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MATHEMATICAL MODELLNG AND NUMERICAL ANALYSIS
. MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 23, n° 4, 1989, p 565-592)

THE LOCAL PROJECTION P°P-DISCONTINUOUS-GALERKIN FINITE
ELEMENT METHOD FOR SCALAR CONSERVATION LAWS (*)

by Guy CHAVENT (!) and Bernardo COCKBURN (?)

Abstract — In this paper we introduce the Local Projection P®P-Discontinuous Galerkin
finute elemente method (ATIP° P Y-scheme) for solving numerically scalar conservanion laws This
15 an exphcit method obtammed by modifying the explicit Discontinuous Galerkin method
wntroduced by G Chavent and G Salzano [3], via a sumple local projection based on the
monotonicity-preserving projections introduced by van Leer [13] The resulting scheme s an
extension of Godunov scheme that verifies a local maximum principle, and 1s TVDM (total
vanation dinurishing 1n the means) Convergence to a weak solution 1s proven We display
numencal evidence that the scheme 1s an entropy scheme of order one even when discontinuities
are present

Resume — Nous proposons une méthode d’éléments fimis discontinus P° P avec projection
locale pour le calcul des lows de conservation scalaires C'est un schéma explicite obtenu en
modifiant la méthode de Galerkin discontinue explicite, introduite par G Chavent et
G Salzano [3], a 'mde d’une stmple projection locale basée sur les projections wntroduites par
Van Leer [13] qui garde ses propriétés de conservation de la monotoricité Le schéma
correspondant est une extension du schéma de Godunov qui vérifie un principe du maximum
local, et est DVIM (dinunue la variation totale sur les moyennes) Nous démontrons la
convergence vers une solution farble, et fourmussons des résultats numéniques montrant que le
schema est entropique d’ordre un méme en presence de discontinuite

1. INRODUCTION

In this paper we introduce and analyze a new finite element method, the
local projection P° P LDiscontinuous Galerkin method (ATIP° P Lscheme),
devised to solve numerically the scalar conservation law

du+3,f(u)=0, on (0, T)xR, a.1)

u(t=0)=uy, in R, ’
where the nonlinear function f is assumed to be C?, and the initial data
u, is assumed to belong to the space L'(R) N BV (R). This finite element
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566 G CHAVENT, B COCKBURN

method 1s a predictor-corrector method whose prediction 1s given by the
exphert P° PL-Discontinuous-Galerkin method introduced by G Chavent
and G Salzano 1n [3], and whose correction 1s obtamned by means of a very
simple local projection, that we shall call AllL, based on the monotonicity-
preserving projection introduced by Van Leer in {13] The basic idea of
this method 1s to write the approximate solution u, as the sum of a
piecewise-constant function #,, and a function #, whose restriction to each
element has zero-mean, and to consider the method as a finite difference
scheme for the means U, The function i, 1s considered as a parameter The
local projection AIl acts on the parameter i,, and 1s constructed 1n order to
preserve the conservativity, and enforce the stability of the scheme for the
means G, In the extreme case in which the parameter i, 1s set 1dentically
equal to zero by the local projection AIl, our scheme reduces to the well
known Godunov scheme In the general case, the scheme for the means
keeps the local maximum principle verified by Godunov scheme, and 1s
TVD (total variation diminishing) Thus, the ATIP? P L.scheme 1s conserva-
uve, positive, and TVDM, 1 ¢ total variation dimmmishing in the means We
show that these properties, together with some properties of the local
projection AIl, imply the existence of a subsequence converging to a weak
solution of (1 1) Our numerical results mdicate that if the cfl-number 1s
muldly small enough, the scheme converges to the entropy solution with a
rate of convergence equal to 1 in the L®(0, T, L} )-norm even m the
presence of discontinuities

In 74 Le Samt and Rawiart [9] introduced the Discontinuous-Galerkin
method for solving the neutron transport equation

pou+vou+ou=4g

They choose their approximate function to be piecewise a polynomial of
at most degree k= 0 m each of the vanables?, and x In this way they
obtammed an imphcit scheme, but they did not had to solve 1t globally
Indeed, they proved that 1t 1s possible to solve it locally due to the fact that
the direction of the propagation of the information, (p, v), 1s always the
same In the general case, this 1s no longer true, for the local direction of
propagation, (1, f'(u)), depends on values that have not been calculated
yet ! To overcome this difficulty, in 1978 G Chavent and G Salzano [3]
modified this method and obtamed an explicit scheme that we shall call the
P° P .Discontinuous-Galerkin method In this method the ¢- and x-direc-
tions are treated 1n a different way the approximate solution 1s taken to be
piecewise constant 1n time, and piecewise linear in space The two main
advantages of the method are that 1t 1s explicit, and that 1t 1s very easy to
generalize to the case of several space dimensions However, the scheme
has a very restrictive stability condition — as we shall prove later —, and 1t
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P° PLDISCONTINUOUS-GALERKIN FINITE ELEMENT 567

may not converge to the entropy solution in the case in which the
nonlinearity f is nonconvex — as the numerical evidence we shall display
indicates. In 1984 one of the authors [4] modified the scheme and obtained a
scheme called the G-1/2 scheme, for which the convergence to the entropy
solution was proven in the general case. A further development of the ideas
involved in the construction of this scheme lead to the theory of quasi-
monotone schemes for which L®(0, T ; L(R))-error estimates have been
obtained ; see [S]. The scheme we now introduce can be considered as a
simplification of the initial G-1/2 scheme. This simplification leads to a very
simple, and much cheaper algorithm, but complicates enormously the proof
of its convergence. At each time step the AIIP? Plscheme consists of two
phases : in the first, a prediction is obtained by using the unchanged
PP Llmethod ; in the second, a correction is obtained by applying the local
projection AII to it. This projection depends on a parameter, 6 € [0, 1], (6
may vary from element to element, but we have performed our numerical
experiments with 8 = constant) and is based on the monotonicity-preserving
local projections introduced by Van Leer in [13]: for 6= 1 the AIlI
projection coincides with the one defined in [13, (66)] (thus, the
AIIP? Plscheme can be considered as a Discontinuous-Galerkin finite
element version of the schemes introduced in [13]). One of the main
contributions of this work is that we have proved that in fact the use of the
local projection AIl — originally devised in order to produce positive and
monotonicity-preserving schemes — renders the scheme under consider-
ation a TVDM scheme whose approximate solution verifies a local
maximum principle ; see Proposition 3.2. These two properties allow us to
conclude that the scheme is indeed total variation bounded (TVB) and that
it generates a subsequence converging in L*(0, T ; L} (R)) to a weak
solution of (1.1) ; see Theorem 3.3. The problem of proving that the weak
solution is indeed the entropy solution is still open. A result in this direction
is the proof of the convergence of MUSCL-type semidiscrete schemes in the
case of a convex (or concave) nonlinearity by Osher in [10]. Also, Johnson
and Pitkaranta [7] have analized the Discontinuous-Galerkin method in the
linear case.

