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MATHERAATlCALMOOaUNGANDHUMERICALANALYSIS
MOOÉLJSATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(Vol 23, n° 4, 1989, p 565-592)

THE LOCAL PROJECTION P°-P1-DISCONTINUOUS-GALERKIN FINITE
ELEMENT METHOD FOR SCALAR CONSERVATION LAWS (*)

by Guy CHAVENT (*) and Bernardo COCKBURN (2)

Abstract —In this paper we introducé the Local Projection P° Pl-Discontinuous Galerkin
finite elemente method (ÂI1P ° P l-scheme) for solving numencally scalar conservation laws This
is an exphcit method obtained by modifying the expltcit Discontinuous Galerkin method
introduced by G Chavent and G Salzano [3], via a simple local projection based on the
monotomcity-preserving projections introduced by van Leer [13] The resulting scheme is an
extension o f Godunov scheme that vérifies a local maximum pnnciple, and is TV DM (total
variation diminishing in the means) Convergence to a weak solution is proven We display
numencal évidence that the scheme is an entropy scheme of order one even when discontinuities
are present

Resumé —Nous proposons une méthode d'éléments finis discontinus P° P1 avec projection
locale pour le calcul des lois de conservation scalaires C'est un schéma explicite obtenu en
modifiant la méthode de Galerkin discontinue explicite, introduite par G Chavent et
G Salzano [3], a l'aide d'une simple projection locale basée sur les projections introduites par
Van Leer [13] qui garde ses propriétés de conservation de la monotomcité Le schéma
correspondant est une extension du schéma de Godunov qui vérifie un principe du maximum
localy et est DVTM (diminue la variation totale sur les moyennes) Nous démontrons la
convergence vers une solution faible, et fournissons des résultats numériques montrant que le
schema est entropique d'ordre un même en présence de discontinuité

1. INRODUCTION

In this paper we introducé and analyze a new finite element method, the
local projection P° P^Discontinuous Galerkin method (AILP°P^scheme),
devised to solve numerically the scalar conservation law

3,w + dj(«) = 0 , on (0, r ) x R ,
u(t = 0) = u0, inR, K ' }

where the nonhnear function/ is assumed to be C1, and the initial data
w0 is assumed to belong to the space L^R) n BV (R). This finite element
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566 G CHAVENT, B COCKBURN

method is a predictor-corrector method whose prédiction is given by the
explicit P°F1-Discontinuous-Galerkin method introduced by G Chavent
and G Salzano in [3], and whose correction is obtained by means of a very
simple local projection, that we shall call AH, based on the monotonicity-
preservmg projection introduced by Van Leer in [13] The basic idea of
this method is to write the approximate solution uh as the sum of a
piecewise-constant function Uh, and a function uh whose restriction to each
element has zero-mean, and to consider the method as a finite différence
scheme for the means Uh The function üh is considered as a parameter The
local projection All acts on the parameter üh, and is constructed in order to
preserve the conservativity, and enforce the stabüity of the scheme for the
means Uh In the extreme case m which the parameter üh is set identically
equal to zero by the local projection Au, our scheme reduces to the well
known Godunov scheme In the gênerai case, the scheme for the means
keeps the local maximum pnnciple venfied by Godunov scheme, and is
TVD (total variation dimimshing) Thus, the AHP ° P ̂ scheme is conserva-
tive, positive, and TVDM, i e total variation dimmishmg in the means We
show that these properties, together with some properties of the local
projection Au, imply the existence of a subsequence converging to a weak
solution of (1 1) Our numencal results mdicate that if the cfl-numbei is
mildly small enough, the scheme converges to the entropy solution with a
rate of convergence equal to 1 m the Lco(0, T, L^J-norm even in the
présence of discontinuities

In 74 Le Samt and Ra^iart [9] introduced the Discontinuous-Galerkin
method for solving the neutron transport équation

|x dtu -f v dxu + cru = g

They choose their approximate function to be piecewise a polynomial of
at most degree k >: 0 in each of the variables t, and x In this way they
obtained an ïmphcit scheme, but they did not had to solve ït globally
Indeed, they proved that ït is possible to solve ït locally due to the fact that
the direction of the propagation of the information, (|x, v), is always the
same In the gênerai case, this is no longer true, for the local direction of
propagation, (1, f'(u)), dépends on values that have not been calculated
yet ' To overcome this difficulty, m 1978 G Chavent and G Salzano [3]
modified this method and obtamed an explicit scheme that we shall call the
P°P1-Discontinuous-Galerkin method In this method the t- and x-direc-
tions are treated in a different way the approximate solution is taken to be
piecewise constant in time, and piecewise linear in space The two main
advantages of the method are that ït is explicit, and that ït is very easy to
generahze to the case of several space dimensions However, the scheme
has a very restrictive stabüity condition — as we shall prove later —, and ït
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P°P1-DISCONTINUOUS-GALERKIN FINITE ELEMENT 567

