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a’

operator in £*(— V, V) with the classical boundary conditions. The random

potential g(t, w) has a form g(t, m) = F(x,), where x, is a Brownian motion on the

compact Riemannian manifold K and F : K—R* is a smooth Morse function,

mKinF =0. Let N,,(4)= > 1, where 4¢(0, 00), E(V) are the eigenvalues of
Ei(Ved

H,,. The main result (Theorem 1) of this paper is the following. If V—c0, E, >0,

keZ _ and a>0 (a is a fixed constant) then

Abstract. Let H,, = +¢g(t, ) be an one-dimensional random Schrédinger

a a — an(Bq
d {N v (E°‘ oy Fot ﬁ) ="} > TN an(Eg) k!,
where n(E,) is a limit state density of H,,, V- co. This theorem mean that there
is no repulsion between energy levels of the operator H,, V—co.
The second result {Theorem 2) describes the phenomen of the repulsion of
the corresponding wave functions.

1.

In a series of latest works in physics (see [1]) the phenomenon of the repulsion of
the energy levels in the spectrum of complicated (random) quantum systems was
discussed. The formal definitions are the following.

Let H,, be the family of the Hamiltonians describing the behaviour of the
system in the volume V and let E{” < E? < ... be the corresponding energy levels.
In various interesting cases these levels are thickening in the limit and moreover
for every a>0 E{) ~E, as [V]— co.

We shall consider two neighbour levels E{) and E{},, where n~a|V|. It is
natural to suppose that the normalized “spectral split” A,=(E,,,—E,)/
M(E,, —E,) has a limit distribution as |V|— o0, i.c. there exists

II}Jlgl P{4,<x}=G(x).
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If G(x)=o0(x) when x—0 in this case we deal with the repulsion of the levels (near
E,); if G(x)~cx we say that an interaction of the levels does not exist near E_; in
the case G(x)/x — g © wemay say that there is an attraction between levels (or

that the levels show a tendency to group).

It is natural to study several levels near E, Mathematically this problem is
reduced to the analysis of the joint limit distribution of the several neighbour
spectral splits A, A, 1, ..0 A1z 1

As far as it is known to the author no rigorous result in this field has yet been
published. However in the so called Wigner Gaussian symmetrical ensemble
H,=(,). i,j=1,2,..,n({;;i=] are an independent Gaussian random values) the
limit distribution function averaged in all splits was found, i.e.

G(x)= lim ! Y P{4,<x}
n—oo M=
and the existence of repulsion was established [2-41.

For the unordered structures the spectrum of which coincides with that of the
Schrodinger operator with the random potential the repulsion of the levels was
also asserted in {5]. A number of physics works following [5] were based on the
results of [5], but it turned out that [5] was false. It is possible to prove the
absence of the interaction between the levels in unordered one-dimensional
structures for a large class of random stationary potentials, in particular, for
J-potential explored in [5]. Moreover it is possible to analyse the local structure of
the spectrum near the fixed point E, in full. This spectrum proves to be a Poisson
flow near E, on the natural scale, i.e. the neighbour spectral splits (asymptotically
as |V]— c0) are independent and have exponential distribution.

Our paper contains the proof of the above formulated results and is close to
6,71

For the sake of convenience of the references to [ 7] we narrow the class of the
studied potentials but our results remain true for the Kronig-Penny potential and
for the potential of the “white noise” type.

2.

Now we pass on to exact formulations. We consider the Schrodinger operator of
the Markov type which has been introduced in [6,7], namely

d2
Hz—F—I—F(Xt(w)), teR', weQ. (1)

Here Q is the probability space with the measure P (this space may be identified
with the ensemble of all the realizations of the process x,, teR', x(®) is the
Brownian motion on the compact Riemannian manifold K and has the generating
operator A). The invariant measure of x, is the natural Riemannian measure.
Taking dx to be the initial distribution we turn x, into stationary Markov process
with “good” mixing properties. The function F:K - R! is smooth (C*) and “non-
flat” (see [6,7]). The last 1s fulfilled when F has a finite number of nondegenerate
(Morse) critical points.
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If min F(x)=0, |F|=1, then [6,7] the spectrum S of the unique selfadjoint

xeK
extension of H on #?*(R?) coincides with the half-axis [0, o0). Let us consider the

restriction H to #*(—V, V).
This restriction is defined by classical boundary conditions. We analyze here
the corresponding spectral problem