An outline of the paper follows. In Section2 we define the P°P-
Discontinuous-Galerkin method, we obtain the L%¢ fl-stability condition
for the linear case, and display some numerical experiences that show the
typical behavior of the method. In Section 3 we define the local-projection
PY P LDiscontinuous-Galerkin method, we obtain some stability properties,
prove the convergence to a weak solution, and test it in the same examples
the P° P lDiscontinuous-Galerkin method was tested. We end with some
concluding remarks in Section 4. In what follows, the P° P -Discontinuous-
Galerkin method will be referred to simply by the P%P lscheme, and the
local-projection P° P L-Discontinuous-Galerkin by the ATIP° P lscheme.

vol. 23, n° 4, 1989



568 G. CHAVENT, B. COCKBURN
2. THE P°P.SCHEME

2.1. Preliminaries

As usual, the sets {t"} _ LN and {x, ,ip}, _, are partitions of
[0,T], and R, respectively. We set Ar*= "ty and
Ax, = X, , 1p — X, _1p> and denote by J”, and I, the intervals (¢, ¢"*?), and
(x, _ 112> X, 112 )> Tespectively. Finally, K stands for the element J” x I,, and
h for sup,{Ax,}. The space of functions of L'(R) N BV (R) whose
restriction to each interval I, is linear will be denoted by W,. By
I(ay, ..., a,,) we shall denote the closed intervall
[min{a,, ..., a,},max{ay, ..., a,} ].

We shall need the following equality :

—J u.a,<p+J Uu.e.n,
K K}

— fu). o0+ fw).¢.n, =0, VeeC Y(K"),
K} 3K}

(2.1)

where n = (n,, n,) is the outward unit normal to 3K This equality is
obtained by simply multiplying (1.1) by ¢ and formally integrating by parts.

We recall the definition of the Godunov flux A€ associated to the
function 4 :

RO(w, w) = h(w),
hC(w,v) = h(E),
where & is any point € I (w, v) such that :

(h(&) —h(c)).sign w—-v)=<0, Vcel(w,v).

~
[\
A%
~v

See Osher [11], and Brenier and Osher [1] for further details.
We shall also need the concept of viscosity of a numerical flux
f/¢ associated to f:

0, ifw=v,

visfe(w,v) = ; (2.3)
f(W)—z.f (W,U)—{—f(l)) otherwise .
w—v ’
See for example Tadmor [12].
Finally, we define the cfl-number as follows :
At ,
cfl =sup,cz,n-1, N Ax, -If ”L°°(C(u0)) (2.4)

where C (u,) is the convex hull of the range of the initial data w,.

M?AN Modélisation mathématique et Analyse numérique
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P P-DISCONTINUOUS-GALERKIN FINITE ELEMENT 569

2.2. Definition of the P’ P'.Scheme

Before defining the P°Plscheme we need to introduce the finite
dimensional space V. A function u, is said to belong to V, if :

(a) In each element K| the approximate solution u, is constant in time
and linear in space : u,|xn € PUM x P(1); ie.,

u(t,x) =" ¢°(s) + i’ ¢'(s), (t,x)e K",

where
§ = (x _xz)/sz ’

(PO(S) =1,
1 1 1)
=2 5 \J — "X 5 .
¢ (s)=2s s€ ( 55 (2.5a)
(b) The trace of u, in 9K is chosen as follows :
uh(tn7x)=gn(x)7 er;y
u(t, %, 1p) =& ,10(@), te]”, (2.5b)

where

£x)=u,(t"+0,x),
FEL @) =t x,  1n+0), w0, x, .12 — 0)) (2.50)

where fC denotes the Godunov flux associated to the function f, respect-
ively ; see (2.2).

We can now define the P° Plscheme as follows :

(@) Set wu,(t,x)=P,(uy) (x) for (t,x)eJ'x R, where P, is the
L%projection on the space W, ;

(b) For te [t!, T) the approximate solution u, is determined by the
following variational formulation (compare with (2.1)) :

—J uh.a,¢+J E.0.1m,
K7 akK;

- f(uh)'ax‘P-i_ f(g)"'P'n’x:O)
K 3K}

Vee PYUM x PYI,). (2.6)
We want to stress the fact 1o chose the trace of u, on J"x {x, ,1n},
£, . 12(t), in this finite element framework is equivalent to chose an upwinding

technique in the framework of finite difference schemes. Also, the way of
choosing the trace of u, along {t"} x I,, £ (x), determines whether the

vol. 23, n° 4, 1989



570 G. CHAVENT, B. COCKBURN

scheme is explicit or implicit. Indeed, it is easy to check that with the
following choice of £"(x)

£x)=u,(t"-0,x), x€elI,,

the scheme (2.6) is implicit, even if u, is piecewise constant in time !

