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Abstract The asymptotic expansion of the distribution of the gradient test statistic is
derived for a composite hypothesis under a sequence of Pitman alternative hypotheses
converging to the null hypothesis at rate n−1/2, n being the sample size. Compari-
sons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal
no uniform superiority property. The power performance of all four criteria in one-
parameter exponential family is examined.

Keywords Asymptotic expansions · Chi-square distribution · Gradient test ·
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1 Introduction

The most commonly used large sample tests are the likelihood ratio (Wilks 1938),
Wald (1943) and Rao score (1948) tests. Recently, Terrell (2002) proposed a new test
statistic that shares the same first order asymptotic properties with the likelihood ratio
(LR), Wald (W ) and Rao score (SR) statistics. The new statistic, referred to as the
gradient statistic (ST), is markedly simple. In fact, Rao (2005) wrote: “The suggestion
by Terrell is attractive as it is simple to compute. It would be of interest to investigate
the performance of the [gradient] statistic.” The present paper goes in this direction.

Let x = (x1, . . . , xn)� be a random vector of n independent observations with
probability density function π(x | θ) that depends on a p-dimensional vector of
unknown parameters θ = (θ1, . . . , θp)

�. Consider the problem of testing the com-
posite null hypothesis H0 : θ2 = θ20 against H1 : θ2 �= θ20, where θ = (θ�

1 , θ�
2 )�,
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θ1 = (θ1, . . . , θq)� and θ2 = (θq+1, . . . , θp)
�, θ20 representing a (p − q)-

dimensional fixed vector. Let � be the total log-likelihood function, i.e. � = �(θ) =∑n
l=1 log π(xl | θ). Let U(θ) = ∂�/∂θ = (U1(θ)�, U2(θ)�)� be the corresponding

total score function partitioned following the partition of θ . The restricted and unre-

stricted maximum likelihood estimators of θ are θ̂ = (̂θ
�
1 , θ̂

�
2 )� and θ̃ = (̃θ

�
1 , θ�

20)
�,

respectively.
The gradient statistic for testing H0 is

ST = U (̃θ)�(̂θ − θ̃). (1)

Since U1(̃θ) = 0, the gradient statistic in (1) can be written as ST = U2(̃θ)�(̂θ2−θ20).
Clearly, ST has a very simple form and does not involve knowledge of the information
matrix, neither expected nor observed, and no matrices, unlike W and SR. Asymptot-
ically, ST has a central chi-square distribution with p − q degrees of freedom under
H0. Terrell (2002) points out that the gradient statistic “is not transparently non-neg-
ative, even though it must be so asymptotically.” His Theorem 2 implies that if the
log-likelihood function is concave and is differentiable at θ̃ , then ST ≥ 0.

In this paper, we derive the asymptotic distribution of the gradient statistic for a
composite null hypothesis under a sequence of Pitman alternatives converging to the
null hypothesis at a convergence rate n−1/2. In other words, the sequence of alterna-
tive hypotheses is H1n : θ2 = θ20 + n−1/2ε, where ε = (εq+1, . . . , εp)

�. Similar
results for the likelihood ratio and Wald tests were obtained by Hayakawa (1975) and
for the score test, by Harris and Peers (1980). Comparison of local power properties
of the competing tests will be performed. Our results will be specialized to the case of
the one-parameter exponential family. A brief discussion closes the paper.

2 Notation and preliminaries

Our notation follows that of Hayakawa (1975, 1977). We introduce the following
log-likelihood derivatives

yr = n−1/2 ∂�

∂θr
, yrs = n−1 ∂2�

∂θr∂θs
, yrst = n−3/2 ∂3�

∂θr∂θs∂θt
,

their arrays y = (y1, . . . , yp)
�, Y = ((yrs)), Y ... = ((yrst )), the corresponding

cumulants κrs = E(yrs), κr,s = E(yr ys), κrst = n1/2 E(yrst ), κr,st = n1/2 E(yr yst ),
κr,s,t = n1/2 E(yr ys yt ) and their arrays K = ((κr,s)), K ... = ((κrst )), K .,.. = ((κr,st ))

and K .,.,. = ((κr,s,t )).
We make the same assumptions as in Hayakawa (1975). In particular, it is assumed

that the κ’s are all O(1) and they are not functionally independent; for instance,
κr,s = −κrs. Relations among them were first obtained by Bartlett (1953a,b). Also, it
is assumed that Y is non-singular and that K is positive definite with inverse K−1 =
((κr,s)) say. For triple-suffix quantities we use the following summation notation

