,−1y−1) + Op(T−1/2), we

obtain

T−1y′i,−1x(x′x)−1x′d

= T−1y′i,−1xD−1
T (D−1

T x′xD−1
T )−1D−1

T x′d

= (0, T−2y′i,−1y−1)

[

T−1(∆y)′∆y 0
0 T−2y′−1y−1

]−1 [
0

T−1y′−1d

]

+ op(1)

= T−2y′i,−1y−1(T
−2y′−1y−1)

−1T−1y′−1d + op(1).

Moreover, since

T−1y′i,−1MJǫ = T−1y′i,−1ǫ − T−2yi,−1 J f ,−1(T
−2 J′f ,−1 J f ,−1)

−1T−1 J′f ,−1ǫ = Op(N−1/2),

we can show that T−1y′i,−1MJd = T−1y′i,−1MJr−1(ρ)/γ + op(1), and therefore

T−1y′i,−1Mxd = T−1y′i,−1d − T−1y′i,−1xD−1
T (D−1

T x′xD−1
T )−1D−1

T x′d

= T−1y′i,−1d − T−2y′i,−1y−1(T
−2y′−1y−1)

−1T−1y′−1d + op(1)

= T−1y′i,−1MJd + op(1)

=
1

γ
T−1y′i,−1MJr−1(ρ) + op(1). (12)

It remains to consider y′i,−1Mxǫi, the third term on the right-hand side of (7). We have

T−1/2ǫ′i∆y = T−1/2
T

∑
t=2

rt−1(1)ǫi,t + T−1/2
T

∑
t=2

γ ftǫi,t + (NT)−1/2
T

∑
t=2

√
Nǫtǫi,t

= Op(1) + Op(
√

TN−1/2),

which is Op(1) as long as T/N = O(1), which in turn implies
√

T/N = o(1). Thus, provided

that T/N = O(1),

T−1y′i,−1x(x′x)−1x′ǫi

= T−1y′i,−1xD−1
T (D−1

T x′xD−1
T )−1D−1

T x′ǫi

= (0, T−2y′i,−1y−1)

[

T−1(∆y)′∆y 0
0 T−2y′−1y−1

]−1 [
T−1/2(∆y)′ǫi

T−1y′−1ǫi

]

+ op(1)

= T−2y′i,−1y−1(T
−2y′−1y−1)

−1T−1y′−1ǫi + op(1),

from which we obtain

T−1y′i,−1Mxǫi = T−1y′i,−1ǫi − T−1y′i,−1xD−1
T (D−1

T x′xD−1
T )−1D−1

T x′ǫi

= T−1(y′i,−1ǫi − y′i,−1y−1(y
′
−1y−1)

−1y′−1ǫi) + op(1)

= T−1y′i,−1MJǫi + op(1). (13)
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Hence, by inserting (10)–(13) into (7),

T−1y′i,−1Mx∆yi

= T−1(ρi − 1)y′i,−1Mxyi,−1 − γiT
−1y′i,−1Mxd + T−1y′i,−1Mxǫi

= T−1(ρi − 1)y′i,−1MJyi,−1 + T−1y′i,−1MJ(ǫi − γir−1(ρ)/γ) + op(1). (14)

Note that J′f ,i,−1MJ = J′f ,i,−1 − J′f ,i,−1 J f ,−1(J′f ,−1 J f ,−1)
−1J′f ,−1, where

T−1 J′f ,i,−1 J f ,−1 = T−1
T

∑
t=2

J f ,i,t−1J f t−1 = T−2
T

∑
t=2

t−1

∑
s=1

t−1

∑
k=1

ρt−s
i ρt−k fs fk,

which is generally different from T−1 J′f ,−1 J f ,−1, and so J′f ,i,−1MJ 6= 0. The exception is when

c1 = ... = cN = c, in which case y′i,−1MJ = (γi J f ,−1 + Jǫ,i,−1)
′MJ = J′ǫ,i,−1MJ , suggesting that

T−1y′i,−1Mx∆yi = T−1(ρi − 1)J′ǫ,i,−1MJ Jǫ,i,−1 + T−1 J′ǫ,i,−1MJ(ǫi − γir−1(ρ)/γ) + op(1).

Moreover, since in this case, rt−1(ρ) = N−1 ∑
N
i=1(ρi − ρ)yi,t−1 = 0, and therefore

T−1y′i,−1Mx∆yi = T−1(ρi − 1)J′ǫ,i,−1MJ Jǫ,i,−1 + T−1 J′ǫ,i,−1MJǫi + op(1).

However, this is only true if ci is equal for all i. If ci is not equal, then the appropriate

expansion for T−1y′i,−1Mx∆yi is again given by (14).