As this point it is convenient to point out that our variational formu-
lation (2.6) is strongly related to the one used by Le Saint and Raviart [9,
(3.11)] to introduce the Discontinuous Galerkin method. In fact, after a
simple integration by parts (2.6) can be rewritten as follows :

J [atuh'*_a)«:f(uh)]"P‘FJ~ [g—uh’f(g)_f(uh)].HZO,
K} K"
Voe P°U") x P'(1,), (2.6")

that has the same formal structure than [9, (3.11)].
In terms of the degrees of freedom {@, @'} the POPL

1€Z,n=0, .,N
scheme (2.5)-(2.6) reads :
(a) The degrees of freedom of the initial data are computed as follows :

o= [ werabrne,
I

t

=6 [ —x)ulo) ds/axts (2.70)
I,

(b) For n =0, ..., N — 1 the degrees of freedom of u} *! are obtained as
the solution of :
@ = Ay [a+ (FE5— f15m)/ax, =0,
@+ - @)/ A+ 3R+ PG /A, -
—6” flu(t,x))de dx/(At" Ax,) Ax, =0, (2.7b)
Kl

where fF f ’1’,;’" = f(& 1, (")), and the integral over K" is approximated by
Simpson’s quadrature rule.
2.3. The linear case : the LZstability condition

In the linear case f(u) = u, we have fff’f,;" =0 + iy, and
6{JJ flu,(t,x))dedx/(At" Ax,)y = @) .
K7

M?AN Modélisation mathématique et Analyse numérique
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Thus, in the case of a uniform grid the scheme reads as follows :
(a) Compute the degrees of freedom of u, , by (2.2¢) ;

(b) For n=0,...,N -1 compute the degrees of freedom of uf*! as
follows :

Bl = (L= cfl) W +cflu_y —cfl (@ —ar_y),
@l =3cfi@—-a'_ )+ A -3cflya"-3cfla’_,,

where c¢fl = At /Ax. Note that when cfl =1 we have

wrl=ar - -],

Pl Befl@ -w) 2@ -4 ,],

and so, the scheme does not follow the characteristics, for the expressions
between brackets are not identically zero. Moreover, the scheme is unstabie
in L% if the cfl is O(1). However, if cfl is allowed to decrease as
k10, the scheme can be made L%stable. More precisely, we have the
following result.

PROPOSITION 2.1 : Let {u,} nlo be the sequence of approximate solutions
determined by the P° P -scheme (2.2) in the case f(u) = u. Then, the scheme
is L%stable, i.e., there exists a constant C independent of the discretization
parameters, and the initial data ug such that

“uh ”LZ(R) =C. ”uO “ LZ(R) »

if and only if cfl = O(h'®) as h{0.

The proof of this stability result is given in the appendix ; see also [2].
Roughly speaking, this result tells us that the scheme has serious difficulties
in following the information at the right speed, and so, it must be helped by
letting the numerical speed (Ax/At) go to infinity as O(h~ %) as h goes to
zero. As a direct consequence of this result, and the well known Equivalence
Theorem of Lax, the P Plscheme converges strongly in L®(0, T ; L%(R))
to the (unique) solution of (1.1).

However, in the nonlinear case the scheme may fail to converge to the
entropy solution of (1.1), even under the condition cfl = O (h'?), as the
numerical results of next Subsection show.

2.4. Some Numerical Experiments

In this Subsection we test the P° P Lscheme in six different problems for
which we can calculate the exact solution. To avoid the possible influence of
the boundary conditions on the behavior of the approximate solution, we
have taken a fixed space domain & = (0, L) on which we have imposed
periodic boundary conditions. Our test problems can then be defined by

vol. 23, n° 4, 1989



572 G. CHAVENT, B. COCKBURN
giving L, the final time 7, the nonlinearity f, and the initial data
uy on () ; see the table below.

TABLE 2.1
Definition of the test problems.

problem Q T 7 () uo(z)
1, ifze(04,0.6),
1 0,1) 05 v { 0, otherwise.
1, ifze (0.5 15),
2 (0.2) 05 u(l - ) {0, otherwise.
1, ifz€ (0.5 15)
1 u? ) 3 )
3 0,2) 05 2u4(1-u) {0, otherwise.
4 (0,1) 0.1 u 3(1 + 1sin(4nz))
5 (0,1) 0.1 w(l — u) 3(1 + 3sin(4rz))
6 o1 o1 | o 1(1 4 Lsin(4nz))

The solutions to these test problems are shown on figures 2.1. Let us
point out, that problems 1, 2 and 3, for which the solution is not « smooth »,
have their « smooth » counterpart in problems 4, 5 and 6, respectively. We
have constructed our three first test problems trying to obtain a reasonably
wide set of singularities : the solution of problem 1 presents two contact
discontinuities (i.e., the characterictics run parallel to them) ; the one of
problem 2 (a Burgers problem) has a stationary discontinuity, a sonic point
(i.e., a point u for which f'(u) = 0), and two moving « corners », i.e., two
points at which the space derivative is discontinuous ; finally, the solution of
problem 3 (a Buckley-Leveret problem) displays a couple of « rarefaction
waves » (i.e., smooth regions) followed by shocks (i.e., the characteristics
run into them).

We want to stress the fact that contact discontinuities are the most
difficult to approximate. Roughly speaking, this is due to the following
heuristic argument. If the scheme has not enough viscosity strong oscillations
may appear around them, and if the scheme has too much viscosity the

M?AN Modélisation mathématique et Analyse numérique
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Figures 2.1. — The exact solutions of the test problems.

approximate solution will be smoothed out without opposition from the
characteristics. In the nonlinear case the characteristics may run into the
shock and in this way they counterbalance the smoothing effect of the

viscosity of the scheme.