2
Hyyp=— Y S Fp=Ey, e~ 1V,
®
=1 =p(1)=0.

Let O0<E (V,w)<E,(V,w)< ... be the cigenvalues (the levels) of the problem (2),
yg, i=1,2,... are the corresponding eigenfunctions (the wave functions). The
existence of the limit spectral distribution function
.1
NE)=lim = Y 1 A3)

Voo E{V)SE

was proved in [8] for more general situation. Moreover under our conditions
dN(N)
dE

there exists the continuous state density n(E)= and besides n(E) >0 if E>0

(see Proposition 1).

3.

The analysis of the phase of the equation Hy = Ey is the clue to the analysis of all
the basic spectral characteristics of the operator H (or Hy,). If 8,(t)=arcctgy’/yp
then

do
d—tE=<:052HE—i—(E~F(x,))sin2 Op, 0eS". 4

Here S! is one-dimensional torus, i.e. the interval [0, 7] with the identified ends.
The “two-dimensional process” (x,,6,(t)) is the Markov diffusion one on K x S*
and its infinitesimal operator is

1 d
AE=EA+[00529+(E—F(X))51029]@- (5)

According to Hérmander theory (see [6, 7]), the parabolic equation dp/dt=A,p
has the fundamental solution in the cylinder (0, o0) x (K x §1), this solution is
smooth in all arguments and besides for E >0 (i.e. on the spectrum)

pE(t7 (x: 0)5 (xl’Hl)ge(ta E)>0a (6)

if t 2 t,(E). The last expression (the strong form of the D&eblin condition) guaran-
tees us the existence of the limit

g(x, 0) = lim p(z, (-, ), (x, 0) Z 6(E, 1) (7)

t— 00
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with the exponential speed, i.c.

|pE(ta ( El ): (Xa 0)) - T[E(x: Q)| é C(E)e_a(E)Z 1' (7/)

The constants in (7), (7') are strictly positive in every open interval of the axis
{0, co).

4.

Let us fix the point E,e(0, co) and its certain neighbourhood U, C(0, ). All the
following discussions will be conducted in U, the dependence of constants on V,
will be implied.

Let us prove the existence of the state density n(E) in a stronger form. Let
A=(E,E+h)Cl,,

Ny A)=NE+h—Ny,E= ¥ 1.

E;(V)ed

Proposition 1. For V— oo and every £¢>0

N A 11+£
M 4 )_—_de | mu(x, 0)sin? Omy(x, m— O)dxdO + o nv
2V 4 ks v
11+8V
=jn(E)dE+o( - ) @®)
A

Proof. Let us use the general method of [6] and [7, Sect. 3]. We introduce “the
quasi-solution” { (s) of the equation Hy = Ey satisfying this equation for s=+1¢
with the boundary conditions

¢E,t(_ V):G)E,t(V)ZO

. . . dp\? . . .
and having the unit amplitude 7, =1/ $*+ (%) for s=t. This “quasi-solution”

will be a wave function if we suppose
0 (t+0)=0, (¢t~0).

The last formula (for any 1) uniquely defines the spectrum E,(V). Clearly, for any
te(=V.V)

N4 _ 1Y

i .‘I 'Q)éi’tds

14

14
= 5 [ MdESD+0)= B ~0) |2 (0,(1+0)~ e ~0)

1 In future we shall suppose that ¢;, ¢, 0, are positive constants independent of V. We also suppose V'
to be sufficiently large
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Let us choose t=s in the inner integral, then §2(s)=sin?f(s). By the general
theorem of [7, Sect. 3} (see also Lemma 1, [6]) we find that

Ny(4) _
Tz §d JAE T puV=s(K.0)(x.0)

Kx 8t

-$in? Op(V +5,(K, 0), (x, = — 0))dxd0 .

The notation pg(t,(K,8,),(-, -)) means the transition density of the process
(x,, 0g(t)) with the uniform (in x) initial distribution and the initial phase 8,,.

Using (7') we immediately obtain (8), since ng(x, 0)>0, for EcU,, then n(E)>0
on the spectrum & =(0, o).