K ... ◦ a ◦ b ◦ c =
p∑

r,s,t=1

κrstar bsct , K .,.. ◦ M ◦ b =
p∑

r,s,t=1

κr,st mrsbt ,

where M is a p × p matrix and a, b and c are p × 1 column vectors.
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The partition θ = (θ�
1 , θ�

2 )� induces the corresponding partitions:

Y =
[

Y 11 Y 12
Y 21 Y 22

]

, K =
[

K 11 K 12
K 21 K 22

]

, K−1 =
[

K 11 K 12

K 21 K 22

]

,

a = (a�
1 , a�

2 )�, etc. Also,

K 2.. ◦ a2 ◦ b ◦ c =
p∑

r=q+1

p∑

s,t=1

κrstar bsct .

Using a procedure analogous to that of Hayakawa (1975), we can write the asymp-
totic expansion of ST for the composite hypothesis up to order n−1/2 as

ST = −(Z y + ξ)�Y(Z y + ξ) − 1

2
√

n
K ... ◦ (Z y + ξ) ◦ Y−1 y ◦ Y−1 y

− 1

2
√

n
K ... ◦ (Z y + ξ) ◦ (Z0 y − ξ) ◦ (Z0 y − ξ) + Op(n

−1),

where Z = Y−1 − Z0,

Z0 =
[

Y−1
11 0
0 0

]

, ξ =
[

Y−1
11 Y 12
−I p−q

]

ε,

I p−q being the identity matrix of order p − q.
We can now use a multivariate Edgeworth Type A series expansion of the joint

density function of y and Y up to order n−1/2 (Peers 1971), which has the form

f1 = f0

[

1 + 1

6
√

n
(K .,.,. ◦ K−1 y ◦ K−1 y ◦ K−1 y − 3K .,.,. ◦ K−1 ◦ K−1 y)

− 1√
n

K .,.. ◦ K−1 y ◦ D
]

+ O(n−1),

where

f0 = (2π)−p/2|K |−1/2 exp

{

−1

2
y� K−1 y

} p∏

r,s=1

δ(yrs − κrs),

D = ((dbc)), dbc = δ′(ybc−κbc)/δ(ybc−κbc), with δ(·) being the Dirac delta function
(Bracewell 1999), to obtain the moment generating function of ST, M(t) say.

From f1 and the asymptotic expansion of ST up to order n−1/2, we arrive, after
long algebra, at

M(t) = (1 − 2t)−
1
2 (p−q) exp

(
t

1 − 2t
ε� K 22.1ε

)

×
[

1 + 1√
n
(A1d + A2d2 + A3d3)

]

+ O(n−1),
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where d = 2t/(1 − 2t), K 22.1 = K 22 − K 21 K−1
11 K 12, A1 = −(K ... ◦ K−1 ◦ ε∗ +

4K .,.. ◦ A ◦ ε∗ + K ... ◦ A ◦ ε∗ + K ... ◦ ε∗ ◦ ε∗ ◦ ε∗)/4, A2 = −(K ... ◦ K−1 ◦ ε∗ −
K ... ◦ A ◦ ε∗ − 2K .,.. ◦ ε∗ ◦ ε∗ ◦ ε∗)/4, A3 = −K ... ◦ ε∗ ◦ ε∗ ◦ ε∗/12,

ε∗ =
[

K−1
11 K 12
−I p−q

]

ε, A =
[

K−1
11 0
0 0

]

.

When n → ∞, M(t) → (1−2t)−(p−q)/2 exp{2tλ/(1−2t)}, where λ = ε� K 22.1ε/2,
and hence the limiting distribution of ST is a non-central chi-square distribution with
p −q degrees of freedom and non-centrality parameter λ. Under H0, i.e. when ε = 0,
M(t) = (1 − 2t)−(p−q)/2 + O(n−1) and, as expected, ST has a central chi-square
distribution with p − q degrees of freedom up to an error of order n−1. Also, from
M(t) we may obtain the first three moments of ST up to order n−1/2 as μ′

1(ST) =
p − q + λ + 2A1/

√
n, μ2(ST) = 2(p − q + 2λ) + 8(A1 + A2)/

√
n and μ3(ST) =

8(p − q + 3λ) + 6(A1 + 2A2 + A3)/
√

n.