In all the experiments we have used a uniform grid characterised by the
discretization parameters Az, and Ax. We have taken Ax very small, i.e.,
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574 G. CHAVENT, B. COCKBURN

Ax = 10% , in order to be in the asymptotic regime of the error, and we

have used the linear LZ%stability condition of Proposition 2.1 to relate At,
and Ax:

At = ¢y . A2, (2.8)

For each of the test problems we have calculated two kinds of L'(Q')-errors
at time ¢t = T,

e o, (A1, Ax) = ||u(T) — 5, (T) Il L@y ? (2.90)

9a
ey o, (AL, Ax) = |u(T) — %, (T) ”LI(Q,) ,
in order to see the influence of he non-piecewise constant part of the
approximate solution, i, in the representation of u,. (We shall make this
point more precise in the discussion of our numerical results below.) Also,
we have estimated the rates of convergence oy, and «; as follows

(At /8, Ax /4
co.,(81, 45) = 1n e"’joy(ny’(ﬁt’ e J/m @,

el,Q,(At/S, Ax/4)
OLL_Q"T(AI,AX) =In ( el,n,(At,Ax) )/ln (4)

(2.9b)

Note that if Ax is divided by 4, and Az by 8 the stability condition (2.8) is
verified. In problem 3 we have taken f(u) =0, Yu <0, and f(u) = 0.5,
Yu = 1. In the table 2.2 we show the errors and their respective rates of
convergence.

First, let us point out that in the three first problems the effect of
ii, in the error in negligible, whereas it is really important in the last three
problems where the solutions are smooth. This indicates that globally the
contribution of #, to the representation of the approximate solution
u, is negligible when discontinuities in the solution or in its space derivative
are present, but it is important if the solution is smooth, for it reduces the
error of the means, ¢, in O(h'?)!

From table 2.2 we can also see that the rate of convergence is around 3/4
for the contact discontinuities of problem 1. In this case, the contact
discontinuities of the exact solution at time ¢ = T = 0.5 are located at
x = 0.1, and x = 0.9, and the error is concentrated around them, as can be
seen in the table below.

From table 2.2 we also see that the rate of convergence is 1 for problem 2.
The exact solution has a stationary discontinuity at x = 0.5, a sonic point at
x = 1.5, and two « corners » located at x =1, and x =2 for t = T = 0.5.
Since the discontinuity is stationary (... and it is placed at the boundary of an

M?AN Modélisation mathématique et Analyse numérnique
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TABLE 2.2

L'errors and rates of convergence for the P° P -scheme.

The quantities ¢;, and e, are the errors ¢ o r(At, Ax), and e o r(Af, Ax),
respectively, defined by (2.9a). The quantities o, and e, are the corresponding rates
of convergence o, o r(Af, Ax), and a, o r(At, Ax), respectively, defined by (2.9b).

For all the problems Ax = T’ and At has been calculated from (2.8), where the

constant ¢, was set equal to 1/2. The set {2’ has been taken equal to £ defined in the
table 2.1.

problem 10% - ¢ g 10% - ¢y ay
1 58 0.7690 58 0.7717
2 3.5 1.0685 2.2 1.1148
3 747 0.0321 750 0.0406
4 4.3 1.0127 0.19 1.4990
5 4.2 1.0043 .04 1.6599
6 4.3 1.0124 0.24 1.4844
TABLE 2.3

Concentration of the error around the contact discontinuities.

The solution of the linear problem 1 presents two contact discontinuities located at
x=01, and at x = 0.9 at ¢t = T = 0.5. In this case 2 = [0, 1].

Q' ¢ qr r(ALAz) e o r(OtAz)
eo,q,r{At,Ar) ey n,7(ALAZ)
(0.0,0.2) 0.5063 0.4996
(0.8,1.0) 0.4937 0.5004

element !) it has been approximated extremely well by the scheme. In fact,
almost all the error is essentially concentrated in between the « corner »
points of the exact solution. In the table 2.4 we show the distribution of the
error in that region.

Finally we see from table 2.2 that the scheme seems not to converge to the
entropy solution of problem 3. In fact it does converge to the weak solution
displayed in the figure 2.2. It is easy to check that its shocks travel at a lower

vol. 23, n° 4, 1989



576 G. CHAVENT, B. COCKBURN

TABLE 2.4
Distribution of the error between the « corner » points.
The approximate solution of problem 2 posseses two « corner » points, i.e. points
at which the space derivative is discontinuous, located at x = 1.0, and x = 2.0 for

t = T =0.5, and a sonic point at x = 1.5. Note how the error accumulates around
the sonic point, and, more strongly, around the « corner » points.

€0.c0. 0,7 (AT)eo oo qr 7 (AT) 19] € o0 ,7(82)ey o g p(Az) !
' eo,coo,n,T(Az) eo.c!:;.ﬂ,T(A-t)/ [2] |e1,eo,n1(A2) el,coo.n,r(m:)/Jlﬁl_l
(0.9,1.0) 0.1077 2.1535 0.1746 3.4914
(1.0,1.1) 0.1033 2.0668 0.1510 3.0201
(1.1,1.4) 0.2130 1.4199 0.1162 0.7745
(1.4,1.6) 0.1520 1.5201 0.1165 1.1651
(1.6,1.9) 0.2130 1.4199 0.1162 0.7745
(1.9,2.0) 0.1033 2.0668 0.1510 3.0201
(0.0,0.1) 0.1077 2.1535 0.1746 3.4914
1.5 - T T T ~r
[ ]
1.0 ] |
! ‘< 1
I N
0.8 uph v up, | u ]
3 /
—0-%.% —_— ofs — x:o —_ :%s e 2.0

Figure 2.2. — The approximate solution determined by the P° P'.scheme, u,, does not converge
to the entropy solution of the Buckley-Leverett problem 3, u.
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speed than the shocks of the entropy solution. Thus, when the nonlinearity f
is nonconvex the scheme may fail to catch the entropy shocks : they travel
too quickly for the P°P scheme !