5.
Now we can rigorously formulate the basic result of our work.

Theorem 1. For fixed a,<b,La,<b,< ...<Za,<b, and nonnegative integers
ki,...k

H

lim P{N,(4,)=k,, ...Ny(4,)=k,}

Voo
b.— ki _ ky
—exp (= n(E) [, ~ay)+ .. +(,—a)]y LE O @I )G a)]

k! - k,!
b, ©)
where A,= (E +o= 2V Eo‘*‘ﬁ)a i=1,2,..,n
The expression (9) holds uniformly in a, b, ; |a,|b| S A, k, <M (A, M are fixed).

E
In other words the random point process NH(E)= <E0, E,+ ﬁ) is an asymptoti-

cally Poisson one (with the parameter n(E;)) in the sense of the convergence of the
finite-dimensional distributions.

We shall prove it along the following lines. Let us consider another problem
(2') which consists of k problems, where k=k(V)=[In!"*V]. We consider the
points

to=—V, t;=—V+"—
Let us construct the neighbourhoods of radius In'™¢V around every point
tisty, .. t_ . In other words, we have introduced the intervals

Di=(pp)=(t,—In' V1,102 V), i=12, k=1, py—V, A=V

K
The set [V, V]\ \ 9, is divided into k intervals
i=1

(oo A) =11, (g, h0)=1p s (o, ) =1,

and the problem (2') is: in every interval I,,I,,...,I, it is necessary to find the
functions p such that

HP%=Eyp, sel;, wlu_)=pl)=0; j=1,2,. k. (2)
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We shall denote the corresponding eigenvalues (levels) and the wave functions by
EW and ¢! resp. Let
NV(A)=Z Z L

Jj E‘(‘”EA
First we shall establish, that

G a l
PR, (4)=Ny(A)) =1, 4= (E0+ Bt ﬁ>,

using the fact of the exponential decreasing of the eigenfunctions on [— V, V7] (one
of the results of [7]). This expression means, that the spectra of the problems (2)

and (2) “almost coincides” in the neighbourhood of the radius O <%) Since

k k
Np(d)=3 ¥ 1=} N4
J=1EDeda  j=1
and the terms in the last sum are equally distributed, “almost independent” and
“infinitely small”, we came to the standard scheme. Unfortunately, we cannot
obtain the Poisson limit distribution for N;,(4) from this scheme. A priori we can
only achieve the complex Poisson distribution. The final and most complicated
step is connected with the analysis of the second moment MNZ(4).

6.
At the first stage the two following propositions will be of major importance.

Proposition 2. (Essentially coincides with Theorem 4, Sect. 6 [7].) For fixed ¢>0
there exists >0 such that the probability of A%° tends to zero as V— oo, where A%°
={To every normalized wave function pg(s), E,cU,, se[—V,V] corresponds the
point t(ypg), “the center of the support” of y(-), so that for all s:
ls— (g ) ZIn' **V we have the estimate

rpp)=1/vi +Wg)* Sexp {—dls—1]} .}.

In fact the stronger result was proved in [ 7], namely, that ZP(/_lf; %< o0, One

should note that the point t(p, ) must be chosen measurably (€2, P) (which was not
emphasized in [7]). For example, we may put (g )= the first rational point in

. 1
[ - ¥, V] (the numeration is standard) such that [y | = ]/T
V
Proposition 3. The number of the levels of the problem (2) getting in A=(E—h, E+h)
coincides with the maximum dimension of the linear manifold ¥4 of the smooth
functions vy (with the null boundary conditions) such that

(H"— f[ )2 +y*(F(x,)— E)lds

<h*y,p)=h* _f w(s)ds. (10)
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This lemma of the abstract theory of the linear operators belongs to Glasman
(see [9, Chap. 1, Theorem 3]}, Proposition 3 is also true in case of the problem
(2}, one should accordingly modify the boundary conditions.

Let us return to Theorem 1. For the sake of shortness we limit ourselves to the

one interval A= (EO ~ i, E,+ ) Technical details necessary for the general

2V 2V
case will be described below (Propositions 5', 6, Theorem 1).
Let us consider the intervals &,=(f,—2In, %, +21In}"9), i=1,2,...,k—1
which are twice as large as &, i=1,2, ..., k—1 introduced in Sect. 5.