Let us now consider σ̂2
ǫ,i. Again, since T−1/2(∆yi)

′xD−1
T = (T−1(∆yi)

′∆y, 0) + Op(T−1/2)

and D−1
T x′xD−1

T is asymptotically diagonal (provided that
√

T/N = o(1)),

σ̂2
ǫ,i = T−1(∆yi)

′Mx∆yi

= T−1(∆yi)
′∆yi − T−1/2(∆yi)

′xD−1
T (D−1

T x′xD−1
T )−1T−1/2D−1

T x′∆yi

= T−1((∆yi)
′∆yi − (∆yi)

′∆y((∆y)′∆y)−1(∆y)′∆yi) + op(1)

= T−1(∆yi)
′M f ∆yi + op(1),

where M f = IT−1 − f ( f ′ f )−1 f ′ and f = ( f2, ..., fT)
′. The last equality holds because

T−1(∆yi)
′∆y = (TN)−1

T

∑
t=2

N

∑
j=1

(ρj − 1)yj,t−1∆yi,t + γT−1
T

∑
t=2

ft∆yi,t + T−1
T

∑
t=2

ǫt∆yi,t

= γT−1
T

∑
t=2

ft∆yi,t + Op(T
−1/2) +Op(N−1/2),

and by the same arguments,

T−1(∆y)′∆y = γ2T−1
T

∑
t=2

f 2
t + Op(T

−1) + Op(N−1) + Op((NT)−1/2).
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Moreover, since by construction, f M f = 0 and ǫ′i f = Op(
√

T ), we obtain

σ̂2
ǫ,i = T−1(∆yi)

′M f ∆yi + op(1)

= T−1((ρi − 1)yi,−1 + ǫi)
′M f ((ρi − 1)yi,−1 + ǫi) + op(1)

= T−1ǫ′i M f ǫi + op(1) = T−1ǫ′iǫi + op(1) = σ2
ǫ,i + op(1). (15)

We are now ready to consider CADFi. By direct insertion of (10), (14) and (15), and then

Taylor expansion of the type (ρi − 1) = T−1ci +O(T−2),

CADFi =
T−1y′i,−1Mx(∆yi)

σ̂ǫ,i

√

T−2y′i,−1Mxyi,−1

= ci

√

T−2y′i,−1MJyi,−1

σǫ,i
+

T−1y′i,−1MJ(ǫi − γirt−1(ρ)/γ)

σǫ,i

√

T−2y′i,−1MJyi,−1

+ op(1), (16)

which holds provided that T/N = O(1). As for the limiting distribution of this test statistic,

given (8), (9) and (11), it is not difficult to show that, using ⌊x⌋ to denote the integer part of

x,

T−1/2yi,⌊rT⌋ = γi Ji f ,⌊rT⌋ + Jǫ,i,⌊rT⌋ →w γi J f ,i(r) + σǫ,i Jǫ,i(r) = σǫ,i Jy,i(r), (17)

T−1/2y⌊rT⌋ = γJ f ,⌊rT⌋ + op(1) →w γJ f (r), (18)

√
Tr⌊rT⌋(ρ) =

∞

∑
j=0

T−1/2
⌊rT⌋
∑
s=1

(T−1(⌊rT⌋ − s))j

j!
N−1

N

∑
i=1

(ci − µ1)c
j
iγi fs + op(1)

→w γ
∞

∑
j=0

(µj+1 − µ1µj)
∫ r

0

(r − v)j

j!
dW f (v) = γK f (r) (19)

as N, T → ∞, where Jy,i(r) = βi J f ,i(r)+ Jǫ,i(r), βi = γi/σǫ,i, J f ,i(r) =
∫ r

0 exp(ci(r− s))dW f (s),

Jǫ,i(r) =
∫ r

0 exp(ci(r − s))dWǫ,i(s), γ = limN→∞ γ, and an obvious definition of K f (r). Also,

by using exp(x) = ∑
∞
j=0 xj/j!, we have

J f (r) =
∫ r

0
E(exp(ci(r − s)))dW f (s) =

∞

∑
j=0

µj

∫ r

0

(r − s)j

j!
dW f (s).

Let QJ f
be a projection residual operator such that

QJ f
Jy,i(r) = Jy,i(r)−

∫ 1

0
Jy,i(v)J f (v)dv

(

∫ 1

0
J f (v)

2dv

)−1

J f (r)

is the residual from a continuous time regression of Jy,i(r) onto J f (r). It follows that, by the
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continuous mapping theorem,

σ−2
ǫ,i T−2y′i,−1MJyi,−1 →w

∫ 1

0
(QJ f

Jy,i(r))
2dr, (20)

σ−2
ǫ,i T−1y′i,−1MJ(ǫi − γirt−1(ρ)/γ) →w

∫ 1

0
QJ f

Jy,i(r)(dWǫ,i(r)− βiQJ f
K f (r)dr), (21)

which holds as N, T → ∞ with T/N = O(1). The limiting distribution of CADFi is therefore

given by

CADFi →w ci

√

∫ 1

0
(QJ f

Jy,i(r))2dr +

∫ 1
0 QJ f

Jy,i(r)(dWǫ,i(r)− βiQJ f
K f (r)dr)

√

∫ 1
0 (QJ f

Jy,i(r))2dr
,

as required for the proof. �

Proof of Theorem 2.