may not converge to the entropy solution in the case in which the
nonlinearity ƒ is nonconvex — as the numerical évidence we shall display
indicates. In 1984 one of the authors [4] modified the scheme and obtained a
scheme called the G-l/2 scheme, for which the convergence to the entropy
solution was proven in the gênerai case. A further development of the ideas
involved in the construction of this scheme lead to the theory of quasi-
monotone schemes for which L°°(0, T ; L1(R))-error estimâtes have been
obtained ; see [5]. The scheme we now introducé can be considered as a
simplification of the initial G-l/2 scheme. This simplification leads to a very
simple, and much cheaper algorithm, but complicates enormously the proof
of its convergence. At each time step the AILP ° P ̂ scheme consists of two
phases : in the first, a prédiction is obtained by using the unchanged
P°P ^method ; in the second, a correction is obtained by applying the local
projection All to it. This projection dépends on a parameter, 0 e [0, 1], (0
may vary from element to element, but we have performed our numerical
experiments with G = constant) and is based on the monotonicity-preserving
local projections introduced by Van Leer in [13] : for 0 == 1 the All
projection coincides with the one defined in [13, (66)] (thus, the
AILP ° P ̂ scheme can be considered as a Discontinuous-Galerkin finite
element version of the schemes introduced in [13]). One of the main
contributions of this work is that we have proved that in fact the use of the
local projection All — originally devised in order to produce positive and
monotonicity-preserving schemes — renders the scheme under considér-
ation a TVDM scheme whose approximate solution vérifies a local
maximum principle ; see Proposition 3.2. These two properties allow us to
conclude that the scheme is indeed total variation bounded (TVB) and that
it générâtes a subsequence converging in L°°(0, T ; L1

1
0C(IR)) to a weak

solution of (1.1) ; see Theorem 3.3. The problem of pro ving that the weak
solution is indeed the entropy solution is still open. A resuit in this direction
is the proof of the convergence of MUSCL-type semidiscrete schemes in the
case of a convex (or concave) nonlinearity by Osher in [10]. Also, Johnson
and Pitkaranta [7] have analized the Discontinuous-Galerkin method in the
linear case.

An outline of the paper follows. In Section 2 we define the P° P1-
Discontinuous-Galerkin method, we obtain the L2 c/Z-stabüity condition
for the linear case, and display some numerical expériences that show the
typical behavior of the method. In Section 3 we define the local-projection
P° P ^Discontinuous-Galerkin method, we obtain some stability properties,
prove the convergence to a weak solution, and test it in the same examples
the P° P ̂ Discontinuous-Galerkin method was tested. We end with some
concluding remarks in Section 4. In what follows, the P° P ^Discontinuous-
Galerkin method will be referred to simply by the P° P ^scheme, and the
local-projection P° P ^Discontinuous-Galerkin by the AILP0P ^scheme.

vol. 23, n° 4, 1989



568 G. CHAVENT, B. COCKBURN

2. THE P^ -SCHEME

2,1, Preliminaries

As usual, the sets {tn}n = 1 N, and {xl + y2}ieI are partitions of
[0,T], and R, respectively. We set Mn =tn + 1-tn, and
Axt = xl + V2 — xx _ 1/2> and dénote by Jn, and îx the intervals (tn,tn + 1), and
(xi -1/25 xt +1/2)> respectively. Finally, ÜT" stands for the element Jn x It, and
ZÏ for sup({Ax(}. The space of functions of L\R) n BV(R) whose
restriction to each interval It is linear will be denoted by Wh. By
I(av ..., am) we shall dénote the closed intervall

We shall need the following equality :

(2.1)

f f
— u . 3,<p + u • <p . nt

J K? J BK?

L
where n = (nx, nt) is the outward unit normal to dÀ'". This equality is
obtained by simply multiplying (1.1) by <p and formally integrating by parts.

We recall the définition of the Godunov flux hG associated to the
function h :

kG(w,w) = h(w) , /22x
hG(w,v) =

where Ç is any point G ƒ (w, u ) such that :

(h(g) - h(c)) • sign ( w - t 7 ) < 0 , Vce ƒ (w, 1;) .

See Osher [11], and Brenier and Osher [1] for further details.
We shall also need the concept of viscosity of a numerical flux

ffe associated to ƒ:

visfe(w, v) = 0 , if w = v ,
- 2 . ffe(w,v) + f(v) .

J \ * / J v / otherwise .

(2.3)

w — v
See for example Tadmor [12].
Finally, we define the c/?-number as foliows :

where C(w0) is the convex huil of the range of the initial data w0.

MPAN Modélisation mathématique et Analyse numérique
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P ° P L DISCONTINUOUS-GALERKIN FINITE ELEMENT 569

2.2. Définition of the P^-Scheme

Before defining the F°P1-scheme we need to introducé the finite
dimensional space Vk. A function uh is said to belong to Vh if :

(a) In each element K? the approximate solution uh is constant in time
and linear in space : uh\K* e P°(Jn) x Pl(It) ; i.e.,

uh(t,x) = ün
t cp°(5) + u» <p\s) , (t, x) e K? ,

where
s = (x-xt )/Axt ,

) (2.5a)

(b) The rrace of uh in 3 ^ is chosen as follows :

uh(t
n,x) = $*(x), x e l l 7

«*( ' , *, +1/2) = l , + 1 / 2 C ) , t e / " , (2.5b)

where

, ̂  + i/2 - 0 ) ) , (2.5b)

where fG dénotes the Godunov flux associated to the function/, respect-
ively ; see (2.2).