Proposition 4. If A=(E,—a/2V, E,+a/2V), then

) 1n2+2£V 1
MY | ri(s)ds=Cla,e) 1+0(=]). (11)
Eea®-1. 4 14

igsgi
Here vy, are the amplitudes of the wavefunctions g, of the problem (2).
The proof repeats the discussion in Proposition 1 almost literally.

Namely

MY 1] dsng VeV —s,(K,0)x,0)

Ered -1 - Kxs?
U 2

pp(V +5,(K,0), (x, 1~ 0))dxd0
fdsjdE [ [y O)mpx, m—0)+ole ™" ™Y]dxd0

4 K xSt
_kInttep e n(E)+0(e’W)

1n2+2£V

<

We have used both the smoothness n; in E and the fact, that

V
W—~21n1”V>V1‘“> VI

One should also remember that k=k(V)=[In!*"¢1].

min(V —t,te )=

7.
Let us compare Proposition 2 with Proposition 4.

If at least one of the points t(yg); E;e4 belongs to kU 9, and Ay° has
occurred, then o

E.cd |5]>]n1+8V

{ rpdsz1 [ e Mlds=1—C eV, (12)
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Since P{A%°}—1 and the mean of the left hand side random value equals to

In2+2¢y . .
0 — {according to Proposition 4) then

L]

V-

{the points T, =1(yy )e U }
Le.

k—1
P{ri do not get in | J Qi}-——-) I

i=1 V-0

Moreover, the same discussions show that no one of the points 1,=1(yy ), E;e4
k-1

will be at the distance <In'*#V from U 9, with the probability ¢, : q,, —— 1.

Ve

In other words it is asymptotically rehable that all v, E;e 4 admit the estimate
k-1
gSe ™" on | ] 2, We shall denote this event by B3°.
i=1 k-1
Let us consider the smooth cuttmg function g,/(s) equalling to 0 on { J 2, and
i=1

to 1 outside the 1-neighbourhood of U ;. The functions 9y (s) =gy (s)ypy (), E;€ 4

satisfy the null conditions at the ends of the intervals &, i.e. at the points y,, 4,
i=1,2,...,k—1. Let us pull the finite-dimensional subspace % on these functions.
If the above described event B%° occurs then

Ny (4)
(ZCﬂI’E,: ZC@E,): Z Ci2+R1(V)
i=1

and
2 Ny ()

i=1
The remainders R (V) and R,(V) are estimated by the sums of the integrals from
k_

rg, over U ., where &, are the I-neighbourhoods of 2, i=1,2,....k—1.

Therefore. |R1 LN ECe™ 2 Y N(4), N
Using the Cebygev's inequality and putting Y. ¢} =1 without loss of gener-

- i=1
ality we achieve that dim.%“=N,(4) with the probability tending to Las V—oo.
In other words (see Proposition 3) it is asymptotically reliable that N, (4) =N, (4).
But as it is easy to see the inequality N, (4) SN,(4) always holds true, hence
it is asymptotically reliable that N,(4)=N,{4) or which is the same N,(4)

—NV(A)T:);—»O. In terms of the characteristic functions the last expression

means that .
. iA 3 NY(4)
Moyt ENY g (13)

Vw0

8.

The values N{/(4) are measurable with respect to c-algebras generated by the
process x, (ie. by the potential} on the intervals I, =(ug,4,), I, =(i;,45), ...,
I, =(,_, 4. Since the distance between these intervals is not less than 2In* "¢V
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and x, satisfies the exponential mixing condition then the general facts of the
theory of the sums of the weakly dependent random variables (see [107, 19.17 and
18.4.2) yields that

1
- Lhﬂ +ey

<4kCe™ "V < Cle 2 . (14)

L& k
(A4
Memj;lNVJ( ) 1_[ eMN(J)(A)
=1

J

But the values N$(4) are equally distributed [except the extreme terms N{(4) and
N®(4)] and besides

MNYP(A)=

2an(E,) o (ln V

(Proposition 1).

According to (14) we can forget the interdependence of NY and consider them
independent and equally distributed [the extreme terms N(4) and N{P(4) give the
asymptotically negligible contributions since their means vanish as V- oo,
k(V)— o0].

Let us now use the following simple limit theorem.