Let

gi(v) =

√

β2
i v1 + v2 + 2βiv3 −

(βiv4 + v5)2

v6
,

where v = (v1, ..., v6)′ with

v1 =
∫ 1

0
(J f ,i(r))

2dr,

v2 =
∫ 1

0
(Jǫ,i(r))

2dr,

v3 =
∫ 1

0
J f ,i(r)Jǫ,i(r)dr,

v4 =
∫ 1

0
J f ,i(r)J f (r)dr,

v5 =
∫ 1

0
Jǫ,i(r)J f (r)dr,

v6 =
∫ 1

0
(J f (r))

2dr.

Let α = E(v) = (α1, ..., α6)′. Approximating gi(v) by a second-order Taylor series (around
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v = α), and then taking expectations we get

E[gi(v)] ∼ gi(α) +
1

2
E





(

6

∑
k=1

(vk − αk)
∂

∂vk

)2

g(v)|v=α





= θi −
β4

i

4

ω2
1

2θ3
i

− 1

4

ω2
2

2θ3
i

+
−β2

i ω2
3

2θ3
i

− β2
i (µ2 + βi(2α3 + βiα1))

α6

ω2
4

2θ3
i

− α2 + 2βiα3 + β2
i α1

α6

ω2
5

2θ3
i

+
(α5 + βiα4)

2(3µ2
5 − 4α2α6 + 6α4α5βi + βi(−8α3α6 + 3α2

4βi − 4α1α6βi))

4α4
6

ω2
6

2θ3
i

− β2
i

4

ω12

θ3
i

− β3
i

2

ω13

θ3
i

+
β3

i (µ5 + βiα4)

2α6

ω14

θ3
i

+
β2

i (α5 + βiµ4)

2α6

ω15

θ3
i

− β2
i (α5 + βiα4)

2

4µ2
6

ω16

θ3
i

− βi

2

ω23

θ3
i

+
βi(α5 + βiα4)

2α6

ω24

θ3
i

+
α5 + βiα4

2µ6

ω25

θ3
i

− (α5 + βiα4)
2

4α2
6

ω26

g3
µ

+
β2

i (α5 + βiα4)

α6

ω34

θ3
i

+
βi(µ5 + βiα4)

α6

ω35

θ3
i

− βi(α5 + βiµ4)
2

2α2
6

ω36

θ3
i

− βi(α5 + α4βi)(µ
2
5 − 2α2α6 + 2α4α5βi + βi(−α3α6 + α2

4βi − 2α1α6βi))

2α2
6

ω46

θ3
i

+

(

ω45
∂2

∂α4∂α5
+ ω56

∂2

∂α5∂α6

)

g(v)|v=α. (22)

In what remains we calculate αj, ω2
j = var(vj) and ωjk = cov(vj, vk) for j, k = 1, ..., 6.

Consider v1. Clearly, letting ex = exp(x),

α1 = E
∫ 1

0
(J f ,i(r))

2dr = E

(

∫ 1

0
E[(J f ,i(r))

2|ci]dr

)

= E

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

)

=
∫ 1

0

∫ r

0
Mc(2r − 2u)dudr. (23)

ω2
1 can be written as

ω2
1 = E[var(v1|ci)] + var[E(v1|ci)]

= E

(

∫ 1

0

∫ 1

0
cov[(J f ,i(r))

2, (J f ,i(s))
2|ci]drds

)

+ cov[E(v1|ci), E(v1|ci)]

=
∫ 1

0

∫ 1

0
(E[(J f ,i(r))

2(J f ,i(s))
2]− E[(J f ,i(r))

2]E[(J f ,i(s))
2])drds

+ var

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

)

.

Conditional on ci, J f ,i(r) and J f ,i(υ) are jointly normally distributed. Specifically,
[

J f ,i(r)
J f ,i(s)

]

∼ N

([

0
0

]

,

[ ∫ r
0 e2ci(r−u)du

∫ r∧s
0 eci(r+s−2u)du

.
∫ s

0 e2ci(s−u)du

])

,
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where r ∧ s = min{r, s}. It follows that

E[(J f ,i(r))
2(J f ,i(s))

2|ci] = 2

(

∫ r∧s

0
eci(r+s−2u)du

)2

+

(

∫ r

0
e2ci(r−u)du

)(

∫ s

0
e2ci(s−u)du

)

= 2
∫ r∧s

0

∫ r∧s

0
eci(2r+2s−2u−2s)duds +

∫ r

0

∫ s

0
eci(2r+2s−2u−2s)duds,

giving

ω2
1 = 2

∫ 1

0

∫ 1

0

∫ r∧s

0

∫ r∧υ

0
Mc(2r + 2v − 2u − 2s)dudsdrdv

+
∫ 1

0

∫ 1

0

∫ r

0

∫ v

0
Mc(2r + 2v − 2u − 2s)dsdudrdv

−
∫ 1

0

∫ 1

0

∫ r

0

∫ v

0
Mc(2r + 2v − 2s − 2x)dsdxdrdv + var

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

)

.