We can now define the P ° P ̂ scheme as follows :
(a) Set uk(t,x) = Ph(u0) (x) for (t,x)eJ°xU, where Ph is the

L2-projection on the space Wh ;
(b) For te [t1, T) the approximate solution uh is determined by the

following variational formulation (compare with (2.1)) :

" uh • 9(<P +

V C P E P V ^ X P H / J . (2.6)

We want to stress the f act to chose the trace of uh on Jn x {xl+y2},
%i +1/2(0?zn ^z5> )ïi/tó element framework is equivalent to chose an upwinding
technique in the framework of finite différence schemes. Also, the way of
choosing the trace of uh along {tn} x / „ ^(x), détermines whether the

vol. 23, n° 4, 1989



570 G. CHAVENT, B. COCKBURN

scheme is explicit or implicit. Indeed, it is easy to check that with the
following choice of Ç"(x)

F(x) = uh(t»-0,x), x e l l 9

the scheme (2.6) is implicit, even if uh is piecewise constant in time î
As this point it is convenient to point out that our variational formu-

lation (2.6) is strongly related to the one used by Le Saint and Raviart [9,
(3.11)] to introducé the Discontinuous Galerkin method. In fact, after a
simple intégration by parts (2.6) can be rewritten as follows :

\ ta + 9JK)] . <p + f [i - uh, ƒ (g) - ƒ (uh)] . n = 0 ,

V i p e P V J x P ^ ) , (2.6')

that has the same formai structure than [9, (3.11)].
In terms of the degrees of freedom {M", M"} the P°P1-

scheme (2.5)-(2.6) reads :
(a) The degrees of freedom of the initial data are computed as follows :

M? = uo(s)ds/Axt ,

So = 6 f (s-xJu^ds/Axf; (2.7a)

(6) For n = 0, ..., iV — 1 the degrees of freedom of w£ + 1 are obtained as
the solution of :

- 6 J J J(uh(t,x))dtdx/(AtnAxt)

where /ï
P
+f/2'" = ƒ (£* + i/2(?/I))' a nd t n e intégral over Â " is approximated by

Simpson's quadrature rule.

2.3. The linear case : the L2-stability condition

In the linear case ƒ (M) = u, we have /f+y2' " = "J1 + w", and

61JJ
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P^-DISCOOTINUOUS-GALERKIN FINITE ELEMENT 571

Thus, in the case of a uniform grid the scheme reacis as follows :
(a) Compute the degrees of freedom of uQh by (2.2c) ;
(b) For n = 0, ..., N - 1 compute the degrees of freedom of u% + 1 as

follows :

where cfl = â^/Ajc. Note that when cfl = 1 we have

af+ 1 = af + [3 c// (sf - sf^) - 2 af - 4 a f . j ,

and so, the scheme does not follow the characteristics, for the expressions
between brackets are not identically zero. Moreover, the scheme is unstable
in L2 if the cfl is 0(1). However, if c/? is allowed to decrease as
h i 0, the scheme can be made /Astable. More precisely, we have the
following result.

PROPOSITION 2.1 ; Let {uh} , be the séquence of approximate solutions
determined by the P° P^scheme (2.2) in the case f(u) = u. Then, the scheme
is L2-stable, i.e., there exists a constante independent of the discretization
parameters, and the initial data UQ such that

if and only if cfl = O (hm) as h i 0.
The proof of this stability result is given in the appendix ; see also [2].

Roughly speaking, this result tells us that the scheme has serious difficulties
in following the information at the right speed, and so, it must be helped by
letting the numerical speed (àx/àt) go to infinity as O{h~~m) as h goes to
zero. As a direct conséquence of this result, and the well known Equivalence
Theorem of Lax, the P°P ^scheme converges strongly in L°°(05 T ; L2(R))
to the (unique) solution of (1.1).

However, in the nonlinear case the scheme may fail to converge to the
entropy solution of (1.1), even under the condition cfl = O(hm)9 as the
numerical results of next Subsection show.

2.4. Some Numerical Experiments

In this Subsection we test the P° P^scheme in six different problems for
which we can calculate the exact solution. To avoid the possible influence of
the boundary conditions on the behavior of the approximate solution, we
have taken a fixed space domain O = (0, L) on which we have imposed
periodic boundary conditions. Our test problems can then be defined by

vol 23» n° 4, 1989



572 G. CHAVENT, B. COCKBURN

giving L, the final time T, the nonlinearity ƒ, and the initial data
UQ on H ; see the table below.

TABLE 2.1

Définition o f the test problems.

problem

1

2

3

4

5

6

n

(0,1)

(0,2)

(0,2)

(0,1)

(0,1)

(0,1)

T

0.5

0.5

0.5

0.1

0.1

01,

U

u(l-u)

1
2 u2-f(l-«)2

U

u(l-u)

1
2 u5 + ( I -u ) 2

uo(z)

H , if* G (0.4,0.6),
\ 0, otherwise.
f l , if* G (0.5,1.5),
\ 0, otherwise.
f l , if x G (0.5,1.5),
\ 0, otherwise.

§(1 + \sin(Anx))

| ( 1 + I«n(4ir*))

| (1 + A5in(47Tx))

The solutions to these test problems are shown on figures 2.1. Let us
point out, that problems 1, 2 and 3, for which the solution is not « smooth »,
have their « smooth » counterpart in problems 4, 5 and 6, respectively. We
have constructed our three first test problems trying to obtain a reasonably
wide set of singularities : the solution of problem 1 présents two contact
discontinuities (i.e., the characterictics run parallel to them) ; the one of
problem 2 (a Burgers problem) has a stationary discontinuity, a sonic point
(i.e., a point u for which ƒ'(«) = 0), and two moving « corners », i.e., two
points at which the space derivative is discontinuous ; finally, the solution of
problem 3 (a Buckley-Leveret problem) displays a couple of « raréfaction
waves » (i.e., smooth régions) followed by shocks (i.e., the characteristics
run into them).

We want to stress the fact that contact discontinuities are the most
difficult to approximate. Roughly speaking, this is due to the following
heuristic argument. If the scheme has not enough viscosity strong oscillations
may appear around them, and if the scheme has too much viscosity the

M2AN Modélisation mathématique et Analyse numérique
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Figures 2.1.— The exact solutions of the test problems.

approximate solution will be smoothed out without opposition from the
characteristics. In the nonlinear case the characteristics may run into the
shock and in this way they counterbalance the smoothing effect of the
viscosity of the scheme.