Proposition 5. Let us have a sequence of the series of independent integer-valued and
equally distributed in each series random values ¢, &5, ..., ¢, n=1,2,... with

M¢,. = p i=1,2,...,n. Then for some subsequence {n;} for all k=1 there exists

13

n
lim nP{¢, =k} =p, and as n—co the distribution of S,= Y, &, converges to the
n— o0 =1

limit distribution with the characteristic function

. . ¥ prlekr—
p(A)= lim Mei#Sn = o151 1), (15)

ni—=* oo

where @'(A);,_o=iA=i ), kp,. The limit distribution is the Poisson one with
k=1

the parameter X if py=4, p,=p,=... =0.

Being standard the proof is omitted.
Let us note that in general case the formula (15) defines a complex Poisson
distribution. The vector version of Proposition 5 is also true.

Proposition 5. If ¢, ¢,,,....¢,,, n=1,2,... are a sequence of the series of the
vectors which are independent in each series and take the values in 2%, M, = —,

n
aeR’,, then (it is possible, for some subsequence) there are nllglc nP{¢ =k} =p,
keZ’ and

lim Mei<’l’s"’=exp{ Y (P — 1)}. (15)
keZY
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9.

Using the formulae (13), (14) and Proposition 5 (5') we immediately come to the
following “half-finished” variant of Theorem 1.

Theorem 1'. For fixed a, <b,Sa,<b, < ... Za,<b, and

b
A= i=1,2,...
; (E 2V E +2V> i=12,...,n

Z iANv(dx) Y pmletttm— 1)
lim Me*= =emezr” . (16)

Vo
The limit in (16) exists a priori only for some subsequence {V}, V— o0, and the
constants p,,, me 2", depend both on {V} and (a,, b)), i=1,2,.
Theorem 1’ roughly speaking states that the point ﬂow Ei(V) is a complex

1
Poisson near E, on the scale —.
© 2V

Since the spectrum E,(V) is simple, we think it likely that the word “complex”
may be removed. But we cannot exclude the possibility of the existence of the

. . 1
groups of E,(V) the distance between which has the order o <—I;) and therefore they

will be “glued” by our normalization as ¥V—oo. We need some additional
information on senior moments of N (4). The following proposition is obvious.

Proposition 6. We keep the notations of Proposition 5. Let &,,=(&D, ..., &) and

ni°

)» . bi X 1
Méni:<41—9"'9%_v—): M[é;ﬁ)]2:ﬁ+0<~))
n n n n
fU)ém—‘O 1
ni n
for j#1,j,1=1,2,...,v. Then
M5S0 eJZ Aylerts—1) (15;/)

i.e. the components of the vector S, are asymptotically independent Poisson random
values with the parameters 1, j=1,2,...,v

10.
In order to finish the proof of Theorem 1 we are left to verify (by the previous

assertion) that MN%,(A)-:—MNV(A)+0(%> and for j+!

1
MNV(AJ')NV(AI) =0 (V) .
We shall study MNZ(4) at great length, the covariance is analyzed similarly
and even simpler. This problem is technically close to [7, Sect. 5], where the
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variance of the spectral measure of H” was studied. In both cases we may reduce
our problem to that of obtaining “good” estimates of the transition density
P Al (x,04,0,), (%, 0,,0,)) of the Markov process (x,, 0(t),0.(t)) for the large
and |E' — E| <.

Let us note that this process degenerates as E'=E and it is this fact that creats
the main difficulty.

Let us begin as in Proposition 1

2

MNe)=M (3 | TeEds
T 0l

14 N T "
=M ([ dT,dT, Pr 1)w,& 2T
-V

o EA(? P d )(I ¢2E,.du)

_M |[ atiar, ¥ PeedT0Pip(TD)

v Fies (thE )2

Pz,sin® 0, (T sin” 0y (T)
(E EJeA) (f fpt,EidS>(j at,Ejdu>

= MN,(4) MﬁdeT T . =MN,(4)+R(4).
E;+Ej
(E., Ej€4)

+

The remaining term R(A) is not greater than

%!‘E/dTlde z ~t E; (T )+7~‘t E](TZ)