3 Main result

The moment generating function of ST in a neighborhood of θ2 = θ20 can be written,
after some algebra, as

M(t) = (1 − 2t)−
1
2 (p−q) exp

(
t

1 − 2t
ε� K †

22.1ε

)

×
[

1 + 1√
n

3∑

k=0

ak(1 − 2t)−k

]

+ O(n−1),

where

a1 = 1

4

{
K †

... ◦ (K−1)† ◦ (ε∗)† − (4K .,.. + 3K ...)
† ◦ A† ◦ (ε∗)†

− 2(K ... + 2K .,..)
† ◦ (ε∗)† ◦ (ε∗)† ◦ (ε∗)†

− 2(K 2.. + K 2,..)
† ◦ ε ◦ (ε∗)† ◦ (ε∗)†

}
,

a2 = −1

4

{
K †

... ◦ (K−1 − A)† ◦ (ε∗)†

− (K ... + 2K .,..)
† ◦ (ε∗)† ◦ (ε∗)† ◦ (ε∗)†

}
,

a3 = − 1

12
K †

... ◦ (ε∗)† ◦ (ε∗)† ◦ (ε∗)†,

(2)

and a0 = −(a1 + a2 + a3). The symbol “†” denotes evaluation at θ = (θ�
1 , θ�

20)
�.

Inverting M(t), we arrive at the following theorem, our main result.
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Theorem 1 The asymptotic expansion of the distribution of the gradient statistic for
testing a composite hypothesis under a sequence of local alternatives converging to
the null hypothesis at rate n−1/2 is

Pr(ST ≤ x) = G f,λ(x) + 1√
n

3∑

k=0

ak G f +2k,λ(x) + O(n−1), (3)

where Gm,λ(x) is the cumulative distribution function of a non-central chi-square
variate with m degrees of freedom and non-centrality parameter λ. Here, f = p − q,
λ = ε� K †

22.1ε/2 and the ak’s are given in (2).

If q =0, the null hypothesis is simple, ε∗ = −ε and A = 0. Therefore, an immediate
consequence of Theorem 1 is the following corollary.

Corollary 1 The asymptotic expansion of the distribution of the gradient statistic
for testing a simple hypothesis under a sequence of local alternatives converging
to the null hypothesis at rate n−1/2 is given by (3) with f = p, λ = ε� K †ε/2,
a0 = K †

... ◦ ε ◦ ε ◦ ε/6, a1 = −{K †
... ◦ (K−1)† ◦ ε − 2K †

.,.. ◦ ε ◦ ε ◦ ε}/4, a2 =
{K †

... ◦ (K−1)† ◦ ε − (K ... + 2K .,..)
† ◦ ε ◦ ε ◦ ε}/4 and a3 = K †

... ◦ ε ◦ ε ◦ ε/12.

4 Power comparisons between the rival tests

To first order ST, LR, W and SR have the same asymptotic distributional properties
under either the null or local alternative hypotheses. Up to an error of order n−1 the
corresponding criteria have the same size but their powers differ in the n−1/2 term.
The power performance of the different tests may then be compared based on the
expansions of their power functions ignoring terms or order less than n−1/2. Harris
and Peers (1980) presented a study of local power, up to order n−1/2, for the likelihood
ratio, Wald and score tests. They showed that none of the criteria is uniformly better
than the others.

Let Si (i = 1, 2, 3, 4) be, respectively, the likelihood ratio, Wald, score and gradient
statistics. We can write their local powers as 
i = 1 − Pr(Si ≤ x) = Pr(Si > x),
where

Pr(Si ≤ x) = G p−q,λ(x) + 1√
n

3∑

k=0

aik G p−q+2k,λ(x) + O(n−1).

The coefficients that define the local powers of the likelihood ratio and Wald tests
are given in Hayakawa (1975), those corresponding to the score and gradient tests
are given in Harris and Peers (1980) and in (2), respectively. All of them are compli-
cated functions of joint cumulants of log-likelihood derivatives but we can draw the
following general conclusions:

– all the four tests are locally biased;
– if K ... = 0, the likelihood ratio, Wald and gradient tests have identical local powers;
– if K ... = 2K .,.,., the score and gradient tests have identical local powers.
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Further classifications are possible for appropriate subspaces of the parameter space;
see, for instance, Harris and Peers (1980) and Hayakawa and Puri (1985). Therefore,
there is no uniform superiority of one test with respect to the others. Hence, the gradi-
ent test, which is very simple to compute as pointed out by Rao (2005), is an attractive
alternative to the likelihood ratio, Wald and score tests.