In all the experiments we have used a uniform grid characterised by the
discretization parameters Ar, and Ax. We have taken Ax very small, i.e.,

vol 23» n 4, 1989



574 G. CHAVENT, B. COCKBURN

Ax = ——— , in order to be in the asymptotic regime of the error, and we
1 ZQ

have used the linear L2-stability condition of Proposition 2.1 to relate Af,
and Ax :

At = c0 . Ax3/2 . (2.8)

For each of the test problems we have calculated two kinds of L^O'
at time t = T,

eQ^T(At, Ax) = | | ( D fc()||Ll(ol),

ei in. t7.(A*,Ax)= \\u(T)-üh(T)\\Ll{a,y

in order to see the influence of he non-piecewise constant part of the
approximate solution, üh9 in the représentation of uh. (We shall make this
point more précise in the discussion of our numerical results below.) Also,
we have estimated the rates of convergence a0, and otx as follows

(2.9b)

Note that if Ax is divided by 4, and A* by 8 the stability condition (2.8) is
verified. In problem 3 we have taken ƒ (u) = 0, Vw <: 0, and f (u) = 0.5,
Vw > 1. In the table 2.2 we show the errors and their respective rates of
convergence.

First, let us point out that in the three first problems the effect of
üh in the error in negligible, whereas it is really important in the last three
problems where the solutions are smooth. This indicates that globally the
contribution of üh to the représentation of the approximate solution
uh is negligible when discontinuities in the solution or in its space derivative
are present, but it is important if the solution is smooth, for it reduces the
error of the means, e0, in O(hm) !

From table 2.2 we can also see that the rate of convergence is around 3/4
for the contact discontinuities of problem 1. In this case, the contact
discontinuities of the exact solution at time t = T - 0.5 are located at
x = 0.1, and x = 0.9, and the error is concentrâted around them, as can be
seen in the table below.

From table 2.2 we also see that the rate of convergence is 1 for problem 2.
The exact solution has a stationary discontinuity at x = 0.5, a sonic point at
x = 1.5, and two « corners » located at x = 1, and x = 2 for t = T = 0.5.
Since the discontinuity is stationary (... and it is placed at the boundary of an

M2AN Modélisation mathématique et Analyse numérique
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TABLE 2.2

L^errors and rates of convergence for the P° P^-scheme.

The quantities e0, and el are the errors e0 fl 7(A^? A^c), and ex ft>T(àtj àx),
respectively, defined by (2.9a). The quantities ct0, and a2 are the corresponding rates
of convergence a0 a> T(àt, Ax\ and c^ ft< r(À£, àx), respectively, defined by (2.9b).

For all the problems àx -
x\

, and àt has been calculated from (2.8), where the

constant c0 was set equal to 1/2, The set O' has been taken equal to O defined in the
table 2.1.

problem

1
2
3
4
5
6

IQ4 • e0

58
3.5
747
4.3
4.2
4.3

0.7690
1.0685
0.0321
L0127
1.0043
1.0124

104 • ei

58
2.2
750
0.19
.04

0.24

0.7717
1.1149
0.0406
1.4990
1.6599
1.4844

TABLE 2.3
Concentration of the error around the contact discontinuities.

The solution of the linear problem 1 présents two contact discontinuities located at
x = 0.1, and at x = 0.9 at t = T = 0.5. In this case O = [0? 1],

(0.0,0.2)
(0.8,1.0)

e0fn',T(At»Ax)

0.5063
0.4937

elin#.T(AttA»)
«i,n,r(Af(Aa:)

0.4996
0.5004

element ï) it has been approximated extremely well by the scheme. In f act,
almost all the error is essentially concentrated in between the « corner »
points of the exact solution. In the table 2.4 we show the distribution of the
error in that région.

Finally we see from table 2.2 that the scheme seems not to converge to the
entropy solution of problem 3. In f act it does converge to the weak solution
displayed in the figure 2.2. It is easy to check that its shocks travel at a lower

voL 23, n° 4, 1989



576 G. CHAVENT, B. COCKBURN

TABLE 2.4
Distribution of the error between the « corner » points.

The approximate solution of problem 2 posseses two « corner » points, i.e. points
at which the space derivative is discontinuous, located at x = 1.0, and x = 2.0 for
t = T = 0.5, and a sonic point at x = 1.5. Note how the error accumulâtes around
the sonic point, and, more strongly, around the « corner » points.

fi'

(0.9,1.0)
(1.0,1.1)
(1.1,1.4)
(1.4,1.6)
(1.6,1.9)
(1.9,2.0)
(0.0,0.1)

......o..r<A.>
eo,eo,n.r(Ax)

0.1077
0.1033
0.2130
0.1520
0.2130
0.1033
0.1077

e o c n n , r ( A l ) / | n , ,

eOtc0iniT(Az) r \Q\

2.1535
2.0668
1.4199
1.5201
1.4199
2.0668
2.1535

e i c ^ , T ( A z )

eilC0,n(r(Ax)

0.1746
0.1510
0.1162
0.1165
0.1162
0.1510
0.1746

e i _ n , r ( A x ) / | n M

ei 'COlf l lT(Al) / 'ni

3.4914
3.0201
0.7745
1.1651
0.7745
3.0201
3.4914

t . !