2.5. The Viscosity of the flux £F'P'

In order to explain the behavior of the P? Plscheme and motivate the
modification that gives rise to the ATIP° P 1-scheme we shall end this Section
with some important remarks on the viscosity of the flux f? °P By definition
(2.3) the viscosity of the flux fF °Plis given by

if on =n
0, if U =4,

. pop!l — popl —
vis; +}1)/2’n =1 f@.)-2.f "+ f@) otherwise (2.10)
— — 2 *
U1~

Taking into account the definition of the viscosity associated to the
Godunov flux we can rewrite this expression as follows :

. PoPl,n_ - G,n -.n
Vis, g " = vis M + i),

where

5 i =n
0, ifa ,=a,

. on _ G,n POpl y
dvis, L1p = NN ST .
2 ——————, otherwise .
U 1 — U

In this way we can interpret dvis,’, y, as the amount of viscosity that the
P°Plflux is subtracting from the Godunov viscosity vis’;%,. If such

amount is equal to zero the flux ¥ *P’ reduces to the Godunov one, and the
scheme for the means becomes Godunov scheme. If it is positive and not too
big the scheme for the means will behave as a standard three-point
monotone finite difference scheme. If it is ne§ative, and too big in absolute
value the viscosity associated to the flux fF 7' may be negative, equal to
zero (as for the well known centered scheme), or positive but « too small »,
and we may be obliged to let the cfl-number to go to zero as & 4 0 in order to
achieve stability (in fact, the centered scheme is L%stable if and only if
cfl =O(h)as h!0!). Proposition 2.1 indicates that this is the case for the
P%Plscheme ; roughly speaking, its viscosity is «too small ». As the
viscosity is essentially a speed, this explains why the P° P-scheme is « too
slow ».
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This fact 1s indeed quite reasonable as the following heuristic argument
shows. For the sake of simplicity, let us consider the linear case
f(u) = u. Assuming that u’_, # & we have

Svis! =-2 d
t+12 = n "
u 14

From this expression we can immediately conclude that the flux

P ff,lz’" produces less (resp., more) viscosity than the Godunov flux when
i} and (@}, — @) have the same (resp., opposite) sign. As the degrees of
freedom &, and & are supposed to approximate u(t", x,), and
a.u(t", x,) Ax, /2, respectively, we expect dvis", 1, to behave essentially like
— 1! Note that if we force & to be (@], — 7')/2 then dvis], ,=—1. In
this case the scheme for the means is nothing but the centered scheme !
Fortunately, the P%Plscheme choses i} in a wiser way, and has a less
restrictive cfl-condition that is, however, far from being optimal.

In order to improve the behavior of the P°Plscheme we are going to
exert a strong control on the size of the viscosity associated to f7 "P' This
will be done by means of the local projection AIl we define and analyze in
the next Section.

3. THE AIIP’ PLSCHEME

e

In this Section we first introduce the operator All, that is a local
projection with which we shall improve the P? Pscheme. Then, we define
and analyze the ATIP? P-scheme. Finally we test it on the same problems
we tested the P° P lscheme.

3.2. Definition of the operators AIl

We shall define the operators AIl in three steps.
Let us first introduce the following projection operator :

b, if ¢c=b,
P[a:b](c) = ¢ lf c€E [aa b]’ (31“)
a, ifc<a.

Next, to each function w, of V,, and each sequence {6,}1 o 7 of real
numbers we associate the set of intervals {I,} _, defined as follows

L, =100,m_1p) NI, 1),
N_1nr=0.0W-w_,), (3.1b)
N +12 = 8, . (Wt+l - Wz) .
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Finally, we define the operator AIl(w,) as follows :
All(w,): V, -V, 3.1¢)
Uy > U,
where, the degrees of freedom of u;* are defined as follows :
a*=u,,

ur* = P!‘]J,O(az) .

3.3. Properties of the operators AIl

We have the following result.

PROPOSITION 3.1 : Let w, € V,,, and let {9,}, <7 be an arbitrary sequence

of real numbers. Set ujf = AIl(w,)(u;), where u, € V,, and All(w},) is
defined by (3.1). Then

(a) AIL(wy) wif = uif,

(b) JR uF = JR Wy, .

If moreover we have that 6, € [0,1], for i € Z, then

(©) uF(x)el(w,_,,w,,w,, ), for xel,.

The first property states that AIl(w,) is indeed a (locally defined)
projection, and the conservativity property (b) that the « mass » of the
projection u;* is equal to the mass of the projecting function w;,. Note that
the positivity property (c) relates the resulting projection u;* solely with the
piecewise constant part of w,, w,

Proof: The properties (a, b) follow directly from the definition of the
operator under consideration. By (3.1c), and the fact that 6, € [0, 1] we
have

From this, and (2.5¢) the maximum principle (c) follows easily.

The monotonicity-preserving projection used by Van Leer [13, (66)] uses
6,=1.
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3.4, Definition of the ATIP® P'.Scheme

Now we can define the AITP?PLscheme as follows :

(a) Compute u® as follows : first, compute u) by (2.7a) ; then, compute
u® = AIL(ud)(w)) ; finally, set ul = u;*".

(b) For n=1,...,N —1 compute u;*' as follows: first, compute

ult! given by the P%Plscheme, as in (2.7b); then, compute

u,:"’”“ — AII(u}f“)(u,’l‘”) ; finally, set u,’,‘*l — u}:k;ﬂ-}-l.
3.5. Stability and Convergence Properties

The stability properties of our scheme are a direct consequence of the

properties of the numerical flux f7 °r 1, and the properties of the family of
local projections AIL

PROPOSITION 3.2: Set 0* =sup,. 5 0,, and suppose that 0* e [0,1].

Then, for cfl € [0, 1—:—9;] the approximate solution u, defined by the
ATIP® P Lscheme verifies the local maximum principles

B rlel(@_y,a,a,), (3.2a)

u, "L x)el @ _,, a5, ut,, 0. ,), Vxel, . (3.2b)

Moreover, for cfl € 10, 1/2] the scheme is TVDM (total variation diminishing
in the means) ; i.e.,

G+l B
”uh ”BV([R) = “uh 'lgv(R) . (3.20)
Proof: Consider the equations for the means :
- . 0pl 0pl
m = a— (A/ax) (F e - TR

If (@,.,-a').@_,—a')=0, then &i = 0 — by the definition of the AII
projection, and we can apply to this equation the analysis of the standard
Godunov scheme, see LeRoux [8], to obtain

ﬁ"+161(ﬁ7_1+17;‘_1,ﬁf,ﬁ:’+1—ﬁ7+1), for CflE [0:1]‘

Again, the definition of the AII projection guarantees that this maximum
principle implies (3.2a).