The last term on the right is

var

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

)

= E

[

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

)2
]

−
[

E

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

)]2

=
∫ 1

0

∫ 1

0

∫ r

0

∫ x

0
Mc (2r − 2u + 2x − 2s) dsdudxdr −

(

∫ 1

0

∫ r

0
Mc (2r − 2u) dudr

)2

.

Putting all these terms together and simplifying we get

ω2
1 = 2

∫ 1

0

∫ 1

0

∫ r∧v

0

∫ r∧v

0
Mc (2r + 2υ − 2u − 2s) dudsdrdv

+
∫ 1

0

∫ 1

0

∫ r

0

∫ v

0
Mc(2r + 2v − 2u − 2s)dsdudrdv

−
(

∫ 1

0

∫ r

0
Mc(2r − 2u)dudr

)2

. (24)

ω12 can be computed as

ω12 = E[cov(v1, v2|ci)] + cov[E(v1|ci), E(v2|ci)]

= cov[E(v1|ci), E(v2|ci)]

= cov

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr,

∫ 1

0

∫ x

0
e2ci(x−s)dsdx

)

=
∫ 1

0

∫ 1

0

∫ r

0

∫ x

0
Mc (2r − 2u + 2x − 2s) dsdudxdr

−
(

∫ 1

0

∫ r

0
Mc (2r − 2u) dudr

)2

. (25)
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It is easy to see that ω13 = 0. For ω14,

ω14 = cov(v1, v4)

= E [cov (v1, v4|ci)] + cov [E (v1|ci) , E (v4|ci)]

= E
∫ 1

0

∫ 1

0
cov[J2

f i(v), J f i(r)J f (r)|ci]drdv

+ cov

(

∫ 1

0

∫ r

0
e2ci(r−v)dvdr,

∫ 1

0

∫ r

0
eci(r−v)Mc (r − v) dvdr|ci

)

= T1 + T2,

with obvious definitions of T1 and T2. T1 can be written as

T1 = E
∫ 1

0

∫ 1

0
E[J3

f i(v)J f (r)|ci]drdv − E
∫ 1

0

∫ 1

0
E(J2

f i(υ)|ci)E(J f i(r)|ci)E(J f (r)|ci)drdv,

where [J f i(r), J f (v)]
′|ci ∼ N(0, Σ) with

Σ =

[

∫ v
0 e2ci(v−u)du

∫ r∧v
0 eci(v−u)Mc (r − u) du

·
∫ r

0
Mc (r − u)2 du

]

=

[

Σ11 Σ12

· Σ22

]

.

Note how the dependence on i has been suppressed in Σ. From now on Σ will be used generi-

cally to denote the (conditional) covariance matrix between random processes on [0, 1]. Now,

since E[(J f i(v))
3 J f (r)] = 3Σ11Σ12, we have

T1 = 3E
∫ 1

0

∫ 1

0

(

∫ v

0
e2ci(v−u)du

)(

∫ r∧v

0
eci(v−x)Mc (r − x) dx

)

drdv

− E
∫ 1

0

∫ 1

0

(

∫ v

0
e2ci(v−u)du

)(

∫ r∧v

0
eci(v−x)Mc (r − x) dx

)

drdv

= 2E
∫ 1

0

∫ 1

0

∫ v

0

∫ r∧v

0
eci(2v−2u+v−x)Mc (r − x) dxdudrdv

= 2
∫ 1

0

∫ 1

0

∫ v

0

∫ r∧v

0
M (3v − 2u − x) Mc (r − x) dxdudrdv,

and

T2 = cov

(

∫ 1

0

∫ r

0
e2ci(r−v)dvdr,

∫ 1

0

∫ r

0
eci(r−v)Mc (r − v) dvdr|ci

)

= E

(

∫ 1

0

∫ x

0

∫ 1

0

∫ r

0
e2ci(r−v)eci(x−u)Mc (x − u) dvdrdudx|ci

)

− E

(

∫ 1

0

∫ r

0
e2ci(r−v)dvdr|ci

)

E

(

∫ 1

0

∫ r

0
eci(r−v)Mc (r − v) dvdr|ci

)

=
∫ 1

0

∫ x

0

∫ 1

0

∫ r

0
Mc (2r − 2v + x − u) Mc (x − u) dvdrdudx

−
∫ 1

0

∫ r

0
Mc (2r − 2v) dvdr

∫ 1

0

∫ r

0
M2

c (r − v) dvdr.
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Putting everything together,

