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THE LOCAL RANGE  SET OF A MEROMORPHIC
FUNCTION
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Abstract. Let / be a function meromorphic in a domain G of

the Riemann sphere. The global range set of/ is the set of values

assumed infinitely often by/, and similarly the local range set of/

at a boundary pointy is the set of values assumed infinitely often in

every neighborhood of p. Obviously any range set is a G¡ set. In

this paper we show that every G¡ set is the local range set of some

meromorphic function. This contrasts with the situation for the

global range set. Our methods rely on prime end theory and

Arakélian's approximation theorems.

Following Rudin [9], we call a set V a A-set if F is a countable inter-

section of nested domains. In case G is the unit disc, then the local and

global range sets are A-sets, and conversely it is known that every A-set

is the (local and global) range set of some function meromorphic in the

unit disc (see [7], [9]).

Recently, it has been established that for an arbitrary domain, the global

range set is always a A-set [3, p. 670]. Thus if the closure of the global

range set has a nonempty interior then the linear Hausdorff measure is

infinite, in fact it is not even o--finite [3, p. 670]. In this paper we study

the local range set.

In §1 we extend Arakélian's approximation theorems. In §2 we examine

simply connected domains and find a type of boundary point at which

the local range set is always a A-set, and a type of boundary point at

which the local range set is not necessarily a A-set. Finally we exhibit

a domain having a boundary point at which any Gà set can be realized

as the local range set of some meromorphic function. Note that there

are G6 sets which are dense in the plane and of linear Hausdorff measure

zero.

We shall make use of the following notations and definitions. If G

is a proper domain of the Riemann sphere, then G* denotes the one-

point compactification of G and infinity will always stand for the ideal
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point of G*. Such topological notions as closure and complement will

be with respect to the relative topology on G. dG will denote the boundary

of G on the Riemann sphere. If/ is defined on G and p e dG, R(fp)

will denote the local range set. We write CE for G\E, where £ will always

denote a closed set.

A normal subdomain F of G is a domain bounded by finitely many

disjoint Jordan curves and such that no component of CFis precompact.

A normal exhaustion {Gn} of G is an exhaustion such that Gn is a normal

subdomain of Gn+X for each n.

If G is a simply connected domain and F is one of its prime ends, I(P)

denotes the impression of P. For K a subset of the Riemann sphere, we

write zn-^-K if every limit point of the sequence {zn} lies in K. In the finite

plane, B(w, r) denotes the disc of center w and radius r.

1. Approximation by holomorphic functions. In this section we recall

Arakélian's fundamental theorems on approximation and extend them to

suit our purpose.

Let G be a proper domain of the Riemann sphere. A relatively closed

set £ is said to be a set of uniform approximation (by functions holo-

morphic in G) provided that for each function g holomorphic on £° and

continuous on £ and each positive constant e, there is a function/holo-

morphic on all of G for which

\f(z) - g(z)\ < e,       zeE.

The following generalizes Mergelyan's celebrated theorem.

Theorem A (Arakélian [1]). Let G be a proper domain of the Riemann

sphere. A (relatively) closed subset E of G is a set of uniform approximation

by functions holomorphic in G, if and only if G*\E is connected and locally

connected. The reader may find expositions of Theorem A in [2] and [6].

We shall have need for a stronger sort of approximation than uniform

approximation. A proper closed subset £ of G is said to be a set of tan-

gential approximation (by functions holomorphic in G) provided that

for each function g continuous on £ and holomorphic on £° and each

positive continuous function e defined on £, there is a function / holo-

morphic on all of G for which

\f(z) - g(z)\ < e(z),       z e E.

The set £ is said to satisfy condition A if for every neighborhood U of

the ideal point of G*, there is a neighborhood F<= U of the ideal point

such that no component of £° meets both G*\U and V.
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Theorem B (Nersesian [8]). Let E be a (relatively) closed subset of a

proper domain G on the Riemann sphere. Then E is a set of tangential approxi-

mation by functions holomorphic in G, if and only ifG*\E is connected and

locally connected and E satisfies condition A.

The theory of uniform and tangential approximations has found many

applications; however, in this investigation we shall need a form of

approximation intermediate to these two.

An example of the type of set on which we wish to approximate is the set

E=Dn{B(l,l),B(-l,i)}

in the unit disc D. This set violates condition A and thus tangential

approximation is not possible in this case.