t.O -

0.6 -

O. O

-O.B
0 . 0

- uh

1

1
-

u J

0 . 6 1 . 0 1 . 6 2 . 0

Figure 2.2. — The approximate solution determined by the P° P^cheme, uA, does not converge
to the entropy solution of the Buckley-Leverett problem 3, u.
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speed than the shocks of the entropy solution. Thus, when the nonlinearity ƒ
is nonconvex the scheme may fail to catch the entropy shocks : they travel
too quickly for the P° P^scheme !

p O p l2.5. The Viscosity of the flux f

In order to explain the behavior of the P ° P ^scheme and motivate the
modification that gives rise to the AILP ° P ^scheme we shall end this Section
with some important remarks on the viscosity of the flux fp p . By définition
(2.3) the viscosity of the flux fp p is given by

vis,1+1/2 ~

o,

otherwise
(2.10)

Taking into account the définition of the viscosity associated to the
Godunov flux we can rewrite this expression as follows :

,.ƒ CP P ,n • G, n
VlSi + 1/2 - vlSi + 1/2 + 1/2

where

0, if

2
fG,n fP°p\n
J i + 112 - Ji +1/2 otherwise .

In this way we can interpret bvis?+1/2 as the amount of viscosity that the
F°Px-flux is subtracting from the Godunov viscosity Wsf'+î * If s u ch
amount is equal to zero the flux fp p reduces to the Godunov one, and the
scheme for the means becomes Godunov scheme. If it is positive and not too
big the scheme for the means will behave as a Standard three-point
monotone finite différence scheme. If it is négative, and too big in absolute
value the viscosity associated to the flux fp p may be négative, equal to
zero (as for the well known centered scheme), or positive but « too small »,
and we may be obliged to let the c/Z-number to go to zero as h 1 0 in order to
achieve stability (in f act, the centered scheme is L2-stable if and only if
cfl = O(h) as h l 0 !). Proposition 2.1 indicates that this is the case for the
F°P1-scheme ; roughly speaking, its viscosity is «too small». As the
viscosity is essentially a speed, this explains why the P° P^scheme is « too
slow ».
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This fact is indeed quite reasonable as the following heuristic argument
shows. For the sake of simplicity, let us consider the linear case
f(u) = u. Assuming that w"+ 1^w" we have

From this expression we can immediately conclude that the flux
//+f/2'" produces less (resp., more) viscosity than the Godunov flux when
w" and (M?+1 — ü") have the same (resp., opposite) sign. As the degrees of
freedom «*, and w" are supposed to approximate u(tn, xx ), and
dxu(tn, xt) Axt/2, respectively, we expect Svis?+m to behave essentially like
- 1 ! Note that if we force wj1 to be (ün

l+l- ü?)/2 then bvis?+1/2 = - 1. In
this case the scheme for the means is nothing but the centered scheme !
Fortunately, the P°P^scheme choses ün

t in a wiser way, and has a less
restrictive c/?-condition that is, however, far from being optimal.

In order to improve the behavior of the P ° P ̂ scheme we are going to
exert a strong control on the size of the viscosity associated to ƒp p. This
will be done by means of the local projection Au we define and analyze in
the next Section.

3. THE AIÏP^-SCHEME

In this Section we first introducé the operator Au, that is a local
projection with which we shall improve the P°P ^scheme. Then, we define
and analyze the ATIP0 P ^scheme. Finally we test it on the same problems
we tested the P°P^scheme.

3.2. Définition of the operators Au

We shall define the operators AIT in three steps.
Let us first introducé the following projection operator :

b, i fc>6,
c, if ce [a, b], (3.1a)
a, if c <: a .

Next, to each function wh of Vh, and each séquence {G,} of real
numbers we associate the set of intervais {Dz} defined as follows

(3.16)
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Finally, we define the operator AU(wh) as follows :

AU(wh): Vh^Vh, (3.1c)

uh .-» u£ ,

where, the degrees of freedom of u£ are defined as follows :

M* = Ut ,

3,3. Properües of the operators Au

We have the following result.

PROPOSITION 3.1 : Let wheVh, and let {%}t g be an arbitrary séquence
of real numbers. Set uj* = AH{wh){uh), where uh e Vk9 and AU(wh) is
defined by (3.1). Then

(a)

(b) f Mh* = f wh

If moreover we have that fy e [0, 1], for i G Z, then

(c) u£(x)e I(wt_l3wl9 wl + 1), for x E It

The first property states that An(vv^) is indeed a (locally defined)
projection, and the conservativity property (b) that the « mass » of the
projection u£ is equal to the mass of the projecting function wh. Note that
the positivity property (c) relates the resulting projection u£ solely with the
piecewise constant part of wh, wh

Proof: The properties (a, b) follow directly from the définition of the
operator under considération. By (3.1c), and the fact that 0, e [0, 1] we
have

w * = wt ,

From this, and (2.5a) the maximum principle (c) follows easily.
The monotonicity-preserving projection used by Van Leer [13, (66)] uses
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3.4. Définition of the AIÏP°P ̂ Scheme

Now we can define the AIIP ° P ̂ scheme as follows :

(a) Compute u° as follows : first, compute wf by (2.7a) ; then, compute
ut° = Aïl(uo

h)(u°h) ; finally, set u°h = <>°.
(b) For n = 1, ..., N — 1 compute u% + 1 as follows : first, compute

u% + l given by the P ° P ̂ scheme, as in (2.76) ; then, compute

3.5. Stability and Convergence Properties

The stability properties of our scheme are a direct conséquence of the
properties of the numerical flux fp p, and the properties of the family of
local projections Au.