ω14 = 2
∫ 1

0

∫ 1

0

∫ v

0

∫ r∧v

0
M (3v − 2u − x) Mc (r − x) dxdudrdv

+
∫ 1

0

∫ x

0

∫ 1

0

∫ r

0
Mc (2r − 2v + x − u) Mc (x − u) dvdrdudx

−
∫ 1

0

∫ r

0
Mc (2r − 2v) dvdr

∫ 1

0

∫ r

0
Mc (r − v)2 dvdr. (26)

It is easily seen that ω15 = 0. For ω16, we have

ω16 = cov (v1, v6) = E [cov (v1, v6|ci)] + cov [E (v1|ci) , E (v6|ci)] .

where

cov (v1, v6|ci) = cov

(

∫ 1

0
(J f i(r))

2dr,
∫ 1

0
(J f (r))

2dr|ci

)

=
∫ 1

0

∫ 1

0
(E[(J f i(r))

2(J f (v))
2]− E[(J f i(r))

2]E[(J f (v))
2])drdv.

Since [J f i(r), J f (v)]
′|ci is normal with covariance matrix

Σ =

[ ∫ r
0 e2ci(r−u)du

∫ r∧v
0 eci(r−u)Mc (v − u) du

.
∫ v

0 M2
c (v − u) du

]

,

we can show that E[(J f i(r))
2(J f (v))

2] = 2Σ2
12 + Σ11Σ22, where Σ12, Σ11 and Σ22 are the ele-

ments of Σ. This result in turn implies

E[cov (v1, v6|ci)]

=
∫ 1

0

∫ 1

0
E

[

2

(

∫ r∧v

0
eci(r−u)Mc (v − u) du

)2

+
∫ r

0
e2ci(r−u)du

∫ v

0
Mc (v − u)2 du

]

drdv

− E

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

∫ 1

0

∫ v

0
Mc (v − u)2 dudv

)

,

= R1 + R2 − R3,

where

R1 = 2
∫ 1

0

∫ 1

0
E

[

(

∫ r∧v

0
eci(r−u)Mc (v − u) du

)2
]

drdv

= 2
∫ 1

0

∫ 1

0

∫ r∧v

0

∫ r∧v

0
E[eci(2r−u−x)Mc (v − u) Mc (v − x)]dudxdrdv

= 2
∫ 1

0

∫ 1

0

∫ r∧v

0

∫ r∧v

0
Mc (2r − u − x) Mc (v − u) Mc (v − x) dudxdrdv,

R2 = E

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr

∫ 1

0

∫ v

0
M2

c (v − u) dudv

)

=
∫ 1

0

∫ r

0
Mc (2r − 2u) dudr

∫ 1

0

∫ v

0
Mc (v − u)2 dudv,
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and

R3 =
∫ 1

0

∫ r

0
Mc (2r − 2u) dudr

∫ 1

0

∫ v

0
Mc (v − u)2 dudv.

Finally,

cov[E (v1|ci) , E (v6|ci)] = cov

(

∫ 1

0

∫ r

0
e2ci(r−u)dudr,

∫ 1

0

∫ r

0
M2

c (r − u) dudr

)

= 0.

Putting everything together we have

ω16 = 2
∫ 1

0

∫ 1

0

∫ r∧v

0

∫ r∧v

0
Mc (2r − u − x) Mc (v − u) Mc (v − x) dudxdrdv

+
∫ 1

0

∫ 1

0

∫ v

0

∫ r

0
Mc (2r − 2x) M2

c (v − u) dxdudrdv

−
∫ 1

0

∫ r

0
Mc (2r − 2u) dudr

∫ 1

0

∫ v

0
M2

c (v − u) dudv

= 2
∫ 1

0

∫ 1

0

∫ r∧v

0

∫ r∧v

0
Mc (2r − u − x) Mc (v − u) Mc (v − x) dudxdrdv (27)

Consider v2. It is easy to show that α2 = α1, ω2
2 = ω2

1 and ω2j = 0 for j = 3, ..., 6. We

therefore move on to v3. Clearly, α3 = 0. As for ω2
3, we have

var (v3)

= E[var (v3|ci)] + var[E (v3|ci)]

= E

[

var

(

∫ 1

0
J f i(r)Jǫi(r)dr|ci

)]

= E

(

∫ 1

0

∫ 1

0
cov

[

J f i(r)Jǫi(r), J f i(u)Jǫi(u)|ci

]

drdu

)

= E

(

∫ 1

0

∫ 1

0

[

E
(

J f i(r)Jǫi(r)J f i(u)Jǫi(u)|ci

)

− E
(

J f i(r)Jǫi(r)|ci

)

E
(

J f i(u)Jǫi(u)|ci

)]

drdu

)

= E

(

∫ 1

0

∫ 1

0
E[J f i(r)J f i(u)|ci]E[Jǫi(r)Jǫi(u)|ci]drdu

)

= E

[

∫ 1

0

∫ 1

0

(

∫ r∧u

0
eci(r+u−2v)dv

)2

drdu

]

= E

(

∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
eci(2r+2u−2v−2x)dxdvdrdu

)