Let F be a (relatively) closed subset of the domain G, and let e be a

positive continuous function on E. The set E is said to be a set of e-approxi-

mation if, for each g continuous on E and holomorphic on F°, there is an

/ holomorphic on G such that

\f(z) - g(z)\ < e(z),       zeE.

Note that F is a set of uniform approximation if and only if F is a set of

1-approximation; F is a set of tangential approximation if and only if E

is a set of e-approximation for every positive continuous e.

The following approximation theorem will serve our purpose. Moreover

it is likely to have independent interest.

Theorem 1. Let E be a closed subset of a proper domain G of the

Riemann sphere. Suppose G*\E is connected and locally connected. If e

is a positive continuous function on E such that e is constant on each com-

ponent of F°, then E is a set of e-approximation.

Proof. Our proof is based on Arakélian's proof as presented by W.

Fuchs in [6, Theorem 3.2, p. 40]. Let g be continuous on E and holomor-

phic on F°. In order to approximate g, we first observe that, by Theorem A,

there is a function (f> holomorphic on G such that

|loge(z)-¿(z)|<l,       zeE.

Now set h(z)=exp[<f>(z) — 1]. Then « has no zeros and, for zeE, satisfies

\h(z)\ = exp[Re </>(z) - 1] = exp(log e(z)) = e(z).

Again, by Theorem A, there is a function/, holomorphic on G for which

\g(z)lh(z)-f0(z)\<l,       zeE.

Hence,/=« •/„ approximates g within e on E and the proof is complete.
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Remark 1. The preceding proof shows that, for G*\£ connected

and locally connected, £ is a set of e-approximation if there exists a

function h holomorphic on G and satisfying 0<|/i(z)|<e(z), z e£. As

in the proof of Theorem 1, we note that such an h exists if there exists

a function \p holomorphic on £° and continuous on £ such that Re ip—^

ln(e(z)), zeE.

Remark 2. Theorem B with £°=0 which was first proved by N. V.

Arakélian [1] is a consequence of Theorem 1.

2. The local range set. The results of this section rely heavily on

prime end theory. A good treatment of the theory for bounded simply

connected domains is given in [4, Chapter 9]. Actually the theory holds

on any proper simply connected domain of the finite plane (folklore).

Theorem 2. Let G be a proper simply connected plane domain. If a

boundary point p of the domain G has the property

peI(P)^I(P) = {p),

for each prime end P, then R(f, p) is a A-set for any function f meromorphic

in G.

Proof. Let y> be a conformai map from the unit disc D onto G,

and let K be the set of points of the unit circle which correspond under y>

to prime ends whose impressions contain (are) p. Denote by R(fo xp, K)

the set of values assumed by/o y> infinitely often in every neighborhood

of K. We claim that

R(f,p) = R(f°y>,K).

Suppose w is contained in the right member. Then there exists a sequence

{zn} in D such that zn-+K and/o y>(zn)=w. Since K is compact, we may

assume that {zn} converges to some point, say ete, in K. Now by the prime

end theorem [4, Theorem 9.4, p. 173], {y>(zn)} converges to I(y)(eie))

which is equal top by hypothesis. Consequently w e R(f,p). The opposite

inclusion is straightforward.

To complete the proof, suppose / is a function meromorphic in G.

Let Vn be the set of points of D whose distance from K is less than l/n.

It is not difficult to show that Vn has only finitely many components

and thus/(FJ is a A-set [5] and since R(f, K)=Ç\™=xf(Vn), R(f, K) is
a A-set. This follows from the deep result that the countable intersection

of A-sets is again a A-set [3, Corollary 1]. The proof is complete.

Example 1. We present an example to show that the condition in

Theorem 2, though sufficient, is not necessary. Let G be the square

0<x<3, 0<y<3 from which has been removed all segments 0<jc^2,

y=l/n,n=l,2, •••. The boundary point/»=2 belongs to a nondegenerate
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impression, yet it is easily verified that R(f, 2) is a A-set for any/mero-

morphic in G.

Example 2. Let G be the domain of Example 1. Then if Fis any open

set, there is a function/ holomorphic in G, for which R(f, l)= V.

Proof.    Let G(n) denote the set

0 < x < 2,       l/(« + 1)< y < 1/«,       « = 1, 2, • • • .