PROPOSITION 3.2: Set 0* = sup, e Z6 i 5 and suppose thaï 0* E [0,1].
Then, for cfl e 0, —- the approximate solution uh defined by the

ATLP ° P l-scheme vérifies the local maximum principles

nn + 1el(v»_unï,vï+1)9 (3.2a)

\ s?_2 , wr_l5 IÇ, IÇ+1, ûUi) , Vx e It . (3.26)

Moreover, for cfl G [0, 1/2] the scheme is TV DM (total variation diminishing
in the means) ; Le.,

(3.2c)

Proof: Consider the équations for the means :

ut = ui - k&t f ^ i ) KJi + 1/2 — ƒi - 1/2 ) •

If (E?+ ! - iêf ) . (âf _ ! - ûf ) 2= 0, then S? = 0 — by the définition of the An
projection, and we can apply to this équation the analysis of the standard
Godunov scheme, see Le Roux [8], to obtain

s ^ ^ / C a r - ^ a r - ! , ^ , ^ ! - ^ ! ) , for c//€[0,i].

Again, the définition of the An projection guarantees that this maximum
principle implies (3.2a).

Now, if (Uf+1 - wf ) . (s?_ j - wf ) <: 0, following Harten [6] and
Osher [10, Lemma 2.4] we rewrite the équation for the means as follows :

ur ' = «? + c,"(«f + , - a?) + D,»(Br_ j - B ? ) ,
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where

and

nf - ff, ar + af) - fGW - a?,

To obtain (3.2a) in this case it is enough to prove that C" and
D" e [0,1]. First, note that as the flux fp p is nonincreasing in its first
argument, and nondecreasing in its second one the expression between
brackets in the définition of C" and D" are non-negative numbers.

Second, by the définition of the local projection Au we have

[o,e*],

ff

and this implies that

- i e [ - e * , e * ] .
fjn nu

ui + \ — ui

From this it is easy to see that Cf
B and D? e [cfl . (1 - 9*),

cfi . (1 + 6*)]. This proves (3.2a). To prove the maximum principle (3.2b)
we simply combine (3.2a) with the following property :

which is a direct conséquence of the définition of the Au projection.
Finally, to obtain (3.2c) we only have to prove that C/1 + D"+ x === 1 ; see

Harten [6]. But

and so Cf + £>f+ l^2cfl. This proves the result.
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We point out that if 6* e [0, 1/2], as in [10], it is possible to improve the
estimate (3.2b) and obtain the following one :

This property ensures the compactness in L°°(0, T ; Lîoc) of the séquence
{uh} hi0' However, by allowing 9* to lie in [0, 1] we do not loose this
property, for the compactness in Lœ(0,T ; Lloc) of the séquence {ûh}hio

implies the one of {un}h[0
 a s w e shall see in the next convergence resuit.

THEOREM 3.3 : Under the hypothesis of Proposition 3.2, the séquence
{Uh}h±Q generated by the AILP0Pl-scheme has a subsequence converging
strongly in Lœ(0, T ; L}0C(U)) to a weak solution o f (1.1).

Proof: By Proposition 3.2 the séquence {uh} , is bounded in the space

L°°(0, T ; L\U) H BV(R)). Also, note that the flux fp°plas a fonction of
the means is consistent with ƒ, for we have

ff/m = fG(ui +1 " % + u ui + % )
= fG(û, U)

= f(U),
whenever Ut + i = ül (remember that in this situation ut+1, as well as
un are set equal to zero by the AIT-projection, see (3.1)). These two facts,
together with the fact that the scheme for the means is written in
conservation form :

imply, by a standard argument, the convergence of a subsequence,
{R*K'lo t o a w e a k s o l u t i ° n °f (1-1)> «•

Moreover, as we have

we have that not only {%} ,,, 0, but {uh*}k,^Q converges to the limit u. This

complètes the proof.
We end this Subsection by pointing out that if in the définition of the

numerical flux fp p (2.5b) the Godunov flux is replaced by any two-point
monotone flux both Proposition 3.2 and Theorem 3.3 remain valid, modulo
a possible trivial change in the cfl condition.

3.6. Some Numerical Experiments

In this Subsection we test the AILP ° P ^scheme in the same test problems in
which we tested the P° P ̂ scheme. We have considered the cases
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6, = 0,1/2,1, in order to have an idea of the influence of the size of
0*. (In this paper no attempt has been made to define 9, as a function of
uh and the nonlinearity ƒ). We recall that the AILP ° P ̂ scheme with
6, = 0 is nothing but Godunov scheme. Also, we have considered the cases
cfl = 1/2, and cfl = 1/8 to see how this influence dépends on the cfl-

number. We have set Ax ~ , as for the P°P^scheme.

Our numerical results are shown üi the tables 3.1, 3.2 below. We have not
displayed this time the error of the means, e0, for it possesses essentially the
same rate of convergence than the one of the error ev and it is also of the
same order of magnitude. The rate of convergence has been estimated as
follows :

In the case of the problems 4,5, and 6 that have a smooth solution we can
see that the best results have been obtained for 6, == 1/2. Also, when the cfl-
number diminishes from 1/2 to 1/8, the différences between the cases
B, ~ 1/2, and 6, == 1 become négligeable.