=
∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
Mc (2r + 2u − 2v − 2x) dxdvdrdu. (28)
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It is easily established that ω34 = ω36 = 0. For ω35, we have

cov (v3, v5)

= E [cov (v3, v5|ci)] + cov [E (v3|ci) , E (v5|ci)]

= E

[

cov

(

∫ 1

0
J f i(r)Jǫi(r)dr,

∫ 1

0
Jǫi(u)J f (u)du|ci

)]

+ cov

[

E

(

∫ 1

0
J f i(r)Jǫi(r)dr|ci

)

, E

(

∫ 1

0
Jǫi(r)J f (r)dr|ci

)]

= E

(

∫ 1

0

∫ 1

0
(E[J f i(r)J f (u)|ci]E[Jǫi(r)Jǫi(u)|ci]− E[J f i(r)Jǫi(r)|ci]E[Jǫi(u)J f (u)|ci])dudr

)

= E

(

∫ 1

0

∫ 1

0
E[J f i(r)J f (u)|ci]E[Jǫi(r)Jǫi(u)|ci]dudr

)

= E

[

∫ 1

0

∫ 1

0

(

∫ r∧u

0
eci(r−v)M (u − v) dv

)(

∫ r∧u

0
eci(r+u−2v)dv

)

dudr

]

= E

(

∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
eci(2r−v+u−2x)M (u − v) dvdxdudr

)

=
∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
Mc (2r + u − v − 2x) M (u − v) dvdxdudr. (29)

We now turn to v4. Note that α4 =
∫ 1

0

∫ r
0 Mc(r − v)2dvdr. ω2

4 can be expanded as

var (v4)

= E [var (v4|ci)] + var [E (v4|ci)]

= E

[

var

(

∫ 1

0
J f i(r)J f (r)dr|ci

)]

+ var

[

E

(

∫ 1

0
J f i(r)J f (r)dr|ci

)]

= E

(

∫ 1

0

∫ 1

0
cov[J f i(r)J f (r), J f i(u)J f (u)|ci]drdu

)

+ var

(

∫ 1

0
E[J f i(r)J f (r)|ci]dr

)

= E

(

∫ 1

0

∫ 1

0
(E[J f i(r)J f (r)J f i(u)J f (u)|ci]− E[J f i(r)J f (r)|ci]E[J f i(u)J f (u)|ci])drdu

)

+ var

(

∫ 1

0
E[J f i(r)J f (r)|ci]dr

)
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The covariance matrix of [J f i(r), J f (r), J f i(u), J f (u)]
′|ci has the following unique elements:

Σ11 =
∫ r

0
e2ci(r−x)dx,

Σ12 =
∫ r

0
eci(r−x)Mc (r − x) dx,

Σ13 =
∫ r∧u

0
eci(2r−2x)dx,

Σ14 =
∫ r∧u

0
eci(r−x)Mc (u − x) dx,

Σ22 =
∫ r

0
M2

c (r − x) dx,

Σ23 =
∫ r∧u

0
eci(u−x)Mc (r − x) dx,

Σ24 =
∫ r∧u

0
Mc (r − x) Mc (u − x) dx,

Σ33 =
∫ u

0
e2ci(u−x)dx,

Σ34 =
∫ u

0
eci(u−x)Mc (u − x) dx,

Σ44 =
∫ u

0
M2

c (u − x) dx,
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suggesting E[J f i(r)J f (r)J f i(u)J f (u)|ci] = Σ14Σ23 + Σ13Σ24 + Σ12Σ34, which in turn implies

var (v4)

= E

(

∫ 1

0

∫ 1

0
(Σ14Σ23 + Σ13Σ24 + Σ12Σ34 − Σ12Σ34)drdu

)

+ var

(

∫ 1

0
Σ12dr

)

= E

[

∫ 1

0

∫ 1

0

(

∫ r∧u

0
eci(r−x)Mc (u − x) dx

)(

∫ r∧u

0
eci(u−x)Mc (r − x) dx

)

drdu

]

+ E

[

∫ 1

0

∫ 1

0

(

∫ r∧u

0
eci(2r−2x)dx

)(

∫ r∧u

0
Mc (r − x) Mc (u − x) dx

)

drdu

]

+ var

[

∫ 1

0

(

∫ r

0
eci(r−x)Mc (r − x) dx

)

dr

]

= E

(

∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
eci(r+u−x−s)Mc (u − x) Mc (r − s) dsdxdrdu

)

+ E

(

∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
eci(2r−2s)Mc (r − x) Mc (u − x) dsdxdrdu

)

+ var

(

∫ 1

0

∫ r

0
eci(r−x)Mc (r − x) dxdr

)

=
∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
Mc (r + u − x − s) Mc (u − x) Mc (r − s) dsdxdrdu

+
∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
Mc (2r − 2s) Mc (r − x) Mc (u − x) dsdxdrdu

+ E

[

(

∫ 1

0

∫ r

0
eci(r−x)Mc (r − x) dxdr

)2
]

−
[

E

(

∫ 1

0

∫ r

0
eci(r−x)Mc (r − x) dxdr

)]2

.