(J wﬁE‘.ds)(f sz,,du)
-V -V

We may divide the last integral into two ones, then choose t=T,, ie. Fp g (T})=1
in the first one and t=T,, ie. Fy, g (T,)=1 in the second one. Accordmg to the
general theory of [7, Sect. 3] (see also [7, Sect. 5]) we finally obtain, that

R(A)gvj dT({fdEAE ([ dxd0,do,

Kx8txst

'pE,E’(V_ 7: (K> 0> O)a (-xa 01> 92))pE,E’(V+ T;(Ka O> 0)> (x7 T— 019 n— 02))

14
=2V [ dT [{ dEdE' [[{ dxd0,d0,p, ((V=T(-,-, ).(x.0,.6,)
-V E'>E

KxSix§t

‘pE’E/(V+’1;(',‘,'),(X,TE—BI,TE—BZ)). (17)

Let us denote the inner triple integral over K xS'x S' by JHE,E’). This
C

integral has been analyzed in [7]. It was established there that J.{E, E") < T EI"’
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0 <1, uniformly in T. This yields the following inequality | we must remember, that

sl

and it is obvious, that the estimate of J(E, E') being quite sufficient in {7] is
insufficient for our aim. As a matter of fact, it was proved there that each small

1
f ord —
of order O(V)

14
C
R(MS2V | dTJ[dEJE ——— <C,V?, 0<f0<1,
v |E'— E]|

interval of axis E with great probability contains not more than

one “massive” atom of the spectral measure. So the mass of this atom is mush
more than the summary mass of all remaining atoms in our interval. In our paper
we have to prove that this interval with great probability contains not more than
one atom.

11.

Regarding the above said the estimate of JH(E,E’) should be defined more
precisely.

Proposition 7. There are C;>0, i=1,2,3 and ¢>0 such that uniformly in T:V+T
2CmV, V-T=C,InV

JHE, ENVSC,|E —EI, (18)
fV+T<C/aV,V-T<C,InV, then
3(E,E)S Cy|E ~E|*. (18)

Plainly, from (18) and (18) it follows immediately, that

)
R,Z2V | dT | 3.E,E)dEE
-V

4x4
V—-CilnV Vv
=2V | L+4V
-V+CiIn¥V V—-CiInV
=o(V™%); V-ow. (19)

The term MN(4,)N,(4,), 4,4, =0 1s estimated just in the same way. Since £'+ E
then the term of the kind MN,(4,) does not appear when computating a mixed
moment therefore,

14
MN(A4NA4,)S2V | dT | JpdEdE =o(V~*?). (199
-y Ay X dy
Both the estimates (19), (19") and Proposition 6 yield Theorem 1.
Proof of Proposition 7. Let us enumerate the results on the process (x,, 05(t), 04(1)).

These results either were established in [7] or define the results of {7] more
precisely.
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Let us put h=E'—E>0.

o) M(K,s,o)/sm ((9E+h_9E)(t))'1_8
<Cht~ 1, >0, (20)
{see [7, Corollary 2, 2'7), &, =¢,(e)—0 for e-0;
C(t
) pE+h,E(t’(x:01562)’ (x,07,05) < ‘ghi): t2t,>0 2

(see [7, Proposition 87);
") there exists t; >0 such that

pE+h,E(t7 (X, 91; 02)9 (x’7 0/17 6/2))
Cy(1y)

= max (h, |sin (6, — 6,))) (22)
for E>2,t=1t,;
7) Py g {sin (2054, — 0p) (1) <0} SCyle)h' ™72,
! O+ w(0)=05(0)(mod ),  t>0; (23)
) Py, ;{051 4(8) — 0x()) mod n¢(0, 0)}
SC0B,e)h' 2, 10,  6,.,(00=0,40). (24)

The estimate B) is stronger than §). The expression (21) is true for (0, —0,)=0(h).
The inequalities v) and y’) were established in a less strong form in [7]. It was
asserted there, that the left hand side term in (23) has an estimate O(h*), k>0. In
fact it was proved, that k=1/4—¢, £>0.