For the problem 1, the contact discontinuities has been better approxi-
mated when 6, = 1. Moreover, it is interesting to note that when the cfl-
number decreases, the performance of the scheme gets worse in the cases

TABLE 3.1

h1-errors and rates of convergence for the AILP0Pl-scheme for cfl = 1/2.
The quantity el is the error eoiV r(Ar, AJC) defined by (2.9a). The quantity

ax is the corresponding rate of convergence aia, T(&t,Ax), defined above. For
problems 1, 2, 3 we took Ax = , and Ax = for problems 4, 5, 6. The set

I 024 1 UuU
Ù' has been taken equal to H defined in the table 2.1.

problem

1
2
3
4
5
6

1 0 4 - e j

249
23.96
41.77
6.27
5.59
8.57

= 0

a i

0.4996
0.8065
0.8465
0.9972
0.9711
0.9707

104 • ei

14.25
16.18
6.95
6.26
1.21
7.22

E 1/2

a i

0.9945
0.6815
1.1084
0.9940
0.9431
0.9858

104 • ei

10.08
187.2
44.67
14.19
1.61

16.26

= 1

a i

1.0000
0.1322
0.3578
0.8351
0.8611
0.7423
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TABLE 3.2
Ll-errors and rates of convergence for the AILP°Pl-scheme for cfl = 1/8.

problem

1
2
3
4
5
6

0,

104 • ei

330
32.06
51.78
10.96
6.41
13.53

= 0

a i

0.4998
0.7867
0.8385
0.9950
0.9722
0.9647

104 • ei

62.62
1.67

13.66
1.63
0.31
1.72

El/2

a i

0.8238
0.8003
0.9149
1.0738
1.1617
0.9246

104 • e i

9.60
23.73
6.99
1.77
0.32
1.84

= 1

1.0001
0.0140
0.9540
0.9140
1.0454
1.0124

0, = O, and 8, = 1/2, but remains essentially the same when 0t = 1. This
observation led us to try to measure the détérioration of the contact
discontinuities. We do that by studying how the measure of the set in which
the approximate solution belongs to the interval [0.01 0.99] evolves with
respect to the discretization parameter àx, and the time t. More precisely,
we set

tx,(uh(t)) = measure of {x : Uh(t, x) e [0.01, 0.99]} ,

and we assume that \x(uh(t)) behaves like (AJC)Q' . rp. We estimate a', and (3
as follows :

•er A, A ï r ( »(»h(T; At/2,Ax/2))\
a (T, At, Ax) — In /In (2) ,

\ ^(^^(T1 ; À ;̂ Ax)) /
/In (2) .

The resuit s are shown in the table below.
We see that in fact a' = a, as expected. Not also that in all the cases

a' + P = 1 ! This means that the more a' is smaller than 1, the more the
approximation of the discontinuity détériorâtes with time ; moreover,
a' = 1 implies there is no détérioration of the discontinuity. These results
indicate that the smallest détérioration of the contact discontinuities occurs
when 0, = 1. Moreover, at least for cl f = 1/2, 1/8, there seems to be no
détérioration o f the approximation of the discontinuity with time.
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TABLE 3 3

Détérioration of the approximation to the contact discontinuities

The quantities a', and 3 are the rates «'(7\ At, Ax), and p(7\ At, Ax), respect-
ive ly, defmed above. We have taken A* = , and cfl = 1/2, = 1/8.

= 0

= 1/2
=
 1

o'

0 49098635

1.00000000

1.00000000

0.50901365

0.00000000

0 00000000

a'

0.47916784

0.83399005

1.00000000

0.52083216

0.16600995

0.00000000

For problem 2, where the nonlinearity is strictly concave, the choice
6, = 1/2 seems to be the best. In the case 0( = 1 the low rates of convergence
indicate that the approximate solution is converging to a weak solution that
is not the entropy one. See figures 3.1.

t.o

o.a -

Q.e -

0.7 -

0.6 -

o.e -

1 . 0 l . Z 1 . 4 1 . 6

Figure 3,1a. — Convergence of the approximate solution determined by the AIIF0 i>1-scheme
with 6i = 1, and cfl = 1/2 to a nonentropy weak solution of the Burgers problem 2.

The tendency of the F°F1-scheme to create nonentropy shocks can be seen here. From
Table 3 2 we see that this phenomenon persists with cfl = 1/8 A more restrictive local
projection, i e a smaller 0*, is needed to counterbalance it, see next figure
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o.s -

Q.o -

O.7 -

0.6 -

o.s -

î . i 1 . 2 1 . 4 1 . 6

Figure 3.1& — Convergence of the approximate solution determined by the ÀIIP0 P^cheme
with Of = 1/2, and cfl - 1/2 to the solution of the Burgers problem 2.

In this case the rate of convergence is 0.68, see Table 3.1. Note how the error accumulâtes
around the corner points. The convergence is much better for cfl = 1/8, see next figure.

1.01

Figure 3.1c. — (Zoom on fîgure 3.1b) Convergence of the approximate solution determined by
the Anp°P1^cheme with 0 , = 1/2, to the solution of the Burgers problem 2.

The approximation of the « corner points improves when cfl dirninishes. The approximate
solution convergences f aster for cfl = 1/8 (the rate is 0.80 see Table 3.2) than for
cfl = 1/2 (the rate is only 0.68, see Table 3.1).
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Something similar seems to happen in problem 3, in the case cfl = 1/2 ;
see figures 3.2. In this case the choice 9, = 1/2 is definetly the best.
However, for cfl = 1/8, the choice 9, = 1 is the best. ïn figure 3.2a we show
that in the case cfl = 1/2 and 9 (= 1 the AUP ° P ̂ scheme converges to a
weak solution that is not the entropy one. We want to stress the f act that
without computing the actual L1 = errors it would be impossible to detect
this phenomenon, for the nonentropy shock of uh is extremely near to the
entropy one ! (Compare the sçales of figures 2.2 and 3.2). In figure 3.2b we
show that this situation is remediated by considering a smaller cfl number.