Hence,

var (v4) =
∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
Mc (r + u − x − s) Mc (u − x) Mc (r − s) dsdxdrdu

+
∫ 1

0

∫ 1

0

∫ r∧u

0

∫ r∧u

0
Mc (2r − 2s) Mc (r − x) Mc (u − x) dsdxdrdu

+
∫ 1

0

∫ r

0

∫ 1

0

∫ u

0
Mc (r + u − x − s) Mc (r − x) Mc (u − s) dsdudxdr

−
(

∫ 1

0

∫ r

0
M2

c (r − x) dxdr

)2

. (30)
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It is easy to verify that ω45 = 0. As for ω46, we have

cov (v4, v6) = E [cov (v4, v6|ci)] + cov [E (v4|ci) , E (v6|ci)]

= E

[

cov

(

∫ 1

0
J f i(r)J f (r)dr,

∫ 1

0
J2

f (r)dr|ci

)]

+ cov

[

E

(

∫ 1

0
J f i(r)J f (r)dr|ci

)

, E

(

∫ 1

0
J2

f (r)dr|ci

)]

= E

(

∫ 1

0

∫ 1

0
cov(J f i(r)J f (r), J2

f (u)|ci)drdu

)

= E

(

∫ 1

0

∫ 1

0
(E[J f i(r)J f (r)J2

f (u)|ci]− E[J f i(r)J f (r)|ci]E[J
2
f (u)|ci])drdu

)

.

The covariance matrix of [J f i(r), J f (r), J f (u)]
′|ci is given by

Σ =







∫ r
0 e2ci(r−x)dx

∫ r
0 eci(r−x)Mc (r − x) dx

∫ r∧u
0 eci(r−x)Mc (u − x) dx

·
∫ r

0
Mc (r − x)2 dx

∫ r∧u
0

Mc (u − x) Mc (r − x) dx

· ·
∫ u

0 Mc (u − x)2 dx






,

giving E[J f i(r)J f (r)J2
f (u)|ci] = 2Σ13Σ23 + Σ12Σ33, from which we obtain

cov (v4, v6)

= E

[

∫ 1

0

∫ 1

0

(

2Σ13Σ23 + Σ12Σ33 −
∫ r

0
eci(r−x)Mc (r − x) dx

∫ u

0
Mc (u − x)2 dx

)

drdu

]

= 2E

[

∫ 1

0

∫ 1

0

(

∫ r∧u

0
eci(r−x)Mc (u − x) dx

)(

∫ r∧u

0
Mc (u − x) Mc (r − x) dx

)

drdu

]

+ E

[

∫ 1

0

∫ 1

0

(

∫ r

0
eci(r−x)Mc (r − x) dx

)(

∫ u

0
Mc (u − x)2 dx

)

drdu

]

− E

[

∫ 1

0

∫ 1

0

(

∫ r

0
eci(r−x)Mc (r − x) dx

)(

∫ u

0
Mc (u − x)2

)

dxdrdu

]

= 2
∫ 1

0

∫ 1

0

(

∫ r∧u

0
Mc (r − x) Mc (u − x) dx

)2

drdu. (31)
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Next, consider v5. We begin by noting that α5 = 0. For ω2
5,

var (v5)

= E[var (v5|ci)] + var[E (v5|ci)]

= E

[

var

(

∫ 1

0
Jǫi(r)J f (r)dr|ci

)]

+ var

[

E

(

∫ 1

0
Jǫi(r)J f (r)dr|ci

)]

= E

(

∫ 1

0

∫ 1

0
cov[Jǫi(r)J f (r), Jǫi(u)J f (u)|ci]dudr

)

= E

(

∫ 1

0

∫ 1

0
(E[Jǫi(r)J f (r)Jǫi(u)J f (u)|ci]− E[Jǫi(r)J f (r)|ci]E[Jǫi(u)J f (u)|ci])dudr

)

= E

(

∫ 1

0

∫ 1

0
E[Jǫi(r)Jǫi(u)EJ f (r)J f (u)|ci]dudr

)

= E

[

∫ 1

0

∫ 1

0

(

∫ r∧u

0
eci(r−x)eci(u−x)dx

)(

∫ r∧u

0
Mc (r − x) Mc (u − x) dx

)

dudr

]

=
∫ 1

0

∫ 1

0

(

∫ r∧u

0
Mc (r + u − 2x) dx

)(

∫ r∧u

0
Mc (r − x) Mc (u − x) dx

)

dudr. (32)

Finally, consider v6. It is not difficult to show that α6 = α4 and ω56 = 0. We therefore

focus on ω2
6, which can be evaluated in the following fashion:

var (v6) = var

(

∫ 1

0
J2

f (r)dr

)

=
∫ 1

0

∫ 1

0
cov(J2

f (r), J2
f (u))dudr

=
∫ 1

0

∫ 1

0
(E[(J f (r))

2(J f (u))
2]− E[(J f (r))

2]E[(J f (u))
2])dudr

= 2
∫ 1

0

∫ 1

0

(

∫ r∧u

0
Mc (u − x) Mc (r − x) dx

)2

dudr (33)

where we have used the fact that J f (r) and J f (u) are jointly normally distributed.