Let « be a conformai map of the disc (|£|<1) onto G; let //(«) be the

domain corresponding to G(n), and let t,=q„ correspond to z= 1 +//(« +1),

«=1, 2, • • ■ . Let <p„ be a conformai map of //(«) onto the unit disc

(|/|<1) such that t,=q„ corresponds to r=l. Let F(«) be the intersection

of (|r|<l) with a disc about t=\ chosen so small that

(1) diameteri/t^LLi«)))} < 1/«.

We may write F as a union of discs V={J™=X B(wm, rm). For each

«i = l, 2, • • • , let {q(m, k)}, k=\, 2, •• -, be a subsequence of distinct

numbers of {q„} such that the set of all these subsequences constitutes a

partition of {q„} into disjoint subsequences. If q(m, k)=q„, we write

n=n(m,k). From this point on, when n, m, and k appear in the same

context during this proof, it is to be understood that n=n(m, k).

Let T„ be a Möbius transformation such that

(2) Tn(\t\ < 1) = B(wm, rjl - l/(Jc + 1))),

and

(3) T„(L(ri)) => B(wm, rm(\ - 1/fc)).

Set E=\J™=xH(ri)C\(\t\<F), and define g on F as follows:g=T„ ° <p„,
on /7(«)n(|£|<l), n=l, 2, • • • . If {e„} is any sequence of positive num-

bers, then by Theorem 1, there is a function/, holomorphic in (|£|<1)

such that

(4) l/o(0 - g(0\ <en,       ze //(«), n = 1, 2, • • • .

For «=1,2, • •-, choosey so that B(wm, rm(\ — l/k))czB(wm, sn) and

¿(wm,sn)cTn(L(n)). Let Cn be the inverse image of {\wm-w\=s„}

under g, and set ô„=s„—rm(\ — \jk). Then <5„>0, and we set

en = min{á„, rm - rm(\ - l/(fc + 1))}

in (4). Finally, set /=/, ° A-1. We claim that / is the desired function.

First of all, from (2) and (4) it follows that the range of/ at z=l is

contained in V. On the other hand, it follows from (3), (4) and Rouché's

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] THE  LOCAL RANGE  SET OF  A  MEROMORPHIC  FUNCTION 523

theorem applied on C„ that

f(h(<p-\L(n)))) a B(wm, rm(\ - I/k)),

n=l,2, ■ ■ • . But (1) implies that the sets /¡(ç)"1 (£(«))) converge to

z=l, and so R(f, 1) contains each B(wm, rm), m=l,2, • • • . That is,

R(f, 1)=> V and since we have shown the opposite inclusion, the proof is

complete.

The domain G and the boundary point z=l which we have just con-

sidered are very particular ones, however the same proof carries over

to a large number of examples.

In connection with Example 2, it is of interest to present a simple

example of an open set V which is not a A-set (for other examples see

[5] and [9]). Let F be a dense subset of the unit disc D such that F is a

countable union of open discs whose closures are pairwise disjoint and

whose diameters tend to zero. Then V is not a A-set [3, Theorem 3].

The set D\Vis called a Swiss cheese.

The following theorem provides a characterization of all possible

range sets.

Theorem 3. A subset V of the Riemann sphere is the local range set

of some meromorphic function if and only if V is a Gô set.

We merely sketch the proof since the essential ingredients have already

been exposed in the construction of Example 2.

Proof.    Obviously every range set is a G¡ set.

Conversely, let F=f)«=i V(n), where {V(n)} is a nested sequence of

open sets. Without loss of generality, we may assume that V is con-

tained in the finite plane. Let G be the square 0<x<3, 0<y<3, from

which we remove the segments

0 < x = 2,       y = 2-n + 2~n-\       n = 1, 2, • • • , ; = 1, 2, • • • .

Set G(«,;')=(0<x<2, 2-"+2-"-'-1<y<2-n-|-2n-0. Let h be a conformai

map of the disc (|£|<1) onto G and let H(n,j) correspond to G(n,j)

under h. By defining an appropriate function g on the union of the

G(n,j)'s much as in the previous example and by approximating g suf-

ficiently well on G(n,j) by a function/, holomorphic on all of (|£|<1),

we can obtain a function/holomorphic in G with the following properties:

(5) f(G(n, j)) <= V(n),       j = 1, 2, • • • , n = 1, • • -,

and

(6) R(f, 1 + Í2-") = V(n).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



524 LEON BROWN AND  P.  M.  GAUTHIER

From (5) it follows that /?(/, 1)<= V(n), n=l, 2, • • • , and from (6) we

have that (]%=1 V(n)cR(J, I). Thus V=R(fil) and the proof is

complete.
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