Now, if (@',,-a'). @._.,—u')<0, following Harten[6] and
Osher [10, Lemma 2.4] we rewrite the equation for the means as follows :

Bl =m+ CNE L - w) + DI - '),
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L,y — i
n_ +1 (]
C"<1_;—F—_—w>
141
G ~
X[ A" fG(uL+1_ul+1’u +un)_f (u _uwu +u€l)}
- >

AX, (uz+l—ut+1)_(ut_azn)

and

~n ~n
u _ _1—-Uu
Dr= |1+t
5 —=n
ul~1_ul

N [_At” fG(ﬁln_a”u +un) fG(u _uz’u1~l+ul—1):|

Ax’ (nt—1+ut—1)_(u +u)

To obtain (3.22) in this case it is enough to prove that C! and
0pl , . . . . .
D'e [0,1]. First, note that as the flux f © is nonincreasing in its first

argument, and nondecreasing in its second one the expression between
brackets in the definition of C and D are non-negative numbers.
Second, by the definition of the local projection AIl we have

aﬂ
_n_’”_e [0, %],
U1 —4u,
~n
— e [0, 8%],
2 _u

and this implies that
7
U 11— 4
From this it is easy to see that C and Dle [cfl. (1 -—6%),
. (1 + 6*)]. This proves (3.2a). To prove the maximum principle (3.2b)
we simply combine (3.24) with the following property :

w,"tx)yel@ e+ artl), Vxel,,

which is a direct consequence of the definition of the AII projection.
Finally, to obtain (3.2¢) we only have to prove that C]'+ D/, ; <1 ; see

Harten [6]. But
1 — %
Cls|[1——— | cfl,
al +1 u;'

n an l_ul
D= (14— | efl,
u1+1 L,

and so C’+ D, { <2 cfl. This proves the result.

~n
Uy —
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We point out that if 6* € [0, 1/2], as in [10}, it is possible to improve the
estimate (3.20) and obtain the following one :

14 )y = 18] 5y - (3.26")

This property ensures the compactness in L®(0, T ; L) of the sequence
{un}, o However, by allowing 6* to lie in [0, 1] we do not loose this
property, for the compactness in L®(0, T ; LL.) of the sequence {u} nlo

implies the one of {u;}, . as we shall see in the next convergence result.

THEOREM 3.3 : Under the hypothesis of Proposition 3.2, the sequence
{un},,, generated by the ATIP® Plscheme has a subsequence converging
strongly in L®(0, T ; LL.(R)) to a weak solution of (1.1).

Proof : By Proposition 3.2 the sequence {#,}, , is bounded in the space

L®(0, T; L'(R) N BV (R)). Also, note that the flux f£°7 as a function of
the means is consistent with f, for we have

0p1 . ~ _ ~
lP+}1)/2= fG(ut+1_ut+1:ut +ul)
= fc(a’u)
= f(ft),

whenever @, ,; = &, (remember that in this situation i ,,, as well as
z,, are set equal to zero by the All-projection, see (3.1)). These two facts,

together with the fact that the scheme for the means is written in
conservation form :

— — 0pl 0pl

@ —m) /At + (FF "= ™/ ax =0,
imply, by a standard argument, the convergence of a subsequence,
{@r}, ,, to a weak solution of (1.1), u.

Moreover, as we have
”aZ’Ll”Ll(R)S o*. ”uO”BV(R) h s

we have that not only {#, } wioe Ut {un} |, converges to the limit u. This
completes the proof.

We end this Subsection by pointing out that if in the definition of the
0pl

numerical flux ¥ 7 (2.5b) the Godunov flux is replaced by any two-point

monotone flux both Proposition 3.2 and Theorem 3.3 remain valid, modulo
a possible trivial change in the ¢fl condition.

3.6. Some Numerical Experiments

In this Subsection we test the AIIP° P scheme in the same test problems in
which we tested the P°Plscheme. We have considered the cases
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6,=0,1/2,1, in order to have an idea of the influence of the size of
6*. (In this paper no attempt has been made to define 0, as a function of
u, and the nonlinearity f). We recall that the AIIP? Plscheme with
8, = 0 is nothing but Godunov scheme. Also, we have considered the cases
c¢fl =1/2, and c¢fl = 1/8 to see how this influence depends on the cfl-

-1%22 , as for the PP lscheme.

Our numerical results are shown in the tables 3.1, 3.2 below. We have not
displayed this time the error of the means, e, for it possesses essentially the
same rate of convergence than the one of the error ¢;, and it is also of the
same order of magnitude. The rate of convergence has been estimated as
follows :

number. We have set Ax =

el’QI(At/Z, Ax/2)
e o (A1, %) /In (2).

In the case of the problems 4, 5, and 6 that have a smooth solution we can
see that the best results have been obtained for 8, = 1/2. Also, when the cfl-
number diminishes from 1/2 to 1/8, the differences between the cases
8, = 1/2, and 8, = 1 become negligeable.

For the problem 1, the contact discontinuities has been better approxi-
mated when 6, = 1. Moreover, it is interesting to note that when the cfl-
number decreases, the performance of the scheme gets worse in the cases

OLI’Q/’T(AI, Ax) =In

TABLE 3.1
Llerrors and rates of convergence for the ATIP® PLscheme for cfl = 1/2.
The quantity e, is the error ey ¢ r(At, Ax) defined by (2.9a). The quantity
o, is the corresponding rate of convergence o g r(Af, Ax), defined above. For

problems 1, 2, 3 we took Ax = To04 and Ax = 1000 for problems 4, 5, 6. The set

(Y has been taken equal to £ defined in the table 2.1.