5 One-parameter exponential family

Let x = (x1, . . . , xn)� be a random sample of size n, with each xl having probabil-
ity density function π(x; θ) = exp{t (x; θ)}, where θ is a scalar parameter. To test
H0 : θ = θ0, where θ0 is a fixed known constant, the likelihood ratio, Wald, score and
gradient statistics are, respectively,

S1 = 2
n∑

l=1

{t (xl; θ̂ ) − t (xl; θ0)}, S2 = n(θ̂ − θ0)
2 K (θ̂),

S3 =
(∑n

l=1 t ′(xl; θ0)
)2

nK (θ0)
, S4 = (θ̂ − θ0)

n∑

l=1

t ′(xl; θ0),

where θ̂ is the maximum likelihood estimator of θ and K = K (θ) denotes the Fisher
information for a single observation. Under H0 all the four statistics have a central
chi-square distribution with one degree of freedom asymptotically.

Now, let κθθ = E{t ′′(x; θ)}, κθθθ = E{t ′′′(x; θ)}, κθθ,θ = E{t ′′(x; θ)t ′(x; θ)},
κθ,θ = −κ−1

θθ , etc, where primes denote derivatives with respect to θ ; for instance
t ′′(x; θ) = d2t (x; θ)/dθ2. The asymptotic expansion of the distribution of the gradi-
ent statistic for the null hypothesis H0 : θ = θ0 under the sequence of local alternatives
H1n : θ = θ0 + n−1/2ε is given by (3) with f = 1, λ = K †ε2/2,

a0 = κ
†
θθθ ε

3

6
, a1 = −κ

†
θθθ (κ

θ,θ )†ε − 2κ
†
θ,θθ ε

3

4
,

a2 = κ
†
θθθ (κ

θ,θ )†ε − (κθθθ + 2κθ,θθ )
†ε3

4
, a3 = κ

†
θθθ ε

3

12
.

We now specialize to the case where π(x; θ) belongs to the one-parameter expo-
nential family. Let t (x; θ) = − log ζ(θ) − α(θ)d(x) + v(x), where α(·), ζ(·), d(·)
and v(·) are known functions. Also, α(·) and ζ(·) are assumed to have first three con-
tinuous derivatives, with ζ(·) > 0, α′(θ) and β ′(θ) being different from zero for all
θ in the parameter space, where β(θ) = ζ ′(θ)/{ζ(θ)α′(θ)}. Since K = α′(θ)β ′(θ),∑n

l=1 t (xl; θ) = −n{log ζ(θ) + α(θ)d̄ − v̄}, ∑n
l=1 t ′(xl; θ) = −nα′(θ){β(θ) + d̄},

with d̄ = ∑n
l=1 d(xl)/n and v̄ = ∑n

l=1 v(xl)/n, we have

S1 = 2n

[

log

{
ζ(θ0)

ζ(θ̂)

}

+ {α(θ0) − α(θ̂)}d̄
]

, S2 = n(θ̂ − θ0)
2α′(θ̂)β ′(θ̂),

S3 = nα′(θ0){β(θ0) + d̄}2

β ′(θ0)
, S4 = n(θ0 − θ̂ )α′(θ0){β(θ0) + d̄}.
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Let α′ = α′(θ), α′′ = α′′(θ), β ′ = β ′(θ) and β ′′ = β ′′(θ). It can be shown that
κθθ = −α′β ′, κθθθ = −(2α′′β ′ + α′β ′′), κθ,θθ = α′′β ′, κθ,θ,θ = α′β ′′ − α′′β ′. The
coefficients that define the local powers of the tests that use S1, S2, S3 and S4 are

a10 = a20 = a30 = −a23 = 2a43 = − (2α′′β ′ + α′β ′′)ε3

6
, a11 = α′′β ′ε3

2
,

a12 = a33 = −a40 = (α′β ′′ − α′′β ′)ε3

6
, a31 = α′′β ′ε3

2
− (α′β ′′ − α′′β ′)ε

2α′β ′ ,

a21 = −a22 = α′′β ′ε3

2
− (2α′′β ′ + α′β ′′)ε

2α′β ′ , a32 = (α′β ′′ − α′′β ′)ε
2α′β ′ , a13 = 0,

a41 = α′′β ′ε3

2
+ (2α′′β ′ + α′β ′′)ε

4α′β ′ , a42 = α′β ′′ε3

4
− (2α′′β ′ + α′β ′′)ε

4α′β ′ .

If α(θ) = θ , π(x; θ) corresponds to a one-parameter natural exponential family. In
this case, α′ = 1, α′′ = 0 and the a’s simplify considerably.