Let us prove f') and v'). We shall rely on the ideas of [7]. We consider the
normalized process

Xt,h = <Xt, HE(I); wy(t)=

It is easy to see that

sin (0, ,—0p) (Z))
— )

d in26,, ,+sin 20 ,
% = Bel MOE (1 4+ F—E)(0) +c0s (0, — 0,) (0)sin2 B, ().
(25)
The solution of the last equation has a form
tsin2 in 26
w () =w,(0) exp { — | i 9E+"2+ ST (1+F— E)ds}
0
7 1
+ { ducos (9E+h—9E)sin20E+hexp{— f }
0 u
=w,(0)¢, () +&,(0). (25)

Let us note that &,(0)=1, &,(0)=0 and |&,(t,)], 1&,(t,) £ C(t,)-
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We suppose that (0. ,— 05) (0)] gg 5. Then

3, >0):1(054,—Op) ()| =

ST

, St

1

SIS

whence
cos(Op,,—0x)(9)=206,>0, se[0,¢,].

The values (£,(t,), &,(t,), 04(t,), x,,) have a bounded joint destribution density
q(&), &5, 0, x') (this assertion should be proved with the help of the Hérmander’s
technique, see [7, Proposition 7}). Therefore, the joint distribution density of
(> Og(t 1), wit,)) equals

1o (g,
o | q( w,(0)

< C(tyllqll < Cyth '
= W) T Isin(0g,,—0g)(0)]

LE,.0, x') az,

This inequality yields the estimate B”):

Ci(ty)
t,x,@,@ 7x,’0/70, é—_'#—y
p(ty,(x,0,,0,),( 1 93)) Isin (8, — 0,)]
T
|91—021§‘2——‘5-

If the difference (0., —05)(0) is close to -;E, then the above given discussions are

not true since cos (0, —05)(s) is close to 0 for the small s. Butif E> | F||+1=2
then

Op =0 ()= 5 23, =05to)

{after some time ). Applying the Chapman-Kolmogorov equation

PQlgseeuy ) ={pltgs .cs .. p(tg ..) .

and the estimate ") we achieve B').

Remark. If (05, ,—05) (0)~ g and 1+ F(x)—E~O0, s=t,, then (85 ,—05)(s) may

be close to n/2 for all s<t, (with the small probability). For this case the following
estimate may be established:

B/’/) PE+h,E(t05 (xa 613 92)5 (X/, 9’19 9/2))
< C,ft,)/max (h,In 1/n-|sin (6, —6,))). : (22)

This estimate is sufficient for the future discussions. For the sake of shortness we
shall suppose that E>2.
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Let us pass on to the proof of y). We fix >0 and consider the following two
cases (see [7, Lemma 2]):
a) If t=h™* and 05, ,(0)=040)=0, then for some C,

P 00isin2(0;,—0,)1(<0}

[t/Co] +1

A

P 0,050 (0, ,—0g) (kCp)> 3}

k=1

A

l_tg} M(x.e,o)lsm (0E+h - GE) (kCO)I
Co Ciley)

< C,h~*h' < C ki,

We have used Cebysev’s inequality and the estimate o). We also have to remember
that the phases and their differences can not change too quickly.

b) Let t>h"% We put t'=t—h™ %2 and use the obvious modification of the
formula (25):

wh(t)zwh(t/)exp{—j } + ;[exp{—ff...} ...du

=wy(t)¢, () +E,(0). (257)
According to o)

1
hlfe

P(x,e,m{lwh(t’)l = } <Cht~®,

so that
P, 0.08In2(05 ., — 0 00) <O} SCh' ™ + M, g o P(x,, 05, (1), 05(1)(4,),
A, ={sin2(05,,—0)1)<0,Q,},
where
@ ~{uihu 1S =),
P{G} 21— Ch' ™,

But by Fiirstenberg theorem (see [7, Corollary 1 and Lemma 27) 3(5,, >0) such
that

P00 ll1(O} >exp{—(t—1)0} Sexp{—6,(t— 1)} Sexp{—35,h"}.
Since
Isin (0, —O0p) () SH°,
lcos (01, ~ 0p) ()] 21/2
on @, and M¢&L™*(1) < C(e,) then repeating the discussions of a) we obtain that

P{lcos (O, ,— 0p) () = 1/4, se(t, 1); @} =1 —h! =%,
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The last expression means that
P o580 2005, ,—0,)(1)>0,0,}
=P, o gisgnsin (O, —05) (1) =sgncos (O, ,—05) (1), 2,}
21—Ch' s —h' "5 —exp{—5,h ¢} 21— Ch' 5.