We end this Section by concluding that for the smooth cases, 9 = 1/2
seems to be the best choice for cfl =* 1/2. However, the différence between
the choices 9( = 1/2, and 9, = 1 becomes négligeable for cfl = 1/8. The
scheme in these cases is a first order-accurate one. For approximating
contact discontinuities the choice 9( = 1 is the best. It also seems to be the
optimal choice for small cfl and Buckley-Leverett type problems. However,

O . B

0 . 6

0 . ,

o.z

n n

-

\

k f i | i i i f

-

-

-

1 . . . .

"i.TOO 1.785 1.800 1.8O5 1.810

Figure 3.2a. — Detail of the convergence of the approximate solution determined by the
AHP°P Scheme with 8, = 1, and cfl = 1/2 to a non entropy solution of the Buckley-Leverett
problem 3.

Note how the approximate solution is unable to catch the entropy shock. (However, the
improvement with respect to the behavior of the P° P ̂ scheme is dramatic, see Table 2.2, and
figure 2.2. In fact both the exact and the approximate solution would appear undistrnguishable
if ploted with the same scales of ûgure 2.2). This situation is much better for cfl = 1/8, see next
figure
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t.O

o.a |—

0.6 -

0.S -

o.z -

n l - - - • ' • • • - ' • " - • * *

'L.78O 1.795 1.900 1.8O5 1.810

Figure 3.26. — Detail of the convergence of the approximate solution determined by the
Alli^i^-scheme with 0 J = 1, and cfl = 1/8 to the entropy solution of the Buckley-Leverett

problem 3.
In this case the rate of convergence seems to be optimal : it is 0.95, see Table 3 2 Note that

the shock has been captured in a single element.

for concave (or convex) nonlinearities this choice seems to give an
approximation to a nonentropy solution ! (... as did the P° P^scheme). In
this case, the choice 6, = 1/2 is the best.

These results indicate that with an appropriate choice of the quantities
9, (that must depend on the approximate solution uh as well as on the
nonlinearity f) the AILP ° P ̂ scheme behaves as a first order accurate
entropy scheme even in the présence of discontinuities.

4. CONCLUSION

We have introduced and analyzed the AILP ° P ̂ scheme for the scalar
conservation law (1.1). This is a finite element scheme obtained by a simple
modification of the explicit discontinuous Galerkin scheme used by G. Cha-
vent and G. Salzano [3], via a local projection based on one of the
monotonicity-preserving projections introduced by van Leer [13]. The
resulting scheme vérifies a local maximum principle, and is also TVDM
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(total variation diminishing in the means), a new property that allow us to
prove the existence of a subsequence converging to a weak solution of (1.1).
Our numerical results indicate that the scheme does converge to the entropy
solution for small cfl, and is first order accurate even in the présence of
discontinuities.

APPENDIX

PROOF OF PROPOSITION 2.1

We shall proceed in several steps. As usual, we assume that Atn = At, and
that Ax = h. We shall only outline the proof. The reader is refered to [2] for
details.

1. The Discrete Fourier Transform

Let uh be an element of the space Wh C\ L2(U). We define its Discrete
Fourier Transform (DFT) as follows :

iel

where [uh][ = [ün üj \fï\ andy"2 = - 1. It is easy to verify that the DFT is
an isometry from Wh n L2(R) to the space of 2 ir-periodic functions in
L 2 ( - TT, TT ; IR2). In particular we have

IIM*IIL'<R) =

2. THE AMPLIFICATION MATRIX

We can rewrite the P°P^scheme as follows

where Ao, and Ax are two by two matrices. We then obtain easily that

where the amplification matrix G(6, cfl) is given by

G(B,cfl)=A0+A1.e'l>,

= id + cfi.r(B),
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and

r ( f l ) -

It is then possible to show that,

where

M = supn £ r / A ( sup9 6 t_ w> w] || G (6, c ƒ/ ) || ,

and

|| G || = (p(G*G))1 / 2
;

with p (A ) being the spectral radius of the matrix A. In this way our problem
is reduced to obtain the bound M.

3. ESTIMATING M

It can be shown that the matrix G(6, cfl) is always diagonalisable. Let
F(6, cfl) be such that P'1 GP is diagonal. Then it can be proved that

Me [ v - \ v ] . s u p _ V A , ( p ( c / 7 ) ) \

where

v = supc/; e p, i], e e [- •n, •n] Condition of P (6, cfl ) ,

4. ESTIMATING THE EIGENVALUES OF G

The eigenvalues of the matrix G are given by

X± = 1 +cfl . ( | t r r ±

It can be proven that for any given E > 0 there exists a cfl* such that
Vc/Ze [0,cfl*]:

|X_(6) | s i , V6 £ [- ir, ir ] ,

1 , V0 6 [ - i r , i r ] \ [ - e , e ] .
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Moreover, the modulus of the eigenvalue \+ in a small neighborhood of
e = 0 is strictly bigger than zero, except for 0 = 0. More precisely, in such a
neighborhood \ + can be expanded as follows :

From this, the following expression follows easily :

In this way there exists co>O, and a c/7* such that Vc/7 e [0,c//*] :

P(c//)e

5. CONCLUSION

All this imply that

Me [v~l . supn^T/At(l + eu1 cfl3f, v . supn^T/At(l + c0 cfl3)n] ,

and this interval remains bounded if and only if cfl3 = O (At) , i.e., if and
only if cfl = O(hm). This proves the result.
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