We now present some analytical comparisons among the local powers of the four
tests for a number of distributions within the one-parameter exponential family. Let

i and 
 j be the power functions, up to order n−1/2, of the tests that use the statistics
Si and S j , respectively, with i �= j and i, j = 1, 2, 3, 4. We have,


i − 
 j = 1√
n

3∑

k=0

(a jk − aik)G1+2k,λ(x). (4)

It is well known that

Gm,λ(x) − Gm+2,λ(x) = 2gm+2,λ(x), (5)

where gν,λ(x) is the probability density function of a non-central chi-square random
variable with ν degrees of freedom and non-centrality parameter λ. From (4) and (5),
we can state the following comparison among the powers of the four tests. Here, we
assume that θ > θ(0); opposite inequalities hold if θ < θ(0).

1. Normal (θ > 0, −∞ ≤ μ ≤ ∞ and x ∈ IR):
– μ known: α(θ) = (2θ)−1, ζ(θ) = θ1/2, d(x) = (x − μ)2 and v(x) =

−{log(2π)}/2, 
4 > 
3 > 
1 > 
2.
– θ known: α(μ) = −μ/θ , ζ(μ) = exp{μ2/(2θ)}, d(x) = x and v(x) =

−{x2 + log(2πθ)}/2, 
1 = 
2 = 
3 = 
4.
2. Inverse normal (θ > 0, μ > 0 and x > 0):

– μ known: α(θ) = θ , ζ(θ) = θ−1/2, d(x) = (x − μ)2/(2μ2x) and v(x) =
−{log(2πx3)}/2, 
1 > 
4 > 
2 = 
3.

– θ known: α(μ) = θ/(2μ2), ζ(μ) = exp{−θ/μ)}, d(x) = x and v(x) =
−{θ/(2x) − log(θ/(2πx3))}/2, 
4 > 
3 > 
1 > 
2.

3. Gamma (k > 0, k known, θ > 0 and x > 0): α(θ) = θ , ζ(θ) = θ−k , d(x) = x
and v(x) = (k −1) log(x)− log{Γ (k)}, Γ (·) is the gamma function, 
4 > 
1 >


2 = 
3.
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4. Truncated extreme value (θ > 0 and x > 0): α(θ) = θ−1, ζ(θ) = θ , d(x) =
exp(x) − 1 and v(x) = x , 
4 > 
3 > 
1 > 
2.

5. Pareto (θ > 0, k > 0, k known and x > k): α(θ) = 1 + θ , ζ(θ) = (θkθ )−1,
d(x) = log(x) and v(x) = 0, 
4 > 
1 > 
2 = 
3.

6. Laplace (θ > 0, −∞ < k < ∞, k known and x > 0): α(θ) = θ−1, ζ(θ) = 2θ ,
d(x) = |x − k| and v(x) = 0, 
4 > 
3 > 
1 > 
2.

7. Power (θ > 0, φ > 0, φ known and x > φ): α(θ) = 1 − θ , ζ(θ) = θ−1φθ ,
d(x) = log(x) and v(x) = 0, 
4 > 
1 > 
2 = 
3.

6 Discussion

The gradient test can be an interesting alternative to the classic large-sample tests,
namely the likelihood ratio, Wald and Rao score tests. It is competitive with the other
three tests since none is uniformly superior to the others in terms of second order local
power as we showed. Unlike the Wald and the score statistics, the gradient statistic
does not require to obtain, estimate or invert an information matrix, which can be an
advantage in complex problems.

Theorem 3 in Terrell (2002) points to another important feature of the gradient test.
It suggests that we can, in general, improve the approximation of the distribution of
the gradient statistic by a chi-square distribution under the null hypothesis by using
a less biased estimator to θ . It is well known that the maximum likelihood estimator
can be bias-corrected using Cox and Snell (1968) results or the approach proposed by
Firth (1993). The effect of replacing the maximum likelihood estimator by its bias-
corrected versions will be studied in future research. Note that, unlike LR and SR, the
gradient statistic is not invariant under non-linear reparameterizations, as is the case of
W . However, we can improve its performance, under the null hypothesis, by choosing
a parameterization under which the maximum likelihood estimator is nearly unbiased.

Our results are quite general, and can be specified to important classes of statistical
models, such as the generalised linear models. Local power comparisons of the three
usual large-sample tests in generalised linear models are presented by Cordeiro et al.
(1994) and Ferrari et al. (1997). The extension of their studies to include the gradient
test will be reported elsewhere.

As a final remark, the power comparisons performed in the present paper con-
sider the four tests in their original form, i.e. they are not corrected to achieve local
unbiasedness; see Rao and Mukerjee (1997) and references therein for this alternative
approach. In fact, this approach can be explored in future work for the gradient test.
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