From this estimate we obtain v). The inequality v’} should be established just in the
same way.
Now we should prove the important estimate of the transition density

Pran, et (x,0,0),(x,07,0,)).
Proposition 8. a) If (0, —0,)mod ne[Ch,n~3] then there exist t,=1,(C,d) and

C,=C(C,¢,06)such that
Cll’ll —e

Pran gl (%, 0,0),(x, 07, 05) S 7 (26)
for 121, ExhE PIR=0, -0, Tt max (b, (0, — 0),))
by If (0, —0,)mod ne[n— 9, n] then Iw, &, >0) such that
Ppan gt (x,0,0),(x, 01,0,)) < Cy(er, 8, )1 27

Jor t>aln 1/h.
The proof of the case a). By Chapman-Kolmogorov equation
Pe+n 6 (%, 0,0),(x',01,05))
= Ppn 6t =7 (x,04,0,),(%,6,,0,))
Ppan (& 0,,0,),(x, 04, 0,)d%d0,db,

for v <t.
Let us note that the formula (25) yields that

|0} — 05 S C@I0, — 0,1 — C,(t)h
hence
C S
(Op 4 (t—1)— 04t — 1)) mod e Eh,n- 5
for

(Op,—0p) () mod ne <Ch, — g)

and for sufficiently small t=t,. Using the estimates p), v') [or o] for 8, — 6,€(0,9)
and the CebySev’s inequality we obtain (26). The similar discussions are applicable
to the case when 6, —60,e(n—0, 7). But in this situation they give us the estimate

C2h1 —& _
- <C,h~¢ 28
max (h,sin (¢, —0,)) = ? 28)

pE+h,E(t’ (X, 9: 9)9 (X’, 9,1> 9,2)) é

which is insufficient for our aim.
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To prove b) we should choose the intermediate point t depending on
sin (6, —05). If
t=g¢In I/max (h,sin (¢}, 6))

then according to (25) for the sufficiently small «

t t
Eft—=1)= | exp{— | ...}cos(@mh— 0,)(n)sin? 0, ,dn<0,
t—7 n
if
(05, ,()—0x(t)) mod z= (0] —0,) mod ne(n—4,7)
[since cos(0g,,— 0 (u)<0]. Moreover, by Fiirstenberg theorem (see above)
3(5,,0,>0):

t
P{g1 :exp{— | ..,ds} ge“”’} <exph —d,1}.
t—1

But then 3(x,, 1, >0):

Open— 000
PlOr -t t-0> PO

<Cmax(h,sin(0, —0,)).

Applying the Chapman-Kolmogorov equation, the estimates f) and (28) (for the
sufficiently small &) we have (27). We have proved Proposition 8 and 7 and
Theorem 1.

The more attentive analysis of (27) shows that we may put 6, =1—0 for every
0>0.

Propositions 7 and 8 gives us the additional information about the structure of
the wave functions. We introduce the following functional of the “conductivity
type”

1 14
S(E,E)= 7 y fV ri e (s)ds. (29)

Ei(V) <E,
E)<E,

The formulas (26) and (27) yield

EHEV)
T 7

Theorem 2 (“‘on the repulsion of the wave functions”):
E'E
Gy (B, E)——— [ fole,e)dede, (30)
00
where
ole,e)= | m, (x,0,0)n, (x,n—0,,n—0,)dxd0 db,
KxStxst

=o(le'—el).

“The density” o(e',e) characterizes “the mean interaction” between those the wave
functions the levels of which are close to €' and e resp.

Remark {. From Theorem 2 it is easy to obtain the following well known fact,
namely, for the null temperature and direct current the conductivity o(E,, E,) of
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the one-dimensional random Markov structure equals zero (E, >0 is the Fermy
energy). Moreover, (E,, E + w)=0(w®), £¢>0. Plainly, the more precise estimates
of 6(E,, E, + w) can not be achieved when using &, (E’, E). We hope to analyse a
conductivity in the our future paper.

Remark 2. The generalization of Theorem 1 for the multidimensional case is the
most difficult problem since it is very likely that the wave functions in R*, v=3 are
not localized. However the analog of Theorem 1 takes place in some degenerated
situations.
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