8,=0 6,=1/2 6; =1

problem | 10%.e, ay 104 . ¢, o 104 - e, oy

249 0.4996 | 14.25 | 0.9945 10.08 1.0000
23.96 | 0.8065) 16.18 | 0.6815| 187.2 0.1322
41.77 | 0.8465 6.95 1.1084 | 44.67 0.3578
6.27 0.9972 6.26 0.9940 14.19 | 0.8351

5.59 0.9711 1.21 0.9431 1.61 0.8611
8.57 0.9707 7.22 0.9858 16.26 | 0.7423

O UL W) -
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TABLE 3.2
L'-errors and rates of convergence for the ATIP® Pl.scheme for cfl = 1/8.

4, =0 L =1/2 4, =1

problem | 10%-¢; o 104 . ¢, Qi 104 . ¢ aq

330 0.4998| 62.62 | 0.8238 9.60 1.0001
32.06 0.7867 1.67 0.8003} 23.73 | 0.0140
51.78 0.8385( 13.66 | 0.9149 6.99 0.9540
10.96 0.9950 1.63 1.0738 1.77 0.9140
6.41 0.9722 0.31 1.1617 0.32 1.0454
13.53 0.9647 1.72 0.9246 1.84 1.0124

O U > W N =

0, =0, and 6,=1/2, but remains essentially the same when 6,= 1. This
observation led us to try to measure the deterioration of the contact
discontinuities. We do that by studying how the measure of the set in which
the approximate solution belongs to the interval [0.01 0.99] evolves with
respect to the discretization parameter Ax, and the time 7. More precisely,
we set

n(u,(2)) = measure of {x:7,(s, x) € [0.01,0.99]} ,
and we assume that w(u, (¢)) behaves like (Ax)* . tP. We estimate o/, and B
as follows :
(T 5 At /2, Ax /2))
p(u, (T ; A, Ax))
r(uy(T/2 ;5 At, Ax))
w(u (T ; Az, Ax))

o'(T, Af, Ax) = In ( )/m 2),

B(T, At,Ax) =In ( )/1n 2).

The results are shown in the table below.

We see that in fact o’ = o, as expected. Not also that in all the cases
o' + B = 1! This means that the more o is smaller than 1, the more the
approximation of the discontinuity deteriorates with time ; moreover,
a' =1 implies there is no deterioration of the discontinuity. These results
indicate that the smallest deterioration of the contact discontinuities occurs
when 6, = 1. Moreover, at least for cl f = 1/2, 1/8, there seems to be no
deterioration of the approximation of the discontinuity with time.
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TABLE 3 3
Deterioration of the approximation to the contact discontinuities

The quantities o', and B are the rates o' (7, Az, Ax), and B(T, At, Ax), respect-

wely, defmed above. We have taken Ax = 109’ and c¢fl =1/2, = 1/8.

o
Q‘
™
Q_
®

0 49098635| 0.50901365| 0.47916784| 0.52083216
1.00000000] 0.00000000| 0.83399005] 0.16600995
1.00000000| 000000000} 1.00000000| 0.00000000

I
—

—_ O
(M)

For problem 2, where the nonlinearity is strictly concave, the choice
0, = 1/2 seems to be the best. In the case 6, = 1 the low rates of convergence
indicate that the approximate solution is converging to a weak solution that
is not the entropy one. See figures 3.1.

T v L v L) v L | v T M t

1.0 —
u

- h B
0.8 - u -
o -
Q.a - -
o B
0.7 —~
- -
0.6 -
- -
0.8 — ~

. 1 I 1 L iy 1

1.0 1.1 1.z 1.8 1.9 1.8

Figure 3.1a. — Convergence of the approximate solution determined by the AIIP® P'.scheme
with 6, =1, and cfl = 122 to a nonentropy weak solution of the Burgers problem 2.

The tendency of the P°Plscheme to create monentropy shocks can be seen here. From
Table 3 2 we see that this phenomenon persists with ¢fl = 1/8 A more restnctive local
projection, 1 ¢ a smaller 0%, 1s nceded to counterbalance it, sce next figure
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T - il v T T 7T v T v T
1.0 uh —
- .
0.8 — p

u

- E
.8 | -
0.7 t— —
0.6 —
- 4
0.% — -

1 1 1 —l 1 1

1.0 1.1 1.2 1.3 l.49 1.8

Figure 3.1b. — Convergence of the approximate solution determined by the ATLP® P'scheme
with 8;= 12, and cfl = 12 to the solution of the Burgers problem 2.

In this case the rate of convergence is 0.68, see Table 3.1. Note how the error accumulates
around the corner points. The convergence is much better for cfl = 1/8, see next figure.

1.0t M T M =T M T r ™ -
uh(cf‘Z=1/2)

1.00 -
o o

0.00 |- uh(cﬂ=1/8) -
S

0.00 |-

0.97 —

o. Ji A 1 1 1

ﬁ.w 1.00 1.01 1.02 1.03 1.0¢

Figure 3.1c. — (Zoom on figure 3.1b) Convergence of the approximate solution determined by
the AIP®P'scheme with 6,= 122, to the solution of the Burgers problem 2.

The approximation of the « corner points improves when c¢fl diminishes. The approximate
solution convergences faster for cfl = 1/8 (the rate is 0.80 see Table 3.2) than for
cfl = 1/2 (the rate is only 0.68, see Table 3.1).
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Something similar seems to happen in problem 3, in the case cfl = 1/2 ;
see figures 3.2. In this case the choice 0,= 1/2 is definetly the best.
However, for cfl = 1/8, the choice 8, = 1 is the best. In figure 3.2a we show
that in the case c¢fl = 1/2 and 8, = 1 the AIIP? Plscheme converges to a
weak solution that is not the entropy one. We want to stress the fact that
without computing the actual L' = errors it would be impossible to detect
this phenomenon, for the nonentropy shock of u, is extremely near to the
entropy one ! (Compare the scales of figures 2.2 and 3.2). In figure 3.2b we
show that this situation is remediated by considering a smaller ¢fl number.