The required result is obtained by direct substitution of the above moments into (22). �
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Table 1: 5% size and local power when N = T = 100.

µc = −3 µc = −6 µc = −12

γ CADF CIPS CADF CIPS CADF CIPS

σ2
c = 0

1 8.4 63.8 16.1 100.0 45.4 100.0

5 8.3 63.9 16.1 100.0 45.3 100.0

10 8.3 63.7 16.1 100.0 45.3 100.0

20 8.3 63.8 16.1 100.0 45.3 100.0

σ2
c = µ2

1/12

1 9.4 53.2 20.2 100.0 47.5 100.0

5 15.5 74.6 38.6 100.0 64.4 100.0

10 32.7 94.0 59.9 100.0 73.6 100.0

20 56.9 99.5 73.2 100.0 78.8 100.0

Notes: The DGP is given by yi,t = ρiyi,t−1 + γ ft + ǫi,t, where yi,0 = 0,

ρi = exp(T−1ci) and ( ft, ǫi,t) ∼ N(0, I2). Here ci ∼ U(a, b), where

a and b are calibrated such that ci has mean µc and variance σ2
c . The

rejection frequencies for CADF are averaged across the cross-section.
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Table 2: 5% size.

β CADFi ADFê(i) CIPS Pê

N = T = 50

0.1 4.5 4.4 6.0 5.6

1.0 4.5 4.4 5.9 5.3

5.0 4.5 4.4 5.9 5.5

10.0 4.5 4.4 5.9 5.5

15.0 4.5 4.4 6.0 5.5

20.0 4.5 4.4 5.9 5.5

30.0 4.5 4.4 6.0 5.5

50.0 4.5 4.4 6.0 5.5

N = T = 100

0.1 4.7 4.6 5.2 5.8

1.0 4.7 4.7 5.7 5.7

5.0 4.7 4.6 5.8 5.7

10.0 4.7 4.6 5.7 5.9

15.0 4.7 4.6 5.7 5.9

20.0 4.7 4.7 5.7 5.9

30.0 4.7 4.6 5.7 5.9

50.0 4.7 4.6 5.7 5.9

Notes: See Table 1 for an explanation.

35



Table 3: 5% local power.

N = T = 50 N = T = 100

β CADFi ADFê(i) CIPS Pê CADFi ADFê(i) CIPS Pê

a = b = −3

0.1 7.7 13.3 57.3 100.0 8.4 15.0 63.5 100.0

1.0 7.7 13.3 57.3 100.0 8.4 15.0 63.8 100.0

5.0 7.7 13.4 57.7 100.0 8.3 15.0 63.9 100.0

10.0 7.8 13.3 57.3 100.0 8.3 15.0 63.7 100.0

15.0 7.8 13.3 57.3 100.0 8.3 15.0 63.8 100.0

20.0 7.8 13.3 57.3 100.0 8.3 15.0 63.8 100.0

30.0 7.8 13.3 57.2 100.0 8.3 15.0 63.8 100.0

50.0 7.8 13.3 57.2 100.0 8.3 15.0 63.8 100.0

a = −6, b = 0

0.1 8.5 13.6 48.6 100.0 9.3 15.9 52.2 100.0

1.0 8.6 12.2 48.5 98.8 9.4 13.9 53.2 99.8

5.0 14.6 4.2 70.4 31.6 15.5 4.5 74.6 38.0

10.0 31.3 1.7 91.1 8.6 32.7 1.7 94.0 8.3

15.0 45.8 0.9 97.3 3.4 47.1 0.8 98.4 2.8

20.0 55.7 0.5 99.4 2.0 56.9 0.5 99.5 1.4

30.0 66.6 0.2 100.0 0.8 67.6 0.2 99.9 0.3

50.0 74.9 0.0 100.0 0.4 75.4 0.0 100.0 0.1

a = −12, b = 0

0.1 17.9 27.2 99.3 100.0 20.0 33.4 99.9 100.0

1.0 18.3 23.3 99.3 99.8 20.2 27.5 100.0 100.0

5.0 36.7 5.4 100.0 44.9 38.6 5.6 100.0 47.8

10.0 58.6 1.5 100.0 12.5 59.9 1.5 100.0 10.4

15.0 68.2 0.6 100.0 5.5 68.9 0.5 100.0 4.0

20.0 72.7 0.2 100.0 3.4 73.2 0.2 100.0 1.8

30.0 76.8 0.1 100.0 1.6 77.2 0.0 100.0 0.5

50.0 79.7 0.0 100.0 1.0 80.2 0.0 100.0 0.2

Notes: See Table 1 for an explanation.
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