We end this Section by concluding that for the smooth cases, 6 = 1/2
seems to be the best choice for ¢ fl ~ 1/2. However, the difference between
the choices 6, = 1/2, and 6, = 1 becomes negligeable for cfl = 1/8. The
scheme in these cases is a first order-accurate one. For approximating
contact discontinuities the choice 8, = 1 is the best. It also seems to be the
optimal choice for small ¢fl and Buckley-Leverett type problems. However,

1.0 -—-———r—r—7rTr—r—1—r———r—
o -
0.6 —
=3 -
0.6 —
0.9 -
u Uu
h
- -
0.2 —
0.0 — PR N PO S PR S | e a
1.790 1.79S 1. 800 1.805 1.810
Figure 3.2a. — Detail of the convergence of the approximate solution determined by the
AITP? P'scheme with 0,= 1, and cfl = 12 to a non entropy solution of the Buckley-Leverett
problem 3.

Note how the approximate solution 1s unable to catch the entropy shock. (However, the
improvement with respect to the behavior of the P® P -scheme 1s dramatic, see Table 2.2, and
figure 2.2. In fact both the exact and the approximate solution would appear undistinguishable
if ploted with the same scales of figure 2.2). This situation 1s much better for ¢ fI = 1/8, see next
figure
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1.0 ————————— T T T T Ty
- -
0.a -
0.8 -
U Uu
h
0.4 —
I 4
0.2 —
g 1
0.0 . 1 - P S -
'I.790 1,795 1,800 1.808 1.810
Figure 3.2b. — Detail of the convergence of the approximate solution determined by the

ATIIP® Pl.scheme with 8, =1, and cfl = 18 to the entropy solution of the Buckley-Leverett
problem 3.

In this case the rate of convergence seems to be optimal : 1t 15 0.95, see Table 3 2 Note that
the shock has been captured 1n a single element.

for concave (or convex) nonlinearities this choice seems to give an
approximation to a nonentropy solution ! (... as did the P° PLscheme). In
this case, the choice 8, = 1/2 is the best.

These results indicate that with an appropriate choice of the quantities
8, (that must depend on the approximate solution u, as well as on the
nonlinearity f) the AIIP®Plscheme behaves as a first order accurate
entropy scheme even in the presence of discontinuities.

4. CONCLUSION

We have introduced and analyzed the AIIP®Plscheme for the scalar
conservation law (1.1). This is a finite element scheme obtained by a simple
modification of the explicit discontinuous Galerkin scheme used by G. Cha-
vent and G. Salzano [3], via a local projection based on one of the
monctonicity-preserving projections introduced by van Leer [13]. The
resulting scheme verifies a local maximum principle, and is also TVDM
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(total variation diminishing in the means), a new property that allow us to
prove the existence of a subsequence converging to a weak solution of (1.1).
Our numerical results indicate that the scheme does converge to the entropy
solution for small c¢fl, and is first order accurate even in the presence of
discontinuities.

APPENDIX

PROOF OF PROPOSITION 2.1

We shall proceed in several steps. As usual, we assume that At"= Az, and
that Ax = 4. We shall only outline the proof. The reader is refered to [2] for
details.

1. The Discrete Fourier Transform

Let u, be an element of the space W, N L%(R). We define its Discrete
Fourier Transform (DFT) as follows :

[6]©) = ¥ [w] "k, Vee[-m ],

1eZ

where [u, ] = [7,, &,/ \/?—:], and j2 = — 1. It is easy to verify that the DFT is
an isometry from W, N L(R) to the space of 2 w-periodic functions in
L*(— =, w; R?). In particular we have

”uh ” LAR) — ” [241] ” LY~ m, = ,R%) "

2. THE AMPLIFICATION MATRIX
We can rewrite the P°Pscheme as follows
(i ¥ 1) = Aglwi), + As[up], -1
where A, and A, are two by two matrices. We then obtain easily that
)"t = G (8, cfl) (],
where the amplification matrix G (6, ¢fl ) is given by
GO, cfl)y=Ay+ A, .e",
=Ild+cfl.T'(®),
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and

V30— —3.(1+¢e?
It is then possible to show that,

[|un(T) ||L2(R) =M. ||y, “LZ(R) >
where

M= SUP, < T/At SYPs e [- 7, o) ”G(e’ Cfl)” >
and

IGI = (e (G*G))"?,

with p (A ) being the spectral radius of the matrix A. In this way our problem
is reduced to obtain the bound M.

3. ESTIMATING M

It can be shown that the matrix G (9, cfl) is always diagonalisable. Let
P (8, cfl) be such that P~! GP is diagonal. Then it can be proved that
Me [’If"l, v] - Sup, T/At(p(cfi ))’! »
where

V =SUP.fe0,1]0e [-nn CoOnditionof P (0,cfl),
p(Cfl) = SUPg ¢ [~ =, w] p(G(O, Cfl)) .

4. ESTIMATING THE EIGENVALUES OF G

The eigenvalues of the matrix G are given by

2
N, =1+cfl. (%trri <%trI‘> —detF> .

It can be proven that for any given & = 0 there exists a ¢fI* such that
Vefl e [0,cfl*]:

IN_(8)] =1, Vo6e [-m, 7],

N, (8)| =1, Voe [—-m, w\[-¢, ¢].
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Moreover, the modulus of the eigenvalue A, in a small neighborhood of
6 = 0 is strictly bigger than zero, except for 8 = 0. More precisely, in such a
neighborhood A, can be expanded as follows :

N, (0) =1 +cfl. [_71264+0(e6)] fj.cfl. [0 +0(8%)].

From this, the following expression follows easily :
9
SUPge e, el X ()] =1 + §cfl3+ o(cfl?).

In this way there exists ¢y >0, and a ¢fl* such that Vcfl € [0, cfl*]:

plefl)e [L+cglefl®,1+cocfl?].

5. CONCLUSION
All this imply that
Me [v'.sup,_rya(l+c5 cfl), v.sup, g n(1 +cocfl®)],

and this interval remains bounded if and only if cfI° = O(Ar), i.e., if and
only if cfl = O (k). This proves the result.
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